/src/openssl/crypto/ec/ec_mult.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * ECDSA low level APIs are deprecated for public use, but still ok for |
13 | | * internal use. |
14 | | */ |
15 | | #include "internal/deprecated.h" |
16 | | |
17 | | #include <string.h> |
18 | | #include <openssl/err.h> |
19 | | |
20 | | #include "internal/cryptlib.h" |
21 | | #include "crypto/bn.h" |
22 | | #include "ec_local.h" |
23 | | #include "internal/refcount.h" |
24 | | |
25 | | /* |
26 | | * This file implements the wNAF-based interleaving multi-exponentiation method |
27 | | * Formerly at: |
28 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp |
29 | | * You might now find it here: |
30 | | * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
31 | | * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
32 | | * For multiplication with precomputation, we use wNAF splitting, formerly at: |
33 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp |
34 | | */ |
35 | | |
36 | | /* structure for precomputed multiples of the generator */ |
37 | | struct ec_pre_comp_st { |
38 | | const EC_GROUP *group; /* parent EC_GROUP object */ |
39 | | size_t blocksize; /* block size for wNAF splitting */ |
40 | | size_t numblocks; /* max. number of blocks for which we have |
41 | | * precomputation */ |
42 | | size_t w; /* window size */ |
43 | | EC_POINT **points; /* array with pre-calculated multiples of |
44 | | * generator: 'num' pointers to EC_POINT |
45 | | * objects followed by a NULL */ |
46 | | size_t num; /* numblocks * 2^(w-1) */ |
47 | | CRYPTO_REF_COUNT references; |
48 | | CRYPTO_RWLOCK *lock; |
49 | | }; |
50 | | |
51 | | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) |
52 | 0 | { |
53 | 0 | EC_PRE_COMP *ret = NULL; |
54 | |
|
55 | 0 | if (!group) |
56 | 0 | return NULL; |
57 | | |
58 | 0 | ret = OPENSSL_zalloc(sizeof(*ret)); |
59 | 0 | if (ret == NULL) |
60 | 0 | return ret; |
61 | | |
62 | 0 | ret->group = group; |
63 | 0 | ret->blocksize = 8; /* default */ |
64 | 0 | ret->w = 4; /* default */ |
65 | 0 | ret->references = 1; |
66 | |
|
67 | 0 | ret->lock = CRYPTO_THREAD_lock_new(); |
68 | 0 | if (ret->lock == NULL) { |
69 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_CRYPTO_LIB); |
70 | 0 | OPENSSL_free(ret); |
71 | 0 | return NULL; |
72 | 0 | } |
73 | 0 | return ret; |
74 | 0 | } |
75 | | |
76 | | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) |
77 | 0 | { |
78 | 0 | int i; |
79 | 0 | if (pre != NULL) |
80 | 0 | CRYPTO_UP_REF(&pre->references, &i, pre->lock); |
81 | 0 | return pre; |
82 | 0 | } |
83 | | |
84 | | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) |
85 | 0 | { |
86 | 0 | int i; |
87 | |
|
88 | 0 | if (pre == NULL) |
89 | 0 | return; |
90 | | |
91 | 0 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
92 | 0 | REF_PRINT_COUNT("EC_ec", pre); |
93 | 0 | if (i > 0) |
94 | 0 | return; |
95 | 0 | REF_ASSERT_ISNT(i < 0); |
96 | |
|
97 | 0 | if (pre->points != NULL) { |
98 | 0 | EC_POINT **pts; |
99 | |
|
100 | 0 | for (pts = pre->points; *pts != NULL; pts++) |
101 | 0 | EC_POINT_free(*pts); |
102 | 0 | OPENSSL_free(pre->points); |
103 | 0 | } |
104 | 0 | CRYPTO_THREAD_lock_free(pre->lock); |
105 | 0 | OPENSSL_free(pre); |
106 | 0 | } |
107 | | |
108 | 0 | #define EC_POINT_BN_set_flags(P, flags) do { \ |
109 | 0 | BN_set_flags((P)->X, (flags)); \ |
110 | 0 | BN_set_flags((P)->Y, (flags)); \ |
111 | 0 | BN_set_flags((P)->Z, (flags)); \ |
112 | 0 | } while(0) |
113 | | |
114 | | /*- |
115 | | * This functions computes a single point multiplication over the EC group, |
116 | | * using, at a high level, a Montgomery ladder with conditional swaps, with |
117 | | * various timing attack defenses. |
118 | | * |
119 | | * It performs either a fixed point multiplication |
120 | | * (scalar * generator) |
121 | | * when point is NULL, or a variable point multiplication |
122 | | * (scalar * point) |
123 | | * when point is not NULL. |
124 | | * |
125 | | * `scalar` cannot be NULL and should be in the range [0,n) otherwise all |
126 | | * constant time bets are off (where n is the cardinality of the EC group). |
127 | | * |
128 | | * This function expects `group->order` and `group->cardinality` to be well |
129 | | * defined and non-zero: it fails with an error code otherwise. |
130 | | * |
131 | | * NB: This says nothing about the constant-timeness of the ladder step |
132 | | * implementation (i.e., the default implementation is based on EC_POINT_add and |
133 | | * EC_POINT_dbl, which of course are not constant time themselves) or the |
134 | | * underlying multiprecision arithmetic. |
135 | | * |
136 | | * The product is stored in `r`. |
137 | | * |
138 | | * This is an internal function: callers are in charge of ensuring that the |
139 | | * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. |
140 | | * |
141 | | * Returns 1 on success, 0 otherwise. |
142 | | */ |
143 | | int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, |
144 | | const BIGNUM *scalar, const EC_POINT *point, |
145 | | BN_CTX *ctx) |
146 | 0 | { |
147 | 0 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
148 | 0 | EC_POINT *p = NULL; |
149 | 0 | EC_POINT *s = NULL; |
150 | 0 | BIGNUM *k = NULL; |
151 | 0 | BIGNUM *lambda = NULL; |
152 | 0 | BIGNUM *cardinality = NULL; |
153 | 0 | int ret = 0; |
154 | | |
155 | | /* early exit if the input point is the point at infinity */ |
156 | 0 | if (point != NULL && EC_POINT_is_at_infinity(group, point)) |
157 | 0 | return EC_POINT_set_to_infinity(group, r); |
158 | | |
159 | 0 | if (BN_is_zero(group->order)) { |
160 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER); |
161 | 0 | return 0; |
162 | 0 | } |
163 | 0 | if (BN_is_zero(group->cofactor)) { |
164 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR); |
165 | 0 | return 0; |
166 | 0 | } |
167 | | |
168 | 0 | BN_CTX_start(ctx); |
169 | |
|
170 | 0 | if (((p = EC_POINT_new(group)) == NULL) |
171 | 0 | || ((s = EC_POINT_new(group)) == NULL)) { |
172 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
173 | 0 | goto err; |
174 | 0 | } |
175 | | |
176 | 0 | if (point == NULL) { |
177 | 0 | if (!EC_POINT_copy(p, group->generator)) { |
178 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
179 | 0 | goto err; |
180 | 0 | } |
181 | 0 | } else { |
182 | 0 | if (!EC_POINT_copy(p, point)) { |
183 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
184 | 0 | goto err; |
185 | 0 | } |
186 | 0 | } |
187 | | |
188 | 0 | EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME); |
189 | 0 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
190 | 0 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
191 | |
|
192 | 0 | cardinality = BN_CTX_get(ctx); |
193 | 0 | lambda = BN_CTX_get(ctx); |
194 | 0 | k = BN_CTX_get(ctx); |
195 | 0 | if (k == NULL) { |
196 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
197 | 0 | goto err; |
198 | 0 | } |
199 | | |
200 | 0 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { |
201 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
202 | 0 | goto err; |
203 | 0 | } |
204 | | |
205 | | /* |
206 | | * Group cardinalities are often on a word boundary. |
207 | | * So when we pad the scalar, some timing diff might |
208 | | * pop if it needs to be expanded due to carries. |
209 | | * So expand ahead of time. |
210 | | */ |
211 | 0 | cardinality_bits = BN_num_bits(cardinality); |
212 | 0 | group_top = bn_get_top(cardinality); |
213 | 0 | if ((bn_wexpand(k, group_top + 2) == NULL) |
214 | 0 | || (bn_wexpand(lambda, group_top + 2) == NULL)) { |
215 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
216 | 0 | goto err; |
217 | 0 | } |
218 | | |
219 | 0 | if (!BN_copy(k, scalar)) { |
220 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
221 | 0 | goto err; |
222 | 0 | } |
223 | | |
224 | 0 | BN_set_flags(k, BN_FLG_CONSTTIME); |
225 | |
|
226 | 0 | if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
227 | | /*- |
228 | | * this is an unusual input, and we don't guarantee |
229 | | * constant-timeness |
230 | | */ |
231 | 0 | if (!BN_nnmod(k, k, cardinality, ctx)) { |
232 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
233 | 0 | goto err; |
234 | 0 | } |
235 | 0 | } |
236 | | |
237 | 0 | if (!BN_add(lambda, k, cardinality)) { |
238 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
239 | 0 | goto err; |
240 | 0 | } |
241 | 0 | BN_set_flags(lambda, BN_FLG_CONSTTIME); |
242 | 0 | if (!BN_add(k, lambda, cardinality)) { |
243 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
244 | 0 | goto err; |
245 | 0 | } |
246 | | /* |
247 | | * lambda := scalar + cardinality |
248 | | * k := scalar + 2*cardinality |
249 | | */ |
250 | 0 | kbit = BN_is_bit_set(lambda, cardinality_bits); |
251 | 0 | BN_consttime_swap(kbit, k, lambda, group_top + 2); |
252 | |
|
253 | 0 | group_top = bn_get_top(group->field); |
254 | 0 | if ((bn_wexpand(s->X, group_top) == NULL) |
255 | 0 | || (bn_wexpand(s->Y, group_top) == NULL) |
256 | 0 | || (bn_wexpand(s->Z, group_top) == NULL) |
257 | 0 | || (bn_wexpand(r->X, group_top) == NULL) |
258 | 0 | || (bn_wexpand(r->Y, group_top) == NULL) |
259 | 0 | || (bn_wexpand(r->Z, group_top) == NULL) |
260 | 0 | || (bn_wexpand(p->X, group_top) == NULL) |
261 | 0 | || (bn_wexpand(p->Y, group_top) == NULL) |
262 | 0 | || (bn_wexpand(p->Z, group_top) == NULL)) { |
263 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
264 | 0 | goto err; |
265 | 0 | } |
266 | | |
267 | | /* ensure input point is in affine coords for ladder step efficiency */ |
268 | 0 | if (!p->Z_is_one && (group->meth->make_affine == NULL |
269 | 0 | || !group->meth->make_affine(group, p, ctx))) { |
270 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
271 | 0 | goto err; |
272 | 0 | } |
273 | | |
274 | | /* Initialize the Montgomery ladder */ |
275 | 0 | if (!ec_point_ladder_pre(group, r, s, p, ctx)) { |
276 | 0 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE); |
277 | 0 | goto err; |
278 | 0 | } |
279 | | |
280 | | /* top bit is a 1, in a fixed pos */ |
281 | 0 | pbit = 1; |
282 | |
|
283 | 0 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
284 | 0 | BN_consttime_swap(c, (a)->X, (b)->X, w); \ |
285 | 0 | BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ |
286 | 0 | BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ |
287 | 0 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
288 | 0 | (a)->Z_is_one ^= (t); \ |
289 | 0 | (b)->Z_is_one ^= (t); \ |
290 | 0 | } while(0) |
291 | | |
292 | | /*- |
293 | | * The ladder step, with branches, is |
294 | | * |
295 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
296 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
297 | | * |
298 | | * Swapping R, S conditionally on k[i] leaves you with state |
299 | | * |
300 | | * k[i] == 0: T, U = R, S |
301 | | * k[i] == 1: T, U = S, R |
302 | | * |
303 | | * Then perform the ECC ops. |
304 | | * |
305 | | * U = add(T, U) |
306 | | * T = dbl(T) |
307 | | * |
308 | | * Which leaves you with state |
309 | | * |
310 | | * k[i] == 0: U = add(R, S), T = dbl(R) |
311 | | * k[i] == 1: U = add(S, R), T = dbl(S) |
312 | | * |
313 | | * Swapping T, U conditionally on k[i] leaves you with state |
314 | | * |
315 | | * k[i] == 0: R, S = T, U |
316 | | * k[i] == 1: R, S = U, T |
317 | | * |
318 | | * Which leaves you with state |
319 | | * |
320 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
321 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
322 | | * |
323 | | * So we get the same logic, but instead of a branch it's a |
324 | | * conditional swap, followed by ECC ops, then another conditional swap. |
325 | | * |
326 | | * Optimization: The end of iteration i and start of i-1 looks like |
327 | | * |
328 | | * ... |
329 | | * CSWAP(k[i], R, S) |
330 | | * ECC |
331 | | * CSWAP(k[i], R, S) |
332 | | * (next iteration) |
333 | | * CSWAP(k[i-1], R, S) |
334 | | * ECC |
335 | | * CSWAP(k[i-1], R, S) |
336 | | * ... |
337 | | * |
338 | | * So instead of two contiguous swaps, you can merge the condition |
339 | | * bits and do a single swap. |
340 | | * |
341 | | * k[i] k[i-1] Outcome |
342 | | * 0 0 No Swap |
343 | | * 0 1 Swap |
344 | | * 1 0 Swap |
345 | | * 1 1 No Swap |
346 | | * |
347 | | * This is XOR. pbit tracks the previous bit of k. |
348 | | */ |
349 | |
|
350 | 0 | for (i = cardinality_bits - 1; i >= 0; i--) { |
351 | 0 | kbit = BN_is_bit_set(k, i) ^ pbit; |
352 | 0 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
353 | | |
354 | | /* Perform a single step of the Montgomery ladder */ |
355 | 0 | if (!ec_point_ladder_step(group, r, s, p, ctx)) { |
356 | 0 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE); |
357 | 0 | goto err; |
358 | 0 | } |
359 | | /* |
360 | | * pbit logic merges this cswap with that of the |
361 | | * next iteration |
362 | | */ |
363 | 0 | pbit ^= kbit; |
364 | 0 | } |
365 | | /* one final cswap to move the right value into r */ |
366 | 0 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
367 | 0 | #undef EC_POINT_CSWAP |
368 | | |
369 | | /* Finalize ladder (and recover full point coordinates) */ |
370 | 0 | if (!ec_point_ladder_post(group, r, s, p, ctx)) { |
371 | 0 | ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE); |
372 | 0 | goto err; |
373 | 0 | } |
374 | | |
375 | 0 | ret = 1; |
376 | |
|
377 | 0 | err: |
378 | 0 | EC_POINT_free(p); |
379 | 0 | EC_POINT_clear_free(s); |
380 | 0 | BN_CTX_end(ctx); |
381 | |
|
382 | 0 | return ret; |
383 | 0 | } |
384 | | |
385 | | #undef EC_POINT_BN_set_flags |
386 | | |
387 | | /* |
388 | | * Table could be optimised for the wNAF-based implementation, |
389 | | * sometimes smaller windows will give better performance (thus the |
390 | | * boundaries should be increased) |
391 | | */ |
392 | | #define EC_window_bits_for_scalar_size(b) \ |
393 | 0 | ((size_t) \ |
394 | 0 | ((b) >= 2000 ? 6 : \ |
395 | 0 | (b) >= 800 ? 5 : \ |
396 | 0 | (b) >= 300 ? 4 : \ |
397 | 0 | (b) >= 70 ? 3 : \ |
398 | 0 | (b) >= 20 ? 2 : \ |
399 | 0 | 1)) |
400 | | |
401 | | /*- |
402 | | * Compute |
403 | | * \sum scalars[i]*points[i], |
404 | | * also including |
405 | | * scalar*generator |
406 | | * in the addition if scalar != NULL |
407 | | */ |
408 | | int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
409 | | size_t num, const EC_POINT *points[], |
410 | | const BIGNUM *scalars[], BN_CTX *ctx) |
411 | 0 | { |
412 | 0 | const EC_POINT *generator = NULL; |
413 | 0 | EC_POINT *tmp = NULL; |
414 | 0 | size_t totalnum; |
415 | 0 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
416 | 0 | size_t pre_points_per_block = 0; |
417 | 0 | size_t i, j; |
418 | 0 | int k; |
419 | 0 | int r_is_inverted = 0; |
420 | 0 | int r_is_at_infinity = 1; |
421 | 0 | size_t *wsize = NULL; /* individual window sizes */ |
422 | 0 | signed char **wNAF = NULL; /* individual wNAFs */ |
423 | 0 | size_t *wNAF_len = NULL; |
424 | 0 | size_t max_len = 0; |
425 | 0 | size_t num_val; |
426 | 0 | EC_POINT **val = NULL; /* precomputation */ |
427 | 0 | EC_POINT **v; |
428 | 0 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or |
429 | | * 'pre_comp->points' */ |
430 | 0 | const EC_PRE_COMP *pre_comp = NULL; |
431 | 0 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
432 | | * treated like other scalars, i.e. |
433 | | * precomputation is not available */ |
434 | 0 | int ret = 0; |
435 | |
|
436 | 0 | if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { |
437 | | /*- |
438 | | * Handle the common cases where the scalar is secret, enforcing a |
439 | | * scalar multiplication implementation based on a Montgomery ladder, |
440 | | * with various timing attack defenses. |
441 | | */ |
442 | 0 | if ((scalar != group->order) && (scalar != NULL) && (num == 0)) { |
443 | | /*- |
444 | | * In this case we want to compute scalar * GeneratorPoint: this |
445 | | * codepath is reached most prominently by (ephemeral) key |
446 | | * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, |
447 | | * ECDH keygen/first half), where the scalar is always secret. This |
448 | | * is why we ignore if BN_FLG_CONSTTIME is actually set and we |
449 | | * always call the ladder version. |
450 | | */ |
451 | 0 | return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
452 | 0 | } |
453 | 0 | if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) { |
454 | | /*- |
455 | | * In this case we want to compute scalar * VariablePoint: this |
456 | | * codepath is reached most prominently by the second half of ECDH, |
457 | | * where the secret scalar is multiplied by the peer's public point. |
458 | | * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is |
459 | | * actually set and we always call the ladder version. |
460 | | */ |
461 | 0 | return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], |
462 | 0 | ctx); |
463 | 0 | } |
464 | 0 | } |
465 | | |
466 | 0 | if (scalar != NULL) { |
467 | 0 | generator = EC_GROUP_get0_generator(group); |
468 | 0 | if (generator == NULL) { |
469 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR); |
470 | 0 | goto err; |
471 | 0 | } |
472 | | |
473 | | /* look if we can use precomputed multiples of generator */ |
474 | | |
475 | 0 | pre_comp = group->pre_comp.ec; |
476 | 0 | if (pre_comp && pre_comp->numblocks |
477 | 0 | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == |
478 | 0 | 0)) { |
479 | 0 | blocksize = pre_comp->blocksize; |
480 | | |
481 | | /* |
482 | | * determine maximum number of blocks that wNAF splitting may |
483 | | * yield (NB: maximum wNAF length is bit length plus one) |
484 | | */ |
485 | 0 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
486 | | |
487 | | /* |
488 | | * we cannot use more blocks than we have precomputation for |
489 | | */ |
490 | 0 | if (numblocks > pre_comp->numblocks) |
491 | 0 | numblocks = pre_comp->numblocks; |
492 | |
|
493 | 0 | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); |
494 | | |
495 | | /* check that pre_comp looks sane */ |
496 | 0 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
497 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
498 | 0 | goto err; |
499 | 0 | } |
500 | 0 | } else { |
501 | | /* can't use precomputation */ |
502 | 0 | pre_comp = NULL; |
503 | 0 | numblocks = 1; |
504 | 0 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of |
505 | | * 'scalars' */ |
506 | 0 | } |
507 | 0 | } |
508 | | |
509 | 0 | totalnum = num + numblocks; |
510 | |
|
511 | 0 | wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0])); |
512 | 0 | wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0])); |
513 | | /* include space for pivot */ |
514 | 0 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0])); |
515 | 0 | val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0])); |
516 | | |
517 | | /* Ensure wNAF is initialised in case we end up going to err */ |
518 | 0 | if (wNAF != NULL) |
519 | 0 | wNAF[0] = NULL; /* preliminary pivot */ |
520 | |
|
521 | 0 | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) |
522 | 0 | goto err; |
523 | | |
524 | | /* |
525 | | * num_val will be the total number of temporarily precomputed points |
526 | | */ |
527 | 0 | num_val = 0; |
528 | |
|
529 | 0 | for (i = 0; i < num + num_scalar; i++) { |
530 | 0 | size_t bits; |
531 | |
|
532 | 0 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
533 | 0 | wsize[i] = EC_window_bits_for_scalar_size(bits); |
534 | 0 | num_val += (size_t)1 << (wsize[i] - 1); |
535 | 0 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ |
536 | 0 | wNAF[i] = |
537 | 0 | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], |
538 | 0 | &wNAF_len[i]); |
539 | 0 | if (wNAF[i] == NULL) |
540 | 0 | goto err; |
541 | 0 | if (wNAF_len[i] > max_len) |
542 | 0 | max_len = wNAF_len[i]; |
543 | 0 | } |
544 | | |
545 | 0 | if (numblocks) { |
546 | | /* we go here iff scalar != NULL */ |
547 | |
|
548 | 0 | if (pre_comp == NULL) { |
549 | 0 | if (num_scalar != 1) { |
550 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
551 | 0 | goto err; |
552 | 0 | } |
553 | | /* we have already generated a wNAF for 'scalar' */ |
554 | 0 | } else { |
555 | 0 | signed char *tmp_wNAF = NULL; |
556 | 0 | size_t tmp_len = 0; |
557 | |
|
558 | 0 | if (num_scalar != 0) { |
559 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
560 | 0 | goto err; |
561 | 0 | } |
562 | | |
563 | | /* |
564 | | * use the window size for which we have precomputation |
565 | | */ |
566 | 0 | wsize[num] = pre_comp->w; |
567 | 0 | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); |
568 | 0 | if (!tmp_wNAF) |
569 | 0 | goto err; |
570 | | |
571 | 0 | if (tmp_len <= max_len) { |
572 | | /* |
573 | | * One of the other wNAFs is at least as long as the wNAF |
574 | | * belonging to the generator, so wNAF splitting will not buy |
575 | | * us anything. |
576 | | */ |
577 | |
|
578 | 0 | numblocks = 1; |
579 | 0 | totalnum = num + 1; /* don't use wNAF splitting */ |
580 | 0 | wNAF[num] = tmp_wNAF; |
581 | 0 | wNAF[num + 1] = NULL; |
582 | 0 | wNAF_len[num] = tmp_len; |
583 | | /* |
584 | | * pre_comp->points starts with the points that we need here: |
585 | | */ |
586 | 0 | val_sub[num] = pre_comp->points; |
587 | 0 | } else { |
588 | | /* |
589 | | * don't include tmp_wNAF directly into wNAF array - use wNAF |
590 | | * splitting and include the blocks |
591 | | */ |
592 | |
|
593 | 0 | signed char *pp; |
594 | 0 | EC_POINT **tmp_points; |
595 | |
|
596 | 0 | if (tmp_len < numblocks * blocksize) { |
597 | | /* |
598 | | * possibly we can do with fewer blocks than estimated |
599 | | */ |
600 | 0 | numblocks = (tmp_len + blocksize - 1) / blocksize; |
601 | 0 | if (numblocks > pre_comp->numblocks) { |
602 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
603 | 0 | OPENSSL_free(tmp_wNAF); |
604 | 0 | goto err; |
605 | 0 | } |
606 | 0 | totalnum = num + numblocks; |
607 | 0 | } |
608 | | |
609 | | /* split wNAF in 'numblocks' parts */ |
610 | 0 | pp = tmp_wNAF; |
611 | 0 | tmp_points = pre_comp->points; |
612 | |
|
613 | 0 | for (i = num; i < totalnum; i++) { |
614 | 0 | if (i < totalnum - 1) { |
615 | 0 | wNAF_len[i] = blocksize; |
616 | 0 | if (tmp_len < blocksize) { |
617 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
618 | 0 | OPENSSL_free(tmp_wNAF); |
619 | 0 | goto err; |
620 | 0 | } |
621 | 0 | tmp_len -= blocksize; |
622 | 0 | } else |
623 | | /* |
624 | | * last block gets whatever is left (this could be |
625 | | * more or less than 'blocksize'!) |
626 | | */ |
627 | 0 | wNAF_len[i] = tmp_len; |
628 | | |
629 | 0 | wNAF[i + 1] = NULL; |
630 | 0 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); |
631 | 0 | if (wNAF[i] == NULL) { |
632 | 0 | OPENSSL_free(tmp_wNAF); |
633 | 0 | goto err; |
634 | 0 | } |
635 | 0 | memcpy(wNAF[i], pp, wNAF_len[i]); |
636 | 0 | if (wNAF_len[i] > max_len) |
637 | 0 | max_len = wNAF_len[i]; |
638 | |
|
639 | 0 | if (*tmp_points == NULL) { |
640 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
641 | 0 | OPENSSL_free(tmp_wNAF); |
642 | 0 | goto err; |
643 | 0 | } |
644 | 0 | val_sub[i] = tmp_points; |
645 | 0 | tmp_points += pre_points_per_block; |
646 | 0 | pp += blocksize; |
647 | 0 | } |
648 | 0 | OPENSSL_free(tmp_wNAF); |
649 | 0 | } |
650 | 0 | } |
651 | 0 | } |
652 | | |
653 | | /* |
654 | | * All points we precompute now go into a single array 'val'. |
655 | | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a |
656 | | * subarray of 'pre_comp->points' if we already have precomputation. |
657 | | */ |
658 | 0 | val = OPENSSL_malloc((num_val + 1) * sizeof(val[0])); |
659 | 0 | if (val == NULL) |
660 | 0 | goto err; |
661 | 0 | val[num_val] = NULL; /* pivot element */ |
662 | | |
663 | | /* allocate points for precomputation */ |
664 | 0 | v = val; |
665 | 0 | for (i = 0; i < num + num_scalar; i++) { |
666 | 0 | val_sub[i] = v; |
667 | 0 | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
668 | 0 | *v = EC_POINT_new(group); |
669 | 0 | if (*v == NULL) |
670 | 0 | goto err; |
671 | 0 | v++; |
672 | 0 | } |
673 | 0 | } |
674 | 0 | if (!(v == val + num_val)) { |
675 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
676 | 0 | goto err; |
677 | 0 | } |
678 | | |
679 | 0 | if ((tmp = EC_POINT_new(group)) == NULL) |
680 | 0 | goto err; |
681 | | |
682 | | /*- |
683 | | * prepare precomputed values: |
684 | | * val_sub[i][0] := points[i] |
685 | | * val_sub[i][1] := 3 * points[i] |
686 | | * val_sub[i][2] := 5 * points[i] |
687 | | * ... |
688 | | */ |
689 | 0 | for (i = 0; i < num + num_scalar; i++) { |
690 | 0 | if (i < num) { |
691 | 0 | if (!EC_POINT_copy(val_sub[i][0], points[i])) |
692 | 0 | goto err; |
693 | 0 | } else { |
694 | 0 | if (!EC_POINT_copy(val_sub[i][0], generator)) |
695 | 0 | goto err; |
696 | 0 | } |
697 | | |
698 | 0 | if (wsize[i] > 1) { |
699 | 0 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
700 | 0 | goto err; |
701 | 0 | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
702 | 0 | if (!EC_POINT_add |
703 | 0 | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
704 | 0 | goto err; |
705 | 0 | } |
706 | 0 | } |
707 | 0 | } |
708 | | |
709 | 0 | if (group->meth->points_make_affine == NULL |
710 | 0 | || !group->meth->points_make_affine(group, num_val, val, ctx)) |
711 | 0 | goto err; |
712 | | |
713 | 0 | r_is_at_infinity = 1; |
714 | |
|
715 | 0 | for (k = max_len - 1; k >= 0; k--) { |
716 | 0 | if (!r_is_at_infinity) { |
717 | 0 | if (!EC_POINT_dbl(group, r, r, ctx)) |
718 | 0 | goto err; |
719 | 0 | } |
720 | | |
721 | 0 | for (i = 0; i < totalnum; i++) { |
722 | 0 | if (wNAF_len[i] > (size_t)k) { |
723 | 0 | int digit = wNAF[i][k]; |
724 | 0 | int is_neg; |
725 | |
|
726 | 0 | if (digit) { |
727 | 0 | is_neg = digit < 0; |
728 | |
|
729 | 0 | if (is_neg) |
730 | 0 | digit = -digit; |
731 | |
|
732 | 0 | if (is_neg != r_is_inverted) { |
733 | 0 | if (!r_is_at_infinity) { |
734 | 0 | if (!EC_POINT_invert(group, r, ctx)) |
735 | 0 | goto err; |
736 | 0 | } |
737 | 0 | r_is_inverted = !r_is_inverted; |
738 | 0 | } |
739 | | |
740 | | /* digit > 0 */ |
741 | | |
742 | 0 | if (r_is_at_infinity) { |
743 | 0 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
744 | 0 | goto err; |
745 | | |
746 | | /*- |
747 | | * Apply coordinate blinding for EC_POINT. |
748 | | * |
749 | | * The underlying EC_METHOD can optionally implement this function: |
750 | | * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on |
751 | | * success or if coordinate blinding is not implemented for this |
752 | | * group. |
753 | | */ |
754 | 0 | if (!ossl_ec_point_blind_coordinates(group, r, ctx)) { |
755 | 0 | ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE); |
756 | 0 | goto err; |
757 | 0 | } |
758 | | |
759 | 0 | r_is_at_infinity = 0; |
760 | 0 | } else { |
761 | 0 | if (!EC_POINT_add |
762 | 0 | (group, r, r, val_sub[i][digit >> 1], ctx)) |
763 | 0 | goto err; |
764 | 0 | } |
765 | 0 | } |
766 | 0 | } |
767 | 0 | } |
768 | 0 | } |
769 | | |
770 | 0 | if (r_is_at_infinity) { |
771 | 0 | if (!EC_POINT_set_to_infinity(group, r)) |
772 | 0 | goto err; |
773 | 0 | } else { |
774 | 0 | if (r_is_inverted) |
775 | 0 | if (!EC_POINT_invert(group, r, ctx)) |
776 | 0 | goto err; |
777 | 0 | } |
778 | | |
779 | 0 | ret = 1; |
780 | |
|
781 | 0 | err: |
782 | 0 | EC_POINT_free(tmp); |
783 | 0 | OPENSSL_free(wsize); |
784 | 0 | OPENSSL_free(wNAF_len); |
785 | 0 | if (wNAF != NULL) { |
786 | 0 | signed char **w; |
787 | |
|
788 | 0 | for (w = wNAF; *w != NULL; w++) |
789 | 0 | OPENSSL_free(*w); |
790 | |
|
791 | 0 | OPENSSL_free(wNAF); |
792 | 0 | } |
793 | 0 | if (val != NULL) { |
794 | 0 | for (v = val; *v != NULL; v++) |
795 | 0 | EC_POINT_clear_free(*v); |
796 | |
|
797 | 0 | OPENSSL_free(val); |
798 | 0 | } |
799 | 0 | OPENSSL_free(val_sub); |
800 | 0 | return ret; |
801 | 0 | } |
802 | | |
803 | | /*- |
804 | | * ossl_ec_wNAF_precompute_mult() |
805 | | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
806 | | * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul(). |
807 | | * |
808 | | * 'pre_comp->points' is an array of multiples of the generator |
809 | | * of the following form: |
810 | | * points[0] = generator; |
811 | | * points[1] = 3 * generator; |
812 | | * ... |
813 | | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
814 | | * points[2^(w-1)] = 2^blocksize * generator; |
815 | | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
816 | | * ... |
817 | | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
818 | | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
819 | | * ... |
820 | | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
821 | | * points[2^(w-1)*numblocks] = NULL |
822 | | */ |
823 | | int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
824 | 0 | { |
825 | 0 | const EC_POINT *generator; |
826 | 0 | EC_POINT *tmp_point = NULL, *base = NULL, **var; |
827 | 0 | const BIGNUM *order; |
828 | 0 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; |
829 | 0 | EC_POINT **points = NULL; |
830 | 0 | EC_PRE_COMP *pre_comp; |
831 | 0 | int ret = 0; |
832 | 0 | int used_ctx = 0; |
833 | 0 | #ifndef FIPS_MODULE |
834 | 0 | BN_CTX *new_ctx = NULL; |
835 | 0 | #endif |
836 | | |
837 | | /* if there is an old EC_PRE_COMP object, throw it away */ |
838 | 0 | EC_pre_comp_free(group); |
839 | 0 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) |
840 | 0 | return 0; |
841 | | |
842 | 0 | generator = EC_GROUP_get0_generator(group); |
843 | 0 | if (generator == NULL) { |
844 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR); |
845 | 0 | goto err; |
846 | 0 | } |
847 | | |
848 | 0 | #ifndef FIPS_MODULE |
849 | 0 | if (ctx == NULL) |
850 | 0 | ctx = new_ctx = BN_CTX_new(); |
851 | 0 | #endif |
852 | 0 | if (ctx == NULL) |
853 | 0 | goto err; |
854 | | |
855 | 0 | BN_CTX_start(ctx); |
856 | 0 | used_ctx = 1; |
857 | |
|
858 | 0 | order = EC_GROUP_get0_order(group); |
859 | 0 | if (order == NULL) |
860 | 0 | goto err; |
861 | 0 | if (BN_is_zero(order)) { |
862 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER); |
863 | 0 | goto err; |
864 | 0 | } |
865 | | |
866 | 0 | bits = BN_num_bits(order); |
867 | | /* |
868 | | * The following parameters mean we precompute (approximately) one point |
869 | | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other |
870 | | * bit lengths, other parameter combinations might provide better |
871 | | * efficiency. |
872 | | */ |
873 | 0 | blocksize = 8; |
874 | 0 | w = 4; |
875 | 0 | if (EC_window_bits_for_scalar_size(bits) > w) { |
876 | | /* let's not make the window too small ... */ |
877 | 0 | w = EC_window_bits_for_scalar_size(bits); |
878 | 0 | } |
879 | |
|
880 | 0 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
881 | | * to use for wNAF |
882 | | * splitting */ |
883 | |
|
884 | 0 | pre_points_per_block = (size_t)1 << (w - 1); |
885 | 0 | num = pre_points_per_block * numblocks; /* number of points to compute |
886 | | * and store */ |
887 | |
|
888 | 0 | points = OPENSSL_malloc(sizeof(*points) * (num + 1)); |
889 | 0 | if (points == NULL) |
890 | 0 | goto err; |
891 | | |
892 | 0 | var = points; |
893 | 0 | var[num] = NULL; /* pivot */ |
894 | 0 | for (i = 0; i < num; i++) { |
895 | 0 | if ((var[i] = EC_POINT_new(group)) == NULL) { |
896 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
897 | 0 | goto err; |
898 | 0 | } |
899 | 0 | } |
900 | | |
901 | 0 | if ((tmp_point = EC_POINT_new(group)) == NULL |
902 | 0 | || (base = EC_POINT_new(group)) == NULL) { |
903 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
904 | 0 | goto err; |
905 | 0 | } |
906 | | |
907 | 0 | if (!EC_POINT_copy(base, generator)) |
908 | 0 | goto err; |
909 | | |
910 | | /* do the precomputation */ |
911 | 0 | for (i = 0; i < numblocks; i++) { |
912 | 0 | size_t j; |
913 | |
|
914 | 0 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
915 | 0 | goto err; |
916 | | |
917 | 0 | if (!EC_POINT_copy(*var++, base)) |
918 | 0 | goto err; |
919 | | |
920 | 0 | for (j = 1; j < pre_points_per_block; j++, var++) { |
921 | | /* |
922 | | * calculate odd multiples of the current base point |
923 | | */ |
924 | 0 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
925 | 0 | goto err; |
926 | 0 | } |
927 | | |
928 | 0 | if (i < numblocks - 1) { |
929 | | /* |
930 | | * get the next base (multiply current one by 2^blocksize) |
931 | | */ |
932 | 0 | size_t k; |
933 | |
|
934 | 0 | if (blocksize <= 2) { |
935 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR); |
936 | 0 | goto err; |
937 | 0 | } |
938 | | |
939 | 0 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
940 | 0 | goto err; |
941 | 0 | for (k = 2; k < blocksize; k++) { |
942 | 0 | if (!EC_POINT_dbl(group, base, base, ctx)) |
943 | 0 | goto err; |
944 | 0 | } |
945 | 0 | } |
946 | 0 | } |
947 | | |
948 | 0 | if (group->meth->points_make_affine == NULL |
949 | 0 | || !group->meth->points_make_affine(group, num, points, ctx)) |
950 | 0 | goto err; |
951 | | |
952 | 0 | pre_comp->group = group; |
953 | 0 | pre_comp->blocksize = blocksize; |
954 | 0 | pre_comp->numblocks = numblocks; |
955 | 0 | pre_comp->w = w; |
956 | 0 | pre_comp->points = points; |
957 | 0 | points = NULL; |
958 | 0 | pre_comp->num = num; |
959 | 0 | SETPRECOMP(group, ec, pre_comp); |
960 | 0 | pre_comp = NULL; |
961 | 0 | ret = 1; |
962 | |
|
963 | 0 | err: |
964 | 0 | if (used_ctx) |
965 | 0 | BN_CTX_end(ctx); |
966 | 0 | #ifndef FIPS_MODULE |
967 | 0 | BN_CTX_free(new_ctx); |
968 | 0 | #endif |
969 | 0 | EC_ec_pre_comp_free(pre_comp); |
970 | 0 | if (points) { |
971 | 0 | EC_POINT **p; |
972 | |
|
973 | 0 | for (p = points; *p != NULL; p++) |
974 | 0 | EC_POINT_free(*p); |
975 | 0 | OPENSSL_free(points); |
976 | 0 | } |
977 | 0 | EC_POINT_free(tmp_point); |
978 | 0 | EC_POINT_free(base); |
979 | 0 | return ret; |
980 | 0 | } |
981 | | |
982 | | int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group) |
983 | 0 | { |
984 | 0 | return HAVEPRECOMP(group, ec); |
985 | 0 | } |