/src/openssl111/crypto/poly1305/poly1305.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdlib.h> |
11 | | #include <string.h> |
12 | | #include <openssl/crypto.h> |
13 | | |
14 | | #include "crypto/poly1305.h" |
15 | | #include "poly1305_local.h" |
16 | | |
17 | | size_t Poly1305_ctx_size(void) |
18 | 1.49k | { |
19 | 1.49k | return sizeof(struct poly1305_context); |
20 | 1.49k | } |
21 | | |
22 | | /* pick 32-bit unsigned integer in little endian order */ |
23 | | static unsigned int U8TOU32(const unsigned char *p) |
24 | 33.8k | { |
25 | 33.8k | return (((unsigned int)(p[0] & 0xff)) | |
26 | 33.8k | ((unsigned int)(p[1] & 0xff) << 8) | |
27 | 33.8k | ((unsigned int)(p[2] & 0xff) << 16) | |
28 | 33.8k | ((unsigned int)(p[3] & 0xff) << 24)); |
29 | 33.8k | } |
30 | | |
31 | | /* |
32 | | * Implementations can be classified by amount of significant bits in |
33 | | * words making up the multi-precision value, or in other words radix |
34 | | * or base of numerical representation, e.g. base 2^64, base 2^32, |
35 | | * base 2^26. Complementary characteristic is how wide is the result of |
36 | | * multiplication of pair of digits, e.g. it would take 128 bits to |
37 | | * accommodate multiplication result in base 2^64 case. These are used |
38 | | * interchangeably. To describe implementation that is. But interface |
39 | | * is designed to isolate this so that low-level primitives implemented |
40 | | * in assembly can be self-contained/self-coherent. |
41 | | */ |
42 | | #ifndef POLY1305_ASM |
43 | | /* |
44 | | * Even though there is __int128 reference implementation targeting |
45 | | * 64-bit platforms provided below, it's not obvious that it's optimal |
46 | | * choice for every one of them. Depending on instruction set overall |
47 | | * amount of instructions can be comparable to one in __int64 |
48 | | * implementation. Amount of multiplication instructions would be lower, |
49 | | * but not necessarily overall. And in out-of-order execution context, |
50 | | * it is the latter that can be crucial... |
51 | | * |
52 | | * On related note. Poly1305 author, D. J. Bernstein, discusses and |
53 | | * provides floating-point implementations of the algorithm in question. |
54 | | * It made a lot of sense by the time of introduction, because most |
55 | | * then-modern processors didn't have pipelined integer multiplier. |
56 | | * [Not to mention that some had non-constant timing for integer |
57 | | * multiplications.] Floating-point instructions on the other hand could |
58 | | * be issued every cycle, which allowed to achieve better performance. |
59 | | * Nowadays, with SIMD and/or out-or-order execution, shared or |
60 | | * even emulated FPU, it's more complicated, and floating-point |
61 | | * implementation is not necessarily optimal choice in every situation, |
62 | | * rather contrary... |
63 | | * |
64 | | * <appro@openssl.org> |
65 | | */ |
66 | | |
67 | | typedef unsigned int u32; |
68 | | |
69 | | /* |
70 | | * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks |
71 | | * of |inp| no longer than |len|. Behaviour for |len| not divisible by |
72 | | * block size is unspecified in general case, even though in reference |
73 | | * implementation the trailing chunk is simply ignored. Per algorithm |
74 | | * specification, every input block, complete or last partial, is to be |
75 | | * padded with a bit past most significant byte. The latter kind is then |
76 | | * padded with zeros till block size. This last partial block padding |
77 | | * is caller(*)'s responsibility, and because of this the last partial |
78 | | * block is always processed with separate call with |len| set to |
79 | | * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| |
80 | | * should be set to 1 to perform implicit padding with 128th bit. |
81 | | * poly1305_blocks does not actually check for this constraint though, |
82 | | * it's caller(*)'s responsibility to comply. |
83 | | * |
84 | | * (*) In the context "caller" is not application code, but higher |
85 | | * level Poly1305_* from this very module, so that quirks are |
86 | | * handled locally. |
87 | | */ |
88 | | static void |
89 | | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); |
90 | | |
91 | | /* |
92 | | * Type-agnostic "rip-off" from constant_time.h |
93 | | */ |
94 | | # define CONSTANT_TIME_CARRY(a,b) ( \ |
95 | | (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ |
96 | | ) |
97 | | |
98 | | # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \ |
99 | | (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8) |
100 | | |
101 | | typedef unsigned long u64; |
102 | | typedef __uint128_t u128; |
103 | | |
104 | | typedef struct { |
105 | | u64 h[3]; |
106 | | u64 r[2]; |
107 | | } poly1305_internal; |
108 | | |
109 | | /* pick 32-bit unsigned integer in little endian order */ |
110 | | static u64 U8TOU64(const unsigned char *p) |
111 | | { |
112 | | return (((u64)(p[0] & 0xff)) | |
113 | | ((u64)(p[1] & 0xff) << 8) | |
114 | | ((u64)(p[2] & 0xff) << 16) | |
115 | | ((u64)(p[3] & 0xff) << 24) | |
116 | | ((u64)(p[4] & 0xff) << 32) | |
117 | | ((u64)(p[5] & 0xff) << 40) | |
118 | | ((u64)(p[6] & 0xff) << 48) | |
119 | | ((u64)(p[7] & 0xff) << 56)); |
120 | | } |
121 | | |
122 | | /* store a 32-bit unsigned integer in little endian */ |
123 | | static void U64TO8(unsigned char *p, u64 v) |
124 | | { |
125 | | p[0] = (unsigned char)((v) & 0xff); |
126 | | p[1] = (unsigned char)((v >> 8) & 0xff); |
127 | | p[2] = (unsigned char)((v >> 16) & 0xff); |
128 | | p[3] = (unsigned char)((v >> 24) & 0xff); |
129 | | p[4] = (unsigned char)((v >> 32) & 0xff); |
130 | | p[5] = (unsigned char)((v >> 40) & 0xff); |
131 | | p[6] = (unsigned char)((v >> 48) & 0xff); |
132 | | p[7] = (unsigned char)((v >> 56) & 0xff); |
133 | | } |
134 | | |
135 | | static void poly1305_init(void *ctx, const unsigned char key[16]) |
136 | | { |
137 | | poly1305_internal *st = (poly1305_internal *) ctx; |
138 | | |
139 | | /* h = 0 */ |
140 | | st->h[0] = 0; |
141 | | st->h[1] = 0; |
142 | | st->h[2] = 0; |
143 | | |
144 | | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
145 | | st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; |
146 | | st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; |
147 | | } |
148 | | |
149 | | static void |
150 | | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
151 | | { |
152 | | poly1305_internal *st = (poly1305_internal *)ctx; |
153 | | u64 r0, r1; |
154 | | u64 s1; |
155 | | u64 h0, h1, h2, c; |
156 | | u128 d0, d1; |
157 | | |
158 | | r0 = st->r[0]; |
159 | | r1 = st->r[1]; |
160 | | |
161 | | s1 = r1 + (r1 >> 2); |
162 | | |
163 | | h0 = st->h[0]; |
164 | | h1 = st->h[1]; |
165 | | h2 = st->h[2]; |
166 | | |
167 | | while (len >= POLY1305_BLOCK_SIZE) { |
168 | | /* h += m[i] */ |
169 | | h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); |
170 | | h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); |
171 | | /* |
172 | | * padbit can be zero only when original len was |
173 | | * POLY1306_BLOCK_SIZE, but we don't check |
174 | | */ |
175 | | h2 += (u64)(d1 >> 64) + padbit; |
176 | | |
177 | | /* h *= r "%" p, where "%" stands for "partial remainder" */ |
178 | | d0 = ((u128)h0 * r0) + |
179 | | ((u128)h1 * s1); |
180 | | d1 = ((u128)h0 * r1) + |
181 | | ((u128)h1 * r0) + |
182 | | (h2 * s1); |
183 | | h2 = (h2 * r0); |
184 | | |
185 | | /* last reduction step: */ |
186 | | /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ |
187 | | h0 = (u64)d0; |
188 | | h1 = (u64)(d1 += d0 >> 64); |
189 | | h2 += (u64)(d1 >> 64); |
190 | | /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ |
191 | | c = (h2 >> 2) + (h2 & ~3UL); |
192 | | h2 &= 3; |
193 | | h0 += c; |
194 | | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
195 | | h2 += CONSTANT_TIME_CARRY(h1,c); |
196 | | /* |
197 | | * Occasional overflows to 3rd bit of h2 are taken care of |
198 | | * "naturally". If after this point we end up at the top of |
199 | | * this loop, then the overflow bit will be accounted for |
200 | | * in next iteration. If we end up in poly1305_emit, then |
201 | | * comparison to modulus below will still count as "carry |
202 | | * into 131st bit", so that properly reduced value will be |
203 | | * picked in conditional move. |
204 | | */ |
205 | | |
206 | | inp += POLY1305_BLOCK_SIZE; |
207 | | len -= POLY1305_BLOCK_SIZE; |
208 | | } |
209 | | |
210 | | st->h[0] = h0; |
211 | | st->h[1] = h1; |
212 | | st->h[2] = h2; |
213 | | } |
214 | | |
215 | | static void poly1305_emit(void *ctx, unsigned char mac[16], |
216 | | const u32 nonce[4]) |
217 | | { |
218 | | poly1305_internal *st = (poly1305_internal *) ctx; |
219 | | u64 h0, h1, h2; |
220 | | u64 g0, g1, g2; |
221 | | u128 t; |
222 | | u64 mask; |
223 | | |
224 | | h0 = st->h[0]; |
225 | | h1 = st->h[1]; |
226 | | h2 = st->h[2]; |
227 | | |
228 | | /* compare to modulus by computing h + -p */ |
229 | | g0 = (u64)(t = (u128)h0 + 5); |
230 | | g1 = (u64)(t = (u128)h1 + (t >> 64)); |
231 | | g2 = h2 + (u64)(t >> 64); |
232 | | |
233 | | /* if there was carry into 131st bit, h1:h0 = g1:g0 */ |
234 | | mask = 0 - (g2 >> 2); |
235 | | g0 &= mask; |
236 | | g1 &= mask; |
237 | | mask = ~mask; |
238 | | h0 = (h0 & mask) | g0; |
239 | | h1 = (h1 & mask) | g1; |
240 | | |
241 | | /* mac = (h + nonce) % (2^128) */ |
242 | | h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); |
243 | | h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); |
244 | | |
245 | | U64TO8(mac + 0, h0); |
246 | | U64TO8(mac + 8, h1); |
247 | | } |
248 | | |
249 | | # else |
250 | | |
251 | | # if defined(_WIN32) && !defined(__MINGW32__) |
252 | | typedef unsigned __int64 u64; |
253 | | # elif defined(__arch64__) |
254 | | typedef unsigned long u64; |
255 | | # else |
256 | | typedef unsigned long long u64; |
257 | | # endif |
258 | | |
259 | | typedef struct { |
260 | | u32 h[5]; |
261 | | u32 r[4]; |
262 | | } poly1305_internal; |
263 | | |
264 | | /* store a 32-bit unsigned integer in little endian */ |
265 | | static void U32TO8(unsigned char *p, unsigned int v) |
266 | | { |
267 | | p[0] = (unsigned char)((v) & 0xff); |
268 | | p[1] = (unsigned char)((v >> 8) & 0xff); |
269 | | p[2] = (unsigned char)((v >> 16) & 0xff); |
270 | | p[3] = (unsigned char)((v >> 24) & 0xff); |
271 | | } |
272 | | |
273 | | static void poly1305_init(void *ctx, const unsigned char key[16]) |
274 | | { |
275 | | poly1305_internal *st = (poly1305_internal *) ctx; |
276 | | |
277 | | /* h = 0 */ |
278 | | st->h[0] = 0; |
279 | | st->h[1] = 0; |
280 | | st->h[2] = 0; |
281 | | st->h[3] = 0; |
282 | | st->h[4] = 0; |
283 | | |
284 | | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
285 | | st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; |
286 | | st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; |
287 | | st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; |
288 | | st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; |
289 | | } |
290 | | |
291 | | static void |
292 | | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
293 | | { |
294 | | poly1305_internal *st = (poly1305_internal *)ctx; |
295 | | u32 r0, r1, r2, r3; |
296 | | u32 s1, s2, s3; |
297 | | u32 h0, h1, h2, h3, h4, c; |
298 | | u64 d0, d1, d2, d3; |
299 | | |
300 | | r0 = st->r[0]; |
301 | | r1 = st->r[1]; |
302 | | r2 = st->r[2]; |
303 | | r3 = st->r[3]; |
304 | | |
305 | | s1 = r1 + (r1 >> 2); |
306 | | s2 = r2 + (r2 >> 2); |
307 | | s3 = r3 + (r3 >> 2); |
308 | | |
309 | | h0 = st->h[0]; |
310 | | h1 = st->h[1]; |
311 | | h2 = st->h[2]; |
312 | | h3 = st->h[3]; |
313 | | h4 = st->h[4]; |
314 | | |
315 | | while (len >= POLY1305_BLOCK_SIZE) { |
316 | | /* h += m[i] */ |
317 | | h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); |
318 | | h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); |
319 | | h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); |
320 | | h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); |
321 | | h4 += (u32)(d3 >> 32) + padbit; |
322 | | |
323 | | /* h *= r "%" p, where "%" stands for "partial remainder" */ |
324 | | d0 = ((u64)h0 * r0) + |
325 | | ((u64)h1 * s3) + |
326 | | ((u64)h2 * s2) + |
327 | | ((u64)h3 * s1); |
328 | | d1 = ((u64)h0 * r1) + |
329 | | ((u64)h1 * r0) + |
330 | | ((u64)h2 * s3) + |
331 | | ((u64)h3 * s2) + |
332 | | (h4 * s1); |
333 | | d2 = ((u64)h0 * r2) + |
334 | | ((u64)h1 * r1) + |
335 | | ((u64)h2 * r0) + |
336 | | ((u64)h3 * s3) + |
337 | | (h4 * s2); |
338 | | d3 = ((u64)h0 * r3) + |
339 | | ((u64)h1 * r2) + |
340 | | ((u64)h2 * r1) + |
341 | | ((u64)h3 * r0) + |
342 | | (h4 * s3); |
343 | | h4 = (h4 * r0); |
344 | | |
345 | | /* last reduction step: */ |
346 | | /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ |
347 | | h0 = (u32)d0; |
348 | | h1 = (u32)(d1 += d0 >> 32); |
349 | | h2 = (u32)(d2 += d1 >> 32); |
350 | | h3 = (u32)(d3 += d2 >> 32); |
351 | | h4 += (u32)(d3 >> 32); |
352 | | /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ |
353 | | c = (h4 >> 2) + (h4 & ~3U); |
354 | | h4 &= 3; |
355 | | h0 += c; |
356 | | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
357 | | h2 += (c = CONSTANT_TIME_CARRY(h1,c)); |
358 | | h3 += (c = CONSTANT_TIME_CARRY(h2,c)); |
359 | | h4 += CONSTANT_TIME_CARRY(h3,c); |
360 | | /* |
361 | | * Occasional overflows to 3rd bit of h4 are taken care of |
362 | | * "naturally". If after this point we end up at the top of |
363 | | * this loop, then the overflow bit will be accounted for |
364 | | * in next iteration. If we end up in poly1305_emit, then |
365 | | * comparison to modulus below will still count as "carry |
366 | | * into 131st bit", so that properly reduced value will be |
367 | | * picked in conditional move. |
368 | | */ |
369 | | |
370 | | inp += POLY1305_BLOCK_SIZE; |
371 | | len -= POLY1305_BLOCK_SIZE; |
372 | | } |
373 | | |
374 | | st->h[0] = h0; |
375 | | st->h[1] = h1; |
376 | | st->h[2] = h2; |
377 | | st->h[3] = h3; |
378 | | st->h[4] = h4; |
379 | | } |
380 | | |
381 | | static void poly1305_emit(void *ctx, unsigned char mac[16], |
382 | | const u32 nonce[4]) |
383 | | { |
384 | | poly1305_internal *st = (poly1305_internal *) ctx; |
385 | | u32 h0, h1, h2, h3, h4; |
386 | | u32 g0, g1, g2, g3, g4; |
387 | | u64 t; |
388 | | u32 mask; |
389 | | |
390 | | h0 = st->h[0]; |
391 | | h1 = st->h[1]; |
392 | | h2 = st->h[2]; |
393 | | h3 = st->h[3]; |
394 | | h4 = st->h[4]; |
395 | | |
396 | | /* compare to modulus by computing h + -p */ |
397 | | g0 = (u32)(t = (u64)h0 + 5); |
398 | | g1 = (u32)(t = (u64)h1 + (t >> 32)); |
399 | | g2 = (u32)(t = (u64)h2 + (t >> 32)); |
400 | | g3 = (u32)(t = (u64)h3 + (t >> 32)); |
401 | | g4 = h4 + (u32)(t >> 32); |
402 | | |
403 | | /* if there was carry into 131st bit, h3:h0 = g3:g0 */ |
404 | | mask = 0 - (g4 >> 2); |
405 | | g0 &= mask; |
406 | | g1 &= mask; |
407 | | g2 &= mask; |
408 | | g3 &= mask; |
409 | | mask = ~mask; |
410 | | h0 = (h0 & mask) | g0; |
411 | | h1 = (h1 & mask) | g1; |
412 | | h2 = (h2 & mask) | g2; |
413 | | h3 = (h3 & mask) | g3; |
414 | | |
415 | | /* mac = (h + nonce) % (2^128) */ |
416 | | h0 = (u32)(t = (u64)h0 + nonce[0]); |
417 | | h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); |
418 | | h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); |
419 | | h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); |
420 | | |
421 | | U32TO8(mac + 0, h0); |
422 | | U32TO8(mac + 4, h1); |
423 | | U32TO8(mac + 8, h2); |
424 | | U32TO8(mac + 12, h3); |
425 | | } |
426 | | # endif |
427 | | #else |
428 | | int poly1305_init(void *ctx, const unsigned char key[16], void *func); |
429 | | void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, |
430 | | unsigned int padbit); |
431 | | void poly1305_emit(void *ctx, unsigned char mac[16], |
432 | | const unsigned int nonce[4]); |
433 | | #endif |
434 | | |
435 | | void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) |
436 | 8.46k | { |
437 | 8.46k | ctx->nonce[0] = U8TOU32(&key[16]); |
438 | 8.46k | ctx->nonce[1] = U8TOU32(&key[20]); |
439 | 8.46k | ctx->nonce[2] = U8TOU32(&key[24]); |
440 | 8.46k | ctx->nonce[3] = U8TOU32(&key[28]); |
441 | | |
442 | | #ifndef POLY1305_ASM |
443 | | poly1305_init(ctx->opaque, key); |
444 | | #else |
445 | | /* |
446 | | * Unlike reference poly1305_init assembly counterpart is expected |
447 | | * to return a value: non-zero if it initializes ctx->func, and zero |
448 | | * otherwise. Latter is to simplify assembly in cases when there no |
449 | | * multiple code paths to switch between. |
450 | | */ |
451 | 8.46k | if (!poly1305_init(ctx->opaque, key, &ctx->func)) { |
452 | 0 | ctx->func.blocks = poly1305_blocks; |
453 | 0 | ctx->func.emit = poly1305_emit; |
454 | 0 | } |
455 | 8.46k | #endif |
456 | | |
457 | 8.46k | ctx->num = 0; |
458 | | |
459 | 8.46k | } |
460 | | |
461 | | #ifdef POLY1305_ASM |
462 | | /* |
463 | | * This "eclipses" poly1305_blocks and poly1305_emit, but it's |
464 | | * conscious choice imposed by -Wshadow compiler warnings. |
465 | | */ |
466 | 26.1k | # define poly1305_blocks (*poly1305_blocks_p) |
467 | 8.46k | # define poly1305_emit (*poly1305_emit_p) |
468 | | #endif |
469 | | |
470 | | void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) |
471 | 41.6k | { |
472 | 41.6k | #ifdef POLY1305_ASM |
473 | | /* |
474 | | * As documented, poly1305_blocks is never called with input |
475 | | * longer than single block and padbit argument set to 0. This |
476 | | * property is fluently used in assembly modules to optimize |
477 | | * padbit handling on loop boundary. |
478 | | */ |
479 | 41.6k | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
480 | 41.6k | #endif |
481 | 41.6k | size_t rem, num; |
482 | | |
483 | 41.6k | if ((num = ctx->num)) { |
484 | 16.2k | rem = POLY1305_BLOCK_SIZE - num; |
485 | 16.2k | if (len >= rem) { |
486 | 16.2k | memcpy(ctx->data + num, inp, rem); |
487 | 16.2k | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); |
488 | 16.2k | inp += rem; |
489 | 16.2k | len -= rem; |
490 | 16.2k | } else { |
491 | | /* Still not enough data to process a block. */ |
492 | 0 | memcpy(ctx->data + num, inp, len); |
493 | 0 | ctx->num = num + len; |
494 | 0 | return; |
495 | 0 | } |
496 | 16.2k | } |
497 | | |
498 | 41.6k | rem = len % POLY1305_BLOCK_SIZE; |
499 | 41.6k | len -= rem; |
500 | | |
501 | 41.6k | if (len >= POLY1305_BLOCK_SIZE) { |
502 | 9.84k | poly1305_blocks(ctx->opaque, inp, len, 1); |
503 | 9.84k | inp += len; |
504 | 9.84k | } |
505 | | |
506 | 41.6k | if (rem) |
507 | 16.2k | memcpy(ctx->data, inp, rem); |
508 | | |
509 | 41.6k | ctx->num = rem; |
510 | 41.6k | } |
511 | | |
512 | | void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) |
513 | 8.46k | { |
514 | 8.46k | #ifdef POLY1305_ASM |
515 | 8.46k | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
516 | 8.46k | poly1305_emit_f poly1305_emit_p = ctx->func.emit; |
517 | 8.46k | #endif |
518 | 8.46k | size_t num; |
519 | | |
520 | 8.46k | if ((num = ctx->num)) { |
521 | 0 | ctx->data[num++] = 1; /* pad bit */ |
522 | 0 | while (num < POLY1305_BLOCK_SIZE) |
523 | 0 | ctx->data[num++] = 0; |
524 | 0 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); |
525 | 0 | } |
526 | | |
527 | 8.46k | poly1305_emit(ctx->opaque, mac, ctx->nonce); |
528 | | |
529 | | /* zero out the state */ |
530 | 8.46k | OPENSSL_cleanse(ctx, sizeof(*ctx)); |
531 | 8.46k | } |