/src/openssl30/crypto/evp/kem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <stdlib.h> |
12 | | #include <openssl/objects.h> |
13 | | #include <openssl/evp.h> |
14 | | #include "internal/cryptlib.h" |
15 | | #include "internal/provider.h" |
16 | | #include "internal/core.h" |
17 | | #include "crypto/evp.h" |
18 | | #include "evp_local.h" |
19 | | |
20 | | static int evp_kem_init(EVP_PKEY_CTX *ctx, int operation, |
21 | | const OSSL_PARAM params[]) |
22 | 0 | { |
23 | 0 | int ret = 0; |
24 | 0 | EVP_KEM *kem = NULL; |
25 | 0 | EVP_KEYMGMT *tmp_keymgmt = NULL; |
26 | 0 | const OSSL_PROVIDER *tmp_prov = NULL; |
27 | 0 | void *provkey = NULL; |
28 | 0 | const char *supported_kem = NULL; |
29 | 0 | int iter; |
30 | |
|
31 | 0 | if (ctx == NULL || ctx->keytype == NULL) { |
32 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
33 | 0 | return 0; |
34 | 0 | } |
35 | | |
36 | 0 | evp_pkey_ctx_free_old_ops(ctx); |
37 | 0 | ctx->operation = operation; |
38 | |
|
39 | 0 | if (ctx->pkey == NULL) { |
40 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_NO_KEY_SET); |
41 | 0 | goto err; |
42 | 0 | } |
43 | | |
44 | | /* |
45 | | * Try to derive the supported kem from |ctx->keymgmt|. |
46 | | */ |
47 | 0 | if (!ossl_assert(ctx->pkey->keymgmt == NULL |
48 | 0 | || ctx->pkey->keymgmt == ctx->keymgmt)) { |
49 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); |
50 | 0 | goto err; |
51 | 0 | } |
52 | 0 | supported_kem = evp_keymgmt_util_query_operation_name(ctx->keymgmt, |
53 | 0 | OSSL_OP_KEM); |
54 | 0 | if (supported_kem == NULL) { |
55 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
56 | 0 | goto err; |
57 | 0 | } |
58 | | |
59 | | /* |
60 | | * Because we cleared out old ops, we shouldn't need to worry about |
61 | | * checking if kem is already there. |
62 | | * We perform two iterations: |
63 | | * |
64 | | * 1. Do the normal kem fetch, using the fetching data given by |
65 | | * the EVP_PKEY_CTX. |
66 | | * 2. Do the provider specific kem fetch, from the same provider |
67 | | * as |ctx->keymgmt| |
68 | | * |
69 | | * We then try to fetch the keymgmt from the same provider as the |
70 | | * kem, and try to export |ctx->pkey| to that keymgmt (when this |
71 | | * keymgmt happens to be the same as |ctx->keymgmt|, the export is |
72 | | * a no-op, but we call it anyway to not complicate the code even |
73 | | * more). |
74 | | * If the export call succeeds (returns a non-NULL provider key pointer), |
75 | | * we're done and can perform the operation itself. If not, we perform |
76 | | * the second iteration, or jump to legacy. |
77 | | */ |
78 | 0 | for (iter = 1, provkey = NULL; iter < 3 && provkey == NULL; iter++) { |
79 | 0 | EVP_KEYMGMT *tmp_keymgmt_tofree = NULL; |
80 | | |
81 | | /* |
82 | | * If we're on the second iteration, free the results from the first. |
83 | | * They are NULL on the first iteration, so no need to check what |
84 | | * iteration we're on. |
85 | | */ |
86 | 0 | EVP_KEM_free(kem); |
87 | 0 | EVP_KEYMGMT_free(tmp_keymgmt); |
88 | |
|
89 | 0 | switch (iter) { |
90 | 0 | case 1: |
91 | 0 | kem = EVP_KEM_fetch(ctx->libctx, supported_kem, ctx->propquery); |
92 | 0 | if (kem != NULL) |
93 | 0 | tmp_prov = EVP_KEM_get0_provider(kem); |
94 | 0 | break; |
95 | 0 | case 2: |
96 | 0 | tmp_prov = EVP_KEYMGMT_get0_provider(ctx->keymgmt); |
97 | 0 | kem = evp_kem_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, |
98 | 0 | supported_kem, ctx->propquery); |
99 | |
|
100 | 0 | if (kem == NULL) { |
101 | 0 | ERR_raise(ERR_LIB_EVP, |
102 | 0 | EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
103 | 0 | ret = -2; |
104 | 0 | goto err; |
105 | 0 | } |
106 | 0 | } |
107 | 0 | if (kem == NULL) |
108 | 0 | continue; |
109 | | |
110 | | /* |
111 | | * Ensure that the key is provided, either natively, or as a cached |
112 | | * export. We start by fetching the keymgmt with the same name as |
113 | | * |ctx->pkey|, but from the provider of the kem method, using the |
114 | | * same property query as when fetching the kem method. |
115 | | * With the keymgmt we found (if we did), we try to export |ctx->pkey| |
116 | | * to it (evp_pkey_export_to_provider() is smart enough to only actually |
117 | | |
118 | | * export it if |tmp_keymgmt| is different from |ctx->pkey|'s keymgmt) |
119 | | */ |
120 | 0 | tmp_keymgmt_tofree = tmp_keymgmt = |
121 | 0 | evp_keymgmt_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, |
122 | 0 | EVP_KEYMGMT_get0_name(ctx->keymgmt), |
123 | 0 | ctx->propquery); |
124 | 0 | if (tmp_keymgmt != NULL) |
125 | 0 | provkey = evp_pkey_export_to_provider(ctx->pkey, ctx->libctx, |
126 | 0 | &tmp_keymgmt, ctx->propquery); |
127 | 0 | if (tmp_keymgmt == NULL) |
128 | 0 | EVP_KEYMGMT_free(tmp_keymgmt_tofree); |
129 | 0 | } |
130 | | |
131 | 0 | if (provkey == NULL) { |
132 | 0 | EVP_KEM_free(kem); |
133 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
134 | 0 | goto err; |
135 | 0 | } |
136 | | |
137 | 0 | ctx->op.encap.kem = kem; |
138 | 0 | ctx->op.encap.algctx = kem->newctx(ossl_provider_ctx(kem->prov)); |
139 | 0 | if (ctx->op.encap.algctx == NULL) { |
140 | | /* The provider key can stay in the cache */ |
141 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
142 | 0 | goto err; |
143 | 0 | } |
144 | | |
145 | 0 | switch (operation) { |
146 | 0 | case EVP_PKEY_OP_ENCAPSULATE: |
147 | 0 | if (kem->encapsulate_init == NULL) { |
148 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
149 | 0 | ret = -2; |
150 | 0 | goto err; |
151 | 0 | } |
152 | 0 | ret = kem->encapsulate_init(ctx->op.encap.algctx, provkey, params); |
153 | 0 | break; |
154 | 0 | case EVP_PKEY_OP_DECAPSULATE: |
155 | 0 | if (kem->decapsulate_init == NULL) { |
156 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
157 | 0 | ret = -2; |
158 | 0 | goto err; |
159 | 0 | } |
160 | 0 | ret = kem->decapsulate_init(ctx->op.encap.algctx, provkey, params); |
161 | 0 | break; |
162 | 0 | default: |
163 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); |
164 | 0 | goto err; |
165 | 0 | } |
166 | | |
167 | 0 | EVP_KEYMGMT_free(tmp_keymgmt); |
168 | 0 | tmp_keymgmt = NULL; |
169 | |
|
170 | 0 | if (ret > 0) |
171 | 0 | return 1; |
172 | 0 | err: |
173 | 0 | if (ret <= 0) { |
174 | 0 | evp_pkey_ctx_free_old_ops(ctx); |
175 | 0 | ctx->operation = EVP_PKEY_OP_UNDEFINED; |
176 | 0 | } |
177 | 0 | EVP_KEYMGMT_free(tmp_keymgmt); |
178 | 0 | return ret; |
179 | 0 | } |
180 | | |
181 | | int EVP_PKEY_encapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) |
182 | 0 | { |
183 | 0 | return evp_kem_init(ctx, EVP_PKEY_OP_ENCAPSULATE, params); |
184 | 0 | } |
185 | | |
186 | | int EVP_PKEY_encapsulate(EVP_PKEY_CTX *ctx, |
187 | | unsigned char *out, size_t *outlen, |
188 | | unsigned char *secret, size_t *secretlen) |
189 | 0 | { |
190 | 0 | if (ctx == NULL) |
191 | 0 | return 0; |
192 | | |
193 | 0 | if (ctx->operation != EVP_PKEY_OP_ENCAPSULATE) { |
194 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); |
195 | 0 | return -1; |
196 | 0 | } |
197 | | |
198 | 0 | if (ctx->op.encap.algctx == NULL) { |
199 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
200 | 0 | return -2; |
201 | 0 | } |
202 | | |
203 | 0 | if (out != NULL && secret == NULL) |
204 | 0 | return 0; |
205 | | |
206 | 0 | return ctx->op.encap.kem->encapsulate(ctx->op.encap.algctx, |
207 | 0 | out, outlen, secret, secretlen); |
208 | 0 | } |
209 | | |
210 | | int EVP_PKEY_decapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) |
211 | 0 | { |
212 | 0 | return evp_kem_init(ctx, EVP_PKEY_OP_DECAPSULATE, params); |
213 | 0 | } |
214 | | |
215 | | int EVP_PKEY_decapsulate(EVP_PKEY_CTX *ctx, |
216 | | unsigned char *secret, size_t *secretlen, |
217 | | const unsigned char *in, size_t inlen) |
218 | 0 | { |
219 | 0 | if (ctx == NULL |
220 | 0 | || (in == NULL || inlen == 0) |
221 | 0 | || (secret == NULL && secretlen == NULL)) |
222 | 0 | return 0; |
223 | | |
224 | 0 | if (ctx->operation != EVP_PKEY_OP_DECAPSULATE) { |
225 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); |
226 | 0 | return -1; |
227 | 0 | } |
228 | | |
229 | 0 | if (ctx->op.encap.algctx == NULL) { |
230 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
231 | 0 | return -2; |
232 | 0 | } |
233 | 0 | return ctx->op.encap.kem->decapsulate(ctx->op.encap.algctx, |
234 | 0 | secret, secretlen, in, inlen); |
235 | 0 | } |
236 | | |
237 | | static EVP_KEM *evp_kem_new(OSSL_PROVIDER *prov) |
238 | 0 | { |
239 | 0 | EVP_KEM *kem = OPENSSL_zalloc(sizeof(EVP_KEM)); |
240 | |
|
241 | 0 | if (kem == NULL) { |
242 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); |
243 | 0 | return NULL; |
244 | 0 | } |
245 | | |
246 | 0 | kem->lock = CRYPTO_THREAD_lock_new(); |
247 | 0 | if (kem->lock == NULL) { |
248 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); |
249 | 0 | OPENSSL_free(kem); |
250 | 0 | return NULL; |
251 | 0 | } |
252 | 0 | kem->prov = prov; |
253 | 0 | ossl_provider_up_ref(prov); |
254 | 0 | kem->refcnt = 1; |
255 | |
|
256 | 0 | return kem; |
257 | 0 | } |
258 | | |
259 | | static void *evp_kem_from_algorithm(int name_id, const OSSL_ALGORITHM *algodef, |
260 | | OSSL_PROVIDER *prov) |
261 | 0 | { |
262 | 0 | const OSSL_DISPATCH *fns = algodef->implementation; |
263 | 0 | EVP_KEM *kem = NULL; |
264 | 0 | int ctxfncnt = 0, encfncnt = 0, decfncnt = 0; |
265 | 0 | int gparamfncnt = 0, sparamfncnt = 0; |
266 | |
|
267 | 0 | if ((kem = evp_kem_new(prov)) == NULL) { |
268 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); |
269 | 0 | goto err; |
270 | 0 | } |
271 | | |
272 | 0 | kem->name_id = name_id; |
273 | 0 | if ((kem->type_name = ossl_algorithm_get1_first_name(algodef)) == NULL) |
274 | 0 | goto err; |
275 | 0 | kem->description = algodef->algorithm_description; |
276 | |
|
277 | 0 | for (; fns->function_id != 0; fns++) { |
278 | 0 | switch (fns->function_id) { |
279 | 0 | case OSSL_FUNC_KEM_NEWCTX: |
280 | 0 | if (kem->newctx != NULL) |
281 | 0 | break; |
282 | 0 | kem->newctx = OSSL_FUNC_kem_newctx(fns); |
283 | 0 | ctxfncnt++; |
284 | 0 | break; |
285 | 0 | case OSSL_FUNC_KEM_ENCAPSULATE_INIT: |
286 | 0 | if (kem->encapsulate_init != NULL) |
287 | 0 | break; |
288 | 0 | kem->encapsulate_init = OSSL_FUNC_kem_encapsulate_init(fns); |
289 | 0 | encfncnt++; |
290 | 0 | break; |
291 | 0 | case OSSL_FUNC_KEM_ENCAPSULATE: |
292 | 0 | if (kem->encapsulate != NULL) |
293 | 0 | break; |
294 | 0 | kem->encapsulate = OSSL_FUNC_kem_encapsulate(fns); |
295 | 0 | encfncnt++; |
296 | 0 | break; |
297 | 0 | case OSSL_FUNC_KEM_DECAPSULATE_INIT: |
298 | 0 | if (kem->decapsulate_init != NULL) |
299 | 0 | break; |
300 | 0 | kem->decapsulate_init = OSSL_FUNC_kem_decapsulate_init(fns); |
301 | 0 | decfncnt++; |
302 | 0 | break; |
303 | 0 | case OSSL_FUNC_KEM_DECAPSULATE: |
304 | 0 | if (kem->decapsulate != NULL) |
305 | 0 | break; |
306 | 0 | kem->decapsulate = OSSL_FUNC_kem_decapsulate(fns); |
307 | 0 | decfncnt++; |
308 | 0 | break; |
309 | 0 | case OSSL_FUNC_KEM_FREECTX: |
310 | 0 | if (kem->freectx != NULL) |
311 | 0 | break; |
312 | 0 | kem->freectx = OSSL_FUNC_kem_freectx(fns); |
313 | 0 | ctxfncnt++; |
314 | 0 | break; |
315 | 0 | case OSSL_FUNC_KEM_DUPCTX: |
316 | 0 | if (kem->dupctx != NULL) |
317 | 0 | break; |
318 | 0 | kem->dupctx = OSSL_FUNC_kem_dupctx(fns); |
319 | 0 | break; |
320 | 0 | case OSSL_FUNC_KEM_GET_CTX_PARAMS: |
321 | 0 | if (kem->get_ctx_params != NULL) |
322 | 0 | break; |
323 | 0 | kem->get_ctx_params |
324 | 0 | = OSSL_FUNC_kem_get_ctx_params(fns); |
325 | 0 | gparamfncnt++; |
326 | 0 | break; |
327 | 0 | case OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS: |
328 | 0 | if (kem->gettable_ctx_params != NULL) |
329 | 0 | break; |
330 | 0 | kem->gettable_ctx_params |
331 | 0 | = OSSL_FUNC_kem_gettable_ctx_params(fns); |
332 | 0 | gparamfncnt++; |
333 | 0 | break; |
334 | 0 | case OSSL_FUNC_KEM_SET_CTX_PARAMS: |
335 | 0 | if (kem->set_ctx_params != NULL) |
336 | 0 | break; |
337 | 0 | kem->set_ctx_params |
338 | 0 | = OSSL_FUNC_kem_set_ctx_params(fns); |
339 | 0 | sparamfncnt++; |
340 | 0 | break; |
341 | 0 | case OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS: |
342 | 0 | if (kem->settable_ctx_params != NULL) |
343 | 0 | break; |
344 | 0 | kem->settable_ctx_params |
345 | 0 | = OSSL_FUNC_kem_settable_ctx_params(fns); |
346 | 0 | sparamfncnt++; |
347 | 0 | break; |
348 | 0 | } |
349 | 0 | } |
350 | 0 | if (ctxfncnt != 2 |
351 | 0 | || (encfncnt != 0 && encfncnt != 2) |
352 | 0 | || (decfncnt != 0 && decfncnt != 2) |
353 | 0 | || (encfncnt != 2 && decfncnt != 2) |
354 | 0 | || (gparamfncnt != 0 && gparamfncnt != 2) |
355 | 0 | || (sparamfncnt != 0 && sparamfncnt != 2)) { |
356 | | /* |
357 | | * In order to be a consistent set of functions we must have at least |
358 | | * a set of context functions (newctx and freectx) as well as a pair of |
359 | | * "kem" functions: (encapsulate_init, encapsulate) or |
360 | | * (decapsulate_init, decapsulate). set_ctx_params and settable_ctx_params are |
361 | | * optional, but if one of them is present then the other one must also |
362 | | * be present. The same applies to get_ctx_params and |
363 | | * gettable_ctx_params. The dupctx function is optional. |
364 | | */ |
365 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS); |
366 | 0 | goto err; |
367 | 0 | } |
368 | | |
369 | 0 | return kem; |
370 | 0 | err: |
371 | 0 | EVP_KEM_free(kem); |
372 | 0 | return NULL; |
373 | 0 | } |
374 | | |
375 | | void EVP_KEM_free(EVP_KEM *kem) |
376 | 0 | { |
377 | 0 | int i; |
378 | |
|
379 | 0 | if (kem == NULL) |
380 | 0 | return; |
381 | | |
382 | 0 | CRYPTO_DOWN_REF(&kem->refcnt, &i, kem->lock); |
383 | 0 | if (i > 0) |
384 | 0 | return; |
385 | 0 | OPENSSL_free(kem->type_name); |
386 | 0 | ossl_provider_free(kem->prov); |
387 | 0 | CRYPTO_THREAD_lock_free(kem->lock); |
388 | 0 | OPENSSL_free(kem); |
389 | 0 | } |
390 | | |
391 | | int EVP_KEM_up_ref(EVP_KEM *kem) |
392 | 0 | { |
393 | 0 | int ref = 0; |
394 | |
|
395 | 0 | CRYPTO_UP_REF(&kem->refcnt, &ref, kem->lock); |
396 | 0 | return 1; |
397 | 0 | } |
398 | | |
399 | | OSSL_PROVIDER *EVP_KEM_get0_provider(const EVP_KEM *kem) |
400 | 0 | { |
401 | 0 | return kem->prov; |
402 | 0 | } |
403 | | |
404 | | EVP_KEM *EVP_KEM_fetch(OSSL_LIB_CTX *ctx, const char *algorithm, |
405 | | const char *properties) |
406 | 0 | { |
407 | 0 | return evp_generic_fetch(ctx, OSSL_OP_KEM, algorithm, properties, |
408 | 0 | evp_kem_from_algorithm, |
409 | 0 | (int (*)(void *))EVP_KEM_up_ref, |
410 | 0 | (void (*)(void *))EVP_KEM_free); |
411 | 0 | } |
412 | | |
413 | | EVP_KEM *evp_kem_fetch_from_prov(OSSL_PROVIDER *prov, const char *algorithm, |
414 | | const char *properties) |
415 | 0 | { |
416 | 0 | return evp_generic_fetch_from_prov(prov, OSSL_OP_KEM, algorithm, properties, |
417 | 0 | evp_kem_from_algorithm, |
418 | 0 | (int (*)(void *))EVP_KEM_up_ref, |
419 | 0 | (void (*)(void *))EVP_KEM_free); |
420 | 0 | } |
421 | | |
422 | | int EVP_KEM_is_a(const EVP_KEM *kem, const char *name) |
423 | 0 | { |
424 | 0 | return kem != NULL && evp_is_a(kem->prov, kem->name_id, NULL, name); |
425 | 0 | } |
426 | | |
427 | | int evp_kem_get_number(const EVP_KEM *kem) |
428 | 0 | { |
429 | 0 | return kem->name_id; |
430 | 0 | } |
431 | | |
432 | | const char *EVP_KEM_get0_name(const EVP_KEM *kem) |
433 | 0 | { |
434 | 0 | return kem->type_name; |
435 | 0 | } |
436 | | |
437 | | const char *EVP_KEM_get0_description(const EVP_KEM *kem) |
438 | 0 | { |
439 | 0 | return kem->description; |
440 | 0 | } |
441 | | |
442 | | void EVP_KEM_do_all_provided(OSSL_LIB_CTX *libctx, |
443 | | void (*fn)(EVP_KEM *kem, void *arg), |
444 | | void *arg) |
445 | 0 | { |
446 | 0 | evp_generic_do_all(libctx, OSSL_OP_KEM, (void (*)(void *, void *))fn, arg, |
447 | 0 | evp_kem_from_algorithm, |
448 | 0 | (int (*)(void *))EVP_KEM_up_ref, |
449 | 0 | (void (*)(void *))EVP_KEM_free); |
450 | 0 | } |
451 | | |
452 | | int EVP_KEM_names_do_all(const EVP_KEM *kem, |
453 | | void (*fn)(const char *name, void *data), |
454 | | void *data) |
455 | 0 | { |
456 | 0 | if (kem->prov != NULL) |
457 | 0 | return evp_names_do_all(kem->prov, kem->name_id, fn, data); |
458 | | |
459 | 0 | return 1; |
460 | 0 | } |
461 | | |
462 | | const OSSL_PARAM *EVP_KEM_gettable_ctx_params(const EVP_KEM *kem) |
463 | 0 | { |
464 | 0 | void *provctx; |
465 | |
|
466 | 0 | if (kem == NULL || kem->gettable_ctx_params == NULL) |
467 | 0 | return NULL; |
468 | | |
469 | 0 | provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); |
470 | 0 | return kem->gettable_ctx_params(NULL, provctx); |
471 | 0 | } |
472 | | |
473 | | const OSSL_PARAM *EVP_KEM_settable_ctx_params(const EVP_KEM *kem) |
474 | 0 | { |
475 | 0 | void *provctx; |
476 | |
|
477 | 0 | if (kem == NULL || kem->settable_ctx_params == NULL) |
478 | 0 | return NULL; |
479 | | |
480 | 0 | provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); |
481 | 0 | return kem->settable_ctx_params(NULL, provctx); |
482 | 0 | } |