Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ecp_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the OpenSSL license (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
#include <openssl/err.h>
12
#include <openssl/symhacks.h>
13
14
#include "ec_local.h"
15
16
const EC_METHOD *EC_GFp_simple_method(void)
17
0
{
18
0
    static const EC_METHOD ret = {
19
0
        EC_FLAGS_DEFAULT_OCT,
20
0
        NID_X9_62_prime_field,
21
0
        ec_GFp_simple_group_init,
22
0
        ec_GFp_simple_group_finish,
23
0
        ec_GFp_simple_group_clear_finish,
24
0
        ec_GFp_simple_group_copy,
25
0
        ec_GFp_simple_group_set_curve,
26
0
        ec_GFp_simple_group_get_curve,
27
0
        ec_GFp_simple_group_get_degree,
28
0
        ec_group_simple_order_bits,
29
0
        ec_GFp_simple_group_check_discriminant,
30
0
        ec_GFp_simple_point_init,
31
0
        ec_GFp_simple_point_finish,
32
0
        ec_GFp_simple_point_clear_finish,
33
0
        ec_GFp_simple_point_copy,
34
0
        ec_GFp_simple_point_set_to_infinity,
35
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
36
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
37
0
        ec_GFp_simple_point_set_affine_coordinates,
38
0
        ec_GFp_simple_point_get_affine_coordinates,
39
0
        0, 0, 0,
40
0
        ec_GFp_simple_add,
41
0
        ec_GFp_simple_dbl,
42
0
        ec_GFp_simple_invert,
43
0
        ec_GFp_simple_is_at_infinity,
44
0
        ec_GFp_simple_is_on_curve,
45
0
        ec_GFp_simple_cmp,
46
0
        ec_GFp_simple_make_affine,
47
0
        ec_GFp_simple_points_make_affine,
48
0
        0 /* mul */ ,
49
0
        0 /* precompute_mult */ ,
50
0
        0 /* have_precompute_mult */ ,
51
0
        ec_GFp_simple_field_mul,
52
0
        ec_GFp_simple_field_sqr,
53
0
        0 /* field_div */ ,
54
0
        ec_GFp_simple_field_inv,
55
0
        0 /* field_encode */ ,
56
0
        0 /* field_decode */ ,
57
0
        0,                      /* field_set_to_one */
58
0
        ec_key_simple_priv2oct,
59
0
        ec_key_simple_oct2priv,
60
0
        0, /* set private */
61
0
        ec_key_simple_generate_key,
62
0
        ec_key_simple_check_key,
63
0
        ec_key_simple_generate_public_key,
64
0
        0, /* keycopy */
65
0
        0, /* keyfinish */
66
0
        ecdh_simple_compute_key,
67
0
        0, /* field_inverse_mod_ord */
68
0
        ec_GFp_simple_blind_coordinates,
69
0
        ec_GFp_simple_ladder_pre,
70
0
        ec_GFp_simple_ladder_step,
71
0
        ec_GFp_simple_ladder_post
72
0
    };
73
74
0
    return &ret;
75
0
}
76
77
/*
78
 * Most method functions in this file are designed to work with
79
 * non-trivial representations of field elements if necessary
80
 * (see ecp_mont.c): while standard modular addition and subtraction
81
 * are used, the field_mul and field_sqr methods will be used for
82
 * multiplication, and field_encode and field_decode (if defined)
83
 * will be used for converting between representations.
84
 *
85
 * Functions ec_GFp_simple_points_make_affine() and
86
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
87
 * that if a non-trivial representation is used, it is a Montgomery
88
 * representation (i.e. 'encoding' means multiplying by some factor R).
89
 */
90
91
int ec_GFp_simple_group_init(EC_GROUP *group)
92
21.7k
{
93
21.7k
    group->field = BN_new();
94
21.7k
    group->a = BN_new();
95
21.7k
    group->b = BN_new();
96
21.7k
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
97
0
        BN_free(group->field);
98
0
        BN_free(group->a);
99
0
        BN_free(group->b);
100
0
        return 0;
101
0
    }
102
21.7k
    group->a_is_minus3 = 0;
103
21.7k
    return 1;
104
21.7k
}
105
106
void ec_GFp_simple_group_finish(EC_GROUP *group)
107
21.7k
{
108
21.7k
    BN_free(group->field);
109
21.7k
    BN_free(group->a);
110
21.7k
    BN_free(group->b);
111
21.7k
}
112
113
void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
114
0
{
115
0
    BN_clear_free(group->field);
116
0
    BN_clear_free(group->a);
117
0
    BN_clear_free(group->b);
118
0
}
119
120
int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
121
8.30k
{
122
8.30k
    if (!BN_copy(dest->field, src->field))
123
0
        return 0;
124
8.30k
    if (!BN_copy(dest->a, src->a))
125
0
        return 0;
126
8.30k
    if (!BN_copy(dest->b, src->b))
127
0
        return 0;
128
129
8.30k
    dest->a_is_minus3 = src->a_is_minus3;
130
131
8.30k
    return 1;
132
8.30k
}
133
134
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
135
                                  const BIGNUM *p, const BIGNUM *a,
136
                                  const BIGNUM *b, BN_CTX *ctx)
137
13.3k
{
138
13.3k
    int ret = 0;
139
13.3k
    BN_CTX *new_ctx = NULL;
140
13.3k
    BIGNUM *tmp_a;
141
142
    /* p must be a prime > 3 */
143
13.3k
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
144
0
        ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
145
0
        return 0;
146
0
    }
147
148
13.3k
    if (ctx == NULL) {
149
0
        ctx = new_ctx = BN_CTX_new();
150
0
        if (ctx == NULL)
151
0
            return 0;
152
0
    }
153
154
13.3k
    BN_CTX_start(ctx);
155
13.3k
    tmp_a = BN_CTX_get(ctx);
156
13.3k
    if (tmp_a == NULL)
157
0
        goto err;
158
159
    /* group->field */
160
13.3k
    if (!BN_copy(group->field, p))
161
0
        goto err;
162
13.3k
    BN_set_negative(group->field, 0);
163
164
    /* group->a */
165
13.3k
    if (!BN_nnmod(tmp_a, a, p, ctx))
166
0
        goto err;
167
13.3k
    if (group->meth->field_encode) {
168
13.2k
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
169
0
            goto err;
170
13.2k
    } else if (!BN_copy(group->a, tmp_a))
171
0
        goto err;
172
173
    /* group->b */
174
13.3k
    if (!BN_nnmod(group->b, b, p, ctx))
175
0
        goto err;
176
13.3k
    if (group->meth->field_encode)
177
13.2k
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
178
0
            goto err;
179
180
    /* group->a_is_minus3 */
181
13.3k
    if (!BN_add_word(tmp_a, 3))
182
0
        goto err;
183
13.3k
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
184
185
13.3k
    ret = 1;
186
187
13.3k
 err:
188
13.3k
    BN_CTX_end(ctx);
189
13.3k
    BN_CTX_free(new_ctx);
190
13.3k
    return ret;
191
13.3k
}
192
193
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
194
                                  BIGNUM *b, BN_CTX *ctx)
195
25.7k
{
196
25.7k
    int ret = 0;
197
25.7k
    BN_CTX *new_ctx = NULL;
198
199
25.7k
    if (p != NULL) {
200
25.7k
        if (!BN_copy(p, group->field))
201
0
            return 0;
202
25.7k
    }
203
204
25.7k
    if (a != NULL || b != NULL) {
205
25.7k
        if (group->meth->field_decode) {
206
25.5k
            if (ctx == NULL) {
207
0
                ctx = new_ctx = BN_CTX_new();
208
0
                if (ctx == NULL)
209
0
                    return 0;
210
0
            }
211
25.5k
            if (a != NULL) {
212
25.5k
                if (!group->meth->field_decode(group, a, group->a, ctx))
213
0
                    goto err;
214
25.5k
            }
215
25.5k
            if (b != NULL) {
216
25.5k
                if (!group->meth->field_decode(group, b, group->b, ctx))
217
0
                    goto err;
218
25.5k
            }
219
25.5k
        } else {
220
182
            if (a != NULL) {
221
182
                if (!BN_copy(a, group->a))
222
0
                    goto err;
223
182
            }
224
182
            if (b != NULL) {
225
182
                if (!BN_copy(b, group->b))
226
0
                    goto err;
227
182
            }
228
182
        }
229
25.7k
    }
230
231
25.7k
    ret = 1;
232
233
25.7k
 err:
234
25.7k
    BN_CTX_free(new_ctx);
235
25.7k
    return ret;
236
25.7k
}
237
238
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
239
779
{
240
779
    return BN_num_bits(group->field);
241
779
}
242
243
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
244
0
{
245
0
    int ret = 0;
246
0
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
247
0
    const BIGNUM *p = group->field;
248
0
    BN_CTX *new_ctx = NULL;
249
250
0
    if (ctx == NULL) {
251
0
        ctx = new_ctx = BN_CTX_new();
252
0
        if (ctx == NULL) {
253
0
            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
254
0
                  ERR_R_MALLOC_FAILURE);
255
0
            goto err;
256
0
        }
257
0
    }
258
0
    BN_CTX_start(ctx);
259
0
    a = BN_CTX_get(ctx);
260
0
    b = BN_CTX_get(ctx);
261
0
    tmp_1 = BN_CTX_get(ctx);
262
0
    tmp_2 = BN_CTX_get(ctx);
263
0
    order = BN_CTX_get(ctx);
264
0
    if (order == NULL)
265
0
        goto err;
266
267
0
    if (group->meth->field_decode) {
268
0
        if (!group->meth->field_decode(group, a, group->a, ctx))
269
0
            goto err;
270
0
        if (!group->meth->field_decode(group, b, group->b, ctx))
271
0
            goto err;
272
0
    } else {
273
0
        if (!BN_copy(a, group->a))
274
0
            goto err;
275
0
        if (!BN_copy(b, group->b))
276
0
            goto err;
277
0
    }
278
279
    /*-
280
     * check the discriminant:
281
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
282
     * 0 =< a, b < p
283
     */
284
0
    if (BN_is_zero(a)) {
285
0
        if (BN_is_zero(b))
286
0
            goto err;
287
0
    } else if (!BN_is_zero(b)) {
288
0
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
289
0
            goto err;
290
0
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
291
0
            goto err;
292
0
        if (!BN_lshift(tmp_1, tmp_2, 2))
293
0
            goto err;
294
        /* tmp_1 = 4*a^3 */
295
296
0
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
297
0
            goto err;
298
0
        if (!BN_mul_word(tmp_2, 27))
299
0
            goto err;
300
        /* tmp_2 = 27*b^2 */
301
302
0
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
303
0
            goto err;
304
0
        if (BN_is_zero(a))
305
0
            goto err;
306
0
    }
307
0
    ret = 1;
308
309
0
 err:
310
0
    BN_CTX_end(ctx);
311
0
    BN_CTX_free(new_ctx);
312
0
    return ret;
313
0
}
314
315
int ec_GFp_simple_point_init(EC_POINT *point)
316
50.9k
{
317
50.9k
    point->X = BN_new();
318
50.9k
    point->Y = BN_new();
319
50.9k
    point->Z = BN_new();
320
50.9k
    point->Z_is_one = 0;
321
322
50.9k
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
323
0
        BN_free(point->X);
324
0
        BN_free(point->Y);
325
0
        BN_free(point->Z);
326
0
        return 0;
327
0
    }
328
50.9k
    return 1;
329
50.9k
}
330
331
void ec_GFp_simple_point_finish(EC_POINT *point)
332
50.2k
{
333
50.2k
    BN_free(point->X);
334
50.2k
    BN_free(point->Y);
335
50.2k
    BN_free(point->Z);
336
50.2k
}
337
338
void ec_GFp_simple_point_clear_finish(EC_POINT *point)
339
685
{
340
685
    BN_clear_free(point->X);
341
685
    BN_clear_free(point->Y);
342
685
    BN_clear_free(point->Z);
343
685
    point->Z_is_one = 0;
344
685
}
345
346
int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
347
21.9k
{
348
21.9k
    if (!BN_copy(dest->X, src->X))
349
0
        return 0;
350
21.9k
    if (!BN_copy(dest->Y, src->Y))
351
0
        return 0;
352
21.9k
    if (!BN_copy(dest->Z, src->Z))
353
0
        return 0;
354
21.9k
    dest->Z_is_one = src->Z_is_one;
355
21.9k
    dest->curve_name = src->curve_name;
356
357
21.9k
    return 1;
358
21.9k
}
359
360
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
361
                                        EC_POINT *point)
362
19
{
363
19
    point->Z_is_one = 0;
364
19
    BN_zero(point->Z);
365
19
    return 1;
366
19
}
367
368
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
369
                                                  EC_POINT *point,
370
                                                  const BIGNUM *x,
371
                                                  const BIGNUM *y,
372
                                                  const BIGNUM *z,
373
                                                  BN_CTX *ctx)
374
26.7k
{
375
26.7k
    BN_CTX *new_ctx = NULL;
376
26.7k
    int ret = 0;
377
378
26.7k
    if (ctx == NULL) {
379
0
        ctx = new_ctx = BN_CTX_new();
380
0
        if (ctx == NULL)
381
0
            return 0;
382
0
    }
383
384
26.7k
    if (x != NULL) {
385
26.7k
        if (!BN_nnmod(point->X, x, group->field, ctx))
386
0
            goto err;
387
26.7k
        if (group->meth->field_encode) {
388
26.1k
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
389
0
                goto err;
390
26.1k
        }
391
26.7k
    }
392
393
26.7k
    if (y != NULL) {
394
26.7k
        if (!BN_nnmod(point->Y, y, group->field, ctx))
395
0
            goto err;
396
26.7k
        if (group->meth->field_encode) {
397
26.1k
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
398
0
                goto err;
399
26.1k
        }
400
26.7k
    }
401
402
26.7k
    if (z != NULL) {
403
26.7k
        int Z_is_one;
404
405
26.7k
        if (!BN_nnmod(point->Z, z, group->field, ctx))
406
0
            goto err;
407
26.7k
        Z_is_one = BN_is_one(point->Z);
408
26.7k
        if (group->meth->field_encode) {
409
26.1k
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
410
26.1k
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
411
0
                    goto err;
412
26.1k
            } else {
413
0
                if (!group->
414
0
                    meth->field_encode(group, point->Z, point->Z, ctx))
415
0
                    goto err;
416
0
            }
417
26.1k
        }
418
26.7k
        point->Z_is_one = Z_is_one;
419
26.7k
    }
420
421
26.7k
    ret = 1;
422
423
26.7k
 err:
424
26.7k
    BN_CTX_free(new_ctx);
425
26.7k
    return ret;
426
26.7k
}
427
428
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
429
                                                  const EC_POINT *point,
430
                                                  BIGNUM *x, BIGNUM *y,
431
                                                  BIGNUM *z, BN_CTX *ctx)
432
0
{
433
0
    BN_CTX *new_ctx = NULL;
434
0
    int ret = 0;
435
436
0
    if (group->meth->field_decode != 0) {
437
0
        if (ctx == NULL) {
438
0
            ctx = new_ctx = BN_CTX_new();
439
0
            if (ctx == NULL)
440
0
                return 0;
441
0
        }
442
443
0
        if (x != NULL) {
444
0
            if (!group->meth->field_decode(group, x, point->X, ctx))
445
0
                goto err;
446
0
        }
447
0
        if (y != NULL) {
448
0
            if (!group->meth->field_decode(group, y, point->Y, ctx))
449
0
                goto err;
450
0
        }
451
0
        if (z != NULL) {
452
0
            if (!group->meth->field_decode(group, z, point->Z, ctx))
453
0
                goto err;
454
0
        }
455
0
    } else {
456
0
        if (x != NULL) {
457
0
            if (!BN_copy(x, point->X))
458
0
                goto err;
459
0
        }
460
0
        if (y != NULL) {
461
0
            if (!BN_copy(y, point->Y))
462
0
                goto err;
463
0
        }
464
0
        if (z != NULL) {
465
0
            if (!BN_copy(z, point->Z))
466
0
                goto err;
467
0
        }
468
0
    }
469
470
0
    ret = 1;
471
472
0
 err:
473
0
    BN_CTX_free(new_ctx);
474
0
    return ret;
475
0
}
476
477
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
478
                                               EC_POINT *point,
479
                                               const BIGNUM *x,
480
                                               const BIGNUM *y, BN_CTX *ctx)
481
26.4k
{
482
26.4k
    if (x == NULL || y == NULL) {
483
        /*
484
         * unlike for projective coordinates, we do not tolerate this
485
         */
486
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
487
0
              ERR_R_PASSED_NULL_PARAMETER);
488
0
        return 0;
489
0
    }
490
491
26.4k
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
492
26.4k
                                                    BN_value_one(), ctx);
493
26.4k
}
494
495
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
496
                                               const EC_POINT *point,
497
                                               BIGNUM *x, BIGNUM *y,
498
                                               BN_CTX *ctx)
499
290
{
500
290
    BN_CTX *new_ctx = NULL;
501
290
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
502
290
    const BIGNUM *Z_;
503
290
    int ret = 0;
504
505
290
    if (EC_POINT_is_at_infinity(group, point)) {
506
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
507
0
              EC_R_POINT_AT_INFINITY);
508
0
        return 0;
509
0
    }
510
511
290
    if (ctx == NULL) {
512
0
        ctx = new_ctx = BN_CTX_new();
513
0
        if (ctx == NULL)
514
0
            return 0;
515
0
    }
516
517
290
    BN_CTX_start(ctx);
518
290
    Z = BN_CTX_get(ctx);
519
290
    Z_1 = BN_CTX_get(ctx);
520
290
    Z_2 = BN_CTX_get(ctx);
521
290
    Z_3 = BN_CTX_get(ctx);
522
290
    if (Z_3 == NULL)
523
0
        goto err;
524
525
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
526
527
290
    if (group->meth->field_decode) {
528
290
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
529
0
            goto err;
530
290
        Z_ = Z;
531
290
    } else {
532
0
        Z_ = point->Z;
533
0
    }
534
535
290
    if (BN_is_one(Z_)) {
536
290
        if (group->meth->field_decode) {
537
290
            if (x != NULL) {
538
290
                if (!group->meth->field_decode(group, x, point->X, ctx))
539
0
                    goto err;
540
290
            }
541
290
            if (y != NULL) {
542
182
                if (!group->meth->field_decode(group, y, point->Y, ctx))
543
0
                    goto err;
544
182
            }
545
290
        } else {
546
0
            if (x != NULL) {
547
0
                if (!BN_copy(x, point->X))
548
0
                    goto err;
549
0
            }
550
0
            if (y != NULL) {
551
0
                if (!BN_copy(y, point->Y))
552
0
                    goto err;
553
0
            }
554
0
        }
555
290
    } else {
556
0
        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
557
0
            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
558
0
                  ERR_R_BN_LIB);
559
0
            goto err;
560
0
        }
561
562
0
        if (group->meth->field_encode == 0) {
563
            /* field_sqr works on standard representation */
564
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
565
0
                goto err;
566
0
        } else {
567
0
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
568
0
                goto err;
569
0
        }
570
571
0
        if (x != NULL) {
572
            /*
573
             * in the Montgomery case, field_mul will cancel out Montgomery
574
             * factor in X:
575
             */
576
0
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
577
0
                goto err;
578
0
        }
579
580
0
        if (y != NULL) {
581
0
            if (group->meth->field_encode == 0) {
582
                /*
583
                 * field_mul works on standard representation
584
                 */
585
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
586
0
                    goto err;
587
0
            } else {
588
0
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
589
0
                    goto err;
590
0
            }
591
592
            /*
593
             * in the Montgomery case, field_mul will cancel out Montgomery
594
             * factor in Y:
595
             */
596
0
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
597
0
                goto err;
598
0
        }
599
0
    }
600
601
290
    ret = 1;
602
603
290
 err:
604
290
    BN_CTX_end(ctx);
605
290
    BN_CTX_free(new_ctx);
606
290
    return ret;
607
290
}
608
609
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
610
                      const EC_POINT *b, BN_CTX *ctx)
611
0
{
612
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
613
0
                      const BIGNUM *, BN_CTX *);
614
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
615
0
    const BIGNUM *p;
616
0
    BN_CTX *new_ctx = NULL;
617
0
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
618
0
    int ret = 0;
619
620
0
    if (a == b)
621
0
        return EC_POINT_dbl(group, r, a, ctx);
622
0
    if (EC_POINT_is_at_infinity(group, a))
623
0
        return EC_POINT_copy(r, b);
624
0
    if (EC_POINT_is_at_infinity(group, b))
625
0
        return EC_POINT_copy(r, a);
626
627
0
    field_mul = group->meth->field_mul;
628
0
    field_sqr = group->meth->field_sqr;
629
0
    p = group->field;
630
631
0
    if (ctx == NULL) {
632
0
        ctx = new_ctx = BN_CTX_new();
633
0
        if (ctx == NULL)
634
0
            return 0;
635
0
    }
636
637
0
    BN_CTX_start(ctx);
638
0
    n0 = BN_CTX_get(ctx);
639
0
    n1 = BN_CTX_get(ctx);
640
0
    n2 = BN_CTX_get(ctx);
641
0
    n3 = BN_CTX_get(ctx);
642
0
    n4 = BN_CTX_get(ctx);
643
0
    n5 = BN_CTX_get(ctx);
644
0
    n6 = BN_CTX_get(ctx);
645
0
    if (n6 == NULL)
646
0
        goto end;
647
648
    /*
649
     * Note that in this function we must not read components of 'a' or 'b'
650
     * once we have written the corresponding components of 'r'. ('r' might
651
     * be one of 'a' or 'b'.)
652
     */
653
654
    /* n1, n2 */
655
0
    if (b->Z_is_one) {
656
0
        if (!BN_copy(n1, a->X))
657
0
            goto end;
658
0
        if (!BN_copy(n2, a->Y))
659
0
            goto end;
660
        /* n1 = X_a */
661
        /* n2 = Y_a */
662
0
    } else {
663
0
        if (!field_sqr(group, n0, b->Z, ctx))
664
0
            goto end;
665
0
        if (!field_mul(group, n1, a->X, n0, ctx))
666
0
            goto end;
667
        /* n1 = X_a * Z_b^2 */
668
669
0
        if (!field_mul(group, n0, n0, b->Z, ctx))
670
0
            goto end;
671
0
        if (!field_mul(group, n2, a->Y, n0, ctx))
672
0
            goto end;
673
        /* n2 = Y_a * Z_b^3 */
674
0
    }
675
676
    /* n3, n4 */
677
0
    if (a->Z_is_one) {
678
0
        if (!BN_copy(n3, b->X))
679
0
            goto end;
680
0
        if (!BN_copy(n4, b->Y))
681
0
            goto end;
682
        /* n3 = X_b */
683
        /* n4 = Y_b */
684
0
    } else {
685
0
        if (!field_sqr(group, n0, a->Z, ctx))
686
0
            goto end;
687
0
        if (!field_mul(group, n3, b->X, n0, ctx))
688
0
            goto end;
689
        /* n3 = X_b * Z_a^2 */
690
691
0
        if (!field_mul(group, n0, n0, a->Z, ctx))
692
0
            goto end;
693
0
        if (!field_mul(group, n4, b->Y, n0, ctx))
694
0
            goto end;
695
        /* n4 = Y_b * Z_a^3 */
696
0
    }
697
698
    /* n5, n6 */
699
0
    if (!BN_mod_sub_quick(n5, n1, n3, p))
700
0
        goto end;
701
0
    if (!BN_mod_sub_quick(n6, n2, n4, p))
702
0
        goto end;
703
    /* n5 = n1 - n3 */
704
    /* n6 = n2 - n4 */
705
706
0
    if (BN_is_zero(n5)) {
707
0
        if (BN_is_zero(n6)) {
708
            /* a is the same point as b */
709
0
            BN_CTX_end(ctx);
710
0
            ret = EC_POINT_dbl(group, r, a, ctx);
711
0
            ctx = NULL;
712
0
            goto end;
713
0
        } else {
714
            /* a is the inverse of b */
715
0
            BN_zero(r->Z);
716
0
            r->Z_is_one = 0;
717
0
            ret = 1;
718
0
            goto end;
719
0
        }
720
0
    }
721
722
    /* 'n7', 'n8' */
723
0
    if (!BN_mod_add_quick(n1, n1, n3, p))
724
0
        goto end;
725
0
    if (!BN_mod_add_quick(n2, n2, n4, p))
726
0
        goto end;
727
    /* 'n7' = n1 + n3 */
728
    /* 'n8' = n2 + n4 */
729
730
    /* Z_r */
731
0
    if (a->Z_is_one && b->Z_is_one) {
732
0
        if (!BN_copy(r->Z, n5))
733
0
            goto end;
734
0
    } else {
735
0
        if (a->Z_is_one) {
736
0
            if (!BN_copy(n0, b->Z))
737
0
                goto end;
738
0
        } else if (b->Z_is_one) {
739
0
            if (!BN_copy(n0, a->Z))
740
0
                goto end;
741
0
        } else {
742
0
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
743
0
                goto end;
744
0
        }
745
0
        if (!field_mul(group, r->Z, n0, n5, ctx))
746
0
            goto end;
747
0
    }
748
0
    r->Z_is_one = 0;
749
    /* Z_r = Z_a * Z_b * n5 */
750
751
    /* X_r */
752
0
    if (!field_sqr(group, n0, n6, ctx))
753
0
        goto end;
754
0
    if (!field_sqr(group, n4, n5, ctx))
755
0
        goto end;
756
0
    if (!field_mul(group, n3, n1, n4, ctx))
757
0
        goto end;
758
0
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
759
0
        goto end;
760
    /* X_r = n6^2 - n5^2 * 'n7' */
761
762
    /* 'n9' */
763
0
    if (!BN_mod_lshift1_quick(n0, r->X, p))
764
0
        goto end;
765
0
    if (!BN_mod_sub_quick(n0, n3, n0, p))
766
0
        goto end;
767
    /* n9 = n5^2 * 'n7' - 2 * X_r */
768
769
    /* Y_r */
770
0
    if (!field_mul(group, n0, n0, n6, ctx))
771
0
        goto end;
772
0
    if (!field_mul(group, n5, n4, n5, ctx))
773
0
        goto end;               /* now n5 is n5^3 */
774
0
    if (!field_mul(group, n1, n2, n5, ctx))
775
0
        goto end;
776
0
    if (!BN_mod_sub_quick(n0, n0, n1, p))
777
0
        goto end;
778
0
    if (BN_is_odd(n0))
779
0
        if (!BN_add(n0, n0, p))
780
0
            goto end;
781
    /* now  0 <= n0 < 2*p,  and n0 is even */
782
0
    if (!BN_rshift1(r->Y, n0))
783
0
        goto end;
784
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
785
786
0
    ret = 1;
787
788
0
 end:
789
0
    BN_CTX_end(ctx);
790
0
    BN_CTX_free(new_ctx);
791
0
    return ret;
792
0
}
793
794
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
795
                      BN_CTX *ctx)
796
0
{
797
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
798
0
                      const BIGNUM *, BN_CTX *);
799
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
800
0
    const BIGNUM *p;
801
0
    BN_CTX *new_ctx = NULL;
802
0
    BIGNUM *n0, *n1, *n2, *n3;
803
0
    int ret = 0;
804
805
0
    if (EC_POINT_is_at_infinity(group, a)) {
806
0
        BN_zero(r->Z);
807
0
        r->Z_is_one = 0;
808
0
        return 1;
809
0
    }
810
811
0
    field_mul = group->meth->field_mul;
812
0
    field_sqr = group->meth->field_sqr;
813
0
    p = group->field;
814
815
0
    if (ctx == NULL) {
816
0
        ctx = new_ctx = BN_CTX_new();
817
0
        if (ctx == NULL)
818
0
            return 0;
819
0
    }
820
821
0
    BN_CTX_start(ctx);
822
0
    n0 = BN_CTX_get(ctx);
823
0
    n1 = BN_CTX_get(ctx);
824
0
    n2 = BN_CTX_get(ctx);
825
0
    n3 = BN_CTX_get(ctx);
826
0
    if (n3 == NULL)
827
0
        goto err;
828
829
    /*
830
     * Note that in this function we must not read components of 'a' once we
831
     * have written the corresponding components of 'r'. ('r' might the same
832
     * as 'a'.)
833
     */
834
835
    /* n1 */
836
0
    if (a->Z_is_one) {
837
0
        if (!field_sqr(group, n0, a->X, ctx))
838
0
            goto err;
839
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
840
0
            goto err;
841
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
842
0
            goto err;
843
0
        if (!BN_mod_add_quick(n1, n0, group->a, p))
844
0
            goto err;
845
        /* n1 = 3 * X_a^2 + a_curve */
846
0
    } else if (group->a_is_minus3) {
847
0
        if (!field_sqr(group, n1, a->Z, ctx))
848
0
            goto err;
849
0
        if (!BN_mod_add_quick(n0, a->X, n1, p))
850
0
            goto err;
851
0
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
852
0
            goto err;
853
0
        if (!field_mul(group, n1, n0, n2, ctx))
854
0
            goto err;
855
0
        if (!BN_mod_lshift1_quick(n0, n1, p))
856
0
            goto err;
857
0
        if (!BN_mod_add_quick(n1, n0, n1, p))
858
0
            goto err;
859
        /*-
860
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
861
         *    = 3 * X_a^2 - 3 * Z_a^4
862
         */
863
0
    } else {
864
0
        if (!field_sqr(group, n0, a->X, ctx))
865
0
            goto err;
866
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
867
0
            goto err;
868
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
869
0
            goto err;
870
0
        if (!field_sqr(group, n1, a->Z, ctx))
871
0
            goto err;
872
0
        if (!field_sqr(group, n1, n1, ctx))
873
0
            goto err;
874
0
        if (!field_mul(group, n1, n1, group->a, ctx))
875
0
            goto err;
876
0
        if (!BN_mod_add_quick(n1, n1, n0, p))
877
0
            goto err;
878
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
879
0
    }
880
881
    /* Z_r */
882
0
    if (a->Z_is_one) {
883
0
        if (!BN_copy(n0, a->Y))
884
0
            goto err;
885
0
    } else {
886
0
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
887
0
            goto err;
888
0
    }
889
0
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
890
0
        goto err;
891
0
    r->Z_is_one = 0;
892
    /* Z_r = 2 * Y_a * Z_a */
893
894
    /* n2 */
895
0
    if (!field_sqr(group, n3, a->Y, ctx))
896
0
        goto err;
897
0
    if (!field_mul(group, n2, a->X, n3, ctx))
898
0
        goto err;
899
0
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
900
0
        goto err;
901
    /* n2 = 4 * X_a * Y_a^2 */
902
903
    /* X_r */
904
0
    if (!BN_mod_lshift1_quick(n0, n2, p))
905
0
        goto err;
906
0
    if (!field_sqr(group, r->X, n1, ctx))
907
0
        goto err;
908
0
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
909
0
        goto err;
910
    /* X_r = n1^2 - 2 * n2 */
911
912
    /* n3 */
913
0
    if (!field_sqr(group, n0, n3, ctx))
914
0
        goto err;
915
0
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
916
0
        goto err;
917
    /* n3 = 8 * Y_a^4 */
918
919
    /* Y_r */
920
0
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
921
0
        goto err;
922
0
    if (!field_mul(group, n0, n1, n0, ctx))
923
0
        goto err;
924
0
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
925
0
        goto err;
926
    /* Y_r = n1 * (n2 - X_r) - n3 */
927
928
0
    ret = 1;
929
930
0
 err:
931
0
    BN_CTX_end(ctx);
932
0
    BN_CTX_free(new_ctx);
933
0
    return ret;
934
0
}
935
936
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
937
0
{
938
0
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
939
        /* point is its own inverse */
940
0
        return 1;
941
942
0
    return BN_usub(point->Y, group->field, point->Y);
943
0
}
944
945
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
946
70.4k
{
947
70.4k
    return BN_is_zero(point->Z);
948
70.4k
}
949
950
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
951
                              BN_CTX *ctx)
952
26.4k
{
953
26.4k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
954
26.4k
                      const BIGNUM *, BN_CTX *);
955
26.4k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
956
26.4k
    const BIGNUM *p;
957
26.4k
    BN_CTX *new_ctx = NULL;
958
26.4k
    BIGNUM *rh, *tmp, *Z4, *Z6;
959
26.4k
    int ret = -1;
960
961
26.4k
    if (EC_POINT_is_at_infinity(group, point))
962
0
        return 1;
963
964
26.4k
    field_mul = group->meth->field_mul;
965
26.4k
    field_sqr = group->meth->field_sqr;
966
26.4k
    p = group->field;
967
968
26.4k
    if (ctx == NULL) {
969
0
        ctx = new_ctx = BN_CTX_new();
970
0
        if (ctx == NULL)
971
0
            return -1;
972
0
    }
973
974
26.4k
    BN_CTX_start(ctx);
975
26.4k
    rh = BN_CTX_get(ctx);
976
26.4k
    tmp = BN_CTX_get(ctx);
977
26.4k
    Z4 = BN_CTX_get(ctx);
978
26.4k
    Z6 = BN_CTX_get(ctx);
979
26.4k
    if (Z6 == NULL)
980
0
        goto err;
981
982
    /*-
983
     * We have a curve defined by a Weierstrass equation
984
     *      y^2 = x^3 + a*x + b.
985
     * The point to consider is given in Jacobian projective coordinates
986
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
987
     * Substituting this and multiplying by  Z^6  transforms the above equation into
988
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
989
     * To test this, we add up the right-hand side in 'rh'.
990
     */
991
992
    /* rh := X^2 */
993
26.4k
    if (!field_sqr(group, rh, point->X, ctx))
994
0
        goto err;
995
996
26.4k
    if (!point->Z_is_one) {
997
0
        if (!field_sqr(group, tmp, point->Z, ctx))
998
0
            goto err;
999
0
        if (!field_sqr(group, Z4, tmp, ctx))
1000
0
            goto err;
1001
0
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1002
0
            goto err;
1003
1004
        /* rh := (rh + a*Z^4)*X */
1005
0
        if (group->a_is_minus3) {
1006
0
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1007
0
                goto err;
1008
0
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1009
0
                goto err;
1010
0
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1011
0
                goto err;
1012
0
            if (!field_mul(group, rh, rh, point->X, ctx))
1013
0
                goto err;
1014
0
        } else {
1015
0
            if (!field_mul(group, tmp, Z4, group->a, ctx))
1016
0
                goto err;
1017
0
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1018
0
                goto err;
1019
0
            if (!field_mul(group, rh, rh, point->X, ctx))
1020
0
                goto err;
1021
0
        }
1022
1023
        /* rh := rh + b*Z^6 */
1024
0
        if (!field_mul(group, tmp, group->b, Z6, ctx))
1025
0
            goto err;
1026
0
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1027
0
            goto err;
1028
26.4k
    } else {
1029
        /* point->Z_is_one */
1030
1031
        /* rh := (rh + a)*X */
1032
26.4k
        if (!BN_mod_add_quick(rh, rh, group->a, p))
1033
0
            goto err;
1034
26.4k
        if (!field_mul(group, rh, rh, point->X, ctx))
1035
0
            goto err;
1036
        /* rh := rh + b */
1037
26.4k
        if (!BN_mod_add_quick(rh, rh, group->b, p))
1038
0
            goto err;
1039
26.4k
    }
1040
1041
    /* 'lh' := Y^2 */
1042
26.4k
    if (!field_sqr(group, tmp, point->Y, ctx))
1043
0
        goto err;
1044
1045
26.4k
    ret = (0 == BN_ucmp(tmp, rh));
1046
1047
26.4k
 err:
1048
26.4k
    BN_CTX_end(ctx);
1049
26.4k
    BN_CTX_free(new_ctx);
1050
26.4k
    return ret;
1051
26.4k
}
1052
1053
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1054
                      const EC_POINT *b, BN_CTX *ctx)
1055
19.2k
{
1056
    /*-
1057
     * return values:
1058
     *  -1   error
1059
     *   0   equal (in affine coordinates)
1060
     *   1   not equal
1061
     */
1062
1063
19.2k
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
1064
19.2k
                      const BIGNUM *, BN_CTX *);
1065
19.2k
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1066
19.2k
    BN_CTX *new_ctx = NULL;
1067
19.2k
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1068
19.2k
    const BIGNUM *tmp1_, *tmp2_;
1069
19.2k
    int ret = -1;
1070
1071
19.2k
    if (EC_POINT_is_at_infinity(group, a)) {
1072
0
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1073
0
    }
1074
1075
19.2k
    if (EC_POINT_is_at_infinity(group, b))
1076
0
        return 1;
1077
1078
19.2k
    if (a->Z_is_one && b->Z_is_one) {
1079
19.2k
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
1080
19.2k
    }
1081
1082
0
    field_mul = group->meth->field_mul;
1083
0
    field_sqr = group->meth->field_sqr;
1084
1085
0
    if (ctx == NULL) {
1086
0
        ctx = new_ctx = BN_CTX_new();
1087
0
        if (ctx == NULL)
1088
0
            return -1;
1089
0
    }
1090
1091
0
    BN_CTX_start(ctx);
1092
0
    tmp1 = BN_CTX_get(ctx);
1093
0
    tmp2 = BN_CTX_get(ctx);
1094
0
    Za23 = BN_CTX_get(ctx);
1095
0
    Zb23 = BN_CTX_get(ctx);
1096
0
    if (Zb23 == NULL)
1097
0
        goto end;
1098
1099
    /*-
1100
     * We have to decide whether
1101
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1102
     * or equivalently, whether
1103
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1104
     */
1105
1106
0
    if (!b->Z_is_one) {
1107
0
        if (!field_sqr(group, Zb23, b->Z, ctx))
1108
0
            goto end;
1109
0
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
1110
0
            goto end;
1111
0
        tmp1_ = tmp1;
1112
0
    } else
1113
0
        tmp1_ = a->X;
1114
0
    if (!a->Z_is_one) {
1115
0
        if (!field_sqr(group, Za23, a->Z, ctx))
1116
0
            goto end;
1117
0
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
1118
0
            goto end;
1119
0
        tmp2_ = tmp2;
1120
0
    } else
1121
0
        tmp2_ = b->X;
1122
1123
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1124
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1125
0
        ret = 1;                /* points differ */
1126
0
        goto end;
1127
0
    }
1128
1129
0
    if (!b->Z_is_one) {
1130
0
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
1131
0
            goto end;
1132
0
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
1133
0
            goto end;
1134
        /* tmp1_ = tmp1 */
1135
0
    } else
1136
0
        tmp1_ = a->Y;
1137
0
    if (!a->Z_is_one) {
1138
0
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
1139
0
            goto end;
1140
0
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
1141
0
            goto end;
1142
        /* tmp2_ = tmp2 */
1143
0
    } else
1144
0
        tmp2_ = b->Y;
1145
1146
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1147
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1148
0
        ret = 1;                /* points differ */
1149
0
        goto end;
1150
0
    }
1151
1152
    /* points are equal */
1153
0
    ret = 0;
1154
1155
0
 end:
1156
0
    BN_CTX_end(ctx);
1157
0
    BN_CTX_free(new_ctx);
1158
0
    return ret;
1159
0
}
1160
1161
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1162
                              BN_CTX *ctx)
1163
0
{
1164
0
    BN_CTX *new_ctx = NULL;
1165
0
    BIGNUM *x, *y;
1166
0
    int ret = 0;
1167
1168
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1169
0
        return 1;
1170
1171
0
    if (ctx == NULL) {
1172
0
        ctx = new_ctx = BN_CTX_new();
1173
0
        if (ctx == NULL)
1174
0
            return 0;
1175
0
    }
1176
1177
0
    BN_CTX_start(ctx);
1178
0
    x = BN_CTX_get(ctx);
1179
0
    y = BN_CTX_get(ctx);
1180
0
    if (y == NULL)
1181
0
        goto err;
1182
1183
0
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
1184
0
        goto err;
1185
0
    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
1186
0
        goto err;
1187
0
    if (!point->Z_is_one) {
1188
0
        ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
1189
0
        goto err;
1190
0
    }
1191
1192
0
    ret = 1;
1193
1194
0
 err:
1195
0
    BN_CTX_end(ctx);
1196
0
    BN_CTX_free(new_ctx);
1197
0
    return ret;
1198
0
}
1199
1200
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1201
                                     EC_POINT *points[], BN_CTX *ctx)
1202
0
{
1203
0
    BN_CTX *new_ctx = NULL;
1204
0
    BIGNUM *tmp, *tmp_Z;
1205
0
    BIGNUM **prod_Z = NULL;
1206
0
    size_t i;
1207
0
    int ret = 0;
1208
1209
0
    if (num == 0)
1210
0
        return 1;
1211
1212
0
    if (ctx == NULL) {
1213
0
        ctx = new_ctx = BN_CTX_new();
1214
0
        if (ctx == NULL)
1215
0
            return 0;
1216
0
    }
1217
1218
0
    BN_CTX_start(ctx);
1219
0
    tmp = BN_CTX_get(ctx);
1220
0
    tmp_Z = BN_CTX_get(ctx);
1221
0
    if (tmp_Z == NULL)
1222
0
        goto err;
1223
1224
0
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1225
0
    if (prod_Z == NULL)
1226
0
        goto err;
1227
0
    for (i = 0; i < num; i++) {
1228
0
        prod_Z[i] = BN_new();
1229
0
        if (prod_Z[i] == NULL)
1230
0
            goto err;
1231
0
    }
1232
1233
    /*
1234
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1235
     * skipping any zero-valued inputs (pretend that they're 1).
1236
     */
1237
1238
0
    if (!BN_is_zero(points[0]->Z)) {
1239
0
        if (!BN_copy(prod_Z[0], points[0]->Z))
1240
0
            goto err;
1241
0
    } else {
1242
0
        if (group->meth->field_set_to_one != 0) {
1243
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1244
0
                goto err;
1245
0
        } else {
1246
0
            if (!BN_one(prod_Z[0]))
1247
0
                goto err;
1248
0
        }
1249
0
    }
1250
1251
0
    for (i = 1; i < num; i++) {
1252
0
        if (!BN_is_zero(points[i]->Z)) {
1253
0
            if (!group->
1254
0
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
1255
0
                                ctx))
1256
0
                goto err;
1257
0
        } else {
1258
0
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1259
0
                goto err;
1260
0
        }
1261
0
    }
1262
1263
    /*
1264
     * Now use a single explicit inversion to replace every non-zero
1265
     * points[i]->Z by its inverse.
1266
     */
1267
1268
0
    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
1269
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
1270
0
        goto err;
1271
0
    }
1272
0
    if (group->meth->field_encode != 0) {
1273
        /*
1274
         * In the Montgomery case, we just turned R*H (representing H) into
1275
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1276
         * multiply by the Montgomery factor twice.
1277
         */
1278
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1279
0
            goto err;
1280
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1281
0
            goto err;
1282
0
    }
1283
1284
0
    for (i = num - 1; i > 0; --i) {
1285
        /*
1286
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1287
         * .. points[i]->Z (zero-valued inputs skipped).
1288
         */
1289
0
        if (!BN_is_zero(points[i]->Z)) {
1290
            /*
1291
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1292
             * inverses 0 .. i, Z values 0 .. i - 1).
1293
             */
1294
0
            if (!group->
1295
0
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1296
0
                goto err;
1297
            /*
1298
             * Update tmp to satisfy the loop invariant for i - 1.
1299
             */
1300
0
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
1301
0
                goto err;
1302
            /* Replace points[i]->Z by its inverse. */
1303
0
            if (!BN_copy(points[i]->Z, tmp_Z))
1304
0
                goto err;
1305
0
        }
1306
0
    }
1307
1308
0
    if (!BN_is_zero(points[0]->Z)) {
1309
        /* Replace points[0]->Z by its inverse. */
1310
0
        if (!BN_copy(points[0]->Z, tmp))
1311
0
            goto err;
1312
0
    }
1313
1314
    /* Finally, fix up the X and Y coordinates for all points. */
1315
1316
0
    for (i = 0; i < num; i++) {
1317
0
        EC_POINT *p = points[i];
1318
1319
0
        if (!BN_is_zero(p->Z)) {
1320
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1321
1322
0
            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
1323
0
                goto err;
1324
0
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
1325
0
                goto err;
1326
1327
0
            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
1328
0
                goto err;
1329
0
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
1330
0
                goto err;
1331
1332
0
            if (group->meth->field_set_to_one != 0) {
1333
0
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
1334
0
                    goto err;
1335
0
            } else {
1336
0
                if (!BN_one(p->Z))
1337
0
                    goto err;
1338
0
            }
1339
0
            p->Z_is_one = 1;
1340
0
        }
1341
0
    }
1342
1343
0
    ret = 1;
1344
1345
0
 err:
1346
0
    BN_CTX_end(ctx);
1347
0
    BN_CTX_free(new_ctx);
1348
0
    if (prod_Z != NULL) {
1349
0
        for (i = 0; i < num; i++) {
1350
0
            if (prod_Z[i] == NULL)
1351
0
                break;
1352
0
            BN_clear_free(prod_Z[i]);
1353
0
        }
1354
0
        OPENSSL_free(prod_Z);
1355
0
    }
1356
0
    return ret;
1357
0
}
1358
1359
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1360
                            const BIGNUM *b, BN_CTX *ctx)
1361
0
{
1362
0
    return BN_mod_mul(r, a, b, group->field, ctx);
1363
0
}
1364
1365
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1366
                            BN_CTX *ctx)
1367
0
{
1368
0
    return BN_mod_sqr(r, a, group->field, ctx);
1369
0
}
1370
1371
/*-
1372
 * Computes the multiplicative inverse of a in GF(p), storing the result in r.
1373
 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
1374
 * Since we don't have a Mont structure here, SCA hardening is with blinding.
1375
 * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
1376
 */
1377
int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1378
                            BN_CTX *ctx)
1379
0
{
1380
0
    BIGNUM *e = NULL;
1381
0
    BN_CTX *new_ctx = NULL;
1382
0
    int ret = 0;
1383
1384
0
    if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
1385
0
        return 0;
1386
1387
0
    BN_CTX_start(ctx);
1388
0
    if ((e = BN_CTX_get(ctx)) == NULL)
1389
0
        goto err;
1390
1391
0
    do {
1392
0
        if (!BN_priv_rand_range(e, group->field))
1393
0
        goto err;
1394
0
    } while (BN_is_zero(e));
1395
1396
    /* r := a * e */
1397
0
    if (!group->meth->field_mul(group, r, a, e, ctx))
1398
0
        goto err;
1399
    /* r := 1/(a * e) */
1400
0
    if (!BN_mod_inverse(r, r, group->field, ctx)) {
1401
0
        ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
1402
0
        goto err;
1403
0
    }
1404
    /* r := e/(a * e) = 1/a */
1405
0
    if (!group->meth->field_mul(group, r, r, e, ctx))
1406
0
        goto err;
1407
1408
0
    ret = 1;
1409
1410
0
 err:
1411
0
    BN_CTX_end(ctx);
1412
0
    BN_CTX_free(new_ctx);
1413
0
    return ret;
1414
0
}
1415
1416
/*-
1417
 * Apply randomization of EC point projective coordinates:
1418
 *
1419
 *   (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
1420
 *   lambda = [1,group->field)
1421
 *
1422
 */
1423
int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
1424
                                    BN_CTX *ctx)
1425
0
{
1426
0
    int ret = 0;
1427
0
    BIGNUM *lambda = NULL;
1428
0
    BIGNUM *temp = NULL;
1429
1430
0
    BN_CTX_start(ctx);
1431
0
    lambda = BN_CTX_get(ctx);
1432
0
    temp = BN_CTX_get(ctx);
1433
0
    if (temp == NULL) {
1434
0
        ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
1435
0
        goto end;
1436
0
    }
1437
1438
    /*-
1439
     * Make sure lambda is not zero.
1440
     * If the RNG fails, we cannot blind but nevertheless want
1441
     * code to continue smoothly and not clobber the error stack.
1442
     */
1443
0
    do {
1444
0
        ERR_set_mark();
1445
0
        ret = BN_priv_rand_range(lambda, group->field);
1446
0
        ERR_pop_to_mark();
1447
0
        if (ret == 0) {
1448
0
            ret = 1;
1449
0
            goto end;
1450
0
        }
1451
0
    } while (BN_is_zero(lambda));
1452
1453
    /* if field_encode defined convert between representations */
1454
0
    if ((group->meth->field_encode != NULL
1455
0
         && !group->meth->field_encode(group, lambda, lambda, ctx))
1456
0
        || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
1457
0
        || !group->meth->field_sqr(group, temp, lambda, ctx)
1458
0
        || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
1459
0
        || !group->meth->field_mul(group, temp, temp, lambda, ctx)
1460
0
        || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
1461
0
        goto end;
1462
1463
0
    p->Z_is_one = 0;
1464
0
    ret = 1;
1465
1466
0
 end:
1467
0
    BN_CTX_end(ctx);
1468
0
    return ret;
1469
0
}
1470
1471
/*-
1472
 * Input:
1473
 * - p: affine coordinates
1474
 *
1475
 * Output:
1476
 * - s := p, r := 2p: blinded projective (homogeneous) coordinates
1477
 *
1478
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
1479
 * multiplication resistant against side channel attacks" appendix, described at
1480
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
1481
 * simplified for Z1=1.
1482
 *
1483
 * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
1484
 * for any non-zero \lambda that holds for projective (homogeneous) coords.
1485
 */
1486
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
1487
                             EC_POINT *r, EC_POINT *s,
1488
                             EC_POINT *p, BN_CTX *ctx)
1489
290
{
1490
290
    BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
1491
1492
290
    t1 = s->Z;
1493
290
    t2 = r->Z;
1494
290
    t3 = s->X;
1495
290
    t4 = r->X;
1496
290
    t5 = s->Y;
1497
1498
290
    if (!p->Z_is_one /* r := 2p */
1499
290
        || !group->meth->field_sqr(group, t3, p->X, ctx)
1500
290
        || !BN_mod_sub_quick(t4, t3, group->a, group->field)
1501
290
        || !group->meth->field_sqr(group, t4, t4, ctx)
1502
290
        || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
1503
290
        || !BN_mod_lshift_quick(t5, t5, 3, group->field)
1504
        /* r->X coord output */
1505
290
        || !BN_mod_sub_quick(r->X, t4, t5, group->field)
1506
290
        || !BN_mod_add_quick(t1, t3, group->a, group->field)
1507
290
        || !group->meth->field_mul(group, t2, p->X, t1, ctx)
1508
290
        || !BN_mod_add_quick(t2, group->b, t2, group->field)
1509
        /* r->Z coord output */
1510
290
        || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
1511
0
        return 0;
1512
1513
    /* make sure lambda (r->Y here for storage) is not zero */
1514
290
    do {
1515
290
        if (!BN_priv_rand_range(r->Y, group->field))
1516
0
            return 0;
1517
290
    } while (BN_is_zero(r->Y));
1518
1519
    /* make sure lambda (s->Z here for storage) is not zero */
1520
290
    do {
1521
290
        if (!BN_priv_rand_range(s->Z, group->field))
1522
0
            return 0;
1523
290
    } while (BN_is_zero(s->Z));
1524
1525
    /* if field_encode defined convert between representations */
1526
290
    if (group->meth->field_encode != NULL
1527
290
        && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
1528
290
            || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
1529
0
        return 0;
1530
1531
    /* blind r and s independently */
1532
290
    if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
1533
290
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
1534
290
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
1535
0
        return 0;
1536
1537
290
    r->Z_is_one = 0;
1538
290
    s->Z_is_one = 0;
1539
1540
290
    return 1;
1541
290
}
1542
1543
/*-
1544
 * Input:
1545
 * - s, r: projective (homogeneous) coordinates
1546
 * - p: affine coordinates
1547
 *
1548
 * Output:
1549
 * - s := r + s, r := 2r: projective (homogeneous) coordinates
1550
 *
1551
 * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
1552
 * "A fast parallel elliptic curve multiplication resistant against side channel
1553
 * attacks", as described at
1554
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
1555
 */
1556
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
1557
                              EC_POINT *r, EC_POINT *s,
1558
                              EC_POINT *p, BN_CTX *ctx)
1559
111k
{
1560
111k
    int ret = 0;
1561
111k
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1562
1563
111k
    BN_CTX_start(ctx);
1564
111k
    t0 = BN_CTX_get(ctx);
1565
111k
    t1 = BN_CTX_get(ctx);
1566
111k
    t2 = BN_CTX_get(ctx);
1567
111k
    t3 = BN_CTX_get(ctx);
1568
111k
    t4 = BN_CTX_get(ctx);
1569
111k
    t5 = BN_CTX_get(ctx);
1570
111k
    t6 = BN_CTX_get(ctx);
1571
1572
111k
    if (t6 == NULL
1573
111k
        || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
1574
111k
        || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
1575
111k
        || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
1576
111k
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
1577
111k
        || !group->meth->field_mul(group, t5, group->a, t0, ctx)
1578
111k
        || !BN_mod_add_quick(t5, t6, t5, group->field)
1579
111k
        || !BN_mod_add_quick(t6, t3, t4, group->field)
1580
111k
        || !group->meth->field_mul(group, t5, t6, t5, ctx)
1581
111k
        || !group->meth->field_sqr(group, t0, t0, ctx)
1582
111k
        || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
1583
111k
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1584
111k
        || !BN_mod_lshift1_quick(t5, t5, group->field)
1585
111k
        || !BN_mod_sub_quick(t3, t4, t3, group->field)
1586
        /* s->Z coord output */
1587
111k
        || !group->meth->field_sqr(group, s->Z, t3, ctx)
1588
111k
        || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
1589
111k
        || !BN_mod_add_quick(t0, t0, t5, group->field)
1590
        /* s->X coord output */
1591
111k
        || !BN_mod_sub_quick(s->X, t0, t4, group->field)
1592
111k
        || !group->meth->field_sqr(group, t4, r->X, ctx)
1593
111k
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
1594
111k
        || !group->meth->field_mul(group, t6, t5, group->a, ctx)
1595
111k
        || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
1596
111k
        || !group->meth->field_sqr(group, t1, t1, ctx)
1597
111k
        || !BN_mod_sub_quick(t1, t1, t4, group->field)
1598
111k
        || !BN_mod_sub_quick(t1, t1, t5, group->field)
1599
111k
        || !BN_mod_sub_quick(t3, t4, t6, group->field)
1600
111k
        || !group->meth->field_sqr(group, t3, t3, ctx)
1601
111k
        || !group->meth->field_mul(group, t0, t5, t1, ctx)
1602
111k
        || !group->meth->field_mul(group, t0, t2, t0, ctx)
1603
        /* r->X coord output */
1604
111k
        || !BN_mod_sub_quick(r->X, t3, t0, group->field)
1605
111k
        || !BN_mod_add_quick(t3, t4, t6, group->field)
1606
111k
        || !group->meth->field_sqr(group, t4, t5, ctx)
1607
111k
        || !group->meth->field_mul(group, t4, t4, t2, ctx)
1608
111k
        || !group->meth->field_mul(group, t1, t1, t3, ctx)
1609
111k
        || !BN_mod_lshift1_quick(t1, t1, group->field)
1610
        /* r->Z coord output */
1611
111k
        || !BN_mod_add_quick(r->Z, t4, t1, group->field))
1612
0
        goto err;
1613
1614
111k
    ret = 1;
1615
1616
111k
 err:
1617
111k
    BN_CTX_end(ctx);
1618
111k
    return ret;
1619
111k
}
1620
1621
/*-
1622
 * Input:
1623
 * - s, r: projective (homogeneous) coordinates
1624
 * - p: affine coordinates
1625
 *
1626
 * Output:
1627
 * - r := (x,y): affine coordinates
1628
 *
1629
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
1630
 * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
1631
 * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
1632
 * coords, and return r in affine coordinates.
1633
 *
1634
 * X4 = two*Y1*X2*Z3*Z2;
1635
 * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
1636
 * Z4 = two*Y1*Z3*SQR(Z2);
1637
 *
1638
 * Z4 != 0 because:
1639
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
1640
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
1641
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
1642
 *    one of the BN_is_zero(...) branches.
1643
 */
1644
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
1645
                              EC_POINT *r, EC_POINT *s,
1646
                              EC_POINT *p, BN_CTX *ctx)
1647
290
{
1648
290
    int ret = 0;
1649
290
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
1650
1651
290
    if (BN_is_zero(r->Z))
1652
0
        return EC_POINT_set_to_infinity(group, r);
1653
1654
290
    if (BN_is_zero(s->Z)) {
1655
0
        if (!EC_POINT_copy(r, p)
1656
0
            || !EC_POINT_invert(group, r, ctx))
1657
0
            return 0;
1658
0
        return 1;
1659
0
    }
1660
1661
290
    BN_CTX_start(ctx);
1662
290
    t0 = BN_CTX_get(ctx);
1663
290
    t1 = BN_CTX_get(ctx);
1664
290
    t2 = BN_CTX_get(ctx);
1665
290
    t3 = BN_CTX_get(ctx);
1666
290
    t4 = BN_CTX_get(ctx);
1667
290
    t5 = BN_CTX_get(ctx);
1668
290
    t6 = BN_CTX_get(ctx);
1669
1670
290
    if (t6 == NULL
1671
290
        || !BN_mod_lshift1_quick(t4, p->Y, group->field)
1672
290
        || !group->meth->field_mul(group, t6, r->X, t4, ctx)
1673
290
        || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
1674
290
        || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
1675
290
        || !BN_mod_lshift1_quick(t1, group->b, group->field)
1676
290
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1677
290
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
1678
290
        || !group->meth->field_mul(group, t2, t3, t1, ctx)
1679
290
        || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
1680
290
        || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
1681
290
        || !BN_mod_add_quick(t1, t1, t6, group->field)
1682
290
        || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
1683
290
        || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
1684
290
        || !BN_mod_add_quick(t6, r->X, t0, group->field)
1685
290
        || !group->meth->field_mul(group, t6, t6, t1, ctx)
1686
290
        || !BN_mod_add_quick(t6, t6, t2, group->field)
1687
290
        || !BN_mod_sub_quick(t0, t0, r->X, group->field)
1688
290
        || !group->meth->field_sqr(group, t0, t0, ctx)
1689
290
        || !group->meth->field_mul(group, t0, t0, s->X, ctx)
1690
290
        || !BN_mod_sub_quick(t0, t6, t0, group->field)
1691
290
        || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
1692
290
        || !group->meth->field_mul(group, t1, t3, t1, ctx)
1693
290
        || (group->meth->field_decode != NULL
1694
290
            && !group->meth->field_decode(group, t1, t1, ctx))
1695
290
        || !group->meth->field_inv(group, t1, t1, ctx)
1696
290
        || (group->meth->field_encode != NULL
1697
290
            && !group->meth->field_encode(group, t1, t1, ctx))
1698
290
        || !group->meth->field_mul(group, r->X, t5, t1, ctx)
1699
290
        || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
1700
0
        goto err;
1701
1702
290
    if (group->meth->field_set_to_one != NULL) {
1703
290
        if (!group->meth->field_set_to_one(group, r->Z, ctx))
1704
0
            goto err;
1705
290
    } else {
1706
0
        if (!BN_one(r->Z))
1707
0
            goto err;
1708
0
    }
1709
1710
290
    r->Z_is_one = 1;
1711
290
    ret = 1;
1712
1713
290
 err:
1714
290
    BN_CTX_end(ctx);
1715
290
    return ret;
1716
290
}