Coverage Report

Created: 2023-06-08 06:40

/src/openssl/crypto/bn/bn_exp.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "internal/constant_time.h"
12
#include "bn_local.h"
13
14
#include <stdlib.h>
15
#ifdef _WIN32
16
# include <malloc.h>
17
# ifndef alloca
18
#  define alloca _alloca
19
# endif
20
#elif defined(__GNUC__)
21
# ifndef alloca
22
#  define alloca(s) __builtin_alloca((s))
23
# endif
24
#elif defined(__sun)
25
# include <alloca.h>
26
#endif
27
28
#include "rsaz_exp.h"
29
30
#undef SPARC_T4_MONT
31
#if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
32
# include "crypto/sparc_arch.h"
33
# define SPARC_T4_MONT
34
#endif
35
36
/* maximum precomputation table size for *variable* sliding windows */
37
#define TABLE_SIZE      32
38
39
/*
40
 * Beyond this limit the constant time code is disabled due to
41
 * the possible overflow in the computation of powerbufLen in
42
 * BN_mod_exp_mont_consttime.
43
 * When this limit is exceeded, the computation will be done using
44
 * non-constant time code, but it will take very long.
45
 */
46
0
#define BN_CONSTTIME_SIZE_LIMIT (INT_MAX / BN_BYTES / 256)
47
48
/* this one works - simple but works */
49
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
50
0
{
51
0
    int i, bits, ret = 0;
52
0
    BIGNUM *v, *rr;
53
54
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
55
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
56
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
57
0
        ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
58
0
        return 0;
59
0
    }
60
61
0
    BN_CTX_start(ctx);
62
0
    rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
63
0
    v = BN_CTX_get(ctx);
64
0
    if (rr == NULL || v == NULL)
65
0
        goto err;
66
67
0
    if (BN_copy(v, a) == NULL)
68
0
        goto err;
69
0
    bits = BN_num_bits(p);
70
71
0
    if (BN_is_odd(p)) {
72
0
        if (BN_copy(rr, a) == NULL)
73
0
            goto err;
74
0
    } else {
75
0
        if (!BN_one(rr))
76
0
            goto err;
77
0
    }
78
79
0
    for (i = 1; i < bits; i++) {
80
0
        if (!BN_sqr(v, v, ctx))
81
0
            goto err;
82
0
        if (BN_is_bit_set(p, i)) {
83
0
            if (!BN_mul(rr, rr, v, ctx))
84
0
                goto err;
85
0
        }
86
0
    }
87
0
    if (r != rr && BN_copy(r, rr) == NULL)
88
0
        goto err;
89
90
0
    ret = 1;
91
0
 err:
92
0
    BN_CTX_end(ctx);
93
0
    bn_check_top(r);
94
0
    return ret;
95
0
}
96
97
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
98
               BN_CTX *ctx)
99
0
{
100
0
    int ret;
101
102
0
    bn_check_top(a);
103
0
    bn_check_top(p);
104
0
    bn_check_top(m);
105
106
    /*-
107
     * For even modulus  m = 2^k*m_odd, it might make sense to compute
108
     * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
109
     * exponentiation for the odd part), using appropriate exponent
110
     * reductions, and combine the results using the CRT.
111
     *
112
     * For now, we use Montgomery only if the modulus is odd; otherwise,
113
     * exponentiation using the reciprocal-based quick remaindering
114
     * algorithm is used.
115
     *
116
     * (Timing obtained with expspeed.c [computations  a^p mod m
117
     * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
118
     * 4096, 8192 bits], compared to the running time of the
119
     * standard algorithm:
120
     *
121
     *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
122
     *                     55 .. 77 %  [UltraSparc processor, but
123
     *                                  debug-solaris-sparcv8-gcc conf.]
124
     *
125
     *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
126
     *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
127
     *
128
     * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
129
     * at 2048 and more bits, but at 512 and 1024 bits, it was
130
     * slower even than the standard algorithm!
131
     *
132
     * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
133
     * should be obtained when the new Montgomery reduction code
134
     * has been integrated into OpenSSL.)
135
     */
136
137
0
#define MONT_MUL_MOD
138
0
#define MONT_EXP_WORD
139
0
#define RECP_MUL_MOD
140
141
0
#ifdef MONT_MUL_MOD
142
0
    if (BN_is_odd(m)) {
143
0
# ifdef MONT_EXP_WORD
144
0
        if (a->top == 1 && !a->neg
145
0
            && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
146
0
            && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
147
0
            && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
148
0
            BN_ULONG A = a->d[0];
149
0
            ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
150
0
        } else
151
0
# endif
152
0
            ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
153
0
    } else
154
0
#endif
155
0
#ifdef RECP_MUL_MOD
156
0
    {
157
0
        ret = BN_mod_exp_recp(r, a, p, m, ctx);
158
0
    }
159
#else
160
    {
161
        ret = BN_mod_exp_simple(r, a, p, m, ctx);
162
    }
163
#endif
164
165
0
    bn_check_top(r);
166
0
    return ret;
167
0
}
168
169
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
170
                    const BIGNUM *m, BN_CTX *ctx)
171
0
{
172
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
173
0
    int start = 1;
174
0
    BIGNUM *aa;
175
    /* Table of variables obtained from 'ctx' */
176
0
    BIGNUM *val[TABLE_SIZE];
177
0
    BN_RECP_CTX recp;
178
179
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
180
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
181
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
182
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
183
0
        ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
184
0
        return 0;
185
0
    }
186
187
0
    bits = BN_num_bits(p);
188
0
    if (bits == 0) {
189
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
190
0
        if (BN_abs_is_word(m, 1)) {
191
0
            ret = 1;
192
0
            BN_zero(r);
193
0
        } else {
194
0
            ret = BN_one(r);
195
0
        }
196
0
        return ret;
197
0
    }
198
199
0
    BN_RECP_CTX_init(&recp);
200
201
0
    BN_CTX_start(ctx);
202
0
    aa = BN_CTX_get(ctx);
203
0
    val[0] = BN_CTX_get(ctx);
204
0
    if (val[0] == NULL)
205
0
        goto err;
206
207
0
    if (m->neg) {
208
        /* ignore sign of 'm' */
209
0
        if (!BN_copy(aa, m))
210
0
            goto err;
211
0
        aa->neg = 0;
212
0
        if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
213
0
            goto err;
214
0
    } else {
215
0
        if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
216
0
            goto err;
217
0
    }
218
219
0
    if (!BN_nnmod(val[0], a, m, ctx))
220
0
        goto err;               /* 1 */
221
0
    if (BN_is_zero(val[0])) {
222
0
        BN_zero(r);
223
0
        ret = 1;
224
0
        goto err;
225
0
    }
226
227
0
    window = BN_window_bits_for_exponent_size(bits);
228
0
    if (window > 1) {
229
0
        if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
230
0
            goto err;           /* 2 */
231
0
        j = 1 << (window - 1);
232
0
        for (i = 1; i < j; i++) {
233
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
234
0
                !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
235
0
                goto err;
236
0
        }
237
0
    }
238
239
0
    start = 1;                  /* This is used to avoid multiplication etc
240
                                 * when there is only the value '1' in the
241
                                 * buffer. */
242
0
    wvalue = 0;                 /* The 'value' of the window */
243
0
    wstart = bits - 1;          /* The top bit of the window */
244
0
    wend = 0;                   /* The bottom bit of the window */
245
246
0
    if (!BN_one(r))
247
0
        goto err;
248
249
0
    for (;;) {
250
0
        if (BN_is_bit_set(p, wstart) == 0) {
251
0
            if (!start)
252
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
253
0
                    goto err;
254
0
            if (wstart == 0)
255
0
                break;
256
0
            wstart--;
257
0
            continue;
258
0
        }
259
        /*
260
         * We now have wstart on a 'set' bit, we now need to work out how bit
261
         * a window to do.  To do this we need to scan forward until the last
262
         * set bit before the end of the window
263
         */
264
0
        wvalue = 1;
265
0
        wend = 0;
266
0
        for (i = 1; i < window; i++) {
267
0
            if (wstart - i < 0)
268
0
                break;
269
0
            if (BN_is_bit_set(p, wstart - i)) {
270
0
                wvalue <<= (i - wend);
271
0
                wvalue |= 1;
272
0
                wend = i;
273
0
            }
274
0
        }
275
276
        /* wend is the size of the current window */
277
0
        j = wend + 1;
278
        /* add the 'bytes above' */
279
0
        if (!start)
280
0
            for (i = 0; i < j; i++) {
281
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
282
0
                    goto err;
283
0
            }
284
285
        /* wvalue will be an odd number < 2^window */
286
0
        if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
287
0
            goto err;
288
289
        /* move the 'window' down further */
290
0
        wstart -= wend + 1;
291
0
        wvalue = 0;
292
0
        start = 0;
293
0
        if (wstart < 0)
294
0
            break;
295
0
    }
296
0
    ret = 1;
297
0
 err:
298
0
    BN_CTX_end(ctx);
299
0
    BN_RECP_CTX_free(&recp);
300
0
    bn_check_top(r);
301
0
    return ret;
302
0
}
303
304
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
305
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
306
0
{
307
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
308
0
    int start = 1;
309
0
    BIGNUM *d, *r;
310
0
    const BIGNUM *aa;
311
    /* Table of variables obtained from 'ctx' */
312
0
    BIGNUM *val[TABLE_SIZE];
313
0
    BN_MONT_CTX *mont = NULL;
314
315
0
    bn_check_top(a);
316
0
    bn_check_top(p);
317
0
    bn_check_top(m);
318
319
0
    if (!BN_is_odd(m)) {
320
0
        ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
321
0
        return 0;
322
0
    }
323
324
0
    if (m->top <= BN_CONSTTIME_SIZE_LIMIT
325
0
        && (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
326
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
327
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)) {
328
0
        return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
329
0
    }
330
331
0
    bits = BN_num_bits(p);
332
0
    if (bits == 0) {
333
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
334
0
        if (BN_abs_is_word(m, 1)) {
335
0
            ret = 1;
336
0
            BN_zero(rr);
337
0
        } else {
338
0
            ret = BN_one(rr);
339
0
        }
340
0
        return ret;
341
0
    }
342
343
0
    BN_CTX_start(ctx);
344
0
    d = BN_CTX_get(ctx);
345
0
    r = BN_CTX_get(ctx);
346
0
    val[0] = BN_CTX_get(ctx);
347
0
    if (val[0] == NULL)
348
0
        goto err;
349
350
    /*
351
     * If this is not done, things will break in the montgomery part
352
     */
353
354
0
    if (in_mont != NULL)
355
0
        mont = in_mont;
356
0
    else {
357
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
358
0
            goto err;
359
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
360
0
            goto err;
361
0
    }
362
363
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
364
0
        if (!BN_nnmod(val[0], a, m, ctx))
365
0
            goto err;
366
0
        aa = val[0];
367
0
    } else
368
0
        aa = a;
369
0
    if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
370
0
        goto err;               /* 1 */
371
372
0
    window = BN_window_bits_for_exponent_size(bits);
373
0
    if (window > 1) {
374
0
        if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
375
0
            goto err;           /* 2 */
376
0
        j = 1 << (window - 1);
377
0
        for (i = 1; i < j; i++) {
378
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
379
0
                !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
380
0
                goto err;
381
0
        }
382
0
    }
383
384
0
    start = 1;                  /* This is used to avoid multiplication etc
385
                                 * when there is only the value '1' in the
386
                                 * buffer. */
387
0
    wvalue = 0;                 /* The 'value' of the window */
388
0
    wstart = bits - 1;          /* The top bit of the window */
389
0
    wend = 0;                   /* The bottom bit of the window */
390
391
0
#if 1                           /* by Shay Gueron's suggestion */
392
0
    j = m->top;                 /* borrow j */
393
0
    if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
394
0
        if (bn_wexpand(r, j) == NULL)
395
0
            goto err;
396
        /* 2^(top*BN_BITS2) - m */
397
0
        r->d[0] = (0 - m->d[0]) & BN_MASK2;
398
0
        for (i = 1; i < j; i++)
399
0
            r->d[i] = (~m->d[i]) & BN_MASK2;
400
0
        r->top = j;
401
0
        r->flags |= BN_FLG_FIXED_TOP;
402
0
    } else
403
0
#endif
404
0
    if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
405
0
        goto err;
406
0
    for (;;) {
407
0
        if (BN_is_bit_set(p, wstart) == 0) {
408
0
            if (!start) {
409
0
                if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
410
0
                    goto err;
411
0
            }
412
0
            if (wstart == 0)
413
0
                break;
414
0
            wstart--;
415
0
            continue;
416
0
        }
417
        /*
418
         * We now have wstart on a 'set' bit, we now need to work out how bit
419
         * a window to do.  To do this we need to scan forward until the last
420
         * set bit before the end of the window
421
         */
422
0
        wvalue = 1;
423
0
        wend = 0;
424
0
        for (i = 1; i < window; i++) {
425
0
            if (wstart - i < 0)
426
0
                break;
427
0
            if (BN_is_bit_set(p, wstart - i)) {
428
0
                wvalue <<= (i - wend);
429
0
                wvalue |= 1;
430
0
                wend = i;
431
0
            }
432
0
        }
433
434
        /* wend is the size of the current window */
435
0
        j = wend + 1;
436
        /* add the 'bytes above' */
437
0
        if (!start)
438
0
            for (i = 0; i < j; i++) {
439
0
                if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
440
0
                    goto err;
441
0
            }
442
443
        /* wvalue will be an odd number < 2^window */
444
0
        if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
445
0
            goto err;
446
447
        /* move the 'window' down further */
448
0
        wstart -= wend + 1;
449
0
        wvalue = 0;
450
0
        start = 0;
451
0
        if (wstart < 0)
452
0
            break;
453
0
    }
454
    /*
455
     * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
456
     * removes padding [if any] and makes return value suitable for public
457
     * API consumer.
458
     */
459
#if defined(SPARC_T4_MONT)
460
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
461
        j = mont->N.top;        /* borrow j */
462
        val[0]->d[0] = 1;       /* borrow val[0] */
463
        for (i = 1; i < j; i++)
464
            val[0]->d[i] = 0;
465
        val[0]->top = j;
466
        if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
467
            goto err;
468
    } else
469
#endif
470
0
    if (!BN_from_montgomery(rr, r, mont, ctx))
471
0
        goto err;
472
0
    ret = 1;
473
0
 err:
474
0
    if (in_mont == NULL)
475
0
        BN_MONT_CTX_free(mont);
476
0
    BN_CTX_end(ctx);
477
0
    bn_check_top(rr);
478
0
    return ret;
479
0
}
480
481
static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
482
0
{
483
0
    BN_ULONG ret = 0;
484
0
    int wordpos;
485
486
0
    wordpos = bitpos / BN_BITS2;
487
0
    bitpos %= BN_BITS2;
488
0
    if (wordpos >= 0 && wordpos < a->top) {
489
0
        ret = a->d[wordpos] & BN_MASK2;
490
0
        if (bitpos) {
491
0
            ret >>= bitpos;
492
0
            if (++wordpos < a->top)
493
0
                ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
494
0
        }
495
0
    }
496
497
0
    return ret & BN_MASK2;
498
0
}
499
500
/*
501
 * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
502
 * layout so that accessing any of these table values shows the same access
503
 * pattern as far as cache lines are concerned.  The following functions are
504
 * used to transfer a BIGNUM from/to that table.
505
 */
506
507
static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
508
                                        unsigned char *buf, int idx,
509
                                        int window)
510
0
{
511
0
    int i, j;
512
0
    int width = 1 << window;
513
0
    BN_ULONG *table = (BN_ULONG *)buf;
514
515
0
    if (top > b->top)
516
0
        top = b->top;           /* this works because 'buf' is explicitly
517
                                 * zeroed */
518
0
    for (i = 0, j = idx; i < top; i++, j += width) {
519
0
        table[j] = b->d[i];
520
0
    }
521
522
0
    return 1;
523
0
}
524
525
static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
526
                                          unsigned char *buf, int idx,
527
                                          int window)
528
0
{
529
0
    int i, j;
530
0
    int width = 1 << window;
531
    /*
532
     * We declare table 'volatile' in order to discourage compiler
533
     * from reordering loads from the table. Concern is that if
534
     * reordered in specific manner loads might give away the
535
     * information we are trying to conceal. Some would argue that
536
     * compiler can reorder them anyway, but it can as well be
537
     * argued that doing so would be violation of standard...
538
     */
539
0
    volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
540
541
0
    if (bn_wexpand(b, top) == NULL)
542
0
        return 0;
543
544
0
    if (window <= 3) {
545
0
        for (i = 0; i < top; i++, table += width) {
546
0
            BN_ULONG acc = 0;
547
548
0
            for (j = 0; j < width; j++) {
549
0
                acc |= table[j] &
550
0
                       ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
551
0
            }
552
553
0
            b->d[i] = acc;
554
0
        }
555
0
    } else {
556
0
        int xstride = 1 << (window - 2);
557
0
        BN_ULONG y0, y1, y2, y3;
558
559
0
        i = idx >> (window - 2);        /* equivalent of idx / xstride */
560
0
        idx &= xstride - 1;             /* equivalent of idx % xstride */
561
562
0
        y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
563
0
        y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
564
0
        y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
565
0
        y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
566
567
0
        for (i = 0; i < top; i++, table += width) {
568
0
            BN_ULONG acc = 0;
569
570
0
            for (j = 0; j < xstride; j++) {
571
0
                acc |= ( (table[j + 0 * xstride] & y0) |
572
0
                         (table[j + 1 * xstride] & y1) |
573
0
                         (table[j + 2 * xstride] & y2) |
574
0
                         (table[j + 3 * xstride] & y3) )
575
0
                       & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
576
0
            }
577
578
0
            b->d[i] = acc;
579
0
        }
580
0
    }
581
582
0
    b->top = top;
583
0
    b->flags |= BN_FLG_FIXED_TOP;
584
0
    return 1;
585
0
}
586
587
/*
588
 * Given a pointer value, compute the next address that is a cache line
589
 * multiple.
590
 */
591
#define MOD_EXP_CTIME_ALIGN(x_) \
592
0
        ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
593
594
/*
595
 * This variant of BN_mod_exp_mont() uses fixed windows and the special
596
 * precomputation memory layout to limit data-dependency to a minimum to
597
 * protect secret exponents (cf. the hyper-threading timing attacks pointed
598
 * out by Colin Percival,
599
 * http://www.daemonology.net/hyperthreading-considered-harmful/)
600
 */
601
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
602
                              const BIGNUM *m, BN_CTX *ctx,
603
                              BN_MONT_CTX *in_mont)
604
0
{
605
0
    int i, bits, ret = 0, window, wvalue, wmask, window0;
606
0
    int top;
607
0
    BN_MONT_CTX *mont = NULL;
608
609
0
    int numPowers;
610
0
    unsigned char *powerbufFree = NULL;
611
0
    int powerbufLen = 0;
612
0
    unsigned char *powerbuf = NULL;
613
0
    BIGNUM tmp, am;
614
#if defined(SPARC_T4_MONT)
615
    unsigned int t4 = 0;
616
#endif
617
618
0
    bn_check_top(a);
619
0
    bn_check_top(p);
620
0
    bn_check_top(m);
621
622
0
    if (!BN_is_odd(m)) {
623
0
        ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
624
0
        return 0;
625
0
    }
626
627
0
    top = m->top;
628
629
0
    if (top > BN_CONSTTIME_SIZE_LIMIT) {
630
        /* Prevent overflowing the powerbufLen computation below */
631
0
        return BN_mod_exp_mont(rr, a, p, m, ctx, in_mont);
632
0
    }
633
634
    /*
635
     * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
636
     * whether the top bits are zero.
637
     */
638
0
    bits = p->top * BN_BITS2;
639
0
    if (bits == 0) {
640
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
641
0
        if (BN_abs_is_word(m, 1)) {
642
0
            ret = 1;
643
0
            BN_zero(rr);
644
0
        } else {
645
0
            ret = BN_one(rr);
646
0
        }
647
0
        return ret;
648
0
    }
649
650
0
    BN_CTX_start(ctx);
651
652
    /*
653
     * Allocate a montgomery context if it was not supplied by the caller. If
654
     * this is not done, things will break in the montgomery part.
655
     */
656
0
    if (in_mont != NULL)
657
0
        mont = in_mont;
658
0
    else {
659
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
660
0
            goto err;
661
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
662
0
            goto err;
663
0
    }
664
665
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
666
0
        BIGNUM *reduced = BN_CTX_get(ctx);
667
0
        if (reduced == NULL
668
0
            || !BN_nnmod(reduced, a, m, ctx)) {
669
0
            goto err;
670
0
        }
671
0
        a = reduced;
672
0
    }
673
674
0
#ifdef RSAZ_ENABLED
675
    /*
676
     * If the size of the operands allow it, perform the optimized
677
     * RSAZ exponentiation. For further information see
678
     * crypto/bn/rsaz_exp.c and accompanying assembly modules.
679
     */
680
0
    if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
681
0
        && rsaz_avx2_eligible()) {
682
0
        if (NULL == bn_wexpand(rr, 16))
683
0
            goto err;
684
0
        RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
685
0
                               mont->n0[0]);
686
0
        rr->top = 16;
687
0
        rr->neg = 0;
688
0
        bn_correct_top(rr);
689
0
        ret = 1;
690
0
        goto err;
691
0
    } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
692
0
        if (NULL == bn_wexpand(rr, 8))
693
0
            goto err;
694
0
        RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
695
0
        rr->top = 8;
696
0
        rr->neg = 0;
697
0
        bn_correct_top(rr);
698
0
        ret = 1;
699
0
        goto err;
700
0
    }
701
0
#endif
702
703
    /* Get the window size to use with size of p. */
704
0
    window = BN_window_bits_for_ctime_exponent_size(bits);
705
#if defined(SPARC_T4_MONT)
706
    if (window >= 5 && (top & 15) == 0 && top <= 64 &&
707
        (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
708
        (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
709
        window = 5;
710
    else
711
#endif
712
0
#if defined(OPENSSL_BN_ASM_MONT5)
713
0
    if (window >= 5 && top <= BN_SOFT_LIMIT) {
714
0
        window = 5;             /* ~5% improvement for RSA2048 sign, and even
715
                                 * for RSA4096 */
716
        /* reserve space for mont->N.d[] copy */
717
0
        powerbufLen += top * sizeof(mont->N.d[0]);
718
0
    }
719
0
#endif
720
0
    (void)0;
721
722
    /*
723
     * Allocate a buffer large enough to hold all of the pre-computed powers
724
     * of am, am itself and tmp.
725
     */
726
0
    numPowers = 1 << window;
727
0
    powerbufLen += sizeof(m->d[0]) * (top * numPowers +
728
0
                                      ((2 * top) >
729
0
                                       numPowers ? (2 * top) : numPowers));
730
0
#ifdef alloca
731
0
    if (powerbufLen < 3072)
732
0
        powerbufFree =
733
0
            alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
734
0
    else
735
0
#endif
736
0
        if ((powerbufFree =
737
0
             OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
738
0
            == NULL)
739
0
        goto err;
740
741
0
    powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
742
0
    memset(powerbuf, 0, powerbufLen);
743
744
0
#ifdef alloca
745
0
    if (powerbufLen < 3072)
746
0
        powerbufFree = NULL;
747
0
#endif
748
749
    /* lay down tmp and am right after powers table */
750
0
    tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
751
0
    am.d = tmp.d + top;
752
0
    tmp.top = am.top = 0;
753
0
    tmp.dmax = am.dmax = top;
754
0
    tmp.neg = am.neg = 0;
755
0
    tmp.flags = am.flags = BN_FLG_STATIC_DATA;
756
757
    /* prepare a^0 in Montgomery domain */
758
0
#if 1                           /* by Shay Gueron's suggestion */
759
0
    if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
760
        /* 2^(top*BN_BITS2) - m */
761
0
        tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
762
0
        for (i = 1; i < top; i++)
763
0
            tmp.d[i] = (~m->d[i]) & BN_MASK2;
764
0
        tmp.top = top;
765
0
    } else
766
0
#endif
767
0
    if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
768
0
        goto err;
769
770
    /* prepare a^1 in Montgomery domain */
771
0
    if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
772
0
        goto err;
773
774
0
    if (top > BN_SOFT_LIMIT)
775
0
        goto fallback;
776
777
#if defined(SPARC_T4_MONT)
778
    if (t4) {
779
        typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
780
                                       const BN_ULONG *n0, const void *table,
781
                                       int power, int bits);
782
        int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
783
                              const BN_ULONG *n0, const void *table,
784
                              int power, int bits);
785
        int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
786
                               const BN_ULONG *n0, const void *table,
787
                               int power, int bits);
788
        int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
789
                               const BN_ULONG *n0, const void *table,
790
                               int power, int bits);
791
        int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
792
                               const BN_ULONG *n0, const void *table,
793
                               int power, int bits);
794
        static const bn_pwr5_mont_f pwr5_funcs[4] = {
795
            bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
796
            bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
797
        };
798
        bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
799
800
        typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
801
                                      const void *bp, const BN_ULONG *np,
802
                                      const BN_ULONG *n0);
803
        int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
804
                             const BN_ULONG *np, const BN_ULONG *n0);
805
        int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
806
                              const void *bp, const BN_ULONG *np,
807
                              const BN_ULONG *n0);
808
        int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
809
                              const void *bp, const BN_ULONG *np,
810
                              const BN_ULONG *n0);
811
        int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
812
                              const void *bp, const BN_ULONG *np,
813
                              const BN_ULONG *n0);
814
        static const bn_mul_mont_f mul_funcs[4] = {
815
            bn_mul_mont_t4_8, bn_mul_mont_t4_16,
816
            bn_mul_mont_t4_24, bn_mul_mont_t4_32
817
        };
818
        bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
819
820
        void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
821
                              const void *bp, const BN_ULONG *np,
822
                              const BN_ULONG *n0, int num);
823
        void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
824
                            const void *bp, const BN_ULONG *np,
825
                            const BN_ULONG *n0, int num);
826
        void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
827
                                    const void *table, const BN_ULONG *np,
828
                                    const BN_ULONG *n0, int num, int power);
829
        void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
830
                                   void *table, size_t power);
831
        void bn_gather5_t4(BN_ULONG *out, size_t num,
832
                           void *table, size_t power);
833
        void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
834
835
        BN_ULONG *np = mont->N.d, *n0 = mont->n0;
836
        int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
837
                                                * than 32 */
838
839
        /*
840
         * BN_to_montgomery can contaminate words above .top [in
841
         * BN_DEBUG build...
842
         */
843
        for (i = am.top; i < top; i++)
844
            am.d[i] = 0;
845
        for (i = tmp.top; i < top; i++)
846
            tmp.d[i] = 0;
847
848
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
849
        bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
850
        if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
851
            !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
852
            bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
853
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
854
855
        for (i = 3; i < 32; i++) {
856
            /* Calculate a^i = a^(i-1) * a */
857
            if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
858
                !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
859
                bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
860
            bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
861
        }
862
863
        /* switch to 64-bit domain */
864
        np = alloca(top * sizeof(BN_ULONG));
865
        top /= 2;
866
        bn_flip_t4(np, mont->N.d, top);
867
868
        /*
869
         * The exponent may not have a whole number of fixed-size windows.
870
         * To simplify the main loop, the initial window has between 1 and
871
         * full-window-size bits such that what remains is always a whole
872
         * number of windows
873
         */
874
        window0 = (bits - 1) % 5 + 1;
875
        wmask = (1 << window0) - 1;
876
        bits -= window0;
877
        wvalue = bn_get_bits(p, bits) & wmask;
878
        bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
879
880
        /*
881
         * Scan the exponent one window at a time starting from the most
882
         * significant bits.
883
         */
884
        while (bits > 0) {
885
            if (bits < stride)
886
                stride = bits;
887
            bits -= stride;
888
            wvalue = bn_get_bits(p, bits);
889
890
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
891
                continue;
892
            /* retry once and fall back */
893
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
894
                continue;
895
896
            bits += stride - 5;
897
            wvalue >>= stride - 5;
898
            wvalue &= 31;
899
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
900
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
901
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
902
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
903
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
904
            bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
905
                                   wvalue);
906
        }
907
908
        bn_flip_t4(tmp.d, tmp.d, top);
909
        top *= 2;
910
        /* back to 32-bit domain */
911
        tmp.top = top;
912
        bn_correct_top(&tmp);
913
        OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
914
    } else
915
#endif
916
0
#if defined(OPENSSL_BN_ASM_MONT5)
917
0
    if (window == 5 && top > 1) {
918
        /*
919
         * This optimization uses ideas from https://eprint.iacr.org/2011/239,
920
         * specifically optimization of cache-timing attack countermeasures,
921
         * pre-computation optimization, and Almost Montgomery Multiplication.
922
         *
923
         * The paper discusses a 4-bit window to optimize 512-bit modular
924
         * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
925
         * important.
926
         *
927
         * |bn_mul_mont_gather5| and |bn_power5| implement the "almost"
928
         * reduction variant, so the values here may not be fully reduced.
929
         * They are bounded by R (i.e. they fit in |top| words), not |m|.
930
         * Additionally, we pass these "almost" reduced inputs into
931
         * |bn_mul_mont|, which implements the normal reduction variant.
932
         * Given those inputs, |bn_mul_mont| may not give reduced
933
         * output, but it will still produce "almost" reduced output.
934
         */
935
0
        void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
936
0
                                 const void *table, const BN_ULONG *np,
937
0
                                 const BN_ULONG *n0, int num, int power);
938
0
        void bn_scatter5(const BN_ULONG *inp, size_t num,
939
0
                         void *table, size_t power);
940
0
        void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
941
0
        void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
942
0
                       const void *table, const BN_ULONG *np,
943
0
                       const BN_ULONG *n0, int num, int power);
944
0
        int bn_get_bits5(const BN_ULONG *ap, int off);
945
946
0
        BN_ULONG *n0 = mont->n0, *np;
947
948
        /*
949
         * BN_to_montgomery can contaminate words above .top [in
950
         * BN_DEBUG build...
951
         */
952
0
        for (i = am.top; i < top; i++)
953
0
            am.d[i] = 0;
954
0
        for (i = tmp.top; i < top; i++)
955
0
            tmp.d[i] = 0;
956
957
        /*
958
         * copy mont->N.d[] to improve cache locality
959
         */
960
0
        for (np = am.d + top, i = 0; i < top; i++)
961
0
            np[i] = mont->N.d[i];
962
963
0
        bn_scatter5(tmp.d, top, powerbuf, 0);
964
0
        bn_scatter5(am.d, am.top, powerbuf, 1);
965
0
        bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
966
0
        bn_scatter5(tmp.d, top, powerbuf, 2);
967
968
# if 0
969
        for (i = 3; i < 32; i++) {
970
            /* Calculate a^i = a^(i-1) * a */
971
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
972
            bn_scatter5(tmp.d, top, powerbuf, i);
973
        }
974
# else
975
        /* same as above, but uses squaring for 1/2 of operations */
976
0
        for (i = 4; i < 32; i *= 2) {
977
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
978
0
            bn_scatter5(tmp.d, top, powerbuf, i);
979
0
        }
980
0
        for (i = 3; i < 8; i += 2) {
981
0
            int j;
982
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
983
0
            bn_scatter5(tmp.d, top, powerbuf, i);
984
0
            for (j = 2 * i; j < 32; j *= 2) {
985
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
986
0
                bn_scatter5(tmp.d, top, powerbuf, j);
987
0
            }
988
0
        }
989
0
        for (; i < 16; i += 2) {
990
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
991
0
            bn_scatter5(tmp.d, top, powerbuf, i);
992
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
993
0
            bn_scatter5(tmp.d, top, powerbuf, 2 * i);
994
0
        }
995
0
        for (; i < 32; i += 2) {
996
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
997
0
            bn_scatter5(tmp.d, top, powerbuf, i);
998
0
        }
999
0
# endif
1000
        /*
1001
         * The exponent may not have a whole number of fixed-size windows.
1002
         * To simplify the main loop, the initial window has between 1 and
1003
         * full-window-size bits such that what remains is always a whole
1004
         * number of windows
1005
         */
1006
0
        window0 = (bits - 1) % 5 + 1;
1007
0
        wmask = (1 << window0) - 1;
1008
0
        bits -= window0;
1009
0
        wvalue = bn_get_bits(p, bits) & wmask;
1010
0
        bn_gather5(tmp.d, top, powerbuf, wvalue);
1011
1012
        /*
1013
         * Scan the exponent one window at a time starting from the most
1014
         * significant bits.
1015
         */
1016
0
        if (top & 7) {
1017
0
            while (bits > 0) {
1018
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1019
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1020
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1021
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1022
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1023
0
                bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1024
0
                                    bn_get_bits5(p->d, bits -= 5));
1025
0
            }
1026
0
        } else {
1027
0
            while (bits > 0) {
1028
0
                bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
1029
0
                          bn_get_bits5(p->d, bits -= 5));
1030
0
            }
1031
0
        }
1032
1033
0
        tmp.top = top;
1034
        /*
1035
         * The result is now in |tmp| in Montgomery form, but it may not be
1036
         * fully reduced. This is within bounds for |BN_from_montgomery|
1037
         * (tmp < R <= m*R) so it will, when converting from Montgomery form,
1038
         * produce a fully reduced result.
1039
         *
1040
         * This differs from Figure 2 of the paper, which uses AMM(h, 1) to
1041
         * convert from Montgomery form with unreduced output, followed by an
1042
         * extra reduction step. In the paper's terminology, we replace
1043
         * steps 9 and 10 with MM(h, 1).
1044
         */
1045
0
    } else
1046
0
#endif
1047
0
    {
1048
0
 fallback:
1049
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1050
0
            goto err;
1051
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1052
0
            goto err;
1053
1054
        /*
1055
         * If the window size is greater than 1, then calculate
1056
         * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1057
         * powers could instead be computed as (a^(i/2))^2 to use the slight
1058
         * performance advantage of sqr over mul).
1059
         */
1060
0
        if (window > 1) {
1061
0
            if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
1062
0
                goto err;
1063
0
            if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1064
0
                                              window))
1065
0
                goto err;
1066
0
            for (i = 3; i < numPowers; i++) {
1067
                /* Calculate a^i = a^(i-1) * a */
1068
0
                if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
1069
0
                    goto err;
1070
0
                if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1071
0
                                                  window))
1072
0
                    goto err;
1073
0
            }
1074
0
        }
1075
1076
        /*
1077
         * The exponent may not have a whole number of fixed-size windows.
1078
         * To simplify the main loop, the initial window has between 1 and
1079
         * full-window-size bits such that what remains is always a whole
1080
         * number of windows
1081
         */
1082
0
        window0 = (bits - 1) % window + 1;
1083
0
        wmask = (1 << window0) - 1;
1084
0
        bits -= window0;
1085
0
        wvalue = bn_get_bits(p, bits) & wmask;
1086
0
        if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1087
0
                                            window))
1088
0
            goto err;
1089
1090
0
        wmask = (1 << window) - 1;
1091
        /*
1092
         * Scan the exponent one window at a time starting from the most
1093
         * significant bits.
1094
         */
1095
0
        while (bits > 0) {
1096
1097
            /* Square the result window-size times */
1098
0
            for (i = 0; i < window; i++)
1099
0
                if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
1100
0
                    goto err;
1101
1102
            /*
1103
             * Get a window's worth of bits from the exponent
1104
             * This avoids calling BN_is_bit_set for each bit, which
1105
             * is not only slower but also makes each bit vulnerable to
1106
             * EM (and likely other) side-channel attacks like One&Done
1107
             * (for details see "One&Done: A Single-Decryption EM-Based
1108
             *  Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
1109
             *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
1110
             *  M. Prvulovic, in USENIX Security'18)
1111
             */
1112
0
            bits -= window;
1113
0
            wvalue = bn_get_bits(p, bits) & wmask;
1114
            /*
1115
             * Fetch the appropriate pre-computed value from the pre-buf
1116
             */
1117
0
            if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1118
0
                                                window))
1119
0
                goto err;
1120
1121
            /* Multiply the result into the intermediate result */
1122
0
            if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
1123
0
                goto err;
1124
0
        }
1125
0
    }
1126
1127
    /*
1128
     * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
1129
     * removes padding [if any] and makes return value suitable for public
1130
     * API consumer.
1131
     */
1132
#if defined(SPARC_T4_MONT)
1133
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1134
        am.d[0] = 1;            /* borrow am */
1135
        for (i = 1; i < top; i++)
1136
            am.d[i] = 0;
1137
        if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1138
            goto err;
1139
    } else
1140
#endif
1141
0
    if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1142
0
        goto err;
1143
0
    ret = 1;
1144
0
 err:
1145
0
    if (in_mont == NULL)
1146
0
        BN_MONT_CTX_free(mont);
1147
0
    if (powerbuf != NULL) {
1148
0
        OPENSSL_cleanse(powerbuf, powerbufLen);
1149
0
        OPENSSL_free(powerbufFree);
1150
0
    }
1151
0
    BN_CTX_end(ctx);
1152
0
    return ret;
1153
0
}
1154
1155
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1156
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1157
0
{
1158
0
    BN_MONT_CTX *mont = NULL;
1159
0
    int b, bits, ret = 0;
1160
0
    int r_is_one;
1161
0
    BN_ULONG w, next_w;
1162
0
    BIGNUM *r, *t;
1163
0
    BIGNUM *swap_tmp;
1164
0
#define BN_MOD_MUL_WORD(r, w, m) \
1165
0
                (BN_mul_word(r, (w)) && \
1166
0
                (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1167
0
                        (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1168
    /*
1169
     * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1170
     * probably more overhead than always using BN_mod (which uses BN_copy if
1171
     * a similar test returns true).
1172
     */
1173
    /*
1174
     * We can use BN_mod and do not need BN_nnmod because our accumulator is
1175
     * never negative (the result of BN_mod does not depend on the sign of
1176
     * the modulus).
1177
     */
1178
0
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1179
0
                (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1180
1181
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1182
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1183
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1184
0
        ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1185
0
        return 0;
1186
0
    }
1187
1188
0
    bn_check_top(p);
1189
0
    bn_check_top(m);
1190
1191
0
    if (!BN_is_odd(m)) {
1192
0
        ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
1193
0
        return 0;
1194
0
    }
1195
0
    if (m->top == 1)
1196
0
        a %= m->d[0];           /* make sure that 'a' is reduced */
1197
1198
0
    bits = BN_num_bits(p);
1199
0
    if (bits == 0) {
1200
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
1201
0
        if (BN_abs_is_word(m, 1)) {
1202
0
            ret = 1;
1203
0
            BN_zero(rr);
1204
0
        } else {
1205
0
            ret = BN_one(rr);
1206
0
        }
1207
0
        return ret;
1208
0
    }
1209
0
    if (a == 0) {
1210
0
        BN_zero(rr);
1211
0
        ret = 1;
1212
0
        return ret;
1213
0
    }
1214
1215
0
    BN_CTX_start(ctx);
1216
0
    r = BN_CTX_get(ctx);
1217
0
    t = BN_CTX_get(ctx);
1218
0
    if (t == NULL)
1219
0
        goto err;
1220
1221
0
    if (in_mont != NULL)
1222
0
        mont = in_mont;
1223
0
    else {
1224
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
1225
0
            goto err;
1226
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
1227
0
            goto err;
1228
0
    }
1229
1230
0
    r_is_one = 1;               /* except for Montgomery factor */
1231
1232
    /* bits-1 >= 0 */
1233
1234
    /* The result is accumulated in the product r*w. */
1235
0
    w = a;                      /* bit 'bits-1' of 'p' is always set */
1236
0
    for (b = bits - 2; b >= 0; b--) {
1237
        /* First, square r*w. */
1238
0
        next_w = w * w;
1239
0
        if ((next_w / w) != w) { /* overflow */
1240
0
            if (r_is_one) {
1241
0
                if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1242
0
                    goto err;
1243
0
                r_is_one = 0;
1244
0
            } else {
1245
0
                if (!BN_MOD_MUL_WORD(r, w, m))
1246
0
                    goto err;
1247
0
            }
1248
0
            next_w = 1;
1249
0
        }
1250
0
        w = next_w;
1251
0
        if (!r_is_one) {
1252
0
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1253
0
                goto err;
1254
0
        }
1255
1256
        /* Second, multiply r*w by 'a' if exponent bit is set. */
1257
0
        if (BN_is_bit_set(p, b)) {
1258
0
            next_w = w * a;
1259
0
            if ((next_w / a) != w) { /* overflow */
1260
0
                if (r_is_one) {
1261
0
                    if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1262
0
                        goto err;
1263
0
                    r_is_one = 0;
1264
0
                } else {
1265
0
                    if (!BN_MOD_MUL_WORD(r, w, m))
1266
0
                        goto err;
1267
0
                }
1268
0
                next_w = a;
1269
0
            }
1270
0
            w = next_w;
1271
0
        }
1272
0
    }
1273
1274
    /* Finally, set r:=r*w. */
1275
0
    if (w != 1) {
1276
0
        if (r_is_one) {
1277
0
            if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1278
0
                goto err;
1279
0
            r_is_one = 0;
1280
0
        } else {
1281
0
            if (!BN_MOD_MUL_WORD(r, w, m))
1282
0
                goto err;
1283
0
        }
1284
0
    }
1285
1286
0
    if (r_is_one) {             /* can happen only if a == 1 */
1287
0
        if (!BN_one(rr))
1288
0
            goto err;
1289
0
    } else {
1290
0
        if (!BN_from_montgomery(rr, r, mont, ctx))
1291
0
            goto err;
1292
0
    }
1293
0
    ret = 1;
1294
0
 err:
1295
0
    if (in_mont == NULL)
1296
0
        BN_MONT_CTX_free(mont);
1297
0
    BN_CTX_end(ctx);
1298
0
    bn_check_top(rr);
1299
0
    return ret;
1300
0
}
1301
1302
/* The old fallback, simple version :-) */
1303
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1304
                      const BIGNUM *m, BN_CTX *ctx)
1305
0
{
1306
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
1307
0
    int start = 1;
1308
0
    BIGNUM *d;
1309
    /* Table of variables obtained from 'ctx' */
1310
0
    BIGNUM *val[TABLE_SIZE];
1311
1312
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1313
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1314
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1315
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1316
0
        ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1317
0
        return 0;
1318
0
    }
1319
1320
0
    bits = BN_num_bits(p);
1321
0
    if (bits == 0) {
1322
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
1323
0
        if (BN_abs_is_word(m, 1)) {
1324
0
            ret = 1;
1325
0
            BN_zero(r);
1326
0
        } else {
1327
0
            ret = BN_one(r);
1328
0
        }
1329
0
        return ret;
1330
0
    }
1331
1332
0
    BN_CTX_start(ctx);
1333
0
    d = BN_CTX_get(ctx);
1334
0
    val[0] = BN_CTX_get(ctx);
1335
0
    if (val[0] == NULL)
1336
0
        goto err;
1337
1338
0
    if (!BN_nnmod(val[0], a, m, ctx))
1339
0
        goto err;               /* 1 */
1340
0
    if (BN_is_zero(val[0])) {
1341
0
        BN_zero(r);
1342
0
        ret = 1;
1343
0
        goto err;
1344
0
    }
1345
1346
0
    window = BN_window_bits_for_exponent_size(bits);
1347
0
    if (window > 1) {
1348
0
        if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1349
0
            goto err;           /* 2 */
1350
0
        j = 1 << (window - 1);
1351
0
        for (i = 1; i < j; i++) {
1352
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1353
0
                !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1354
0
                goto err;
1355
0
        }
1356
0
    }
1357
1358
0
    start = 1;                  /* This is used to avoid multiplication etc
1359
                                 * when there is only the value '1' in the
1360
                                 * buffer. */
1361
0
    wvalue = 0;                 /* The 'value' of the window */
1362
0
    wstart = bits - 1;          /* The top bit of the window */
1363
0
    wend = 0;                   /* The bottom bit of the window */
1364
1365
0
    if (!BN_one(r))
1366
0
        goto err;
1367
1368
0
    for (;;) {
1369
0
        if (BN_is_bit_set(p, wstart) == 0) {
1370
0
            if (!start)
1371
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1372
0
                    goto err;
1373
0
            if (wstart == 0)
1374
0
                break;
1375
0
            wstart--;
1376
0
            continue;
1377
0
        }
1378
        /*
1379
         * We now have wstart on a 'set' bit, we now need to work out how bit
1380
         * a window to do.  To do this we need to scan forward until the last
1381
         * set bit before the end of the window
1382
         */
1383
0
        wvalue = 1;
1384
0
        wend = 0;
1385
0
        for (i = 1; i < window; i++) {
1386
0
            if (wstart - i < 0)
1387
0
                break;
1388
0
            if (BN_is_bit_set(p, wstart - i)) {
1389
0
                wvalue <<= (i - wend);
1390
0
                wvalue |= 1;
1391
0
                wend = i;
1392
0
            }
1393
0
        }
1394
1395
        /* wend is the size of the current window */
1396
0
        j = wend + 1;
1397
        /* add the 'bytes above' */
1398
0
        if (!start)
1399
0
            for (i = 0; i < j; i++) {
1400
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1401
0
                    goto err;
1402
0
            }
1403
1404
        /* wvalue will be an odd number < 2^window */
1405
0
        if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1406
0
            goto err;
1407
1408
        /* move the 'window' down further */
1409
0
        wstart -= wend + 1;
1410
0
        wvalue = 0;
1411
0
        start = 0;
1412
0
        if (wstart < 0)
1413
0
            break;
1414
0
    }
1415
0
    ret = 1;
1416
0
 err:
1417
0
    BN_CTX_end(ctx);
1418
0
    bn_check_top(r);
1419
0
    return ret;
1420
0
}
1421
1422
/*
1423
 * This is a variant of modular exponentiation optimization that does
1424
 * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
1425
 * in 52-bit binary redundant representation.
1426
 * If such instructions are not available, or input data size is not supported,
1427
 * it falls back to two BN_mod_exp_mont_consttime() calls.
1428
 */
1429
int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
1430
                                 const BIGNUM *m1, BN_MONT_CTX *in_mont1,
1431
                                 BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
1432
                                 const BIGNUM *m2, BN_MONT_CTX *in_mont2,
1433
                                 BN_CTX *ctx)
1434
0
{
1435
0
    int ret = 0;
1436
1437
0
#ifdef RSAZ_ENABLED
1438
0
    BN_MONT_CTX *mont1 = NULL;
1439
0
    BN_MONT_CTX *mont2 = NULL;
1440
1441
0
    if (ossl_rsaz_avx512ifma_eligible() &&
1442
0
        (((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
1443
0
          (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024)) ||
1444
0
         ((a1->top == 24) && (p1->top == 24) && (BN_num_bits(m1) == 1536) &&
1445
0
          (a2->top == 24) && (p2->top == 24) && (BN_num_bits(m2) == 1536)) ||
1446
0
         ((a1->top == 32) && (p1->top == 32) && (BN_num_bits(m1) == 2048) &&
1447
0
          (a2->top == 32) && (p2->top == 32) && (BN_num_bits(m2) == 2048)))) {
1448
1449
0
        int topn = a1->top;
1450
        /* Modulus bits of |m1| and |m2| are equal */
1451
0
        int mod_bits = BN_num_bits(m1);
1452
1453
0
        if (bn_wexpand(rr1, topn) == NULL)
1454
0
            goto err;
1455
0
        if (bn_wexpand(rr2, topn) == NULL)
1456
0
            goto err;
1457
1458
        /*  Ensure that montgomery contexts are initialized */
1459
0
        if (in_mont1 != NULL) {
1460
0
            mont1 = in_mont1;
1461
0
        } else {
1462
0
            if ((mont1 = BN_MONT_CTX_new()) == NULL)
1463
0
                goto err;
1464
0
            if (!BN_MONT_CTX_set(mont1, m1, ctx))
1465
0
                goto err;
1466
0
        }
1467
0
        if (in_mont2 != NULL) {
1468
0
            mont2 = in_mont2;
1469
0
        } else {
1470
0
            if ((mont2 = BN_MONT_CTX_new()) == NULL)
1471
0
                goto err;
1472
0
            if (!BN_MONT_CTX_set(mont2, m2, ctx))
1473
0
                goto err;
1474
0
        }
1475
1476
0
        ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d,
1477
0
                                          mont1->RR.d, mont1->n0[0],
1478
0
                                          rr2->d, a2->d, p2->d, m2->d,
1479
0
                                          mont2->RR.d, mont2->n0[0],
1480
0
                                          mod_bits);
1481
1482
0
        rr1->top = topn;
1483
0
        rr1->neg = 0;
1484
0
        bn_correct_top(rr1);
1485
0
        bn_check_top(rr1);
1486
1487
0
        rr2->top = topn;
1488
0
        rr2->neg = 0;
1489
0
        bn_correct_top(rr2);
1490
0
        bn_check_top(rr2);
1491
1492
0
        goto err;
1493
0
    }
1494
0
#endif
1495
1496
    /* rr1 = a1^p1 mod m1 */
1497
0
    ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
1498
    /* rr2 = a2^p2 mod m2 */
1499
0
    ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
1500
1501
0
#ifdef RSAZ_ENABLED
1502
0
err:
1503
0
    if (in_mont2 == NULL)
1504
0
        BN_MONT_CTX_free(mont2);
1505
0
    if (in_mont1 == NULL)
1506
0
        BN_MONT_CTX_free(mont1);
1507
0
#endif
1508
1509
0
    return ret;
1510
0
}