Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
13.6M
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
912
{
144
912
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
912
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
912
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
912
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
912
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
912
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
912
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
912
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
912
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
912
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
1.37k
{
161
1.37k
    memset(out, 0, 66);
162
1.37k
    (*((limb *) & out[0])) = in[0];
163
1.37k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
1.37k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
1.37k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
1.37k
    (*((limb_aX *) & out[29])) = in[4];
167
1.37k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
1.37k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
1.37k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
1.37k
    (*((limb_aX *) & out[58])) = in[8];
171
1.37k
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
912
{
176
912
    felem_bytearray b_out;
177
912
    int num_bytes;
178
179
912
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
912
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
912
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
912
    bin66_to_felem(out, b_out);
189
912
    return 1;
190
912
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
1.37k
{
195
1.37k
    felem_bytearray b_out;
196
1.37k
    felem_to_bin66(b_out, in);
197
1.37k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
1.37k
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
544k
{
220
544k
    out[0] = in[0];
221
544k
    out[1] = in[1];
222
544k
    out[2] = in[2];
223
544k
    out[3] = in[3];
224
544k
    out[4] = in[4];
225
544k
    out[5] = in[5];
226
544k
    out[6] = in[6];
227
544k
    out[7] = in[7];
228
544k
    out[8] = in[8];
229
544k
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
203k
{
234
203k
    out[0] += in[0];
235
203k
    out[1] += in[1];
236
203k
    out[2] += in[2];
237
203k
    out[3] += in[3];
238
203k
    out[4] += in[4];
239
203k
    out[5] += in[5];
240
203k
    out[6] += in[6];
241
203k
    out[7] += in[7];
242
203k
    out[8] += in[8];
243
203k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
1.52M
{
248
1.52M
    out[0] = in[0] * scalar;
249
1.52M
    out[1] = in[1] * scalar;
250
1.52M
    out[2] = in[2] * scalar;
251
1.52M
    out[3] = in[3] * scalar;
252
1.52M
    out[4] = in[4] * scalar;
253
1.52M
    out[5] = in[5] * scalar;
254
1.52M
    out[6] = in[6] * scalar;
255
1.52M
    out[7] = in[7] * scalar;
256
1.52M
    out[8] = in[8] * scalar;
257
1.52M
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
273k
{
262
273k
    out[0] *= scalar;
263
273k
    out[1] *= scalar;
264
273k
    out[2] *= scalar;
265
273k
    out[3] *= scalar;
266
273k
    out[4] *= scalar;
267
273k
    out[5] *= scalar;
268
273k
    out[6] *= scalar;
269
273k
    out[7] *= scalar;
270
273k
    out[8] *= scalar;
271
273k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
91.1k
{
276
91.1k
    out[0] *= scalar;
277
91.1k
    out[1] *= scalar;
278
91.1k
    out[2] *= scalar;
279
91.1k
    out[3] *= scalar;
280
91.1k
    out[4] *= scalar;
281
91.1k
    out[5] *= scalar;
282
91.1k
    out[6] *= scalar;
283
91.1k
    out[7] *= scalar;
284
91.1k
    out[8] *= scalar;
285
91.1k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
9.55k
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
9.55k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
9.55k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
9.55k
    out[0] = two62m3 - in[0];
301
9.55k
    out[1] = two62m2 - in[1];
302
9.55k
    out[2] = two62m2 - in[2];
303
9.55k
    out[3] = two62m2 - in[3];
304
9.55k
    out[4] = two62m2 - in[4];
305
9.55k
    out[5] = two62m2 - in[5];
306
9.55k
    out[6] = two62m2 - in[6];
307
9.55k
    out[7] = two62m2 - in[7];
308
9.55k
    out[8] = two62m2 - in[8];
309
9.55k
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
155k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
155k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
155k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
155k
    out[0] += two62m3 - in[0];
327
155k
    out[1] += two62m2 - in[1];
328
155k
    out[2] += two62m2 - in[2];
329
155k
    out[3] += two62m2 - in[3];
330
155k
    out[4] += two62m2 - in[4];
331
155k
    out[5] += two62m2 - in[5];
332
155k
    out[6] += two62m2 - in[6];
333
155k
    out[7] += two62m2 - in[7];
334
155k
    out[8] += two62m2 - in[8];
335
155k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
255k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
255k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
255k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
255k
    out[0] += two63m6 - in[0];
358
255k
    out[1] += two63m5 - in[1];
359
255k
    out[2] += two63m5 - in[2];
360
255k
    out[3] += two63m5 - in[3];
361
255k
    out[4] += two63m5 - in[4];
362
255k
    out[5] += two63m5 - in[5];
363
255k
    out[6] += two63m5 - in[6];
364
255k
    out[7] += two63m5 - in[7];
365
255k
    out[8] += two63m5 - in[8];
366
255k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
91.1k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
91.1k
    static const uint128_t two127m70 =
381
91.1k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
91.1k
    static const uint128_t two127m69 =
383
91.1k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
91.1k
    out[0] += (two127m70 - in[0]);
386
91.1k
    out[1] += (two127m69 - in[1]);
387
91.1k
    out[2] += (two127m69 - in[2]);
388
91.1k
    out[3] += (two127m69 - in[3]);
389
91.1k
    out[4] += (two127m69 - in[4]);
390
91.1k
    out[5] += (two127m69 - in[5]);
391
91.1k
    out[6] += (two127m69 - in[6]);
392
91.1k
    out[7] += (two127m69 - in[7]);
393
91.1k
    out[8] += (two127m69 - in[8]);
394
91.1k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
534k
{
405
534k
    felem inx2, inx4;
406
534k
    felem_scalar(inx2, in, 2);
407
534k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
534k
    out[0] = ((uint128_t) in[0]) * in[0];
421
534k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
534k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
534k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
534k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
534k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
534k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
534k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
534k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
534k
             ((uint128_t) in[1]) * inx2[5] +
430
534k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
534k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
534k
             ((uint128_t) in[1]) * inx2[6] +
433
534k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
534k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
534k
             ((uint128_t) in[1]) * inx2[7] +
436
534k
             ((uint128_t) in[2]) * inx2[6] +
437
534k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
534k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
534k
              ((uint128_t) in[2]) * inx4[7] +
451
534k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
534k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
534k
              ((uint128_t) in[3]) * inx4[7] +
456
534k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
534k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
534k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
534k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
534k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
534k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
534k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
534k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
534k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
534k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
440k
{
489
440k
    felem in2x2;
490
440k
    felem_scalar(in2x2, in2, 2);
491
492
440k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
440k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
440k
             ((uint128_t) in1[1]) * in2[0];
496
497
440k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
440k
             ((uint128_t) in1[1]) * in2[1] +
499
440k
             ((uint128_t) in1[2]) * in2[0];
500
501
440k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
440k
             ((uint128_t) in1[1]) * in2[2] +
503
440k
             ((uint128_t) in1[2]) * in2[1] +
504
440k
             ((uint128_t) in1[3]) * in2[0];
505
506
440k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
440k
             ((uint128_t) in1[1]) * in2[3] +
508
440k
             ((uint128_t) in1[2]) * in2[2] +
509
440k
             ((uint128_t) in1[3]) * in2[1] +
510
440k
             ((uint128_t) in1[4]) * in2[0];
511
512
440k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
440k
             ((uint128_t) in1[1]) * in2[4] +
514
440k
             ((uint128_t) in1[2]) * in2[3] +
515
440k
             ((uint128_t) in1[3]) * in2[2] +
516
440k
             ((uint128_t) in1[4]) * in2[1] +
517
440k
             ((uint128_t) in1[5]) * in2[0];
518
519
440k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
440k
             ((uint128_t) in1[1]) * in2[5] +
521
440k
             ((uint128_t) in1[2]) * in2[4] +
522
440k
             ((uint128_t) in1[3]) * in2[3] +
523
440k
             ((uint128_t) in1[4]) * in2[2] +
524
440k
             ((uint128_t) in1[5]) * in2[1] +
525
440k
             ((uint128_t) in1[6]) * in2[0];
526
527
440k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
440k
             ((uint128_t) in1[1]) * in2[6] +
529
440k
             ((uint128_t) in1[2]) * in2[5] +
530
440k
             ((uint128_t) in1[3]) * in2[4] +
531
440k
             ((uint128_t) in1[4]) * in2[3] +
532
440k
             ((uint128_t) in1[5]) * in2[2] +
533
440k
             ((uint128_t) in1[6]) * in2[1] +
534
440k
             ((uint128_t) in1[7]) * in2[0];
535
536
440k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
440k
             ((uint128_t) in1[1]) * in2[7] +
538
440k
             ((uint128_t) in1[2]) * in2[6] +
539
440k
             ((uint128_t) in1[3]) * in2[5] +
540
440k
             ((uint128_t) in1[4]) * in2[4] +
541
440k
             ((uint128_t) in1[5]) * in2[3] +
542
440k
             ((uint128_t) in1[6]) * in2[2] +
543
440k
             ((uint128_t) in1[7]) * in2[1] +
544
440k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
440k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
440k
              ((uint128_t) in1[2]) * in2x2[7] +
550
440k
              ((uint128_t) in1[3]) * in2x2[6] +
551
440k
              ((uint128_t) in1[4]) * in2x2[5] +
552
440k
              ((uint128_t) in1[5]) * in2x2[4] +
553
440k
              ((uint128_t) in1[6]) * in2x2[3] +
554
440k
              ((uint128_t) in1[7]) * in2x2[2] +
555
440k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
440k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
440k
              ((uint128_t) in1[3]) * in2x2[7] +
559
440k
              ((uint128_t) in1[4]) * in2x2[6] +
560
440k
              ((uint128_t) in1[5]) * in2x2[5] +
561
440k
              ((uint128_t) in1[6]) * in2x2[4] +
562
440k
              ((uint128_t) in1[7]) * in2x2[3] +
563
440k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
440k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
440k
              ((uint128_t) in1[4]) * in2x2[7] +
567
440k
              ((uint128_t) in1[5]) * in2x2[6] +
568
440k
              ((uint128_t) in1[6]) * in2x2[5] +
569
440k
              ((uint128_t) in1[7]) * in2x2[4] +
570
440k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
440k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
440k
              ((uint128_t) in1[5]) * in2x2[7] +
574
440k
              ((uint128_t) in1[6]) * in2x2[6] +
575
440k
              ((uint128_t) in1[7]) * in2x2[5] +
576
440k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
440k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
440k
              ((uint128_t) in1[6]) * in2x2[7] +
580
440k
              ((uint128_t) in1[7]) * in2x2[6] +
581
440k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
440k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
440k
              ((uint128_t) in1[7]) * in2x2[7] +
585
440k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
440k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
440k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
440k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
440k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
883k
{
604
883k
    u64 overflow1, overflow2;
605
606
883k
    out[0] = ((limb) in[0]) & bottom58bits;
607
883k
    out[1] = ((limb) in[1]) & bottom58bits;
608
883k
    out[2] = ((limb) in[2]) & bottom58bits;
609
883k
    out[3] = ((limb) in[3]) & bottom58bits;
610
883k
    out[4] = ((limb) in[4]) & bottom58bits;
611
883k
    out[5] = ((limb) in[5]) & bottom58bits;
612
883k
    out[6] = ((limb) in[6]) & bottom58bits;
613
883k
    out[7] = ((limb) in[7]) & bottom58bits;
614
883k
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
883k
    out[1] += ((limb) in[0]) >> 58;
619
883k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
883k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
883k
    out[2] += ((limb) in[1]) >> 58;
627
883k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
883k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
883k
    out[3] += ((limb) in[2]) >> 58;
631
883k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
883k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
883k
    out[4] += ((limb) in[3]) >> 58;
635
883k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
883k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
883k
    out[5] += ((limb) in[4]) >> 58;
639
883k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
883k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
883k
    out[6] += ((limb) in[5]) >> 58;
643
883k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
883k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
883k
    out[7] += ((limb) in[6]) >> 58;
647
883k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
883k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
883k
    out[8] += ((limb) in[7]) >> 58;
651
883k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
883k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
883k
    overflow1 += ((limb) in[8]) >> 58;
659
883k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
883k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
883k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
883k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
883k
    out[0] += overflow1;        /* out[0] < 2^60 */
666
883k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
883k
    out[1] += out[0] >> 58;
669
883k
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
883k
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
213
{
701
213
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
213
    largefelem tmp;
703
213
    unsigned i;
704
705
213
    felem_square(tmp, in);
706
213
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
213
    felem_mul(tmp, in, ftmp);
708
213
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
213
    felem_assign(ftmp2, ftmp);
710
213
    felem_square(tmp, ftmp);
711
213
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
213
    felem_mul(tmp, in, ftmp);
713
213
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
213
    felem_square(tmp, ftmp);
715
213
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
213
    felem_square(tmp, ftmp2);
718
213
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
213
    felem_square(tmp, ftmp3);
720
213
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
213
    felem_mul(tmp, ftmp3, ftmp2);
722
213
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
213
    felem_assign(ftmp2, ftmp3);
725
213
    felem_square(tmp, ftmp3);
726
213
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
213
    felem_square(tmp, ftmp3);
728
213
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
213
    felem_square(tmp, ftmp3);
730
213
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
213
    felem_square(tmp, ftmp3);
732
213
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
213
    felem_assign(ftmp4, ftmp3);
734
213
    felem_mul(tmp, ftmp3, ftmp);
735
213
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
213
    felem_square(tmp, ftmp4);
737
213
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
213
    felem_mul(tmp, ftmp3, ftmp2);
739
213
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
213
    felem_assign(ftmp2, ftmp3);
741
742
1.91k
    for (i = 0; i < 8; i++) {
743
1.70k
        felem_square(tmp, ftmp3);
744
1.70k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
1.70k
    }
746
213
    felem_mul(tmp, ftmp3, ftmp2);
747
213
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
213
    felem_assign(ftmp2, ftmp3);
749
750
3.62k
    for (i = 0; i < 16; i++) {
751
3.40k
        felem_square(tmp, ftmp3);
752
3.40k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
3.40k
    }
754
213
    felem_mul(tmp, ftmp3, ftmp2);
755
213
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
213
    felem_assign(ftmp2, ftmp3);
757
758
7.02k
    for (i = 0; i < 32; i++) {
759
6.81k
        felem_square(tmp, ftmp3);
760
6.81k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
6.81k
    }
762
213
    felem_mul(tmp, ftmp3, ftmp2);
763
213
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
213
    felem_assign(ftmp2, ftmp3);
765
766
13.8k
    for (i = 0; i < 64; i++) {
767
13.6k
        felem_square(tmp, ftmp3);
768
13.6k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
13.6k
    }
770
213
    felem_mul(tmp, ftmp3, ftmp2);
771
213
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
213
    felem_assign(ftmp2, ftmp3);
773
774
27.4k
    for (i = 0; i < 128; i++) {
775
27.2k
        felem_square(tmp, ftmp3);
776
27.2k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
27.2k
    }
778
213
    felem_mul(tmp, ftmp3, ftmp2);
779
213
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
213
    felem_assign(ftmp2, ftmp3);
781
782
54.7k
    for (i = 0; i < 256; i++) {
783
54.5k
        felem_square(tmp, ftmp3);
784
54.5k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
54.5k
    }
786
213
    felem_mul(tmp, ftmp3, ftmp2);
787
213
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
2.13k
    for (i = 0; i < 9; i++) {
790
1.91k
        felem_square(tmp, ftmp3);
791
1.91k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
1.91k
    }
793
213
    felem_mul(tmp, ftmp3, ftmp4);
794
213
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
213
    felem_mul(tmp, ftmp3, in);
796
213
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
213
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
106k
{
814
106k
    felem ftmp;
815
106k
    limb is_zero, is_p;
816
106k
    felem_assign(ftmp, in);
817
818
106k
    ftmp[0] += ftmp[8] >> 57;
819
106k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
106k
    ftmp[1] += ftmp[0] >> 58;
822
106k
    ftmp[0] &= bottom58bits;
823
106k
    ftmp[2] += ftmp[1] >> 58;
824
106k
    ftmp[1] &= bottom58bits;
825
106k
    ftmp[3] += ftmp[2] >> 58;
826
106k
    ftmp[2] &= bottom58bits;
827
106k
    ftmp[4] += ftmp[3] >> 58;
828
106k
    ftmp[3] &= bottom58bits;
829
106k
    ftmp[5] += ftmp[4] >> 58;
830
106k
    ftmp[4] &= bottom58bits;
831
106k
    ftmp[6] += ftmp[5] >> 58;
832
106k
    ftmp[5] &= bottom58bits;
833
106k
    ftmp[7] += ftmp[6] >> 58;
834
106k
    ftmp[6] &= bottom58bits;
835
106k
    ftmp[8] += ftmp[7] >> 58;
836
106k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
106k
    is_zero = 0;
846
106k
    is_zero |= ftmp[0];
847
106k
    is_zero |= ftmp[1];
848
106k
    is_zero |= ftmp[2];
849
106k
    is_zero |= ftmp[3];
850
106k
    is_zero |= ftmp[4];
851
106k
    is_zero |= ftmp[5];
852
106k
    is_zero |= ftmp[6];
853
106k
    is_zero |= ftmp[7];
854
106k
    is_zero |= ftmp[8];
855
856
106k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
106k
    is_zero = 0 - (is_zero >> 63);
862
863
106k
    is_p = ftmp[0] ^ kPrime[0];
864
106k
    is_p |= ftmp[1] ^ kPrime[1];
865
106k
    is_p |= ftmp[2] ^ kPrime[2];
866
106k
    is_p |= ftmp[3] ^ kPrime[3];
867
106k
    is_p |= ftmp[4] ^ kPrime[4];
868
106k
    is_p |= ftmp[5] ^ kPrime[5];
869
106k
    is_p |= ftmp[6] ^ kPrime[6];
870
106k
    is_p |= ftmp[7] ^ kPrime[7];
871
106k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
106k
    is_p--;
874
106k
    is_p = 0 - (is_p >> 63);
875
876
106k
    is_zero |= is_p;
877
106k
    return is_zero;
878
106k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
1.08k
{
892
1.08k
    limb is_p, is_greater, sign;
893
1.08k
    static const limb two58 = ((limb) 1) << 58;
894
895
1.08k
    felem_assign(out, in);
896
897
1.08k
    out[0] += out[8] >> 57;
898
1.08k
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
1.08k
    out[1] += out[0] >> 58;
901
1.08k
    out[0] &= bottom58bits;
902
1.08k
    out[2] += out[1] >> 58;
903
1.08k
    out[1] &= bottom58bits;
904
1.08k
    out[3] += out[2] >> 58;
905
1.08k
    out[2] &= bottom58bits;
906
1.08k
    out[4] += out[3] >> 58;
907
1.08k
    out[3] &= bottom58bits;
908
1.08k
    out[5] += out[4] >> 58;
909
1.08k
    out[4] &= bottom58bits;
910
1.08k
    out[6] += out[5] >> 58;
911
1.08k
    out[5] &= bottom58bits;
912
1.08k
    out[7] += out[6] >> 58;
913
1.08k
    out[6] &= bottom58bits;
914
1.08k
    out[8] += out[7] >> 58;
915
1.08k
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
1.08k
    is_p = out[0] ^ kPrime[0];
929
1.08k
    is_p |= out[1] ^ kPrime[1];
930
1.08k
    is_p |= out[2] ^ kPrime[2];
931
1.08k
    is_p |= out[3] ^ kPrime[3];
932
1.08k
    is_p |= out[4] ^ kPrime[4];
933
1.08k
    is_p |= out[5] ^ kPrime[5];
934
1.08k
    is_p |= out[6] ^ kPrime[6];
935
1.08k
    is_p |= out[7] ^ kPrime[7];
936
1.08k
    is_p |= out[8] ^ kPrime[8];
937
938
1.08k
    is_p--;
939
1.08k
    is_p &= is_p << 32;
940
1.08k
    is_p &= is_p << 16;
941
1.08k
    is_p &= is_p << 8;
942
1.08k
    is_p &= is_p << 4;
943
1.08k
    is_p &= is_p << 2;
944
1.08k
    is_p &= is_p << 1;
945
1.08k
    is_p = 0 - (is_p >> 63);
946
1.08k
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
1.08k
    out[0] &= is_p;
951
1.08k
    out[1] &= is_p;
952
1.08k
    out[2] &= is_p;
953
1.08k
    out[3] &= is_p;
954
1.08k
    out[4] &= is_p;
955
1.08k
    out[5] &= is_p;
956
1.08k
    out[6] &= is_p;
957
1.08k
    out[7] &= is_p;
958
1.08k
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
1.08k
    is_greater = out[8] >> 57;
965
1.08k
    is_greater |= is_greater << 32;
966
1.08k
    is_greater |= is_greater << 16;
967
1.08k
    is_greater |= is_greater << 8;
968
1.08k
    is_greater |= is_greater << 4;
969
1.08k
    is_greater |= is_greater << 2;
970
1.08k
    is_greater |= is_greater << 1;
971
1.08k
    is_greater = 0 - (is_greater >> 63);
972
973
1.08k
    out[0] -= kPrime[0] & is_greater;
974
1.08k
    out[1] -= kPrime[1] & is_greater;
975
1.08k
    out[2] -= kPrime[2] & is_greater;
976
1.08k
    out[3] -= kPrime[3] & is_greater;
977
1.08k
    out[4] -= kPrime[4] & is_greater;
978
1.08k
    out[5] -= kPrime[5] & is_greater;
979
1.08k
    out[6] -= kPrime[6] & is_greater;
980
1.08k
    out[7] -= kPrime[7] & is_greater;
981
1.08k
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
1.08k
    sign = -(out[0] >> 63);
985
1.08k
    out[0] += (two58 & sign);
986
1.08k
    out[1] -= (1 & sign);
987
1.08k
    sign = -(out[1] >> 63);
988
1.08k
    out[1] += (two58 & sign);
989
1.08k
    out[2] -= (1 & sign);
990
1.08k
    sign = -(out[2] >> 63);
991
1.08k
    out[2] += (two58 & sign);
992
1.08k
    out[3] -= (1 & sign);
993
1.08k
    sign = -(out[3] >> 63);
994
1.08k
    out[3] += (two58 & sign);
995
1.08k
    out[4] -= (1 & sign);
996
1.08k
    sign = -(out[4] >> 63);
997
1.08k
    out[4] += (two58 & sign);
998
1.08k
    out[5] -= (1 & sign);
999
1.08k
    sign = -(out[0] >> 63);
1000
1.08k
    out[5] += (two58 & sign);
1001
1.08k
    out[6] -= (1 & sign);
1002
1.08k
    sign = -(out[6] >> 63);
1003
1.08k
    out[6] += (two58 & sign);
1004
1.08k
    out[7] -= (1 & sign);
1005
1.08k
    sign = -(out[7] >> 63);
1006
1.08k
    out[7] += (two58 & sign);
1007
1.08k
    out[8] -= (1 & sign);
1008
1.08k
    sign = -(out[5] >> 63);
1009
1.08k
    out[5] += (two58 & sign);
1010
1.08k
    out[6] -= (1 & sign);
1011
1.08k
    sign = -(out[6] >> 63);
1012
1.08k
    out[6] += (two58 & sign);
1013
1.08k
    out[7] -= (1 & sign);
1014
1.08k
    sign = -(out[7] >> 63);
1015
1.08k
    out[7] += (two58 & sign);
1016
1.08k
    out[8] -= (1 & sign);
1017
1.08k
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
64.5k
{
1039
64.5k
    largefelem tmp, tmp2;
1040
64.5k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
64.5k
    felem_assign(ftmp, x_in);
1043
64.5k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
64.5k
    felem_square(tmp, z_in);
1047
64.5k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
64.5k
    felem_square(tmp, y_in);
1051
64.5k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
64.5k
    felem_mul(tmp, x_in, gamma);
1055
64.5k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
64.5k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
64.5k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
64.5k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
64.5k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
64.5k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
64.5k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
64.5k
    felem_assign(ftmp, beta);
1080
64.5k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
64.5k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
64.5k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
64.5k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
64.5k
    felem_assign(ftmp, y_in);
1090
64.5k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
64.5k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
64.5k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
64.5k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
64.5k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
64.5k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
64.5k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
64.5k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
64.5k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
64.5k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
64.5k
    felem_reduce(y_out, tmp);
1131
64.5k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
169k
{
1136
169k
    unsigned i;
1137
1.69M
    for (i = 0; i < NLIMBS; ++i) {
1138
1.52M
        const limb tmp = mask & (in[i] ^ out[i]);
1139
1.52M
        out[i] ^= tmp;
1140
1.52M
    }
1141
169k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
26.6k
{
1159
26.6k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
26.6k
    largefelem tmp, tmp2;
1161
26.6k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
26.6k
    limb points_equal;
1163
1164
26.6k
    z1_is_zero = felem_is_zero(z1);
1165
26.6k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
26.6k
    felem_square(tmp, z1);
1169
26.6k
    felem_reduce(ftmp, tmp);
1170
1171
26.6k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
10.1k
        felem_square(tmp, z2);
1174
10.1k
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
10.1k
        felem_mul(tmp, x1, ftmp2);
1178
10.1k
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
10.1k
        felem_assign(ftmp5, z1);
1182
10.1k
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
10.1k
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
10.1k
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
10.1k
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
10.1k
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
10.1k
        felem_mul(tmp, ftmp2, z2);
1196
10.1k
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
10.1k
        felem_mul(tmp, y1, ftmp2);
1200
10.1k
        felem_reduce(ftmp6, tmp);
1201
16.5k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
16.5k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
16.5k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
16.5k
        felem_assign(ftmp6, y1);
1214
16.5k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
26.6k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
26.6k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
26.6k
    felem_reduce(ftmp4, tmp);
1224
1225
26.6k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
26.6k
    felem_mul(tmp, ftmp5, ftmp4);
1229
26.6k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
26.6k
    felem_mul(tmp, ftmp, z1);
1233
26.6k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
26.6k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
26.6k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
26.6k
    felem_reduce(ftmp5, tmp);
1243
26.6k
    y_equal = felem_is_zero(ftmp5);
1244
26.6k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
26.6k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
26.6k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
26.6k
    felem_assign(ftmp, ftmp4);
1287
26.6k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
26.6k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
26.6k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
26.6k
    felem_mul(tmp, ftmp4, ftmp);
1295
26.6k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
26.6k
    felem_mul(tmp, ftmp3, ftmp);
1299
26.6k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
26.6k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
26.6k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
26.6k
    felem_assign(ftmp3, ftmp4);
1307
26.6k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
26.6k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
26.6k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
26.6k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
26.6k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
26.6k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
26.6k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
26.6k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
26.6k
    felem_reduce(y_out, tmp);
1331
1332
26.6k
    copy_conditional(x_out, x2, z1_is_zero);
1333
26.6k
    copy_conditional(x_out, x1, z2_is_zero);
1334
26.6k
    copy_conditional(y_out, y2, z1_is_zero);
1335
26.6k
    copy_conditional(y_out, y1, z2_is_zero);
1336
26.6k
    copy_conditional(z_out, z2, z1_is_zero);
1337
26.6k
    copy_conditional(z_out, z1, z2_is_zero);
1338
26.6k
    felem_assign(x3, x_out);
1339
26.6k
    felem_assign(y3, y_out);
1340
26.6k
    felem_assign(z3, z_out);
1341
26.6k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
26.1k
{
1497
26.1k
    unsigned i, j;
1498
26.1k
    limb *outlimbs = &out[0][0];
1499
1500
26.1k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
454k
    for (i = 0; i < size; i++) {
1503
428k
        const limb *inlimbs = &pre_comp[i][0][0];
1504
428k
        limb mask = i ^ idx;
1505
428k
        mask |= mask >> 4;
1506
428k
        mask |= mask >> 2;
1507
428k
        mask |= mask >> 1;
1508
428k
        mask &= 1;
1509
428k
        mask--;
1510
12.0M
        for (j = 0; j < NLIMBS * 3; j++)
1511
11.5M
            outlimbs[j] |= inlimbs[j] & mask;
1512
428k
    }
1513
26.1k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
123k
{
1518
123k
    if (i < 0)
1519
91
        return 0;
1520
123k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
123k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
218
{
1536
218
    int i, skip;
1537
218
    unsigned num, gen_mul = (g_scalar != NULL);
1538
218
    felem nq[3], tmp[4];
1539
218
    limb bits;
1540
218
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
218
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
218
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
64.2k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
64.0k
        if (!skip)
1555
63.8k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
64.0k
        if (gen_mul && (i <= 130)) {
1559
16.6k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
16.6k
            if (i < 130) {
1561
16.5k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
16.5k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
16.5k
                bits |= get_bit(g_scalar, i);
1564
16.5k
            }
1565
            /* select the point to add, in constant time */
1566
16.6k
            select_point(bits, 16, g_pre_comp, tmp);
1567
16.6k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
16.5k
                point_add(nq[0], nq[1], nq[2],
1570
16.5k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
16.5k
            } else {
1572
127
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
127
                skip = 0;
1574
127
            }
1575
16.6k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
64.0k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
19.1k
            for (num = 0; num < num_points; ++num) {
1581
9.55k
                bits = get_bit(scalars[num], i + 4) << 5;
1582
9.55k
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
9.55k
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
9.55k
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
9.55k
                bits |= get_bit(scalars[num], i) << 1;
1586
9.55k
                bits |= get_bit(scalars[num], i - 1);
1587
9.55k
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
9.55k
                select_point(digit, 17, pre_comp[num], tmp);
1593
9.55k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
9.55k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
9.55k
                if (!skip) {
1598
9.46k
                    point_add(nq[0], nq[1], nq[2],
1599
9.46k
                              nq[0], nq[1], nq[2],
1600
9.46k
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
9.46k
                } else {
1602
91
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
91
                    skip = 0;
1604
91
                }
1605
9.55k
            }
1606
9.55k
        }
1607
64.0k
    }
1608
218
    felem_assign(x_out, nq[0]);
1609
218
    felem_assign(y_out, nq[1]);
1610
218
    felem_assign(z_out, nq[2]);
1611
218
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
141
{
1622
141
    static const EC_METHOD ret = {
1623
141
        EC_FLAGS_DEFAULT_OCT,
1624
141
        NID_X9_62_prime_field,
1625
141
        ec_GFp_nistp521_group_init,
1626
141
        ec_GFp_simple_group_finish,
1627
141
        ec_GFp_simple_group_clear_finish,
1628
141
        ec_GFp_nist_group_copy,
1629
141
        ec_GFp_nistp521_group_set_curve,
1630
141
        ec_GFp_simple_group_get_curve,
1631
141
        ec_GFp_simple_group_get_degree,
1632
141
        ec_group_simple_order_bits,
1633
141
        ec_GFp_simple_group_check_discriminant,
1634
141
        ec_GFp_simple_point_init,
1635
141
        ec_GFp_simple_point_finish,
1636
141
        ec_GFp_simple_point_clear_finish,
1637
141
        ec_GFp_simple_point_copy,
1638
141
        ec_GFp_simple_point_set_to_infinity,
1639
141
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
141
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
141
        ec_GFp_simple_point_set_affine_coordinates,
1642
141
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
141
        0 /* point_set_compressed_coordinates */ ,
1644
141
        0 /* point2oct */ ,
1645
141
        0 /* oct2point */ ,
1646
141
        ec_GFp_simple_add,
1647
141
        ec_GFp_simple_dbl,
1648
141
        ec_GFp_simple_invert,
1649
141
        ec_GFp_simple_is_at_infinity,
1650
141
        ec_GFp_simple_is_on_curve,
1651
141
        ec_GFp_simple_cmp,
1652
141
        ec_GFp_simple_make_affine,
1653
141
        ec_GFp_simple_points_make_affine,
1654
141
        ec_GFp_nistp521_points_mul,
1655
141
        ec_GFp_nistp521_precompute_mult,
1656
141
        ec_GFp_nistp521_have_precompute_mult,
1657
141
        ec_GFp_nist_field_mul,
1658
141
        ec_GFp_nist_field_sqr,
1659
141
        0 /* field_div */ ,
1660
141
        ec_GFp_simple_field_inv,
1661
141
        0 /* field_encode */ ,
1662
141
        0 /* field_decode */ ,
1663
141
        0,                      /* field_set_to_one */
1664
141
        ec_key_simple_priv2oct,
1665
141
        ec_key_simple_oct2priv,
1666
141
        0, /* set private */
1667
141
        ec_key_simple_generate_key,
1668
141
        ec_key_simple_check_key,
1669
141
        ec_key_simple_generate_public_key,
1670
141
        0, /* keycopy */
1671
141
        0, /* keyfinish */
1672
141
        ecdh_simple_compute_key,
1673
141
        0, /* field_inverse_mod_ord */
1674
141
        0, /* blind_coordinates */
1675
141
        0, /* ladder_pre */
1676
141
        0, /* ladder_step */
1677
141
        0  /* ladder_post */
1678
141
    };
1679
1680
141
    return &ret;
1681
141
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
492
{
1740
492
    int ret;
1741
492
    ret = ec_GFp_simple_group_init(group);
1742
492
    group->a_is_minus3 = 1;
1743
492
    return ret;
1744
492
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
141
{
1750
141
    int ret = 0;
1751
141
    BN_CTX *new_ctx = NULL;
1752
141
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
141
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
141
    BN_CTX_start(ctx);
1758
141
    curve_p = BN_CTX_get(ctx);
1759
141
    curve_a = BN_CTX_get(ctx);
1760
141
    curve_b = BN_CTX_get(ctx);
1761
141
    if (curve_b == NULL)
1762
0
        goto err;
1763
141
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
141
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
141
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
141
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
141
    group->field_mod_func = BN_nist_mod_521;
1772
141
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
141
 err:
1774
141
    BN_CTX_end(ctx);
1775
141
    BN_CTX_free(new_ctx);
1776
141
    return ret;
1777
141
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
213
{
1788
213
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
213
    largefelem tmp;
1790
1791
213
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
213
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
213
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
213
    felem_inv(z2, z1);
1800
213
    felem_square(tmp, z2);
1801
213
    felem_reduce(z1, tmp);
1802
213
    felem_mul(tmp, x_in, z1);
1803
213
    felem_reduce(x_in, tmp);
1804
213
    felem_contract(x_out, x_in);
1805
213
    if (x != NULL) {
1806
213
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
213
    }
1812
213
    felem_mul(tmp, z1, z2);
1813
213
    felem_reduce(z1, tmp);
1814
213
    felem_mul(tmp, y_in, z1);
1815
213
    felem_reduce(y_in, tmp);
1816
213
    felem_contract(y_out, y_in);
1817
213
    if (y != NULL) {
1818
127
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
127
    }
1824
213
    return 1;
1825
213
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
218
{
1866
218
    int ret = 0;
1867
218
    int j;
1868
218
    int mixed = 0;
1869
218
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
218
    felem_bytearray g_secret;
1871
218
    felem_bytearray *secrets = NULL;
1872
218
    felem (*pre_comp)[17][3] = NULL;
1873
218
    felem *tmp_felems = NULL;
1874
218
    unsigned i;
1875
218
    int num_bytes;
1876
218
    int have_pre_comp = 0;
1877
218
    size_t num_points = num;
1878
218
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
218
    NISTP521_PRE_COMP *pre = NULL;
1880
218
    felem(*g_pre_comp)[3] = NULL;
1881
218
    EC_POINT *generator = NULL;
1882
218
    const EC_POINT *p = NULL;
1883
218
    const BIGNUM *p_scalar = NULL;
1884
1885
218
    BN_CTX_start(ctx);
1886
218
    x = BN_CTX_get(ctx);
1887
218
    y = BN_CTX_get(ctx);
1888
218
    z = BN_CTX_get(ctx);
1889
218
    tmp_scalar = BN_CTX_get(ctx);
1890
218
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
218
    if (scalar != NULL) {
1894
127
        pre = group->pre_comp.nistp521;
1895
127
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
127
        else
1899
            /* try to use the standard precomputation */
1900
127
            g_pre_comp = (felem(*)[3]) gmul;
1901
127
        generator = EC_POINT_new(group);
1902
127
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
127
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
127
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
127
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
127
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
127
                                                      generator, x, y, z,
1913
127
                                                      ctx))
1914
0
            goto err;
1915
127
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
127
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
127
    }
1925
1926
218
    if (num_points > 0) {
1927
91
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
91
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
91
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
91
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
91
        if ((secrets == NULL) || (pre_comp == NULL)
1940
91
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
182
        for (i = 0; i < num_points; ++i) {
1950
91
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
91
            } else {
1958
                /* the i^th point */
1959
91
                p = points[i];
1960
91
                p_scalar = scalars[i];
1961
91
            }
1962
91
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
91
                if ((BN_num_bits(p_scalar) > 521)
1965
91
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
91
                } else {
1977
91
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
91
                                               secrets[i], sizeof(secrets[i]));
1979
91
                }
1980
91
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
91
                if ((!BN_to_felem(x_out, p->X)) ||
1986
91
                    (!BN_to_felem(y_out, p->Y)) ||
1987
91
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
91
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
91
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
91
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
1.45k
                for (j = 2; j <= 16; ++j) {
1993
1.36k
                    if (j & 1) {
1994
637
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
637
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
637
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
637
                                  pre_comp[i][j - 1][0],
1998
637
                                  pre_comp[i][j - 1][1],
1999
637
                                  pre_comp[i][j - 1][2]);
2000
728
                    } else {
2001
728
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
728
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
728
                                     pre_comp[i][j / 2][1],
2004
728
                                     pre_comp[i][j / 2][2]);
2005
728
                    }
2006
1.36k
                }
2007
91
            }
2008
91
        }
2009
91
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
91
    }
2012
2013
    /* the scalar for the generator */
2014
218
    if ((scalar != NULL) && (have_pre_comp)) {
2015
127
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
127
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
127
        } else {
2028
127
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
127
        }
2030
        /* do the multiplication with generator precomputation */
2031
127
        batch_mul(x_out, y_out, z_out,
2032
127
                  (const felem_bytearray(*))secrets, num_points,
2033
127
                  g_secret,
2034
127
                  mixed, (const felem(*)[17][3])pre_comp,
2035
127
                  (const felem(*)[3])g_pre_comp);
2036
127
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
91
        batch_mul(x_out, y_out, z_out,
2039
91
                  (const felem_bytearray(*))secrets, num_points,
2040
91
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
91
    }
2042
    /* reduce the output to its unique minimal representation */
2043
218
    felem_contract(x_in, x_out);
2044
218
    felem_contract(y_in, y_out);
2045
218
    felem_contract(z_in, z_out);
2046
218
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
218
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
218
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
218
 err:
2054
218
    BN_CTX_end(ctx);
2055
218
    EC_POINT_free(generator);
2056
218
    OPENSSL_free(secrets);
2057
218
    OPENSSL_free(pre_comp);
2058
218
    OPENSSL_free(tmp_felems);
2059
218
    return ret;
2060
218
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif