Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/curve448/curve448.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright 2015-2016 Cryptography Research, Inc.
4
 *
5
 * Licensed under the OpenSSL license (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 *
10
 * Originally written by Mike Hamburg
11
 */
12
#include <openssl/crypto.h>
13
#include "word.h"
14
#include "field.h"
15
16
#include "point_448.h"
17
#include "ed448.h"
18
#include "curve448_local.h"
19
20
278
#define COFACTOR 4
21
22
0
#define C448_WNAF_FIXED_TABLE_BITS 5
23
0
#define C448_WNAF_VAR_TABLE_BITS 3
24
25
13.4k
#define EDWARDS_D       (-39081)
26
27
static const curve448_scalar_t precomputed_scalarmul_adjustment = {
28
    {
29
        {
30
            SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
31
            SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL)
32
        }
33
    }
34
};
35
36
0
#define TWISTED_D (EDWARDS_D - 1)
37
38
33.8k
#define WBITS C448_WORD_BITS   /* NB this may be different from ARCH_WORD_BITS */
39
40
/* Inverse. */
41
static void gf_invert(gf y, const gf x, int assert_nonzero)
42
68
{
43
68
    mask_t ret;
44
68
    gf t1, t2;
45
46
68
    gf_sqr(t1, x);              /* o^2 */
47
68
    ret = gf_isr(t2, t1);       /* +-1/sqrt(o^2) = +-1/o */
48
68
    (void)ret;
49
68
    if (assert_nonzero)
50
0
        assert(ret);
51
68
    gf_sqr(t1, t2);
52
68
    gf_mul(t2, t1, x);          /* not direct to y in case of alias. */
53
68
    gf_copy(y, t2);
54
68
}
55
56
/** identity = (0,1) */
57
const curve448_point_t curve448_point_identity =
58
    { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} };
59
60
static void point_double_internal(curve448_point_t p, const curve448_point_t q,
61
                                  int before_double)
62
646
{
63
646
    gf a, b, c, d;
64
65
646
    gf_sqr(c, q->x);
66
646
    gf_sqr(a, q->y);
67
646
    gf_add_nr(d, c, a);         /* 2+e */
68
646
    gf_add_nr(p->t, q->y, q->x); /* 2+e */
69
646
    gf_sqr(b, p->t);
70
646
    gf_subx_nr(b, b, d, 3);     /* 4+e */
71
646
    gf_sub_nr(p->t, a, c);      /* 3+e */
72
646
    gf_sqr(p->x, q->z);
73
646
    gf_add_nr(p->z, p->x, p->x); /* 2+e */
74
646
    gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
75
646
    if (GF_HEADROOM == 5)
76
0
        gf_weak_reduce(a);      /* or 1+e */
77
646
    gf_mul(p->x, a, b);
78
646
    gf_mul(p->z, p->t, a);
79
646
    gf_mul(p->y, p->t, d);
80
646
    if (!before_double)
81
646
        gf_mul(p->t, b, d);
82
646
}
83
84
void curve448_point_double(curve448_point_t p, const curve448_point_t q)
85
0
{
86
0
    point_double_internal(p, q, 0);
87
0
}
88
89
/* Operations on [p]niels */
90
static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
91
3.42k
{
92
3.42k
    gf_cond_swap(n->a, n->b, neg);
93
3.42k
    gf_cond_neg(n->c, neg);
94
3.42k
}
95
96
static void pt_to_pniels(pniels_t b, const curve448_point_t a)
97
0
{
98
0
    gf_sub(b->n->a, a->y, a->x);
99
0
    gf_add(b->n->b, a->x, a->y);
100
0
    gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
101
0
    gf_add(b->z, a->z, a->z);
102
0
}
103
104
static void pniels_to_pt(curve448_point_t e, const pniels_t d)
105
0
{
106
0
    gf eu;
107
108
0
    gf_add(eu, d->n->b, d->n->a);
109
0
    gf_sub(e->y, d->n->b, d->n->a);
110
0
    gf_mul(e->t, e->y, eu);
111
0
    gf_mul(e->x, d->z, e->y);
112
0
    gf_mul(e->y, d->z, eu);
113
0
    gf_sqr(e->z, d->z);
114
0
}
115
116
static void niels_to_pt(curve448_point_t e, const niels_t n)
117
38
{
118
38
    gf_add(e->y, n->b, n->a);
119
38
    gf_sub(e->x, n->b, n->a);
120
38
    gf_mul(e->t, e->y, e->x);
121
38
    gf_copy(e->z, ONE);
122
38
}
123
124
static void add_niels_to_pt(curve448_point_t d, const niels_t e,
125
                            int before_double)
126
3.38k
{
127
3.38k
    gf a, b, c;
128
129
3.38k
    gf_sub_nr(b, d->y, d->x);   /* 3+e */
130
3.38k
    gf_mul(a, e->a, b);
131
3.38k
    gf_add_nr(b, d->x, d->y);   /* 2+e */
132
3.38k
    gf_mul(d->y, e->b, b);
133
3.38k
    gf_mul(d->x, e->c, d->t);
134
3.38k
    gf_add_nr(c, a, d->y);      /* 2+e */
135
3.38k
    gf_sub_nr(b, d->y, a);      /* 3+e */
136
3.38k
    gf_sub_nr(d->y, d->z, d->x); /* 3+e */
137
3.38k
    gf_add_nr(a, d->x, d->z);   /* 2+e */
138
3.38k
    gf_mul(d->z, a, d->y);
139
3.38k
    gf_mul(d->x, d->y, b);
140
3.38k
    gf_mul(d->y, a, c);
141
3.38k
    if (!before_double)
142
2.73k
        gf_mul(d->t, b, c);
143
3.38k
}
144
145
static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
146
                              int before_double)
147
0
{
148
0
    gf a, b, c;
149
150
0
    gf_sub_nr(b, d->y, d->x);   /* 3+e */
151
0
    gf_mul(a, e->b, b);
152
0
    gf_add_nr(b, d->x, d->y);   /* 2+e */
153
0
    gf_mul(d->y, e->a, b);
154
0
    gf_mul(d->x, e->c, d->t);
155
0
    gf_add_nr(c, a, d->y);      /* 2+e */
156
0
    gf_sub_nr(b, d->y, a);      /* 3+e */
157
0
    gf_add_nr(d->y, d->z, d->x); /* 2+e */
158
0
    gf_sub_nr(a, d->z, d->x);   /* 3+e */
159
0
    gf_mul(d->z, a, d->y);
160
0
    gf_mul(d->x, d->y, b);
161
0
    gf_mul(d->y, a, c);
162
0
    if (!before_double)
163
0
        gf_mul(d->t, b, c);
164
0
}
165
166
static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
167
                             int before_double)
168
0
{
169
0
    gf L0;
170
171
0
    gf_mul(L0, p->z, pn->z);
172
0
    gf_copy(p->z, L0);
173
0
    add_niels_to_pt(p, pn->n, before_double);
174
0
}
175
176
static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
177
                               int before_double)
178
0
{
179
0
    gf L0;
180
181
0
    gf_mul(L0, p->z, pn->z);
182
0
    gf_copy(p->z, L0);
183
0
    sub_niels_from_pt(p, pn->n, before_double);
184
0
}
185
186
c448_bool_t curve448_point_eq(const curve448_point_t p,
187
                              const curve448_point_t q)
188
0
{
189
0
    mask_t succ;
190
0
    gf a, b;
191
192
    /* equality mod 2-torsion compares x/y */
193
0
    gf_mul(a, p->y, q->x);
194
0
    gf_mul(b, q->y, p->x);
195
0
    succ = gf_eq(a, b);
196
197
0
    return mask_to_bool(succ);
198
0
}
199
200
c448_bool_t curve448_point_valid(const curve448_point_t p)
201
0
{
202
0
    mask_t out;
203
0
    gf a, b, c;
204
205
0
    gf_mul(a, p->x, p->y);
206
0
    gf_mul(b, p->z, p->t);
207
0
    out = gf_eq(a, b);
208
0
    gf_sqr(a, p->x);
209
0
    gf_sqr(b, p->y);
210
0
    gf_sub(a, b, a);
211
0
    gf_sqr(b, p->t);
212
0
    gf_mulw(c, b, TWISTED_D);
213
0
    gf_sqr(b, p->z);
214
0
    gf_add(b, b, c);
215
0
    out &= gf_eq(a, b);
216
0
    out &= ~gf_eq(p->z, ZERO);
217
0
    return mask_to_bool(out);
218
0
}
219
220
static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
221
                                                   const niels_t * table,
222
                                                   int nelts, int idx)
223
3.42k
{
224
3.42k
    constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
225
3.42k
}
226
227
void curve448_precomputed_scalarmul(curve448_point_t out,
228
                                    const curve448_precomputed_s * table,
229
                                    const curve448_scalar_t scalar)
230
38
{
231
38
    unsigned int i, j, k;
232
38
    const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
233
38
    niels_t ni;
234
38
    curve448_scalar_t scalar1x;
235
236
38
    curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
237
38
    curve448_scalar_halve(scalar1x, scalar1x);
238
239
722
    for (i = s; i > 0; i--) {
240
684
        if (i != s)
241
646
            point_double_internal(out, out, 0);
242
243
4.10k
        for (j = 0; j < n; j++) {
244
3.42k
            int tab = 0;
245
3.42k
            mask_t invert;
246
247
20.5k
            for (k = 0; k < t; k++) {
248
17.1k
                unsigned int bit = (i - 1) + s * (k + j * t);
249
250
17.1k
                if (bit < C448_SCALAR_BITS)
251
16.9k
                    tab |=
252
16.9k
                        (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
253
17.1k
            }
254
255
3.42k
            invert = (tab >> (t - 1)) - 1;
256
3.42k
            tab ^= invert;
257
3.42k
            tab &= (1 << (t - 1)) - 1;
258
259
3.42k
            constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
260
3.42k
                                       1 << (t - 1), tab);
261
262
3.42k
            cond_neg_niels(ni, invert);
263
3.42k
            if ((i != s) || j != 0)
264
3.38k
                add_niels_to_pt(out, ni, j == n - 1 && i != 1);
265
38
            else
266
38
                niels_to_pt(out, ni);
267
3.42k
        }
268
684
    }
269
270
38
    OPENSSL_cleanse(ni, sizeof(ni));
271
38
    OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
272
38
}
273
274
void curve448_point_mul_by_ratio_and_encode_like_eddsa(
275
                                    uint8_t enc[EDDSA_448_PUBLIC_BYTES],
276
                                    const curve448_point_t p)
277
0
{
278
0
    gf x, y, z, t;
279
0
    curve448_point_t q;
280
281
    /* The point is now on the twisted curve.  Move it to untwisted. */
282
0
    curve448_point_copy(q, p);
283
284
0
    {
285
        /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
286
0
        gf u;
287
288
0
        gf_sqr(x, q->x);
289
0
        gf_sqr(t, q->y);
290
0
        gf_add(u, x, t);
291
0
        gf_add(z, q->y, q->x);
292
0
        gf_sqr(y, z);
293
0
        gf_sub(y, y, u);
294
0
        gf_sub(z, t, x);
295
0
        gf_sqr(x, q->z);
296
0
        gf_add(t, x, x);
297
0
        gf_sub(t, t, z);
298
0
        gf_mul(x, t, y);
299
0
        gf_mul(y, z, u);
300
0
        gf_mul(z, u, t);
301
0
        OPENSSL_cleanse(u, sizeof(u));
302
0
    }
303
304
    /* Affinize */
305
0
    gf_invert(z, z, 1);
306
0
    gf_mul(t, x, z);
307
0
    gf_mul(x, y, z);
308
309
    /* Encode */
310
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
311
0
    gf_serialize(enc, x, 1);
312
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
313
314
0
    OPENSSL_cleanse(x, sizeof(x));
315
0
    OPENSSL_cleanse(y, sizeof(y));
316
0
    OPENSSL_cleanse(z, sizeof(z));
317
0
    OPENSSL_cleanse(t, sizeof(t));
318
0
    curve448_point_destroy(q);
319
0
}
320
321
c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
322
                                curve448_point_t p,
323
                                const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
324
0
{
325
0
    uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
326
0
    mask_t low;
327
0
    mask_t succ;
328
329
0
    memcpy(enc2, enc, sizeof(enc2));
330
331
0
    low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
332
0
    enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
333
334
0
    succ = gf_deserialize(p->y, enc2, 1, 0);
335
0
    succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
336
337
0
    gf_sqr(p->x, p->y);
338
0
    gf_sub(p->z, ONE, p->x);    /* num = 1-y^2 */
339
0
    gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
340
0
    gf_sub(p->t, ONE, p->t);    /* denom = 1-dy^2 or 1-d + dy^2 */
341
342
0
    gf_mul(p->x, p->z, p->t);
343
0
    succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
344
345
0
    gf_mul(p->x, p->t, p->z);   /* sqrt(num / denom) */
346
0
    gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
347
0
    gf_copy(p->z, ONE);
348
349
0
    {
350
0
        gf a, b, c, d;
351
352
        /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
353
0
        gf_sqr(c, p->x);
354
0
        gf_sqr(a, p->y);
355
0
        gf_add(d, c, a);
356
0
        gf_add(p->t, p->y, p->x);
357
0
        gf_sqr(b, p->t);
358
0
        gf_sub(b, b, d);
359
0
        gf_sub(p->t, a, c);
360
0
        gf_sqr(p->x, p->z);
361
0
        gf_add(p->z, p->x, p->x);
362
0
        gf_sub(a, p->z, d);
363
0
        gf_mul(p->x, a, b);
364
0
        gf_mul(p->z, p->t, a);
365
0
        gf_mul(p->y, p->t, d);
366
0
        gf_mul(p->t, b, d);
367
0
        OPENSSL_cleanse(a, sizeof(a));
368
0
        OPENSSL_cleanse(b, sizeof(b));
369
0
        OPENSSL_cleanse(c, sizeof(c));
370
0
        OPENSSL_cleanse(d, sizeof(d));
371
0
    }
372
373
0
    OPENSSL_cleanse(enc2, sizeof(enc2));
374
0
    assert(curve448_point_valid(p) || ~succ);
375
376
0
    return c448_succeed_if(mask_to_bool(succ));
377
0
}
378
379
c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES],
380
                      const uint8_t base[X_PUBLIC_BYTES],
381
                      const uint8_t scalar[X_PRIVATE_BYTES])
382
30
{
383
30
    gf x1, x2, z2, x3, z3, t1, t2;
384
30
    int t;
385
30
    mask_t swap = 0;
386
30
    mask_t nz;
387
388
30
    (void)gf_deserialize(x1, base, 1, 0);
389
30
    gf_copy(x2, ONE);
390
30
    gf_copy(z2, ZERO);
391
30
    gf_copy(x3, x1);
392
30
    gf_copy(z3, ONE);
393
394
13.4k
    for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
395
13.4k
        uint8_t sb = scalar[t / 8];
396
13.4k
        mask_t k_t;
397
398
        /* Scalar conditioning */
399
13.4k
        if (t / 8 == 0)
400
240
            sb &= -(uint8_t)COFACTOR;
401
13.2k
        else if (t == X_PRIVATE_BITS - 1)
402
30
            sb = -1;
403
404
13.4k
        k_t = (sb >> (t % 8)) & 1;
405
13.4k
        k_t = 0 - k_t;             /* set to all 0s or all 1s */
406
407
13.4k
        swap ^= k_t;
408
13.4k
        gf_cond_swap(x2, x3, swap);
409
13.4k
        gf_cond_swap(z2, z3, swap);
410
13.4k
        swap = k_t;
411
412
        /*
413
         * The "_nr" below skips coefficient reduction. In the following
414
         * comments, "2+e" is saying that the coefficients are at most 2+epsilon
415
         * times the reduction limit.
416
         */
417
13.4k
        gf_add_nr(t1, x2, z2);  /* A = x2 + z2 */ /* 2+e */
418
13.4k
        gf_sub_nr(t2, x2, z2);  /* B = x2 - z2 */ /* 3+e */
419
13.4k
        gf_sub_nr(z2, x3, z3);  /* D = x3 - z3 */ /* 3+e */
420
13.4k
        gf_mul(x2, t1, z2);     /* DA */
421
13.4k
        gf_add_nr(z2, z3, x3);  /* C = x3 + z3 */ /* 2+e */
422
13.4k
        gf_mul(x3, t2, z2);     /* CB */
423
13.4k
        gf_sub_nr(z3, x2, x3);  /* DA-CB */ /* 3+e */
424
13.4k
        gf_sqr(z2, z3);         /* (DA-CB)^2 */
425
13.4k
        gf_mul(z3, x1, z2);     /* z3 = x1(DA-CB)^2 */
426
13.4k
        gf_add_nr(z2, x2, x3);  /* (DA+CB) */ /* 2+e */
427
13.4k
        gf_sqr(x3, z2);         /* x3 = (DA+CB)^2 */
428
429
13.4k
        gf_sqr(z2, t1);         /* AA = A^2 */
430
13.4k
        gf_sqr(t1, t2);         /* BB = B^2 */
431
13.4k
        gf_mul(x2, z2, t1);     /* x2 = AA*BB */
432
13.4k
        gf_sub_nr(t2, z2, t1);  /* E = AA-BB */ /* 3+e */
433
434
13.4k
        gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
435
13.4k
        gf_add_nr(t1, t1, z2);  /* AA + a24*E */ /* 2+e */
436
13.4k
        gf_mul(z2, t2, t1);     /* z2 = E(AA+a24*E) */
437
13.4k
    }
438
439
    /* Finish */
440
30
    gf_cond_swap(x2, x3, swap);
441
30
    gf_cond_swap(z2, z3, swap);
442
30
    gf_invert(z2, z2, 0);
443
30
    gf_mul(x1, x2, z2);
444
30
    gf_serialize(out, x1, 1);
445
30
    nz = ~gf_eq(x1, ZERO);
446
447
30
    OPENSSL_cleanse(x1, sizeof(x1));
448
30
    OPENSSL_cleanse(x2, sizeof(x2));
449
30
    OPENSSL_cleanse(z2, sizeof(z2));
450
30
    OPENSSL_cleanse(x3, sizeof(x3));
451
30
    OPENSSL_cleanse(z3, sizeof(z3));
452
30
    OPENSSL_cleanse(t1, sizeof(t1));
453
30
    OPENSSL_cleanse(t2, sizeof(t2));
454
455
30
    return c448_succeed_if(mask_to_bool(nz));
456
30
}
457
458
void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
459
                                                      out[X_PUBLIC_BYTES],
460
                                                      const curve448_point_t p)
461
38
{
462
38
    curve448_point_t q;
463
464
38
    curve448_point_copy(q, p);
465
38
    gf_invert(q->t, q->x, 0);   /* 1/x */
466
38
    gf_mul(q->z, q->t, q->y);   /* y/x */
467
38
    gf_sqr(q->y, q->z);         /* (y/x)^2 */
468
38
    gf_serialize(out, q->y, 1);
469
38
    curve448_point_destroy(q);
470
38
}
471
472
void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
473
                            const uint8_t scalar[X_PRIVATE_BYTES])
474
38
{
475
    /* Scalar conditioning */
476
38
    uint8_t scalar2[X_PRIVATE_BYTES];
477
38
    curve448_scalar_t the_scalar;
478
38
    curve448_point_t p;
479
38
    unsigned int i;
480
481
38
    memcpy(scalar2, scalar, sizeof(scalar2));
482
38
    scalar2[0] &= -(uint8_t)COFACTOR;
483
484
38
    scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
485
38
    scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
486
487
38
    curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
488
489
    /* Compensate for the encoding ratio */
490
76
    for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
491
38
        curve448_scalar_halve(the_scalar, the_scalar);
492
493
38
    curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar);
494
38
    curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
495
38
    curve448_point_destroy(p);
496
38
}
497
498
/* Control for variable-time scalar multiply algorithms. */
499
struct smvt_control {
500
    int power, addend;
501
};
502
503
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
504
0
# define NUMTRAILINGZEROS __builtin_ctz
505
#else
506
# define NUMTRAILINGZEROS numtrailingzeros
507
static uint32_t numtrailingzeros(uint32_t i)
508
{
509
    uint32_t tmp;
510
    uint32_t num = 31;
511
512
    if (i == 0)
513
        return 32;
514
515
    tmp = i << 16;
516
    if (tmp != 0) {
517
        i = tmp;
518
        num -= 16;
519
    }
520
    tmp = i << 8;
521
    if (tmp != 0) {
522
        i = tmp;
523
        num -= 8;
524
    }
525
    tmp = i << 4;
526
    if (tmp != 0) {
527
        i = tmp;
528
        num -= 4;
529
    }
530
    tmp = i << 2;
531
    if (tmp != 0) {
532
        i = tmp;
533
        num -= 2;
534
    }
535
    tmp = i << 1;
536
    if (tmp != 0)
537
        num--;
538
539
    return num;
540
}
541
#endif
542
543
static int recode_wnaf(struct smvt_control *control,
544
                       /* [nbits/(table_bits + 1) + 3] */
545
                       const curve448_scalar_t scalar,
546
                       unsigned int table_bits)
547
0
{
548
0
    unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
549
0
    int position = table_size - 1; /* at the end */
550
0
    uint64_t current = scalar->limb[0] & 0xFFFF;
551
0
    uint32_t mask = (1 << (table_bits + 1)) - 1;
552
0
    unsigned int w;
553
0
    const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
554
0
    unsigned int n, i;
555
556
    /* place the end marker */
557
0
    control[position].power = -1;
558
0
    control[position].addend = 0;
559
0
    position--;
560
561
    /*
562
     * PERF: Could negate scalar if it's large.  But then would need more cases
563
     * in the actual code that uses it, all for an expected reduction of like
564
     * 1/5 op. Probably not worth it.
565
     */
566
567
0
    for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
568
0
        if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
569
            /* Refill the 16 high bits of current */
570
0
            current += (uint32_t)((scalar->limb[w / B_OVER_16]
571
0
                       >> (16 * (w % B_OVER_16))) << 16);
572
0
        }
573
574
0
        while (current & 0xFFFF) {
575
0
            uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
576
0
            uint32_t odd = (uint32_t)current >> pos;
577
0
            int32_t delta = odd & mask;
578
579
0
            assert(position >= 0);
580
0
            assert(pos < 32);       /* can't fail since current & 0xFFFF != 0 */
581
0
            if (odd & (1 << (table_bits + 1)))
582
0
                delta -= (1 << (table_bits + 1));
583
0
            current -= delta * (1 << pos);
584
0
            control[position].power = pos + 16 * (w - 1);
585
0
            control[position].addend = delta;
586
0
            position--;
587
0
        }
588
0
        current >>= 16;
589
0
    }
590
0
    assert(current == 0);
591
592
0
    position++;
593
0
    n = table_size - position;
594
0
    for (i = 0; i < n; i++)
595
0
        control[i] = control[i + position];
596
597
0
    return n - 1;
598
0
}
599
600
static void prepare_wnaf_table(pniels_t * output,
601
                               const curve448_point_t working,
602
                               unsigned int tbits)
603
0
{
604
0
    curve448_point_t tmp;
605
0
    int i;
606
0
    pniels_t twop;
607
608
0
    pt_to_pniels(output[0], working);
609
610
0
    if (tbits == 0)
611
0
        return;
612
613
0
    curve448_point_double(tmp, working);
614
0
    pt_to_pniels(twop, tmp);
615
616
0
    add_pniels_to_pt(tmp, output[0], 0);
617
0
    pt_to_pniels(output[1], tmp);
618
619
0
    for (i = 2; i < 1 << tbits; i++) {
620
0
        add_pniels_to_pt(tmp, twop, 0);
621
0
        pt_to_pniels(output[i], tmp);
622
0
    }
623
624
0
    curve448_point_destroy(tmp);
625
0
    OPENSSL_cleanse(twop, sizeof(twop));
626
0
}
627
628
void curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
629
                                               const curve448_scalar_t scalar1,
630
                                               const curve448_point_t base2,
631
                                               const curve448_scalar_t scalar2)
632
0
{
633
0
    const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
634
0
    const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
635
0
    struct smvt_control control_var[C448_SCALAR_BITS /
636
0
                                    (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
637
0
    struct smvt_control control_pre[C448_SCALAR_BITS /
638
0
                                    (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
639
0
    int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
640
0
    int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
641
0
    pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
642
0
    int contp = 0, contv = 0, i;
643
644
0
    prepare_wnaf_table(precmp_var, base2, table_bits_var);
645
0
    i = control_var[0].power;
646
647
0
    if (i < 0) {
648
0
        curve448_point_copy(combo, curve448_point_identity);
649
0
        return;
650
0
    }
651
0
    if (i > control_pre[0].power) {
652
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
653
0
        contv++;
654
0
    } else if (i == control_pre[0].power && i >= 0) {
655
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
656
0
        add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1],
657
0
                        i);
658
0
        contv++;
659
0
        contp++;
660
0
    } else {
661
0
        i = control_pre[0].power;
662
0
        niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]);
663
0
        contp++;
664
0
    }
665
666
0
    for (i--; i >= 0; i--) {
667
0
        int cv = (i == control_var[contv].power);
668
0
        int cp = (i == control_pre[contp].power);
669
670
0
        point_double_internal(combo, combo, i && !(cv || cp));
671
672
0
        if (cv) {
673
0
            assert(control_var[contv].addend);
674
675
0
            if (control_var[contv].addend > 0)
676
0
                add_pniels_to_pt(combo,
677
0
                                 precmp_var[control_var[contv].addend >> 1],
678
0
                                 i && !cp);
679
0
            else
680
0
                sub_pniels_from_pt(combo,
681
0
                                   precmp_var[(-control_var[contv].addend)
682
0
                                              >> 1], i && !cp);
683
0
            contv++;
684
0
        }
685
686
0
        if (cp) {
687
0
            assert(control_pre[contp].addend);
688
689
0
            if (control_pre[contp].addend > 0)
690
0
                add_niels_to_pt(combo,
691
0
                                curve448_wnaf_base[control_pre[contp].addend
692
0
                                                   >> 1], i);
693
0
            else
694
0
                sub_niels_from_pt(combo,
695
0
                                  curve448_wnaf_base[(-control_pre
696
0
                                                      [contp].addend) >> 1], i);
697
0
            contp++;
698
0
        }
699
0
    }
700
701
    /* This function is non-secret, but whatever this is cheap. */
702
0
    OPENSSL_cleanse(control_var, sizeof(control_var));
703
0
    OPENSSL_cleanse(control_pre, sizeof(control_pre));
704
0
    OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
705
706
0
    assert(contv == ncb_var);
707
0
    (void)ncb_var;
708
0
    assert(contp == ncb_pre);
709
0
    (void)ncb_pre;
710
0
}
711
712
void curve448_point_destroy(curve448_point_t point)
713
76
{
714
76
    OPENSSL_cleanse(point, sizeof(curve448_point_t));
715
76
}
716
717
int X448(uint8_t out_shared_key[56], const uint8_t private_key[56],
718
         const uint8_t peer_public_value[56])
719
30
{
720
30
    return x448_int(out_shared_key, peer_public_value, private_key)
721
30
           == C448_SUCCESS;
722
30
}
723
724
void X448_public_from_private(uint8_t out_public_value[56],
725
                              const uint8_t private_key[56])
726
38
{
727
38
    x448_derive_public_key(out_public_value, private_key);
728
38
}