/src/openssl/crypto/encode_decode/decoder_pkey.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/core_names.h> |
11 | | #include <openssl/core_object.h> |
12 | | #include <openssl/provider.h> |
13 | | #include <openssl/evp.h> |
14 | | #include <openssl/ui.h> |
15 | | #include <openssl/decoder.h> |
16 | | #include <openssl/safestack.h> |
17 | | #include <openssl/trace.h> |
18 | | #include "crypto/evp.h" |
19 | | #include "crypto/decoder.h" |
20 | | #include "crypto/evp/evp_local.h" |
21 | | #include "encoder_local.h" |
22 | | #include "internal/namemap.h" |
23 | | |
24 | | int OSSL_DECODER_CTX_set_passphrase(OSSL_DECODER_CTX *ctx, |
25 | | const unsigned char *kstr, |
26 | | size_t klen) |
27 | 0 | { |
28 | 0 | return ossl_pw_set_passphrase(&ctx->pwdata, kstr, klen); |
29 | 0 | } |
30 | | |
31 | | int OSSL_DECODER_CTX_set_passphrase_ui(OSSL_DECODER_CTX *ctx, |
32 | | const UI_METHOD *ui_method, |
33 | | void *ui_data) |
34 | 0 | { |
35 | 0 | return ossl_pw_set_ui_method(&ctx->pwdata, ui_method, ui_data); |
36 | 0 | } |
37 | | |
38 | | int OSSL_DECODER_CTX_set_pem_password_cb(OSSL_DECODER_CTX *ctx, |
39 | | pem_password_cb *cb, void *cbarg) |
40 | 0 | { |
41 | 0 | return ossl_pw_set_pem_password_cb(&ctx->pwdata, cb, cbarg); |
42 | 0 | } |
43 | | |
44 | | int OSSL_DECODER_CTX_set_passphrase_cb(OSSL_DECODER_CTX *ctx, |
45 | | OSSL_PASSPHRASE_CALLBACK *cb, |
46 | | void *cbarg) |
47 | 0 | { |
48 | 0 | return ossl_pw_set_ossl_passphrase_cb(&ctx->pwdata, cb, cbarg); |
49 | 0 | } |
50 | | |
51 | | /* |
52 | | * Support for OSSL_DECODER_CTX_new_for_pkey: |
53 | | * The construct data, and collecting keymgmt information for it |
54 | | */ |
55 | | |
56 | | DEFINE_STACK_OF(EVP_KEYMGMT) |
57 | | |
58 | | struct decoder_pkey_data_st { |
59 | | OSSL_LIB_CTX *libctx; |
60 | | char *propq; |
61 | | int selection; |
62 | | |
63 | | STACK_OF(EVP_KEYMGMT) *keymgmts; |
64 | | char *object_type; /* recorded object data type, may be NULL */ |
65 | | void **object; /* Where the result should end up */ |
66 | | }; |
67 | | |
68 | | static int decoder_construct_pkey(OSSL_DECODER_INSTANCE *decoder_inst, |
69 | | const OSSL_PARAM *params, |
70 | | void *construct_data) |
71 | 0 | { |
72 | 0 | struct decoder_pkey_data_st *data = construct_data; |
73 | 0 | OSSL_DECODER *decoder = OSSL_DECODER_INSTANCE_get_decoder(decoder_inst); |
74 | 0 | void *decoderctx = OSSL_DECODER_INSTANCE_get_decoder_ctx(decoder_inst); |
75 | 0 | const OSSL_PROVIDER *decoder_prov = OSSL_DECODER_get0_provider(decoder); |
76 | 0 | EVP_KEYMGMT *keymgmt = NULL; |
77 | 0 | const OSSL_PROVIDER *keymgmt_prov = NULL; |
78 | 0 | int i, end; |
79 | | /* |
80 | | * |object_ref| points to a provider reference to an object, its exact |
81 | | * contents entirely opaque to us, but may be passed to any provider |
82 | | * function that expects this (such as OSSL_FUNC_keymgmt_load(). |
83 | | * |
84 | | * This pointer is considered volatile, i.e. whatever it points at |
85 | | * is assumed to be freed as soon as this function returns. |
86 | | */ |
87 | 0 | void *object_ref = NULL; |
88 | 0 | size_t object_ref_sz = 0; |
89 | 0 | const OSSL_PARAM *p; |
90 | |
|
91 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_OBJECT_PARAM_DATA_TYPE); |
92 | 0 | if (p != NULL) { |
93 | 0 | char *object_type = NULL; |
94 | |
|
95 | 0 | if (!OSSL_PARAM_get_utf8_string(p, &object_type, 0)) |
96 | 0 | return 0; |
97 | 0 | OPENSSL_free(data->object_type); |
98 | 0 | data->object_type = object_type; |
99 | 0 | } |
100 | | |
101 | | /* |
102 | | * For stuff that should end up in an EVP_PKEY, we only accept an object |
103 | | * reference for the moment. This enforces that the key data itself |
104 | | * remains with the provider. |
105 | | */ |
106 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_OBJECT_PARAM_REFERENCE); |
107 | 0 | if (p == NULL || p->data_type != OSSL_PARAM_OCTET_STRING) |
108 | 0 | return 0; |
109 | 0 | object_ref = p->data; |
110 | 0 | object_ref_sz = p->data_size; |
111 | | |
112 | | /* |
113 | | * First, we try to find a keymgmt that comes from the same provider as |
114 | | * the decoder that passed the params. |
115 | | */ |
116 | 0 | end = sk_EVP_KEYMGMT_num(data->keymgmts); |
117 | 0 | for (i = 0; i < end; i++) { |
118 | 0 | keymgmt = sk_EVP_KEYMGMT_value(data->keymgmts, i); |
119 | 0 | keymgmt_prov = EVP_KEYMGMT_get0_provider(keymgmt); |
120 | |
|
121 | 0 | if (keymgmt_prov == decoder_prov |
122 | 0 | && evp_keymgmt_has_load(keymgmt) |
123 | 0 | && EVP_KEYMGMT_is_a(keymgmt, data->object_type)) |
124 | 0 | break; |
125 | 0 | } |
126 | 0 | if (i < end) { |
127 | | /* To allow it to be freed further down */ |
128 | 0 | if (!EVP_KEYMGMT_up_ref(keymgmt)) |
129 | 0 | return 0; |
130 | 0 | } else if ((keymgmt = EVP_KEYMGMT_fetch(data->libctx, |
131 | 0 | data->object_type, |
132 | 0 | data->propq)) != NULL) { |
133 | 0 | keymgmt_prov = EVP_KEYMGMT_get0_provider(keymgmt); |
134 | 0 | } |
135 | | |
136 | 0 | if (keymgmt != NULL) { |
137 | 0 | EVP_PKEY *pkey = NULL; |
138 | 0 | void *keydata = NULL; |
139 | | |
140 | | /* |
141 | | * If the EVP_KEYMGMT and the OSSL_DECODER are from the |
142 | | * same provider, we assume that the KEYMGMT has a key loading |
143 | | * function that can handle the provider reference we hold. |
144 | | * |
145 | | * Otherwise, we export from the decoder and import the |
146 | | * result in the keymgmt. |
147 | | */ |
148 | 0 | if (keymgmt_prov == decoder_prov) { |
149 | 0 | keydata = evp_keymgmt_load(keymgmt, object_ref, object_ref_sz); |
150 | 0 | } else { |
151 | 0 | struct evp_keymgmt_util_try_import_data_st import_data; |
152 | |
|
153 | 0 | import_data.keymgmt = keymgmt; |
154 | 0 | import_data.keydata = NULL; |
155 | 0 | import_data.selection = data->selection; |
156 | | |
157 | | /* |
158 | | * No need to check for errors here, the value of |
159 | | * |import_data.keydata| is as much an indicator. |
160 | | */ |
161 | 0 | (void)decoder->export_object(decoderctx, |
162 | 0 | object_ref, object_ref_sz, |
163 | 0 | &evp_keymgmt_util_try_import, |
164 | 0 | &import_data); |
165 | 0 | keydata = import_data.keydata; |
166 | 0 | import_data.keydata = NULL; |
167 | 0 | } |
168 | |
|
169 | 0 | if (keydata != NULL |
170 | 0 | && (pkey = evp_keymgmt_util_make_pkey(keymgmt, keydata)) == NULL) |
171 | 0 | evp_keymgmt_freedata(keymgmt, keydata); |
172 | |
|
173 | 0 | *data->object = pkey; |
174 | | |
175 | | /* |
176 | | * evp_keymgmt_util_make_pkey() increments the reference count when |
177 | | * assigning the EVP_PKEY, so we can free the keymgmt here. |
178 | | */ |
179 | 0 | EVP_KEYMGMT_free(keymgmt); |
180 | 0 | } |
181 | | /* |
182 | | * We successfully looked through, |*ctx->object| determines if we |
183 | | * actually found something. |
184 | | */ |
185 | 0 | return (*data->object != NULL); |
186 | 0 | } |
187 | | |
188 | | static void decoder_clean_pkey_construct_arg(void *construct_data) |
189 | 0 | { |
190 | 0 | struct decoder_pkey_data_st *data = construct_data; |
191 | |
|
192 | 0 | if (data != NULL) { |
193 | 0 | sk_EVP_KEYMGMT_pop_free(data->keymgmts, EVP_KEYMGMT_free); |
194 | 0 | OPENSSL_free(data->propq); |
195 | 0 | OPENSSL_free(data->object_type); |
196 | 0 | OPENSSL_free(data); |
197 | 0 | } |
198 | 0 | } |
199 | | |
200 | | struct collect_data_st { |
201 | | OSSL_LIB_CTX *libctx; |
202 | | OSSL_DECODER_CTX *ctx; |
203 | | |
204 | | const char *keytype; /* the keytype requested, if any */ |
205 | | int keytype_id; /* if keytype_resolved is set, keymgmt name_id; else 0 */ |
206 | | int sm2_id; /* if keytype_resolved is set and EC, SM2 name_id; else 0 */ |
207 | | int total; /* number of matching results */ |
208 | | char error_occurred; |
209 | | char keytype_resolved; |
210 | | |
211 | | STACK_OF(EVP_KEYMGMT) *keymgmts; |
212 | | }; |
213 | | |
214 | | static void collect_decoder_keymgmt(EVP_KEYMGMT *keymgmt, OSSL_DECODER *decoder, |
215 | | void *provctx, struct collect_data_st *data) |
216 | 0 | { |
217 | 0 | void *decoderctx = NULL; |
218 | 0 | OSSL_DECODER_INSTANCE *di = NULL; |
219 | | |
220 | | /* |
221 | | * We already checked the EVP_KEYMGMT is applicable in check_keymgmt so we |
222 | | * don't check it again here. |
223 | | */ |
224 | |
|
225 | 0 | if (keymgmt->name_id != decoder->base.id) |
226 | | /* Mismatch is not an error, continue. */ |
227 | 0 | return; |
228 | | |
229 | 0 | if ((decoderctx = decoder->newctx(provctx)) == NULL) { |
230 | 0 | data->error_occurred = 1; |
231 | 0 | return; |
232 | 0 | } |
233 | | |
234 | 0 | if ((di = ossl_decoder_instance_new(decoder, decoderctx)) == NULL) { |
235 | 0 | decoder->freectx(decoderctx); |
236 | 0 | data->error_occurred = 1; |
237 | 0 | return; |
238 | 0 | } |
239 | | |
240 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
241 | 0 | BIO_printf(trc_out, |
242 | 0 | "(ctx %p) Checking out decoder %p:\n" |
243 | 0 | " %s with %s\n", |
244 | 0 | (void *)data->ctx, (void *)decoder, |
245 | 0 | OSSL_DECODER_get0_name(decoder), |
246 | 0 | OSSL_DECODER_get0_properties(decoder)); |
247 | 0 | } OSSL_TRACE_END(DECODER); |
248 | |
|
249 | 0 | if (!ossl_decoder_ctx_add_decoder_inst(data->ctx, di)) { |
250 | 0 | ossl_decoder_instance_free(di); |
251 | 0 | data->error_occurred = 1; |
252 | 0 | return; |
253 | 0 | } |
254 | | |
255 | 0 | ++data->total; |
256 | 0 | } |
257 | | |
258 | | static void collect_decoder(OSSL_DECODER *decoder, void *arg) |
259 | 0 | { |
260 | 0 | struct collect_data_st *data = arg; |
261 | 0 | STACK_OF(EVP_KEYMGMT) *keymgmts = data->keymgmts; |
262 | 0 | int i, end_i; |
263 | 0 | EVP_KEYMGMT *keymgmt; |
264 | 0 | const OSSL_PROVIDER *prov; |
265 | 0 | void *provctx; |
266 | |
|
267 | 0 | if (data->error_occurred) |
268 | 0 | return; |
269 | | |
270 | 0 | prov = OSSL_DECODER_get0_provider(decoder); |
271 | 0 | provctx = OSSL_PROVIDER_get0_provider_ctx(prov); |
272 | | |
273 | | /* |
274 | | * Either the caller didn't give us a selection, or if they did, the decoder |
275 | | * must tell us if it supports that selection to be accepted. If the decoder |
276 | | * doesn't have |does_selection|, it's seen as taking anything. |
277 | | */ |
278 | 0 | if (decoder->does_selection != NULL |
279 | 0 | && !decoder->does_selection(provctx, data->ctx->selection)) |
280 | 0 | return; |
281 | | |
282 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
283 | 0 | BIO_printf(trc_out, |
284 | 0 | "(ctx %p) Checking out decoder %p:\n" |
285 | 0 | " %s with %s\n", |
286 | 0 | (void *)data->ctx, (void *)decoder, |
287 | 0 | OSSL_DECODER_get0_name(decoder), |
288 | 0 | OSSL_DECODER_get0_properties(decoder)); |
289 | 0 | } OSSL_TRACE_END(DECODER); |
290 | |
|
291 | 0 | end_i = sk_EVP_KEYMGMT_num(keymgmts); |
292 | 0 | for (i = 0; i < end_i; ++i) { |
293 | 0 | keymgmt = sk_EVP_KEYMGMT_value(keymgmts, i); |
294 | |
|
295 | 0 | collect_decoder_keymgmt(keymgmt, decoder, provctx, data); |
296 | 0 | if (data->error_occurred) |
297 | 0 | return; |
298 | 0 | } |
299 | 0 | } |
300 | | |
301 | | /* |
302 | | * Is this EVP_KEYMGMT applicable given the key type given in the call to |
303 | | * ossl_decoder_ctx_setup_for_pkey (if any)? |
304 | | */ |
305 | | static int check_keymgmt(EVP_KEYMGMT *keymgmt, struct collect_data_st *data) |
306 | 0 | { |
307 | | /* If no keytype was specified, everything matches. */ |
308 | 0 | if (data->keytype == NULL) |
309 | 0 | return 1; |
310 | | |
311 | 0 | if (!data->keytype_resolved) { |
312 | | /* We haven't cached the IDs from the keytype string yet. */ |
313 | 0 | OSSL_NAMEMAP *namemap = ossl_namemap_stored(data->libctx); |
314 | 0 | data->keytype_id = ossl_namemap_name2num(namemap, data->keytype); |
315 | | |
316 | | /* |
317 | | * If keytype is a value ambiguously used for both EC and SM2, |
318 | | * collect the ID for SM2 as well. |
319 | | */ |
320 | 0 | if (data->keytype_id != 0 |
321 | 0 | && (strcmp(data->keytype, "id-ecPublicKey") == 0 |
322 | 0 | || strcmp(data->keytype, "1.2.840.10045.2.1") == 0)) |
323 | 0 | data->sm2_id = ossl_namemap_name2num(namemap, "SM2"); |
324 | | |
325 | | /* |
326 | | * If keytype_id is zero the name was not found, but we still |
327 | | * set keytype_resolved to avoid trying all this again. |
328 | | */ |
329 | 0 | data->keytype_resolved = 1; |
330 | 0 | } |
331 | | |
332 | | /* Specified keytype could not be resolved, so nothing matches. */ |
333 | 0 | if (data->keytype_id == 0) |
334 | 0 | return 0; |
335 | | |
336 | | /* Does not match the keytype specified, so skip. */ |
337 | 0 | if (keymgmt->name_id != data->keytype_id |
338 | 0 | && keymgmt->name_id != data->sm2_id) |
339 | 0 | return 0; |
340 | | |
341 | 0 | return 1; |
342 | 0 | } |
343 | | |
344 | | static void collect_keymgmt(EVP_KEYMGMT *keymgmt, void *arg) |
345 | 0 | { |
346 | 0 | struct collect_data_st *data = arg; |
347 | |
|
348 | 0 | if (!check_keymgmt(keymgmt, data)) |
349 | 0 | return; |
350 | | |
351 | | /* |
352 | | * We have to ref EVP_KEYMGMT here because in the success case, |
353 | | * data->keymgmts is referenced by the constructor we register in the |
354 | | * OSSL_DECODER_CTX. The registered cleanup function |
355 | | * (decoder_clean_pkey_construct_arg) unrefs every element of the stack and |
356 | | * frees it. |
357 | | */ |
358 | 0 | if (!EVP_KEYMGMT_up_ref(keymgmt)) |
359 | 0 | return; |
360 | | |
361 | 0 | if (sk_EVP_KEYMGMT_push(data->keymgmts, keymgmt) <= 0) { |
362 | 0 | EVP_KEYMGMT_free(keymgmt); |
363 | 0 | data->error_occurred = 1; |
364 | 0 | } |
365 | 0 | } |
366 | | |
367 | | /* |
368 | | * This function does the actual binding of decoders to the OSSL_DECODER_CTX. It |
369 | | * searches for decoders matching 'keytype', which is a string like "RSA", "DH", |
370 | | * etc. If 'keytype' is NULL, decoders for all keytypes are bound. |
371 | | */ |
372 | | int ossl_decoder_ctx_setup_for_pkey(OSSL_DECODER_CTX *ctx, |
373 | | EVP_PKEY **pkey, const char *keytype, |
374 | | OSSL_LIB_CTX *libctx, |
375 | | const char *propquery) |
376 | 0 | { |
377 | 0 | int ok = 0; |
378 | 0 | struct decoder_pkey_data_st *process_data = NULL; |
379 | 0 | struct collect_data_st collect_data = { NULL }; |
380 | 0 | STACK_OF(EVP_KEYMGMT) *keymgmts = NULL; |
381 | |
|
382 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
383 | 0 | const char *input_type = ctx->start_input_type; |
384 | 0 | const char *input_structure = ctx->input_structure; |
385 | |
|
386 | 0 | BIO_printf(trc_out, |
387 | 0 | "(ctx %p) Looking for decoders producing %s%s%s%s%s%s\n", |
388 | 0 | (void *)ctx, |
389 | 0 | keytype != NULL ? keytype : "", |
390 | 0 | keytype != NULL ? " keys" : "keys of any type", |
391 | 0 | input_type != NULL ? " from " : "", |
392 | 0 | input_type != NULL ? input_type : "", |
393 | 0 | input_structure != NULL ? " with " : "", |
394 | 0 | input_structure != NULL ? input_structure : ""); |
395 | 0 | } OSSL_TRACE_END(DECODER); |
396 | | |
397 | | /* Allocate data. */ |
398 | 0 | if ((process_data = OPENSSL_zalloc(sizeof(*process_data))) == NULL) |
399 | 0 | goto err; |
400 | 0 | if ((propquery != NULL |
401 | 0 | && (process_data->propq = OPENSSL_strdup(propquery)) == NULL)) |
402 | 0 | goto err; |
403 | | |
404 | | /* Allocate our list of EVP_KEYMGMTs. */ |
405 | 0 | keymgmts = sk_EVP_KEYMGMT_new_null(); |
406 | 0 | if (keymgmts == NULL) { |
407 | 0 | ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_CRYPTO_LIB); |
408 | 0 | goto err; |
409 | 0 | } |
410 | | |
411 | 0 | process_data->object = (void **)pkey; |
412 | 0 | process_data->libctx = libctx; |
413 | 0 | process_data->selection = ctx->selection; |
414 | 0 | process_data->keymgmts = keymgmts; |
415 | | |
416 | | /* |
417 | | * Enumerate all keymgmts into a stack. |
418 | | * |
419 | | * We could nest EVP_KEYMGMT_do_all_provided inside |
420 | | * OSSL_DECODER_do_all_provided or vice versa but these functions become |
421 | | * bottlenecks if called repeatedly, which is why we collect the |
422 | | * EVP_KEYMGMTs into a stack here and call both functions only once. |
423 | | * |
424 | | * We resolve the keytype string to a name ID so we don't have to resolve it |
425 | | * multiple times, avoiding repeated calls to EVP_KEYMGMT_is_a, which is a |
426 | | * performance bottleneck. However, we do this lazily on the first call to |
427 | | * collect_keymgmt made by EVP_KEYMGMT_do_all_provided, rather than do it |
428 | | * upfront, as this ensures that the names for all loaded providers have |
429 | | * been registered by the time we try to resolve the keytype string. |
430 | | */ |
431 | 0 | collect_data.ctx = ctx; |
432 | 0 | collect_data.libctx = libctx; |
433 | 0 | collect_data.keymgmts = keymgmts; |
434 | 0 | collect_data.keytype = keytype; |
435 | 0 | EVP_KEYMGMT_do_all_provided(libctx, collect_keymgmt, &collect_data); |
436 | |
|
437 | 0 | if (collect_data.error_occurred) |
438 | 0 | goto err; |
439 | | |
440 | | /* Enumerate all matching decoders. */ |
441 | 0 | OSSL_DECODER_do_all_provided(libctx, collect_decoder, &collect_data); |
442 | |
|
443 | 0 | if (collect_data.error_occurred) |
444 | 0 | goto err; |
445 | | |
446 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
447 | 0 | BIO_printf(trc_out, |
448 | 0 | "(ctx %p) Got %d decoders producing keys\n", |
449 | 0 | (void *)ctx, collect_data.total); |
450 | 0 | } OSSL_TRACE_END(DECODER); |
451 | | |
452 | | /* |
453 | | * Finish initializing the decoder context. If one or more decoders matched |
454 | | * above then the number of decoders attached to the OSSL_DECODER_CTX will |
455 | | * be nonzero. Else nothing was found and we do nothing. |
456 | | */ |
457 | 0 | if (OSSL_DECODER_CTX_get_num_decoders(ctx) != 0) { |
458 | 0 | if (!OSSL_DECODER_CTX_set_construct(ctx, decoder_construct_pkey) |
459 | 0 | || !OSSL_DECODER_CTX_set_construct_data(ctx, process_data) |
460 | 0 | || !OSSL_DECODER_CTX_set_cleanup(ctx, |
461 | 0 | decoder_clean_pkey_construct_arg)) |
462 | 0 | goto err; |
463 | | |
464 | 0 | process_data = NULL; /* Avoid it being freed */ |
465 | 0 | } |
466 | | |
467 | 0 | ok = 1; |
468 | 0 | err: |
469 | 0 | decoder_clean_pkey_construct_arg(process_data); |
470 | 0 | return ok; |
471 | 0 | } |
472 | | |
473 | | OSSL_DECODER_CTX * |
474 | | OSSL_DECODER_CTX_new_for_pkey(EVP_PKEY **pkey, |
475 | | const char *input_type, |
476 | | const char *input_structure, |
477 | | const char *keytype, int selection, |
478 | | OSSL_LIB_CTX *libctx, const char *propquery) |
479 | 0 | { |
480 | 0 | OSSL_DECODER_CTX *ctx = NULL; |
481 | |
|
482 | 0 | if ((ctx = OSSL_DECODER_CTX_new()) == NULL) { |
483 | 0 | ERR_raise(ERR_LIB_OSSL_DECODER, ERR_R_OSSL_DECODER_LIB); |
484 | 0 | return NULL; |
485 | 0 | } |
486 | | |
487 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
488 | 0 | BIO_printf(trc_out, |
489 | 0 | "(ctx %p) Looking for %s decoders with selection %d\n", |
490 | 0 | (void *)ctx, keytype, selection); |
491 | 0 | BIO_printf(trc_out, " input type: %s, input structure: %s\n", |
492 | 0 | input_type, input_structure); |
493 | 0 | } OSSL_TRACE_END(DECODER); |
494 | |
|
495 | 0 | if (OSSL_DECODER_CTX_set_input_type(ctx, input_type) |
496 | 0 | && OSSL_DECODER_CTX_set_input_structure(ctx, input_structure) |
497 | 0 | && OSSL_DECODER_CTX_set_selection(ctx, selection) |
498 | 0 | && ossl_decoder_ctx_setup_for_pkey(ctx, pkey, keytype, |
499 | 0 | libctx, propquery) |
500 | 0 | && OSSL_DECODER_CTX_add_extra(ctx, libctx, propquery)) { |
501 | 0 | OSSL_TRACE_BEGIN(DECODER) { |
502 | 0 | BIO_printf(trc_out, "(ctx %p) Got %d decoders\n", |
503 | 0 | (void *)ctx, OSSL_DECODER_CTX_get_num_decoders(ctx)); |
504 | 0 | } OSSL_TRACE_END(DECODER); |
505 | 0 | return ctx; |
506 | 0 | } |
507 | | |
508 | 0 | OSSL_DECODER_CTX_free(ctx); |
509 | 0 | return NULL; |
510 | 0 | } |