/src/openssl111/crypto/rsa/rsa_oaep.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ |
11 | | |
12 | | /* |
13 | | * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL: |
14 | | * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security |
15 | | * proof for the original OAEP scheme, which EME-OAEP is based on. A new |
16 | | * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, |
17 | | * "RSA-OEAP is Still Alive!", Dec. 2000, <URL: |
18 | | * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements |
19 | | * for the underlying permutation: "partial-one-wayness" instead of |
20 | | * one-wayness. For the RSA function, this is an equivalent notion. |
21 | | */ |
22 | | |
23 | | #include "internal/constant_time.h" |
24 | | |
25 | | #include <stdio.h> |
26 | | #include "internal/cryptlib.h" |
27 | | #include <openssl/bn.h> |
28 | | #include <openssl/evp.h> |
29 | | #include <openssl/rand.h> |
30 | | #include <openssl/sha.h> |
31 | | #include "rsa_local.h" |
32 | | |
33 | | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, |
34 | | const unsigned char *from, int flen, |
35 | | const unsigned char *param, int plen) |
36 | 0 | { |
37 | 0 | return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, |
38 | 0 | param, plen, NULL, NULL); |
39 | 0 | } |
40 | | |
41 | | int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
42 | | const unsigned char *from, int flen, |
43 | | const unsigned char *param, int plen, |
44 | | const EVP_MD *md, const EVP_MD *mgf1md) |
45 | 0 | { |
46 | 0 | int rv = 0; |
47 | 0 | int i, emlen = tlen - 1; |
48 | 0 | unsigned char *db, *seed; |
49 | 0 | unsigned char *dbmask = NULL; |
50 | 0 | unsigned char seedmask[EVP_MAX_MD_SIZE]; |
51 | 0 | int mdlen, dbmask_len = 0; |
52 | |
|
53 | 0 | if (md == NULL) |
54 | 0 | md = EVP_sha1(); |
55 | 0 | if (mgf1md == NULL) |
56 | 0 | mgf1md = md; |
57 | |
|
58 | 0 | mdlen = EVP_MD_size(md); |
59 | |
|
60 | 0 | if (flen > emlen - 2 * mdlen - 1) { |
61 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
62 | 0 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
63 | 0 | return 0; |
64 | 0 | } |
65 | | |
66 | 0 | if (emlen < 2 * mdlen + 1) { |
67 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
68 | 0 | RSA_R_KEY_SIZE_TOO_SMALL); |
69 | 0 | return 0; |
70 | 0 | } |
71 | | |
72 | 0 | to[0] = 0; |
73 | 0 | seed = to + 1; |
74 | 0 | db = to + mdlen + 1; |
75 | |
|
76 | 0 | if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) |
77 | 0 | goto err; |
78 | 0 | memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); |
79 | 0 | db[emlen - flen - mdlen - 1] = 0x01; |
80 | 0 | memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen); |
81 | 0 | if (RAND_bytes(seed, mdlen) <= 0) |
82 | 0 | goto err; |
83 | | |
84 | 0 | dbmask_len = emlen - mdlen; |
85 | 0 | dbmask = OPENSSL_malloc(dbmask_len); |
86 | 0 | if (dbmask == NULL) { |
87 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
88 | 0 | goto err; |
89 | 0 | } |
90 | | |
91 | 0 | if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0) |
92 | 0 | goto err; |
93 | 0 | for (i = 0; i < dbmask_len; i++) |
94 | 0 | db[i] ^= dbmask[i]; |
95 | |
|
96 | 0 | if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0) |
97 | 0 | goto err; |
98 | 0 | for (i = 0; i < mdlen; i++) |
99 | 0 | seed[i] ^= seedmask[i]; |
100 | 0 | rv = 1; |
101 | |
|
102 | 0 | err: |
103 | 0 | OPENSSL_cleanse(seedmask, sizeof(seedmask)); |
104 | 0 | OPENSSL_clear_free(dbmask, dbmask_len); |
105 | 0 | return rv; |
106 | 0 | } |
107 | | |
108 | | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, |
109 | | const unsigned char *from, int flen, int num, |
110 | | const unsigned char *param, int plen) |
111 | 0 | { |
112 | 0 | return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, |
113 | 0 | param, plen, NULL, NULL); |
114 | 0 | } |
115 | | |
116 | | int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
117 | | const unsigned char *from, int flen, |
118 | | int num, const unsigned char *param, |
119 | | int plen, const EVP_MD *md, |
120 | | const EVP_MD *mgf1md) |
121 | 0 | { |
122 | 0 | int i, dblen = 0, mlen = -1, one_index = 0, msg_index; |
123 | 0 | unsigned int good = 0, found_one_byte, mask; |
124 | 0 | const unsigned char *maskedseed, *maskeddb; |
125 | | /* |
126 | | * |em| is the encoded message, zero-padded to exactly |num| bytes: em = |
127 | | * Y || maskedSeed || maskedDB |
128 | | */ |
129 | 0 | unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE], |
130 | 0 | phash[EVP_MAX_MD_SIZE]; |
131 | 0 | int mdlen; |
132 | |
|
133 | 0 | if (md == NULL) |
134 | 0 | md = EVP_sha1(); |
135 | 0 | if (mgf1md == NULL) |
136 | 0 | mgf1md = md; |
137 | |
|
138 | 0 | mdlen = EVP_MD_size(md); |
139 | |
|
140 | 0 | if (tlen <= 0 || flen <= 0) |
141 | 0 | return -1; |
142 | | /* |
143 | | * |num| is the length of the modulus; |flen| is the length of the |
144 | | * encoded message. Therefore, for any |from| that was obtained by |
145 | | * decrypting a ciphertext, we must have |flen| <= |num|. Similarly, |
146 | | * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of |
147 | | * the ciphertext, see PKCS #1 v2.2, section 7.1.2. |
148 | | * This does not leak any side-channel information. |
149 | | */ |
150 | 0 | if (num < flen || num < 2 * mdlen + 2) { |
151 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
152 | 0 | RSA_R_OAEP_DECODING_ERROR); |
153 | 0 | return -1; |
154 | 0 | } |
155 | | |
156 | 0 | dblen = num - mdlen - 1; |
157 | 0 | db = OPENSSL_malloc(dblen); |
158 | 0 | if (db == NULL) { |
159 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
160 | 0 | goto cleanup; |
161 | 0 | } |
162 | | |
163 | 0 | em = OPENSSL_malloc(num); |
164 | 0 | if (em == NULL) { |
165 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
166 | 0 | ERR_R_MALLOC_FAILURE); |
167 | 0 | goto cleanup; |
168 | 0 | } |
169 | | |
170 | | /* |
171 | | * Caller is encouraged to pass zero-padded message created with |
172 | | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
173 | | * bounds, it's impossible to have an invariant memory access pattern |
174 | | * in case |from| was not zero-padded in advance. |
175 | | */ |
176 | 0 | for (from += flen, em += num, i = 0; i < num; i++) { |
177 | 0 | mask = ~constant_time_is_zero(flen); |
178 | 0 | flen -= 1 & mask; |
179 | 0 | from -= 1 & mask; |
180 | 0 | *--em = *from & mask; |
181 | 0 | } |
182 | | |
183 | | /* |
184 | | * The first byte must be zero, however we must not leak if this is |
185 | | * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA |
186 | | * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001). |
187 | | */ |
188 | 0 | good = constant_time_is_zero(em[0]); |
189 | |
|
190 | 0 | maskedseed = em + 1; |
191 | 0 | maskeddb = em + 1 + mdlen; |
192 | |
|
193 | 0 | if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) |
194 | 0 | goto cleanup; |
195 | 0 | for (i = 0; i < mdlen; i++) |
196 | 0 | seed[i] ^= maskedseed[i]; |
197 | |
|
198 | 0 | if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) |
199 | 0 | goto cleanup; |
200 | 0 | for (i = 0; i < dblen; i++) |
201 | 0 | db[i] ^= maskeddb[i]; |
202 | |
|
203 | 0 | if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) |
204 | 0 | goto cleanup; |
205 | | |
206 | 0 | good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen)); |
207 | |
|
208 | 0 | found_one_byte = 0; |
209 | 0 | for (i = mdlen; i < dblen; i++) { |
210 | | /* |
211 | | * Padding consists of a number of 0-bytes, followed by a 1. |
212 | | */ |
213 | 0 | unsigned int equals1 = constant_time_eq(db[i], 1); |
214 | 0 | unsigned int equals0 = constant_time_is_zero(db[i]); |
215 | 0 | one_index = constant_time_select_int(~found_one_byte & equals1, |
216 | 0 | i, one_index); |
217 | 0 | found_one_byte |= equals1; |
218 | 0 | good &= (found_one_byte | equals0); |
219 | 0 | } |
220 | |
|
221 | 0 | good &= found_one_byte; |
222 | | |
223 | | /* |
224 | | * At this point |good| is zero unless the plaintext was valid, |
225 | | * so plaintext-awareness ensures timing side-channels are no longer a |
226 | | * concern. |
227 | | */ |
228 | 0 | msg_index = one_index + 1; |
229 | 0 | mlen = dblen - msg_index; |
230 | | |
231 | | /* |
232 | | * For good measure, do this check in constant time as well. |
233 | | */ |
234 | 0 | good &= constant_time_ge(tlen, mlen); |
235 | | |
236 | | /* |
237 | | * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left. |
238 | | * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|. |
239 | | * Otherwise leave |to| unchanged. |
240 | | * Copy the memory back in a way that does not reveal the size of |
241 | | * the data being copied via a timing side channel. This requires copying |
242 | | * parts of the buffer multiple times based on the bits set in the real |
243 | | * length. Clear bits do a non-copy with identical access pattern. |
244 | | * The loop below has overall complexity of O(N*log(N)). |
245 | | */ |
246 | 0 | tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen), |
247 | 0 | dblen - mdlen - 1, tlen); |
248 | 0 | for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) { |
249 | 0 | mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0); |
250 | 0 | for (i = mdlen + 1; i < dblen - msg_index; i++) |
251 | 0 | db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]); |
252 | 0 | } |
253 | 0 | for (i = 0; i < tlen; i++) { |
254 | 0 | mask = good & constant_time_lt(i, mlen); |
255 | 0 | to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]); |
256 | 0 | } |
257 | | |
258 | | /* |
259 | | * To avoid chosen ciphertext attacks, the error message should not |
260 | | * reveal which kind of decoding error happened. |
261 | | */ |
262 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
263 | 0 | RSA_R_OAEP_DECODING_ERROR); |
264 | 0 | err_clear_last_constant_time(1 & good); |
265 | 0 | cleanup: |
266 | 0 | OPENSSL_cleanse(seed, sizeof(seed)); |
267 | 0 | OPENSSL_clear_free(db, dblen); |
268 | 0 | OPENSSL_clear_free(em, num); |
269 | |
|
270 | 0 | return constant_time_select_int(good, mlen, -1); |
271 | 0 | } |
272 | | |
273 | | int PKCS1_MGF1(unsigned char *mask, long len, |
274 | | const unsigned char *seed, long seedlen, const EVP_MD *dgst) |
275 | 224 | { |
276 | 224 | long i, outlen = 0; |
277 | 224 | unsigned char cnt[4]; |
278 | 224 | EVP_MD_CTX *c = EVP_MD_CTX_new(); |
279 | 224 | unsigned char md[EVP_MAX_MD_SIZE]; |
280 | 224 | int mdlen; |
281 | 224 | int rv = -1; |
282 | | |
283 | 224 | if (c == NULL) |
284 | 0 | goto err; |
285 | 224 | mdlen = EVP_MD_size(dgst); |
286 | 224 | if (mdlen < 0) |
287 | 0 | goto err; |
288 | 1.63k | for (i = 0; outlen < len; i++) { |
289 | 1.40k | cnt[0] = (unsigned char)((i >> 24) & 255); |
290 | 1.40k | cnt[1] = (unsigned char)((i >> 16) & 255); |
291 | 1.40k | cnt[2] = (unsigned char)((i >> 8)) & 255; |
292 | 1.40k | cnt[3] = (unsigned char)(i & 255); |
293 | 1.40k | if (!EVP_DigestInit_ex(c, dgst, NULL) |
294 | 1.40k | || !EVP_DigestUpdate(c, seed, seedlen) |
295 | 1.40k | || !EVP_DigestUpdate(c, cnt, 4)) |
296 | 0 | goto err; |
297 | 1.40k | if (outlen + mdlen <= len) { |
298 | 1.18k | if (!EVP_DigestFinal_ex(c, mask + outlen, NULL)) |
299 | 0 | goto err; |
300 | 1.18k | outlen += mdlen; |
301 | 1.18k | } else { |
302 | 224 | if (!EVP_DigestFinal_ex(c, md, NULL)) |
303 | 0 | goto err; |
304 | 224 | memcpy(mask + outlen, md, len - outlen); |
305 | 224 | outlen = len; |
306 | 224 | } |
307 | 1.40k | } |
308 | 224 | rv = 0; |
309 | 224 | err: |
310 | 224 | OPENSSL_cleanse(md, sizeof(md)); |
311 | 224 | EVP_MD_CTX_free(c); |
312 | 224 | return rv; |
313 | 224 | } |