Coverage Report

Created: 2023-06-08 06:40

/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
0
{
246
0
    static const EC_METHOD ret = {
247
0
        EC_FLAGS_DEFAULT_OCT,
248
0
        NID_X9_62_prime_field,
249
0
        ossl_ec_GFp_nistp224_group_init,
250
0
        ossl_ec_GFp_simple_group_finish,
251
0
        ossl_ec_GFp_simple_group_clear_finish,
252
0
        ossl_ec_GFp_nist_group_copy,
253
0
        ossl_ec_GFp_nistp224_group_set_curve,
254
0
        ossl_ec_GFp_simple_group_get_curve,
255
0
        ossl_ec_GFp_simple_group_get_degree,
256
0
        ossl_ec_group_simple_order_bits,
257
0
        ossl_ec_GFp_simple_group_check_discriminant,
258
0
        ossl_ec_GFp_simple_point_init,
259
0
        ossl_ec_GFp_simple_point_finish,
260
0
        ossl_ec_GFp_simple_point_clear_finish,
261
0
        ossl_ec_GFp_simple_point_copy,
262
0
        ossl_ec_GFp_simple_point_set_to_infinity,
263
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
0
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
0
        0 /* point_set_compressed_coordinates */ ,
266
0
        0 /* point2oct */ ,
267
0
        0 /* oct2point */ ,
268
0
        ossl_ec_GFp_simple_add,
269
0
        ossl_ec_GFp_simple_dbl,
270
0
        ossl_ec_GFp_simple_invert,
271
0
        ossl_ec_GFp_simple_is_at_infinity,
272
0
        ossl_ec_GFp_simple_is_on_curve,
273
0
        ossl_ec_GFp_simple_cmp,
274
0
        ossl_ec_GFp_simple_make_affine,
275
0
        ossl_ec_GFp_simple_points_make_affine,
276
0
        ossl_ec_GFp_nistp224_points_mul,
277
0
        ossl_ec_GFp_nistp224_precompute_mult,
278
0
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
0
        ossl_ec_GFp_nist_field_mul,
280
0
        ossl_ec_GFp_nist_field_sqr,
281
0
        0 /* field_div */ ,
282
0
        ossl_ec_GFp_simple_field_inv,
283
0
        0 /* field_encode */ ,
284
0
        0 /* field_decode */ ,
285
0
        0,                      /* field_set_to_one */
286
0
        ossl_ec_key_simple_priv2oct,
287
0
        ossl_ec_key_simple_oct2priv,
288
0
        0, /* set private */
289
0
        ossl_ec_key_simple_generate_key,
290
0
        ossl_ec_key_simple_check_key,
291
0
        ossl_ec_key_simple_generate_public_key,
292
0
        0, /* keycopy */
293
0
        0, /* keyfinish */
294
0
        ossl_ecdh_simple_compute_key,
295
0
        ossl_ecdsa_simple_sign_setup,
296
0
        ossl_ecdsa_simple_sign_sig,
297
0
        ossl_ecdsa_simple_verify_sig,
298
0
        0, /* field_inverse_mod_ord */
299
0
        0, /* blind_coordinates */
300
0
        0, /* ladder_pre */
301
0
        0, /* ladder_step */
302
0
        0  /* ladder_post */
303
0
    };
304
305
0
    return &ret;
306
0
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
0
{
313
0
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
0
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
0
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
0
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
0
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
0
{
321
0
    unsigned i;
322
0
    for (i = 0; i < 7; ++i) {
323
0
        out[i] = in[0] >> (8 * i);
324
0
        out[i + 7] = in[1] >> (8 * i);
325
0
        out[i + 14] = in[2] >> (8 * i);
326
0
        out[i + 21] = in[3] >> (8 * i);
327
0
    }
328
0
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
0
{
333
0
    felem_bytearray b_out;
334
0
    int num_bytes;
335
336
0
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
0
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
0
    bin28_to_felem(out, b_out);
346
0
    return 1;
347
0
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
0
{
352
0
    felem_bytearray b_out;
353
0
    felem_to_bin28(b_out, in);
354
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
0
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
0
{
378
0
    out[0] = in[0];
379
0
    out[1] = in[1];
380
0
    out[2] = in[2];
381
0
    out[3] = in[3];
382
0
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
0
{
387
0
    out[0] += in[0];
388
0
    out[1] += in[1];
389
0
    out[2] += in[2];
390
0
    out[3] += in[3];
391
0
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
0
{
397
0
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
0
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
0
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
0
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
0
    out[0] += two58p2;
404
0
    out[1] += two58m42m2;
405
0
    out[2] += two58m2;
406
0
    out[3] += two58m2;
407
408
0
    out[0] -= in[0];
409
0
    out[1] -= in[1];
410
0
    out[2] -= in[2];
411
0
    out[3] -= in[3];
412
0
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
0
{
418
0
    static const widelimb two120 = ((widelimb) 1) << 120;
419
0
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
0
        (((widelimb) 1) << 64);
421
0
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
0
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
0
    out[0] += two120;
426
0
    out[1] += two120m64;
427
0
    out[2] += two120m64;
428
0
    out[3] += two120;
429
0
    out[4] += two120m104m64;
430
0
    out[5] += two120m64;
431
0
    out[6] += two120m64;
432
433
0
    out[0] -= in[0];
434
0
    out[1] -= in[1];
435
0
    out[2] -= in[2];
436
0
    out[3] -= in[3];
437
0
    out[4] -= in[4];
438
0
    out[5] -= in[5];
439
0
    out[6] -= in[6];
440
0
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
0
{
446
0
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
0
        (((widelimb) 1) << 8);
448
0
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
0
        (((widelimb) 1) << 8);
450
0
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
0
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
0
    out[0] += two64p8;
455
0
    out[1] += two64m48m8;
456
0
    out[2] += two64m8;
457
0
    out[3] += two64m8;
458
459
0
    out[0] -= in[0];
460
0
    out[1] -= in[1];
461
0
    out[2] -= in[2];
462
0
    out[3] -= in[3];
463
0
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
0
{
471
0
    out[0] *= scalar;
472
0
    out[1] *= scalar;
473
0
    out[2] *= scalar;
474
0
    out[3] *= scalar;
475
0
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
0
{
483
0
    out[0] *= scalar;
484
0
    out[1] *= scalar;
485
0
    out[2] *= scalar;
486
0
    out[3] *= scalar;
487
0
    out[4] *= scalar;
488
0
    out[5] *= scalar;
489
0
    out[6] *= scalar;
490
0
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
0
{
495
0
    limb tmp0, tmp1, tmp2;
496
0
    tmp0 = 2 * in[0];
497
0
    tmp1 = 2 * in[1];
498
0
    tmp2 = 2 * in[2];
499
0
    out[0] = ((widelimb) in[0]) * in[0];
500
0
    out[1] = ((widelimb) in[0]) * tmp1;
501
0
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
0
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
0
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
0
    out[5] = ((widelimb) in[3]) * tmp2;
505
0
    out[6] = ((widelimb) in[3]) * in[3];
506
0
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
0
{
511
0
    out[0] = ((widelimb) in1[0]) * in2[0];
512
0
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
0
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
0
             ((widelimb) in1[2]) * in2[0];
515
0
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
0
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
0
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
0
             ((widelimb) in1[3]) * in2[1];
519
0
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
0
    out[6] = ((widelimb) in1[3]) * in2[3];
521
0
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
0
{
529
0
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
0
        (((widelimb) 1) << 15);
531
0
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
0
        (((widelimb) 1) << 71);
533
0
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
0
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
0
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
0
    output[0] = in[0] + two127p15;
539
0
    output[1] = in[1] + two127m71m55;
540
0
    output[2] = in[2] + two127m71;
541
0
    output[3] = in[3];
542
0
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
0
    output[4] += in[6] >> 16;
546
0
    output[3] += (in[6] & 0xffff) << 40;
547
0
    output[2] -= in[6];
548
549
0
    output[3] += in[5] >> 16;
550
0
    output[2] += (in[5] & 0xffff) << 40;
551
0
    output[1] -= in[5];
552
553
0
    output[2] += output[4] >> 16;
554
0
    output[1] += (output[4] & 0xffff) << 40;
555
0
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
0
    output[3] += output[2] >> 56;
559
0
    output[2] &= 0x00ffffffffffffff;
560
561
0
    output[4] = output[3] >> 56;
562
0
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
0
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
0
    output[1] += (output[4] & 0xffff) << 40;
570
0
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
0
    output[1] += output[0] >> 56;
574
0
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
0
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
0
    out[1] = output[1] & 0x00ffffffffffffff;
579
0
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
0
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
0
    out[3] = output[3];
589
0
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
0
{
611
0
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
0
    int64_t tmp[4], a;
615
0
    tmp[0] = in[0];
616
0
    tmp[1] = in[1];
617
0
    tmp[2] = in[2];
618
0
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
0
    a = (in[3] >> 56);
621
0
    tmp[0] -= a;
622
0
    tmp[1] += a << 40;
623
0
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
0
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
0
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
0
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
0
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
0
    tmp[3] &= a ^ 0xffffffffffffffff;
635
0
    tmp[2] &= a ^ 0xffffffffffffffff;
636
0
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
0
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
0
    a = tmp[0] >> 63;
644
0
    tmp[0] += two56 & a;
645
0
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
0
    tmp[2] += tmp[1] >> 56;
649
0
    tmp[1] &= 0x00ffffffffffffff;
650
651
0
    tmp[3] += tmp[2] >> 56;
652
0
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
0
    out[0] = tmp[0];
656
0
    out[1] = tmp[1];
657
0
    out[2] = tmp[2];
658
0
    out[3] = tmp[3];
659
0
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
0
{
668
0
    widefelem tmp;
669
670
0
    memset(tmp, 0, sizeof(tmp));
671
0
    felem_diff_128_64(tmp, in);
672
0
    felem_reduce(out, tmp);
673
0
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
0
{
682
0
    limb zero, two224m96p1, two225m97p2;
683
684
0
    zero = in[0] | in[1] | in[2] | in[3];
685
0
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
0
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
0
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
0
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
0
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
0
    return (zero | two224m96p1 | two225m97p2);
693
0
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
0
{
704
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
0
    widefelem tmp;
706
0
    unsigned i;
707
708
0
    felem_square(tmp, in);
709
0
    felem_reduce(ftmp, tmp);    /* 2 */
710
0
    felem_mul(tmp, in, ftmp);
711
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
0
    felem_square(tmp, ftmp);
713
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
0
    felem_mul(tmp, in, ftmp);
715
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
0
    felem_square(tmp, ftmp);
717
0
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
0
    felem_square(tmp, ftmp2);
719
0
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
0
    felem_square(tmp, ftmp2);
721
0
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
0
    felem_mul(tmp, ftmp2, ftmp);
723
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
0
    felem_square(tmp, ftmp);
725
0
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
0
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
0
        felem_square(tmp, ftmp2);
728
0
        felem_reduce(ftmp2, tmp);
729
0
    }
730
0
    felem_mul(tmp, ftmp2, ftmp);
731
0
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
0
    felem_square(tmp, ftmp2);
733
0
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
0
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
0
        felem_square(tmp, ftmp3);
736
0
        felem_reduce(ftmp3, tmp);
737
0
    }
738
0
    felem_mul(tmp, ftmp3, ftmp2);
739
0
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
0
    felem_square(tmp, ftmp2);
741
0
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
0
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
0
        felem_square(tmp, ftmp3);
744
0
        felem_reduce(ftmp3, tmp);
745
0
    }
746
0
    felem_mul(tmp, ftmp3, ftmp2);
747
0
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
0
    felem_square(tmp, ftmp3);
749
0
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
0
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
0
        felem_square(tmp, ftmp4);
752
0
        felem_reduce(ftmp4, tmp);
753
0
    }
754
0
    felem_mul(tmp, ftmp3, ftmp4);
755
0
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
0
    felem_square(tmp, ftmp3);
757
0
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
0
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
0
        felem_square(tmp, ftmp4);
760
0
        felem_reduce(ftmp4, tmp);
761
0
    }
762
0
    felem_mul(tmp, ftmp2, ftmp4);
763
0
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
0
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
0
        felem_square(tmp, ftmp2);
766
0
        felem_reduce(ftmp2, tmp);
767
0
    }
768
0
    felem_mul(tmp, ftmp2, ftmp);
769
0
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
0
    felem_square(tmp, ftmp);
771
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
0
    felem_mul(tmp, ftmp, in);
773
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
0
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
0
        felem_square(tmp, ftmp);
776
0
        felem_reduce(ftmp, tmp);
777
0
    }
778
0
    felem_mul(tmp, ftmp, ftmp3);
779
0
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
0
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
0
{
788
0
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
0
    const limb copy = -icopy;
793
0
    for (i = 0; i < 4; ++i) {
794
0
        const limb tmp = copy & (in[i] ^ out[i]);
795
0
        out[i] ^= tmp;
796
0
    }
797
0
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
0
{
822
0
    widefelem tmp, tmp2;
823
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
0
    felem_assign(ftmp, x_in);
826
0
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
0
    felem_square(tmp, z_in);
830
0
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
0
    felem_square(tmp, y_in);
834
0
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
0
    felem_mul(tmp, x_in, gamma);
838
0
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
0
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
0
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
0
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
0
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
0
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
0
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
0
    felem_assign(ftmp, beta);
855
0
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
0
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
0
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
0
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
0
    felem_assign(ftmp, y_in);
865
0
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
0
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
0
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
0
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
0
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
0
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
0
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
0
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
0
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
0
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
0
    felem_reduce(y_out, tmp);
887
0
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
0
{
912
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
0
    widefelem tmp, tmp2;
914
0
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
0
    limb points_equal;
916
917
0
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
0
        felem_square(tmp, z2);
920
0
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
0
        felem_mul(tmp, ftmp2, z2);
924
0
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
0
        felem_mul(tmp2, ftmp4, y1);
928
0
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
0
        felem_mul(tmp2, ftmp2, x1);
932
0
        felem_reduce(ftmp2, tmp2);
933
0
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
0
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
0
        felem_assign(ftmp2, x1);
943
0
    }
944
945
    /* ftmp = z1^2 */
946
0
    felem_square(tmp, z1);
947
0
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
0
    felem_mul(tmp, ftmp, z1);
951
0
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
0
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
0
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
0
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
0
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
0
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
0
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
0
    x_equal = felem_is_zero(ftmp);
980
0
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
0
    z1_is_zero = felem_is_zero(z1);
987
0
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
0
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
0
    if (!mixed) {
1013
0
        felem_mul(tmp, z1, z2);
1014
0
        felem_reduce(ftmp5, tmp);
1015
0
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
0
        felem_assign(ftmp5, z1);
1018
0
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
0
    felem_mul(tmp, ftmp, ftmp5);
1022
0
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
0
    felem_assign(ftmp5, ftmp);
1026
0
    felem_square(tmp, ftmp);
1027
0
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
0
    felem_mul(tmp, ftmp, ftmp5);
1031
0
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
0
    felem_mul(tmp, ftmp2, ftmp);
1035
0
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
0
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
0
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
0
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
0
    felem_assign(ftmp5, ftmp2);
1051
0
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
0
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
0
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
0
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
0
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
0
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
0
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
0
    copy_conditional(x_out, x2, z1_is_zero);
1089
0
    copy_conditional(x_out, x1, z2_is_zero);
1090
0
    copy_conditional(y_out, y2, z1_is_zero);
1091
0
    copy_conditional(y_out, y1, z2_is_zero);
1092
0
    copy_conditional(z_out, z2, z1_is_zero);
1093
0
    copy_conditional(z_out, z1, z2_is_zero);
1094
0
    felem_assign(x3, x_out);
1095
0
    felem_assign(y3, y_out);
1096
0
    felem_assign(z3, z_out);
1097
0
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
0
{
1107
0
    unsigned i, j;
1108
0
    limb *outlimbs = &out[0][0];
1109
1110
0
    memset(out, 0, sizeof(*out) * 3);
1111
0
    for (i = 0; i < size; i++) {
1112
0
        const limb *inlimbs = &pre_comp[i][0][0];
1113
0
        u64 mask = i ^ idx;
1114
0
        mask |= mask >> 4;
1115
0
        mask |= mask >> 2;
1116
0
        mask |= mask >> 1;
1117
0
        mask &= 1;
1118
0
        mask--;
1119
0
        for (j = 0; j < 4 * 3; j++)
1120
0
            outlimbs[j] |= inlimbs[j] & mask;
1121
0
    }
1122
0
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
0
{
1127
0
    if (i >= 224)
1128
0
        return 0;
1129
0
    return (in[i >> 3] >> (i & 7)) & 1;
1130
0
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
0
{
1145
0
    int i, skip;
1146
0
    unsigned num;
1147
0
    unsigned gen_mul = (g_scalar != NULL);
1148
0
    felem nq[3], tmp[4];
1149
0
    u64 bits;
1150
0
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
0
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
0
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
0
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
0
        if (!skip)
1165
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
0
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
0
            bits = get_bit(g_scalar, i + 196) << 3;
1171
0
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
0
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
0
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
0
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
0
                point_add(nq[0], nq[1], nq[2],
1180
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
0
            } else {
1182
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
0
                skip = 0;
1184
0
            }
1185
1186
            /* second, look at the current position */
1187
0
            bits = get_bit(g_scalar, i + 168) << 3;
1188
0
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
0
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
0
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
0
            point_add(nq[0], nq[1], nq[2],
1194
0
                      nq[0], nq[1], nq[2],
1195
0
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
0
        }
1197
1198
        /* do other additions every 5 doublings */
1199
0
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
0
            for (num = 0; num < num_points; ++num) {
1202
0
                bits = get_bit(scalars[num], i + 4) << 5;
1203
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
0
                bits |= get_bit(scalars[num], i) << 1;
1207
0
                bits |= get_bit(scalars[num], i - 1);
1208
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
0
                select_point(digit, 17, pre_comp[num], tmp);
1212
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
0
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
0
                if (!skip) {
1217
0
                    point_add(nq[0], nq[1], nq[2],
1218
0
                              nq[0], nq[1], nq[2],
1219
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
0
                } else {
1221
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
0
                    skip = 0;
1223
0
                }
1224
0
            }
1225
0
        }
1226
0
    }
1227
0
    felem_assign(x_out, nq[0]);
1228
0
    felem_assign(y_out, nq[1]);
1229
0
    felem_assign(z_out, nq[2]);
1230
0
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
0
{
1289
0
    int ret;
1290
0
    ret = ossl_ec_GFp_simple_group_init(group);
1291
0
    group->a_is_minus3 = 1;
1292
0
    return ret;
1293
0
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
0
{
1299
0
    int ret = 0;
1300
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
0
#ifndef FIPS_MODULE
1302
0
    BN_CTX *new_ctx = NULL;
1303
1304
0
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
0
#endif
1307
0
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
0
    BN_CTX_start(ctx);
1311
0
    curve_p = BN_CTX_get(ctx);
1312
0
    curve_a = BN_CTX_get(ctx);
1313
0
    curve_b = BN_CTX_get(ctx);
1314
0
    if (curve_b == NULL)
1315
0
        goto err;
1316
0
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
0
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
0
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
0
    group->field_mod_func = BN_nist_mod_224;
1324
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
0
 err:
1326
0
    BN_CTX_end(ctx);
1327
0
#ifndef FIPS_MODULE
1328
0
    BN_CTX_free(new_ctx);
1329
0
#endif
1330
0
    return ret;
1331
0
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
0
{
1342
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
0
    widefelem tmp;
1344
1345
0
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
0
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
0
    felem_inv(z2, z1);
1353
0
    felem_square(tmp, z2);
1354
0
    felem_reduce(z1, tmp);
1355
0
    felem_mul(tmp, x_in, z1);
1356
0
    felem_reduce(x_in, tmp);
1357
0
    felem_contract(x_out, x_in);
1358
0
    if (x != NULL) {
1359
0
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
0
    }
1364
0
    felem_mul(tmp, z1, z2);
1365
0
    felem_reduce(z1, tmp);
1366
0
    felem_mul(tmp, y_in, z1);
1367
0
    felem_reduce(y_in, tmp);
1368
0
    felem_contract(y_out, y_in);
1369
0
    if (y != NULL) {
1370
0
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
0
    }
1375
0
    return 1;
1376
0
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
0
{
1416
0
    int ret = 0;
1417
0
    int j;
1418
0
    unsigned i;
1419
0
    int mixed = 0;
1420
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
0
    felem_bytearray g_secret;
1422
0
    felem_bytearray *secrets = NULL;
1423
0
    felem (*pre_comp)[17][3] = NULL;
1424
0
    felem *tmp_felems = NULL;
1425
0
    int num_bytes;
1426
0
    int have_pre_comp = 0;
1427
0
    size_t num_points = num;
1428
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
0
    NISTP224_PRE_COMP *pre = NULL;
1430
0
    const felem(*g_pre_comp)[16][3] = NULL;
1431
0
    EC_POINT *generator = NULL;
1432
0
    const EC_POINT *p = NULL;
1433
0
    const BIGNUM *p_scalar = NULL;
1434
1435
0
    BN_CTX_start(ctx);
1436
0
    x = BN_CTX_get(ctx);
1437
0
    y = BN_CTX_get(ctx);
1438
0
    z = BN_CTX_get(ctx);
1439
0
    tmp_scalar = BN_CTX_get(ctx);
1440
0
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
0
    if (scalar != NULL) {
1444
0
        pre = group->pre_comp.nistp224;
1445
0
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
0
        else
1449
            /* try to use the standard precomputation */
1450
0
            g_pre_comp = &gmul[0];
1451
0
        generator = EC_POINT_new(group);
1452
0
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
0
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
0
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
0
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
0
                                                                generator,
1463
0
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
0
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
0
    }
1475
1476
0
    if (num_points > 0) {
1477
0
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
0
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
0
        if ((secrets == NULL) || (pre_comp == NULL)
1490
0
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
0
        for (i = 0; i < num_points; ++i) {
1500
0
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
0
            } else {
1505
                /* the i^th point */
1506
0
                p = points[i];
1507
0
                p_scalar = scalars[i];
1508
0
            }
1509
0
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
0
                if ((BN_num_bits(p_scalar) > 224)
1512
0
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
0
                } else {
1524
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
0
                                               secrets[i], sizeof(secrets[i]));
1526
0
                }
1527
0
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
0
                if ((!BN_to_felem(x_out, p->X)) ||
1533
0
                    (!BN_to_felem(y_out, p->Y)) ||
1534
0
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
0
                felem_assign(pre_comp[i][1][0], x_out);
1537
0
                felem_assign(pre_comp[i][1][1], y_out);
1538
0
                felem_assign(pre_comp[i][1][2], z_out);
1539
0
                for (j = 2; j <= 16; ++j) {
1540
0
                    if (j & 1) {
1541
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
0
                                  pre_comp[i][j - 1][0],
1545
0
                                  pre_comp[i][j - 1][1],
1546
0
                                  pre_comp[i][j - 1][2]);
1547
0
                    } else {
1548
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
0
                                     pre_comp[i][j / 2][1],
1551
0
                                     pre_comp[i][j / 2][2]);
1552
0
                    }
1553
0
                }
1554
0
            }
1555
0
        }
1556
0
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
0
    }
1559
1560
    /* the scalar for the generator */
1561
0
    if ((scalar != NULL) && (have_pre_comp)) {
1562
0
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
0
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
0
        } else {
1575
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
0
        }
1577
        /* do the multiplication with generator precomputation */
1578
0
        batch_mul(x_out, y_out, z_out,
1579
0
                  (const felem_bytearray(*))secrets, num_points,
1580
0
                  g_secret,
1581
0
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
0
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
0
        batch_mul(x_out, y_out, z_out,
1585
0
                  (const felem_bytearray(*))secrets, num_points,
1586
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
0
    }
1588
    /* reduce the output to its unique minimal representation */
1589
0
    felem_contract(x_in, x_out);
1590
0
    felem_contract(y_in, y_out);
1591
0
    felem_contract(z_in, z_out);
1592
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
0
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
0
                                                             ctx);
1599
1600
0
 err:
1601
0
    BN_CTX_end(ctx);
1602
0
    EC_POINT_free(generator);
1603
0
    OPENSSL_free(secrets);
1604
0
    OPENSSL_free(pre_comp);
1605
0
    OPENSSL_free(tmp_felems);
1606
0
    return ret;
1607
0
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
0
    return HAVEPRECOMP(group, nistp224);
1748
0
}