/src/openssl111/crypto/rsa/rsa_pk1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/constant_time.h" |
11 | | |
12 | | #include <stdio.h> |
13 | | #include "internal/cryptlib.h" |
14 | | #include <openssl/bn.h> |
15 | | #include <openssl/rsa.h> |
16 | | #include <openssl/rand.h> |
17 | | |
18 | | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
19 | | const unsigned char *from, int flen) |
20 | 350 | { |
21 | 350 | int j; |
22 | 350 | unsigned char *p; |
23 | | |
24 | 350 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
25 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, |
26 | 0 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
27 | 0 | return 0; |
28 | 0 | } |
29 | | |
30 | 350 | p = (unsigned char *)to; |
31 | | |
32 | 350 | *(p++) = 0; |
33 | 350 | *(p++) = 1; /* Private Key BT (Block Type) */ |
34 | | |
35 | | /* pad out with 0xff data */ |
36 | 350 | j = tlen - 3 - flen; |
37 | 350 | memset(p, 0xff, j); |
38 | 350 | p += j; |
39 | 350 | *(p++) = '\0'; |
40 | 350 | memcpy(p, from, (unsigned int)flen); |
41 | 350 | return 1; |
42 | 350 | } |
43 | | |
44 | | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
45 | | const unsigned char *from, int flen, |
46 | | int num) |
47 | 0 | { |
48 | 0 | int i, j; |
49 | 0 | const unsigned char *p; |
50 | |
|
51 | 0 | p = from; |
52 | | |
53 | | /* |
54 | | * The format is |
55 | | * 00 || 01 || PS || 00 || D |
56 | | * PS - padding string, at least 8 bytes of FF |
57 | | * D - data. |
58 | | */ |
59 | |
|
60 | 0 | if (num < RSA_PKCS1_PADDING_SIZE) |
61 | 0 | return -1; |
62 | | |
63 | | /* Accept inputs with and without the leading 0-byte. */ |
64 | 0 | if (num == flen) { |
65 | 0 | if ((*p++) != 0x00) { |
66 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
67 | 0 | RSA_R_INVALID_PADDING); |
68 | 0 | return -1; |
69 | 0 | } |
70 | 0 | flen--; |
71 | 0 | } |
72 | | |
73 | 0 | if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
74 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
75 | 0 | RSA_R_BLOCK_TYPE_IS_NOT_01); |
76 | 0 | return -1; |
77 | 0 | } |
78 | | |
79 | | /* scan over padding data */ |
80 | 0 | j = flen - 1; /* one for type. */ |
81 | 0 | for (i = 0; i < j; i++) { |
82 | 0 | if (*p != 0xff) { /* should decrypt to 0xff */ |
83 | 0 | if (*p == 0) { |
84 | 0 | p++; |
85 | 0 | break; |
86 | 0 | } else { |
87 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
88 | 0 | RSA_R_BAD_FIXED_HEADER_DECRYPT); |
89 | 0 | return -1; |
90 | 0 | } |
91 | 0 | } |
92 | 0 | p++; |
93 | 0 | } |
94 | | |
95 | 0 | if (i == j) { |
96 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
97 | 0 | RSA_R_NULL_BEFORE_BLOCK_MISSING); |
98 | 0 | return -1; |
99 | 0 | } |
100 | | |
101 | 0 | if (i < 8) { |
102 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
103 | 0 | RSA_R_BAD_PAD_BYTE_COUNT); |
104 | 0 | return -1; |
105 | 0 | } |
106 | 0 | i++; /* Skip over the '\0' */ |
107 | 0 | j -= i; |
108 | 0 | if (j > tlen) { |
109 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE); |
110 | 0 | return -1; |
111 | 0 | } |
112 | 0 | memcpy(to, p, (unsigned int)j); |
113 | |
|
114 | 0 | return j; |
115 | 0 | } |
116 | | |
117 | | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
118 | | const unsigned char *from, int flen) |
119 | 0 | { |
120 | 0 | int i, j; |
121 | 0 | unsigned char *p; |
122 | |
|
123 | 0 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
124 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, |
125 | 0 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
126 | 0 | return 0; |
127 | 0 | } |
128 | | |
129 | 0 | p = (unsigned char *)to; |
130 | |
|
131 | 0 | *(p++) = 0; |
132 | 0 | *(p++) = 2; /* Public Key BT (Block Type) */ |
133 | | |
134 | | /* pad out with non-zero random data */ |
135 | 0 | j = tlen - 3 - flen; |
136 | |
|
137 | 0 | if (RAND_bytes(p, j) <= 0) |
138 | 0 | return 0; |
139 | 0 | for (i = 0; i < j; i++) { |
140 | 0 | if (*p == '\0') |
141 | 0 | do { |
142 | 0 | if (RAND_bytes(p, 1) <= 0) |
143 | 0 | return 0; |
144 | 0 | } while (*p == '\0'); |
145 | 0 | p++; |
146 | 0 | } |
147 | | |
148 | 0 | *(p++) = '\0'; |
149 | |
|
150 | 0 | memcpy(p, from, (unsigned int)flen); |
151 | 0 | return 1; |
152 | 0 | } |
153 | | |
154 | | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
155 | | const unsigned char *from, int flen, |
156 | | int num) |
157 | 0 | { |
158 | 0 | int i; |
159 | | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
160 | 0 | unsigned char *em = NULL; |
161 | 0 | unsigned int good, found_zero_byte, mask; |
162 | 0 | int zero_index = 0, msg_index, mlen = -1; |
163 | |
|
164 | 0 | if (tlen <= 0 || flen <= 0) |
165 | 0 | return -1; |
166 | | |
167 | | /* |
168 | | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
169 | | * section 7.2.2. |
170 | | */ |
171 | | |
172 | 0 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
173 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, |
174 | 0 | RSA_R_PKCS_DECODING_ERROR); |
175 | 0 | return -1; |
176 | 0 | } |
177 | | |
178 | 0 | em = OPENSSL_malloc(num); |
179 | 0 | if (em == NULL) { |
180 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE); |
181 | 0 | return -1; |
182 | 0 | } |
183 | | /* |
184 | | * Caller is encouraged to pass zero-padded message created with |
185 | | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
186 | | * bounds, it's impossible to have an invariant memory access pattern |
187 | | * in case |from| was not zero-padded in advance. |
188 | | */ |
189 | 0 | for (from += flen, em += num, i = 0; i < num; i++) { |
190 | 0 | mask = ~constant_time_is_zero(flen); |
191 | 0 | flen -= 1 & mask; |
192 | 0 | from -= 1 & mask; |
193 | 0 | *--em = *from & mask; |
194 | 0 | } |
195 | |
|
196 | 0 | good = constant_time_is_zero(em[0]); |
197 | 0 | good &= constant_time_eq(em[1], 2); |
198 | | |
199 | | /* scan over padding data */ |
200 | 0 | found_zero_byte = 0; |
201 | 0 | for (i = 2; i < num; i++) { |
202 | 0 | unsigned int equals0 = constant_time_is_zero(em[i]); |
203 | |
|
204 | 0 | zero_index = constant_time_select_int(~found_zero_byte & equals0, |
205 | 0 | i, zero_index); |
206 | 0 | found_zero_byte |= equals0; |
207 | 0 | } |
208 | | |
209 | | /* |
210 | | * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
211 | | * If we never found a 0-byte, then |zero_index| is 0 and the check |
212 | | * also fails. |
213 | | */ |
214 | 0 | good &= constant_time_ge(zero_index, 2 + 8); |
215 | | |
216 | | /* |
217 | | * Skip the zero byte. This is incorrect if we never found a zero-byte |
218 | | * but in this case we also do not copy the message out. |
219 | | */ |
220 | 0 | msg_index = zero_index + 1; |
221 | 0 | mlen = num - msg_index; |
222 | | |
223 | | /* |
224 | | * For good measure, do this check in constant time as well. |
225 | | */ |
226 | 0 | good &= constant_time_ge(tlen, mlen); |
227 | | |
228 | | /* |
229 | | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
230 | | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
231 | | * Otherwise leave |to| unchanged. |
232 | | * Copy the memory back in a way that does not reveal the size of |
233 | | * the data being copied via a timing side channel. This requires copying |
234 | | * parts of the buffer multiple times based on the bits set in the real |
235 | | * length. Clear bits do a non-copy with identical access pattern. |
236 | | * The loop below has overall complexity of O(N*log(N)). |
237 | | */ |
238 | 0 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
239 | 0 | num - RSA_PKCS1_PADDING_SIZE, tlen); |
240 | 0 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
241 | 0 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
242 | 0 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
243 | 0 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
244 | 0 | } |
245 | 0 | for (i = 0; i < tlen; i++) { |
246 | 0 | mask = good & constant_time_lt(i, mlen); |
247 | 0 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
248 | 0 | } |
249 | |
|
250 | 0 | OPENSSL_clear_free(em, num); |
251 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR); |
252 | 0 | err_clear_last_constant_time(1 & good); |
253 | |
|
254 | 0 | return constant_time_select_int(good, mlen, -1); |
255 | 0 | } |