/src/openssl111/crypto/x509/x509_vfy.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <time.h> |
12 | | #include <errno.h> |
13 | | #include <limits.h> |
14 | | |
15 | | #include "crypto/ctype.h" |
16 | | #include "internal/cryptlib.h" |
17 | | #include <openssl/crypto.h> |
18 | | #include <openssl/buffer.h> |
19 | | #include <openssl/evp.h> |
20 | | #include <openssl/asn1.h> |
21 | | #include <openssl/x509.h> |
22 | | #include <openssl/x509v3.h> |
23 | | #include <openssl/objects.h> |
24 | | #include "internal/dane.h" |
25 | | #include "crypto/x509.h" |
26 | | #include "x509_local.h" |
27 | | |
28 | | /* CRL score values */ |
29 | | |
30 | | /* No unhandled critical extensions */ |
31 | | |
32 | 0 | #define CRL_SCORE_NOCRITICAL 0x100 |
33 | | |
34 | | /* certificate is within CRL scope */ |
35 | | |
36 | 0 | #define CRL_SCORE_SCOPE 0x080 |
37 | | |
38 | | /* CRL times valid */ |
39 | | |
40 | 0 | #define CRL_SCORE_TIME 0x040 |
41 | | |
42 | | /* Issuer name matches certificate */ |
43 | | |
44 | 0 | #define CRL_SCORE_ISSUER_NAME 0x020 |
45 | | |
46 | | /* If this score or above CRL is probably valid */ |
47 | | |
48 | 0 | #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE) |
49 | | |
50 | | /* CRL issuer is certificate issuer */ |
51 | | |
52 | 0 | #define CRL_SCORE_ISSUER_CERT 0x018 |
53 | | |
54 | | /* CRL issuer is on certificate path */ |
55 | | |
56 | 0 | #define CRL_SCORE_SAME_PATH 0x008 |
57 | | |
58 | | /* CRL issuer matches CRL AKID */ |
59 | | |
60 | 0 | #define CRL_SCORE_AKID 0x004 |
61 | | |
62 | | /* Have a delta CRL with valid times */ |
63 | | |
64 | 0 | #define CRL_SCORE_TIME_DELTA 0x002 |
65 | | |
66 | | static int build_chain(X509_STORE_CTX *ctx); |
67 | | static int verify_chain(X509_STORE_CTX *ctx); |
68 | | static int dane_verify(X509_STORE_CTX *ctx); |
69 | | static int null_callback(int ok, X509_STORE_CTX *e); |
70 | | static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); |
71 | | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); |
72 | | static int check_chain_extensions(X509_STORE_CTX *ctx); |
73 | | static int check_name_constraints(X509_STORE_CTX *ctx); |
74 | | static int check_id(X509_STORE_CTX *ctx); |
75 | | static int check_trust(X509_STORE_CTX *ctx, int num_untrusted); |
76 | | static int check_revocation(X509_STORE_CTX *ctx); |
77 | | static int check_cert(X509_STORE_CTX *ctx); |
78 | | static int check_policy(X509_STORE_CTX *ctx); |
79 | | static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); |
80 | | static int check_dane_issuer(X509_STORE_CTX *ctx, int depth); |
81 | | static int check_key_level(X509_STORE_CTX *ctx, X509 *cert); |
82 | | static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert); |
83 | | static int check_curve(X509 *cert); |
84 | | |
85 | | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
86 | | unsigned int *preasons, X509_CRL *crl, X509 *x); |
87 | | static int get_crl_delta(X509_STORE_CTX *ctx, |
88 | | X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x); |
89 | | static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, |
90 | | int *pcrl_score, X509_CRL *base, |
91 | | STACK_OF(X509_CRL) *crls); |
92 | | static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, |
93 | | int *pcrl_score); |
94 | | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
95 | | unsigned int *preasons); |
96 | | static int check_crl_path(X509_STORE_CTX *ctx, X509 *x); |
97 | | static int check_crl_chain(X509_STORE_CTX *ctx, |
98 | | STACK_OF(X509) *cert_path, |
99 | | STACK_OF(X509) *crl_path); |
100 | | |
101 | | static int internal_verify(X509_STORE_CTX *ctx); |
102 | | |
103 | | static int null_callback(int ok, X509_STORE_CTX *e) |
104 | 3.24k | { |
105 | 3.24k | return ok; |
106 | 3.24k | } |
107 | | |
108 | | /* |
109 | | * Return 1 if given cert is considered self-signed, 0 if not or on error. |
110 | | * This does not verify self-signedness but relies on x509v3_cache_extensions() |
111 | | * matching issuer and subject names (i.e., the cert being self-issued) and any |
112 | | * present authority key identifier matching the subject key identifier, etc. |
113 | | */ |
114 | | static int cert_self_signed(X509 *x) |
115 | 3.24k | { |
116 | 3.24k | if (X509_check_purpose(x, -1, 0) != 1) |
117 | 0 | return 0; |
118 | 3.24k | if (x->ex_flags & EXFLAG_SS) |
119 | 3.24k | return 1; |
120 | 0 | else |
121 | 0 | return 0; |
122 | 3.24k | } |
123 | | |
124 | | /* Given a certificate try and find an exact match in the store */ |
125 | | |
126 | | static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) |
127 | 0 | { |
128 | 0 | STACK_OF(X509) *certs; |
129 | 0 | X509 *xtmp = NULL; |
130 | 0 | int i; |
131 | | /* Lookup all certs with matching subject name */ |
132 | 0 | certs = ctx->lookup_certs(ctx, X509_get_subject_name(x)); |
133 | 0 | if (certs == NULL) |
134 | 0 | return NULL; |
135 | | /* Look for exact match */ |
136 | 0 | for (i = 0; i < sk_X509_num(certs); i++) { |
137 | 0 | xtmp = sk_X509_value(certs, i); |
138 | 0 | if (!X509_cmp(xtmp, x)) |
139 | 0 | break; |
140 | 0 | xtmp = NULL; |
141 | 0 | } |
142 | 0 | if (xtmp != NULL && !X509_up_ref(xtmp)) |
143 | 0 | xtmp = NULL; |
144 | 0 | sk_X509_pop_free(certs, X509_free); |
145 | 0 | return xtmp; |
146 | 0 | } |
147 | | |
148 | | /*- |
149 | | * Inform the verify callback of an error. |
150 | | * If B<x> is not NULL it is the error cert, otherwise use the chain cert at |
151 | | * B<depth>. |
152 | | * If B<err> is not X509_V_OK, that's the error value, otherwise leave |
153 | | * unchanged (presumably set by the caller). |
154 | | * |
155 | | * Returns 0 to abort verification with an error, non-zero to continue. |
156 | | */ |
157 | | static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err) |
158 | 3.24k | { |
159 | 3.24k | ctx->error_depth = depth; |
160 | 3.24k | ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth); |
161 | 3.24k | if (err != X509_V_OK) |
162 | 3.24k | ctx->error = err; |
163 | 3.24k | return ctx->verify_cb(0, ctx); |
164 | 3.24k | } |
165 | | |
166 | | /*- |
167 | | * Inform the verify callback of an error, CRL-specific variant. Here, the |
168 | | * error depth and certificate are already set, we just specify the error |
169 | | * number. |
170 | | * |
171 | | * Returns 0 to abort verification with an error, non-zero to continue. |
172 | | */ |
173 | | static int verify_cb_crl(X509_STORE_CTX *ctx, int err) |
174 | 0 | { |
175 | 0 | ctx->error = err; |
176 | 0 | return ctx->verify_cb(0, ctx); |
177 | 0 | } |
178 | | |
179 | | static int check_auth_level(X509_STORE_CTX *ctx) |
180 | 0 | { |
181 | 0 | int i; |
182 | 0 | int num = sk_X509_num(ctx->chain); |
183 | |
|
184 | 0 | if (ctx->param->auth_level <= 0) |
185 | 0 | return 1; |
186 | | |
187 | 0 | for (i = 0; i < num; ++i) { |
188 | 0 | X509 *cert = sk_X509_value(ctx->chain, i); |
189 | | |
190 | | /* |
191 | | * We've already checked the security of the leaf key, so here we only |
192 | | * check the security of issuer keys. |
193 | | */ |
194 | 0 | if (i > 0 && !check_key_level(ctx, cert) && |
195 | 0 | verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0) |
196 | 0 | return 0; |
197 | | /* |
198 | | * We also check the signature algorithm security of all certificates |
199 | | * except those of the trust anchor at index num-1. |
200 | | */ |
201 | 0 | if (i < num - 1 && !check_sig_level(ctx, cert) && |
202 | 0 | verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0) |
203 | 0 | return 0; |
204 | 0 | } |
205 | 0 | return 1; |
206 | 0 | } |
207 | | |
208 | | static int verify_chain(X509_STORE_CTX *ctx) |
209 | 3.24k | { |
210 | 3.24k | int err; |
211 | 3.24k | int ok; |
212 | | |
213 | | /* |
214 | | * Before either returning with an error, or continuing with CRL checks, |
215 | | * instantiate chain public key parameters. |
216 | | */ |
217 | 3.24k | if ((ok = build_chain(ctx)) == 0 || |
218 | 3.24k | (ok = check_chain_extensions(ctx)) == 0 || |
219 | 3.24k | (ok = check_auth_level(ctx)) == 0 || |
220 | 3.24k | (ok = check_id(ctx)) == 0 || 1) |
221 | 3.24k | X509_get_pubkey_parameters(NULL, ctx->chain); |
222 | 3.24k | if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0) |
223 | 3.24k | return ok; |
224 | | |
225 | 0 | err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain, |
226 | 0 | ctx->param->flags); |
227 | 0 | if (err != X509_V_OK) { |
228 | 0 | if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0) |
229 | 0 | return ok; |
230 | 0 | } |
231 | | |
232 | | /* Verify chain signatures and expiration times */ |
233 | 0 | ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx); |
234 | 0 | if (!ok) |
235 | 0 | return ok; |
236 | | |
237 | 0 | if ((ok = check_name_constraints(ctx)) == 0) |
238 | 0 | return ok; |
239 | | |
240 | 0 | #ifndef OPENSSL_NO_RFC3779 |
241 | | /* RFC 3779 path validation, now that CRL check has been done */ |
242 | 0 | if ((ok = X509v3_asid_validate_path(ctx)) == 0) |
243 | 0 | return ok; |
244 | 0 | if ((ok = X509v3_addr_validate_path(ctx)) == 0) |
245 | 0 | return ok; |
246 | 0 | #endif |
247 | | |
248 | | /* If we get this far evaluate policies */ |
249 | 0 | if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK) |
250 | 0 | ok = ctx->check_policy(ctx); |
251 | 0 | return ok; |
252 | 0 | } |
253 | | |
254 | | int X509_verify_cert(X509_STORE_CTX *ctx) |
255 | 3.24k | { |
256 | 3.24k | SSL_DANE *dane = ctx->dane; |
257 | 3.24k | int ret; |
258 | | |
259 | 3.24k | if (ctx->cert == NULL) { |
260 | 0 | X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); |
261 | 0 | ctx->error = X509_V_ERR_INVALID_CALL; |
262 | 0 | return -1; |
263 | 0 | } |
264 | | |
265 | 3.24k | if (ctx->chain != NULL) { |
266 | | /* |
267 | | * This X509_STORE_CTX has already been used to verify a cert. We |
268 | | * cannot do another one. |
269 | | */ |
270 | 0 | X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
271 | 0 | ctx->error = X509_V_ERR_INVALID_CALL; |
272 | 0 | return -1; |
273 | 0 | } |
274 | | |
275 | 3.24k | if (!X509_up_ref(ctx->cert)) { |
276 | 0 | X509err(X509_F_X509_VERIFY_CERT, ERR_R_INTERNAL_ERROR); |
277 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
278 | 0 | return -1; |
279 | 0 | } |
280 | | |
281 | | /* |
282 | | * first we make sure the chain we are going to build is present and that |
283 | | * the first entry is in place |
284 | | */ |
285 | 3.24k | if ((ctx->chain = sk_X509_new_null()) == NULL |
286 | 3.24k | || !sk_X509_push(ctx->chain, ctx->cert)) { |
287 | 0 | X509_free(ctx->cert); |
288 | 0 | X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); |
289 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
290 | 0 | return -1; |
291 | 0 | } |
292 | | |
293 | 3.24k | ctx->num_untrusted = 1; |
294 | | |
295 | | /* If the peer's public key is too weak, we can stop early. */ |
296 | 3.24k | if (!check_key_level(ctx, ctx->cert) && |
297 | 3.24k | !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL)) |
298 | 0 | return 0; |
299 | | |
300 | 3.24k | if (DANETLS_ENABLED(dane)) |
301 | 0 | ret = dane_verify(ctx); |
302 | 3.24k | else |
303 | 3.24k | ret = verify_chain(ctx); |
304 | | |
305 | | /* |
306 | | * Safety-net. If we are returning an error, we must also set ctx->error, |
307 | | * so that the chain is not considered verified should the error be ignored |
308 | | * (e.g. TLS with SSL_VERIFY_NONE). |
309 | | */ |
310 | 3.24k | if (ret <= 0 && ctx->error == X509_V_OK) |
311 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
312 | 3.24k | return ret; |
313 | 3.24k | } |
314 | | |
315 | | static int sk_X509_contains(STACK_OF(X509) *sk, X509 *cert) |
316 | 0 | { |
317 | 0 | int i, n = sk_X509_num(sk); |
318 | |
|
319 | 0 | for (i = 0; i < n; i++) |
320 | 0 | if (X509_cmp(sk_X509_value(sk, i), cert) == 0) |
321 | 0 | return 1; |
322 | 0 | return 0; |
323 | 0 | } |
324 | | |
325 | | /* |
326 | | * Find in given STACK_OF(X509) sk an issuer cert of given cert x. |
327 | | * The issuer must not yet be in ctx->chain, where the exceptional case |
328 | | * that x is self-issued and ctx->chain has just one element is allowed. |
329 | | * Prefer the first one that is not expired, else take the last expired one. |
330 | | */ |
331 | | static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) |
332 | 0 | { |
333 | 0 | int i; |
334 | 0 | X509 *issuer, *rv = NULL; |
335 | |
|
336 | 0 | for (i = 0; i < sk_X509_num(sk); i++) { |
337 | 0 | issuer = sk_X509_value(sk, i); |
338 | 0 | if (ctx->check_issued(ctx, x, issuer) |
339 | 0 | && (((x->ex_flags & EXFLAG_SI) != 0 && sk_X509_num(ctx->chain) == 1) |
340 | 0 | || !sk_X509_contains(ctx->chain, issuer))) { |
341 | 0 | rv = issuer; |
342 | 0 | if (x509_check_cert_time(ctx, rv, -1)) |
343 | 0 | break; |
344 | 0 | } |
345 | 0 | } |
346 | 0 | return rv; |
347 | 0 | } |
348 | | |
349 | | /* Check that the given certificate 'x' is issued by the certificate 'issuer' */ |
350 | | static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer) |
351 | 0 | { |
352 | 0 | return x509_likely_issued(issuer, x) == X509_V_OK; |
353 | 0 | } |
354 | | |
355 | | /* Alternative lookup method: look from a STACK stored in other_ctx */ |
356 | | static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x) |
357 | 0 | { |
358 | 0 | *issuer = find_issuer(ctx, ctx->other_ctx, x); |
359 | |
|
360 | 0 | if (*issuer == NULL || !X509_up_ref(*issuer)) |
361 | 0 | goto err; |
362 | | |
363 | 0 | return 1; |
364 | | |
365 | 0 | err: |
366 | 0 | *issuer = NULL; |
367 | 0 | return 0; |
368 | 0 | } |
369 | | |
370 | | static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm) |
371 | 0 | { |
372 | 0 | STACK_OF(X509) *sk = NULL; |
373 | 0 | X509 *x; |
374 | 0 | int i; |
375 | |
|
376 | 0 | for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) { |
377 | 0 | x = sk_X509_value(ctx->other_ctx, i); |
378 | 0 | if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) { |
379 | 0 | if (!X509_up_ref(x)) { |
380 | 0 | sk_X509_pop_free(sk, X509_free); |
381 | 0 | X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_INTERNAL_ERROR); |
382 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
383 | 0 | return NULL; |
384 | 0 | } |
385 | 0 | if (sk == NULL) |
386 | 0 | sk = sk_X509_new_null(); |
387 | 0 | if (sk == NULL || !sk_X509_push(sk, x)) { |
388 | 0 | X509_free(x); |
389 | 0 | sk_X509_pop_free(sk, X509_free); |
390 | 0 | X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE); |
391 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
392 | 0 | return NULL; |
393 | 0 | } |
394 | 0 | } |
395 | 0 | } |
396 | 0 | return sk; |
397 | 0 | } |
398 | | |
399 | | /* |
400 | | * Check EE or CA certificate purpose. For trusted certificates explicit local |
401 | | * auxiliary trust can be used to override EKU-restrictions. |
402 | | */ |
403 | | static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth, |
404 | | int must_be_ca) |
405 | 0 | { |
406 | 0 | int tr_ok = X509_TRUST_UNTRUSTED; |
407 | | |
408 | | /* |
409 | | * For trusted certificates we want to see whether any auxiliary trust |
410 | | * settings trump the purpose constraints. |
411 | | * |
412 | | * This is complicated by the fact that the trust ordinals in |
413 | | * ctx->param->trust are entirely independent of the purpose ordinals in |
414 | | * ctx->param->purpose! |
415 | | * |
416 | | * What connects them is their mutual initialization via calls from |
417 | | * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets |
418 | | * related values of both param->trust and param->purpose. It is however |
419 | | * typically possible to infer associated trust values from a purpose value |
420 | | * via the X509_PURPOSE API. |
421 | | * |
422 | | * Therefore, we can only check for trust overrides when the purpose we're |
423 | | * checking is the same as ctx->param->purpose and ctx->param->trust is |
424 | | * also set. |
425 | | */ |
426 | 0 | if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose) |
427 | 0 | tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT); |
428 | |
|
429 | 0 | switch (tr_ok) { |
430 | 0 | case X509_TRUST_TRUSTED: |
431 | 0 | return 1; |
432 | 0 | case X509_TRUST_REJECTED: |
433 | 0 | break; |
434 | 0 | default: |
435 | 0 | switch (X509_check_purpose(x, purpose, must_be_ca > 0)) { |
436 | 0 | case 1: |
437 | 0 | return 1; |
438 | 0 | case 0: |
439 | 0 | break; |
440 | 0 | default: |
441 | 0 | if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0) |
442 | 0 | return 1; |
443 | 0 | } |
444 | 0 | break; |
445 | 0 | } |
446 | | |
447 | 0 | return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE); |
448 | 0 | } |
449 | | |
450 | | /* |
451 | | * Check a certificate chains extensions for consistency with the supplied |
452 | | * purpose |
453 | | */ |
454 | | |
455 | | static int check_chain_extensions(X509_STORE_CTX *ctx) |
456 | 0 | { |
457 | 0 | int i, must_be_ca, plen = 0; |
458 | 0 | X509 *x; |
459 | 0 | int proxy_path_length = 0; |
460 | 0 | int purpose; |
461 | 0 | int allow_proxy_certs; |
462 | 0 | int num = sk_X509_num(ctx->chain); |
463 | | |
464 | | /*- |
465 | | * must_be_ca can have 1 of 3 values: |
466 | | * -1: we accept both CA and non-CA certificates, to allow direct |
467 | | * use of self-signed certificates (which are marked as CA). |
468 | | * 0: we only accept non-CA certificates. This is currently not |
469 | | * used, but the possibility is present for future extensions. |
470 | | * 1: we only accept CA certificates. This is currently used for |
471 | | * all certificates in the chain except the leaf certificate. |
472 | | */ |
473 | 0 | must_be_ca = -1; |
474 | | |
475 | | /* CRL path validation */ |
476 | 0 | if (ctx->parent) { |
477 | 0 | allow_proxy_certs = 0; |
478 | 0 | purpose = X509_PURPOSE_CRL_SIGN; |
479 | 0 | } else { |
480 | 0 | allow_proxy_certs = |
481 | 0 | ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS); |
482 | 0 | purpose = ctx->param->purpose; |
483 | 0 | } |
484 | |
|
485 | 0 | for (i = 0; i < num; i++) { |
486 | 0 | int ret; |
487 | 0 | x = sk_X509_value(ctx->chain, i); |
488 | 0 | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
489 | 0 | && (x->ex_flags & EXFLAG_CRITICAL)) { |
490 | 0 | if (!verify_cb_cert(ctx, x, i, |
491 | 0 | X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION)) |
492 | 0 | return 0; |
493 | 0 | } |
494 | 0 | if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) { |
495 | 0 | if (!verify_cb_cert(ctx, x, i, |
496 | 0 | X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED)) |
497 | 0 | return 0; |
498 | 0 | } |
499 | 0 | ret = X509_check_ca(x); |
500 | 0 | switch (must_be_ca) { |
501 | 0 | case -1: |
502 | 0 | if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) |
503 | 0 | && (ret != 1) && (ret != 0)) { |
504 | 0 | ret = 0; |
505 | 0 | ctx->error = X509_V_ERR_INVALID_CA; |
506 | 0 | } else |
507 | 0 | ret = 1; |
508 | 0 | break; |
509 | 0 | case 0: |
510 | 0 | if (ret != 0) { |
511 | 0 | ret = 0; |
512 | 0 | ctx->error = X509_V_ERR_INVALID_NON_CA; |
513 | 0 | } else |
514 | 0 | ret = 1; |
515 | 0 | break; |
516 | 0 | default: |
517 | | /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */ |
518 | 0 | if ((ret == 0) |
519 | 0 | || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT) |
520 | 0 | && (ret != 1))) { |
521 | 0 | ret = 0; |
522 | 0 | ctx->error = X509_V_ERR_INVALID_CA; |
523 | 0 | } else |
524 | 0 | ret = 1; |
525 | 0 | break; |
526 | 0 | } |
527 | 0 | if (ret > 0 |
528 | 0 | && (ctx->param->flags & X509_V_FLAG_X509_STRICT) && num > 1) { |
529 | | /* Check for presence of explicit elliptic curve parameters */ |
530 | 0 | ret = check_curve(x); |
531 | 0 | if (ret < 0) { |
532 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
533 | 0 | ret = 0; |
534 | 0 | } else if (ret == 0) { |
535 | 0 | ctx->error = X509_V_ERR_EC_KEY_EXPLICIT_PARAMS; |
536 | 0 | } |
537 | 0 | } |
538 | 0 | if (ret > 0 |
539 | 0 | && (x->ex_flags & EXFLAG_CA) == 0 |
540 | 0 | && x->ex_pathlen != -1 |
541 | 0 | && (ctx->param->flags & X509_V_FLAG_X509_STRICT)) { |
542 | 0 | ctx->error = X509_V_ERR_INVALID_EXTENSION; |
543 | 0 | ret = 0; |
544 | 0 | } |
545 | 0 | if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK)) |
546 | 0 | return 0; |
547 | | /* check_purpose() makes the callback as needed */ |
548 | 0 | if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca)) |
549 | 0 | return 0; |
550 | | /* Check pathlen */ |
551 | 0 | if ((i > 1) && (x->ex_pathlen != -1) |
552 | 0 | && (plen > (x->ex_pathlen + proxy_path_length))) { |
553 | 0 | if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED)) |
554 | 0 | return 0; |
555 | 0 | } |
556 | | /* Increment path length if not a self issued intermediate CA */ |
557 | 0 | if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0) |
558 | 0 | plen++; |
559 | | /* |
560 | | * If this certificate is a proxy certificate, the next certificate |
561 | | * must be another proxy certificate or a EE certificate. If not, |
562 | | * the next certificate must be a CA certificate. |
563 | | */ |
564 | 0 | if (x->ex_flags & EXFLAG_PROXY) { |
565 | | /* |
566 | | * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint |
567 | | * is less than max_path_length, the former should be copied to |
568 | | * the latter, and 4.1.4 (a) stipulates that max_path_length |
569 | | * should be verified to be larger than zero and decrement it. |
570 | | * |
571 | | * Because we're checking the certs in the reverse order, we start |
572 | | * with verifying that proxy_path_length isn't larger than pcPLC, |
573 | | * and copy the latter to the former if it is, and finally, |
574 | | * increment proxy_path_length. |
575 | | */ |
576 | 0 | if (x->ex_pcpathlen != -1) { |
577 | 0 | if (proxy_path_length > x->ex_pcpathlen) { |
578 | 0 | if (!verify_cb_cert(ctx, x, i, |
579 | 0 | X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED)) |
580 | 0 | return 0; |
581 | 0 | } |
582 | 0 | proxy_path_length = x->ex_pcpathlen; |
583 | 0 | } |
584 | 0 | proxy_path_length++; |
585 | 0 | must_be_ca = 0; |
586 | 0 | } else |
587 | 0 | must_be_ca = 1; |
588 | 0 | } |
589 | 0 | return 1; |
590 | 0 | } |
591 | | |
592 | | static int has_san_id(X509 *x, int gtype) |
593 | 0 | { |
594 | 0 | int i; |
595 | 0 | int ret = 0; |
596 | 0 | GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); |
597 | |
|
598 | 0 | if (gs == NULL) |
599 | 0 | return 0; |
600 | | |
601 | 0 | for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) { |
602 | 0 | GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i); |
603 | |
|
604 | 0 | if (g->type == gtype) { |
605 | 0 | ret = 1; |
606 | 0 | break; |
607 | 0 | } |
608 | 0 | } |
609 | 0 | GENERAL_NAMES_free(gs); |
610 | 0 | return ret; |
611 | 0 | } |
612 | | |
613 | | static int check_name_constraints(X509_STORE_CTX *ctx) |
614 | 0 | { |
615 | 0 | int i; |
616 | | |
617 | | /* Check name constraints for all certificates */ |
618 | 0 | for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) { |
619 | 0 | X509 *x = sk_X509_value(ctx->chain, i); |
620 | 0 | int j; |
621 | | |
622 | | /* Ignore self issued certs unless last in chain */ |
623 | 0 | if (i && (x->ex_flags & EXFLAG_SI)) |
624 | 0 | continue; |
625 | | |
626 | | /* |
627 | | * Proxy certificates policy has an extra constraint, where the |
628 | | * certificate subject MUST be the issuer with a single CN entry |
629 | | * added. |
630 | | * (RFC 3820: 3.4, 4.1.3 (a)(4)) |
631 | | */ |
632 | 0 | if (x->ex_flags & EXFLAG_PROXY) { |
633 | 0 | X509_NAME *tmpsubject = X509_get_subject_name(x); |
634 | 0 | X509_NAME *tmpissuer = X509_get_issuer_name(x); |
635 | 0 | X509_NAME_ENTRY *tmpentry = NULL; |
636 | 0 | int last_object_nid = 0; |
637 | 0 | int err = X509_V_OK; |
638 | 0 | int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1; |
639 | | |
640 | | /* Check that there are at least two RDNs */ |
641 | 0 | if (last_object_loc < 1) { |
642 | 0 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
643 | 0 | goto proxy_name_done; |
644 | 0 | } |
645 | | |
646 | | /* |
647 | | * Check that there is exactly one more RDN in subject as |
648 | | * there is in issuer. |
649 | | */ |
650 | 0 | if (X509_NAME_entry_count(tmpsubject) |
651 | 0 | != X509_NAME_entry_count(tmpissuer) + 1) { |
652 | 0 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
653 | 0 | goto proxy_name_done; |
654 | 0 | } |
655 | | |
656 | | /* |
657 | | * Check that the last subject component isn't part of a |
658 | | * multivalued RDN |
659 | | */ |
660 | 0 | if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
661 | 0 | last_object_loc)) |
662 | 0 | == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
663 | 0 | last_object_loc - 1))) { |
664 | 0 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
665 | 0 | goto proxy_name_done; |
666 | 0 | } |
667 | | |
668 | | /* |
669 | | * Check that the last subject RDN is a commonName, and that |
670 | | * all the previous RDNs match the issuer exactly |
671 | | */ |
672 | 0 | tmpsubject = X509_NAME_dup(tmpsubject); |
673 | 0 | if (tmpsubject == NULL) { |
674 | 0 | X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE); |
675 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
676 | 0 | return 0; |
677 | 0 | } |
678 | | |
679 | 0 | tmpentry = |
680 | 0 | X509_NAME_delete_entry(tmpsubject, last_object_loc); |
681 | 0 | last_object_nid = |
682 | 0 | OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry)); |
683 | |
|
684 | 0 | if (last_object_nid != NID_commonName |
685 | 0 | || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) { |
686 | 0 | err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
687 | 0 | } |
688 | |
|
689 | 0 | X509_NAME_ENTRY_free(tmpentry); |
690 | 0 | X509_NAME_free(tmpsubject); |
691 | |
|
692 | 0 | proxy_name_done: |
693 | 0 | if (err != X509_V_OK |
694 | 0 | && !verify_cb_cert(ctx, x, i, err)) |
695 | 0 | return 0; |
696 | 0 | } |
697 | | |
698 | | /* |
699 | | * Check against constraints for all certificates higher in chain |
700 | | * including trust anchor. Trust anchor not strictly speaking needed |
701 | | * but if it includes constraints it is to be assumed it expects them |
702 | | * to be obeyed. |
703 | | */ |
704 | 0 | for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) { |
705 | 0 | NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; |
706 | |
|
707 | 0 | if (nc) { |
708 | 0 | int rv = NAME_CONSTRAINTS_check(x, nc); |
709 | | |
710 | | /* If EE certificate check commonName too */ |
711 | 0 | if (rv == X509_V_OK && i == 0 |
712 | 0 | && (ctx->param->hostflags |
713 | 0 | & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0 |
714 | 0 | && ((ctx->param->hostflags |
715 | 0 | & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0 |
716 | 0 | || !has_san_id(x, GEN_DNS))) |
717 | 0 | rv = NAME_CONSTRAINTS_check_CN(x, nc); |
718 | |
|
719 | 0 | switch (rv) { |
720 | 0 | case X509_V_OK: |
721 | 0 | break; |
722 | 0 | case X509_V_ERR_OUT_OF_MEM: |
723 | 0 | return 0; |
724 | 0 | default: |
725 | 0 | if (!verify_cb_cert(ctx, x, i, rv)) |
726 | 0 | return 0; |
727 | 0 | break; |
728 | 0 | } |
729 | 0 | } |
730 | 0 | } |
731 | 0 | } |
732 | 0 | return 1; |
733 | 0 | } |
734 | | |
735 | | static int check_id_error(X509_STORE_CTX *ctx, int errcode) |
736 | 0 | { |
737 | 0 | return verify_cb_cert(ctx, ctx->cert, 0, errcode); |
738 | 0 | } |
739 | | |
740 | | static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm) |
741 | 0 | { |
742 | 0 | int i; |
743 | 0 | int n = sk_OPENSSL_STRING_num(vpm->hosts); |
744 | 0 | char *name; |
745 | |
|
746 | 0 | if (vpm->peername != NULL) { |
747 | 0 | OPENSSL_free(vpm->peername); |
748 | 0 | vpm->peername = NULL; |
749 | 0 | } |
750 | 0 | for (i = 0; i < n; ++i) { |
751 | 0 | name = sk_OPENSSL_STRING_value(vpm->hosts, i); |
752 | 0 | if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0) |
753 | 0 | return 1; |
754 | 0 | } |
755 | 0 | return n == 0; |
756 | 0 | } |
757 | | |
758 | | static int check_id(X509_STORE_CTX *ctx) |
759 | 0 | { |
760 | 0 | X509_VERIFY_PARAM *vpm = ctx->param; |
761 | 0 | X509 *x = ctx->cert; |
762 | 0 | if (vpm->hosts && check_hosts(x, vpm) <= 0) { |
763 | 0 | if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) |
764 | 0 | return 0; |
765 | 0 | } |
766 | 0 | if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { |
767 | 0 | if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) |
768 | 0 | return 0; |
769 | 0 | } |
770 | 0 | if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { |
771 | 0 | if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) |
772 | 0 | return 0; |
773 | 0 | } |
774 | 0 | return 1; |
775 | 0 | } |
776 | | |
777 | | static int check_trust(X509_STORE_CTX *ctx, int num_untrusted) |
778 | 3.24k | { |
779 | 3.24k | int i; |
780 | 3.24k | X509 *x = NULL; |
781 | 3.24k | X509 *mx; |
782 | 3.24k | SSL_DANE *dane = ctx->dane; |
783 | 3.24k | int num = sk_X509_num(ctx->chain); |
784 | 3.24k | int trust; |
785 | | |
786 | | /* |
787 | | * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2) |
788 | | * match, we're done, otherwise we'll merely record the match depth. |
789 | | */ |
790 | 3.24k | if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) { |
791 | 0 | switch (trust = check_dane_issuer(ctx, num_untrusted)) { |
792 | 0 | case X509_TRUST_TRUSTED: |
793 | 0 | case X509_TRUST_REJECTED: |
794 | 0 | return trust; |
795 | 0 | } |
796 | 0 | } |
797 | | |
798 | | /* |
799 | | * Check trusted certificates in chain at depth num_untrusted and up. |
800 | | * Note, that depths 0..num_untrusted-1 may also contain trusted |
801 | | * certificates, but the caller is expected to have already checked those, |
802 | | * and wants to incrementally check just any added since. |
803 | | */ |
804 | 3.24k | for (i = num_untrusted; i < num; i++) { |
805 | 0 | x = sk_X509_value(ctx->chain, i); |
806 | 0 | trust = X509_check_trust(x, ctx->param->trust, 0); |
807 | | /* If explicitly trusted return trusted */ |
808 | 0 | if (trust == X509_TRUST_TRUSTED) |
809 | 0 | goto trusted; |
810 | 0 | if (trust == X509_TRUST_REJECTED) |
811 | 0 | goto rejected; |
812 | 0 | } |
813 | | |
814 | | /* |
815 | | * If we are looking at a trusted certificate, and accept partial chains, |
816 | | * the chain is PKIX trusted. |
817 | | */ |
818 | 3.24k | if (num_untrusted < num) { |
819 | 0 | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) |
820 | 0 | goto trusted; |
821 | 0 | return X509_TRUST_UNTRUSTED; |
822 | 0 | } |
823 | | |
824 | 3.24k | if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
825 | | /* |
826 | | * Last-resort call with no new trusted certificates, check the leaf |
827 | | * for a direct trust store match. |
828 | | */ |
829 | 0 | i = 0; |
830 | 0 | x = sk_X509_value(ctx->chain, i); |
831 | 0 | mx = lookup_cert_match(ctx, x); |
832 | 0 | if (!mx) |
833 | 0 | return X509_TRUST_UNTRUSTED; |
834 | | |
835 | | /* |
836 | | * Check explicit auxiliary trust/reject settings. If none are set, |
837 | | * we'll accept X509_TRUST_UNTRUSTED when not self-signed. |
838 | | */ |
839 | 0 | trust = X509_check_trust(mx, ctx->param->trust, 0); |
840 | 0 | if (trust == X509_TRUST_REJECTED) { |
841 | 0 | X509_free(mx); |
842 | 0 | goto rejected; |
843 | 0 | } |
844 | | |
845 | | /* Replace leaf with trusted match */ |
846 | 0 | (void) sk_X509_set(ctx->chain, 0, mx); |
847 | 0 | X509_free(x); |
848 | 0 | ctx->num_untrusted = 0; |
849 | 0 | goto trusted; |
850 | 0 | } |
851 | | |
852 | | /* |
853 | | * If no trusted certs in chain at all return untrusted and allow |
854 | | * standard (no issuer cert) etc errors to be indicated. |
855 | | */ |
856 | 3.24k | return X509_TRUST_UNTRUSTED; |
857 | | |
858 | 0 | rejected: |
859 | 0 | if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED)) |
860 | 0 | return X509_TRUST_REJECTED; |
861 | 0 | return X509_TRUST_UNTRUSTED; |
862 | | |
863 | 0 | trusted: |
864 | 0 | if (!DANETLS_ENABLED(dane)) |
865 | 0 | return X509_TRUST_TRUSTED; |
866 | 0 | if (dane->pdpth < 0) |
867 | 0 | dane->pdpth = num_untrusted; |
868 | | /* With DANE, PKIX alone is not trusted until we have both */ |
869 | 0 | if (dane->mdpth >= 0) |
870 | 0 | return X509_TRUST_TRUSTED; |
871 | 0 | return X509_TRUST_UNTRUSTED; |
872 | 0 | } |
873 | | |
874 | | static int check_revocation(X509_STORE_CTX *ctx) |
875 | 0 | { |
876 | 0 | int i = 0, last = 0, ok = 0; |
877 | 0 | if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) |
878 | 0 | return 1; |
879 | 0 | if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) |
880 | 0 | last = sk_X509_num(ctx->chain) - 1; |
881 | 0 | else { |
882 | | /* If checking CRL paths this isn't the EE certificate */ |
883 | 0 | if (ctx->parent) |
884 | 0 | return 1; |
885 | 0 | last = 0; |
886 | 0 | } |
887 | 0 | for (i = 0; i <= last; i++) { |
888 | 0 | ctx->error_depth = i; |
889 | 0 | ok = check_cert(ctx); |
890 | 0 | if (!ok) |
891 | 0 | return ok; |
892 | 0 | } |
893 | 0 | return 1; |
894 | 0 | } |
895 | | |
896 | | static int check_cert(X509_STORE_CTX *ctx) |
897 | 0 | { |
898 | 0 | X509_CRL *crl = NULL, *dcrl = NULL; |
899 | 0 | int ok = 0; |
900 | 0 | int cnum = ctx->error_depth; |
901 | 0 | X509 *x = sk_X509_value(ctx->chain, cnum); |
902 | |
|
903 | 0 | ctx->current_cert = x; |
904 | 0 | ctx->current_issuer = NULL; |
905 | 0 | ctx->current_crl_score = 0; |
906 | 0 | ctx->current_reasons = 0; |
907 | |
|
908 | 0 | if (x->ex_flags & EXFLAG_PROXY) |
909 | 0 | return 1; |
910 | | |
911 | 0 | while (ctx->current_reasons != CRLDP_ALL_REASONS) { |
912 | 0 | unsigned int last_reasons = ctx->current_reasons; |
913 | | |
914 | | /* Try to retrieve relevant CRL */ |
915 | 0 | if (ctx->get_crl) |
916 | 0 | ok = ctx->get_crl(ctx, &crl, x); |
917 | 0 | else |
918 | 0 | ok = get_crl_delta(ctx, &crl, &dcrl, x); |
919 | | /* |
920 | | * If error looking up CRL, nothing we can do except notify callback |
921 | | */ |
922 | 0 | if (!ok) { |
923 | 0 | ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
924 | 0 | goto done; |
925 | 0 | } |
926 | 0 | ctx->current_crl = crl; |
927 | 0 | ok = ctx->check_crl(ctx, crl); |
928 | 0 | if (!ok) |
929 | 0 | goto done; |
930 | | |
931 | 0 | if (dcrl) { |
932 | 0 | ok = ctx->check_crl(ctx, dcrl); |
933 | 0 | if (!ok) |
934 | 0 | goto done; |
935 | 0 | ok = ctx->cert_crl(ctx, dcrl, x); |
936 | 0 | if (!ok) |
937 | 0 | goto done; |
938 | 0 | } else |
939 | 0 | ok = 1; |
940 | | |
941 | | /* Don't look in full CRL if delta reason is removefromCRL */ |
942 | 0 | if (ok != 2) { |
943 | 0 | ok = ctx->cert_crl(ctx, crl, x); |
944 | 0 | if (!ok) |
945 | 0 | goto done; |
946 | 0 | } |
947 | | |
948 | 0 | X509_CRL_free(crl); |
949 | 0 | X509_CRL_free(dcrl); |
950 | 0 | crl = NULL; |
951 | 0 | dcrl = NULL; |
952 | | /* |
953 | | * If reasons not updated we won't get anywhere by another iteration, |
954 | | * so exit loop. |
955 | | */ |
956 | 0 | if (last_reasons == ctx->current_reasons) { |
957 | 0 | ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
958 | 0 | goto done; |
959 | 0 | } |
960 | 0 | } |
961 | 0 | done: |
962 | 0 | X509_CRL_free(crl); |
963 | 0 | X509_CRL_free(dcrl); |
964 | |
|
965 | 0 | ctx->current_crl = NULL; |
966 | 0 | return ok; |
967 | 0 | } |
968 | | |
969 | | /* Check CRL times against values in X509_STORE_CTX */ |
970 | | |
971 | | static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) |
972 | 0 | { |
973 | 0 | time_t *ptime; |
974 | 0 | int i; |
975 | |
|
976 | 0 | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
977 | 0 | ptime = &ctx->param->check_time; |
978 | 0 | else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
979 | 0 | return 1; |
980 | 0 | else |
981 | 0 | ptime = NULL; |
982 | 0 | if (notify) |
983 | 0 | ctx->current_crl = crl; |
984 | |
|
985 | 0 | i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime); |
986 | 0 | if (i == 0) { |
987 | 0 | if (!notify) |
988 | 0 | return 0; |
989 | 0 | if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD)) |
990 | 0 | return 0; |
991 | 0 | } |
992 | | |
993 | 0 | if (i > 0) { |
994 | 0 | if (!notify) |
995 | 0 | return 0; |
996 | 0 | if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID)) |
997 | 0 | return 0; |
998 | 0 | } |
999 | | |
1000 | 0 | if (X509_CRL_get0_nextUpdate(crl)) { |
1001 | 0 | i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime); |
1002 | |
|
1003 | 0 | if (i == 0) { |
1004 | 0 | if (!notify) |
1005 | 0 | return 0; |
1006 | 0 | if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD)) |
1007 | 0 | return 0; |
1008 | 0 | } |
1009 | | /* Ignore expiry of base CRL is delta is valid */ |
1010 | 0 | if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) { |
1011 | 0 | if (!notify) |
1012 | 0 | return 0; |
1013 | 0 | if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED)) |
1014 | 0 | return 0; |
1015 | 0 | } |
1016 | 0 | } |
1017 | | |
1018 | 0 | if (notify) |
1019 | 0 | ctx->current_crl = NULL; |
1020 | |
|
1021 | 0 | return 1; |
1022 | 0 | } |
1023 | | |
1024 | | static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, |
1025 | | X509 **pissuer, int *pscore, unsigned int *preasons, |
1026 | | STACK_OF(X509_CRL) *crls) |
1027 | 0 | { |
1028 | 0 | int i, crl_score, best_score = *pscore; |
1029 | 0 | unsigned int reasons, best_reasons = 0; |
1030 | 0 | X509 *x = ctx->current_cert; |
1031 | 0 | X509_CRL *crl, *best_crl = NULL; |
1032 | 0 | X509 *crl_issuer = NULL, *best_crl_issuer = NULL; |
1033 | |
|
1034 | 0 | for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
1035 | 0 | crl = sk_X509_CRL_value(crls, i); |
1036 | 0 | reasons = *preasons; |
1037 | 0 | crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x); |
1038 | 0 | if (crl_score < best_score || crl_score == 0) |
1039 | 0 | continue; |
1040 | | /* If current CRL is equivalent use it if it is newer */ |
1041 | 0 | if (crl_score == best_score && best_crl != NULL) { |
1042 | 0 | int day, sec; |
1043 | 0 | if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), |
1044 | 0 | X509_CRL_get0_lastUpdate(crl)) == 0) |
1045 | 0 | continue; |
1046 | | /* |
1047 | | * ASN1_TIME_diff never returns inconsistent signs for |day| |
1048 | | * and |sec|. |
1049 | | */ |
1050 | 0 | if (day <= 0 && sec <= 0) |
1051 | 0 | continue; |
1052 | 0 | } |
1053 | 0 | best_crl = crl; |
1054 | 0 | best_crl_issuer = crl_issuer; |
1055 | 0 | best_score = crl_score; |
1056 | 0 | best_reasons = reasons; |
1057 | 0 | } |
1058 | |
|
1059 | 0 | if (best_crl) { |
1060 | 0 | X509_CRL_free(*pcrl); |
1061 | 0 | *pcrl = best_crl; |
1062 | 0 | *pissuer = best_crl_issuer; |
1063 | 0 | *pscore = best_score; |
1064 | 0 | *preasons = best_reasons; |
1065 | 0 | X509_CRL_up_ref(best_crl); |
1066 | 0 | X509_CRL_free(*pdcrl); |
1067 | 0 | *pdcrl = NULL; |
1068 | 0 | get_delta_sk(ctx, pdcrl, pscore, best_crl, crls); |
1069 | 0 | } |
1070 | |
|
1071 | 0 | if (best_score >= CRL_SCORE_VALID) |
1072 | 0 | return 1; |
1073 | | |
1074 | 0 | return 0; |
1075 | 0 | } |
1076 | | |
1077 | | /* |
1078 | | * Compare two CRL extensions for delta checking purposes. They should be |
1079 | | * both present or both absent. If both present all fields must be identical. |
1080 | | */ |
1081 | | |
1082 | | static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid) |
1083 | 0 | { |
1084 | 0 | ASN1_OCTET_STRING *exta, *extb; |
1085 | 0 | int i; |
1086 | 0 | i = X509_CRL_get_ext_by_NID(a, nid, -1); |
1087 | 0 | if (i >= 0) { |
1088 | | /* Can't have multiple occurrences */ |
1089 | 0 | if (X509_CRL_get_ext_by_NID(a, nid, i) != -1) |
1090 | 0 | return 0; |
1091 | 0 | exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i)); |
1092 | 0 | } else |
1093 | 0 | exta = NULL; |
1094 | | |
1095 | 0 | i = X509_CRL_get_ext_by_NID(b, nid, -1); |
1096 | |
|
1097 | 0 | if (i >= 0) { |
1098 | |
|
1099 | 0 | if (X509_CRL_get_ext_by_NID(b, nid, i) != -1) |
1100 | 0 | return 0; |
1101 | 0 | extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i)); |
1102 | 0 | } else |
1103 | 0 | extb = NULL; |
1104 | | |
1105 | 0 | if (!exta && !extb) |
1106 | 0 | return 1; |
1107 | | |
1108 | 0 | if (!exta || !extb) |
1109 | 0 | return 0; |
1110 | | |
1111 | 0 | if (ASN1_OCTET_STRING_cmp(exta, extb)) |
1112 | 0 | return 0; |
1113 | | |
1114 | 0 | return 1; |
1115 | 0 | } |
1116 | | |
1117 | | /* See if a base and delta are compatible */ |
1118 | | |
1119 | | static int check_delta_base(X509_CRL *delta, X509_CRL *base) |
1120 | 0 | { |
1121 | | /* Delta CRL must be a delta */ |
1122 | 0 | if (!delta->base_crl_number) |
1123 | 0 | return 0; |
1124 | | /* Base must have a CRL number */ |
1125 | 0 | if (!base->crl_number) |
1126 | 0 | return 0; |
1127 | | /* Issuer names must match */ |
1128 | 0 | if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta))) |
1129 | 0 | return 0; |
1130 | | /* AKID and IDP must match */ |
1131 | 0 | if (!crl_extension_match(delta, base, NID_authority_key_identifier)) |
1132 | 0 | return 0; |
1133 | 0 | if (!crl_extension_match(delta, base, NID_issuing_distribution_point)) |
1134 | 0 | return 0; |
1135 | | /* Delta CRL base number must not exceed Full CRL number. */ |
1136 | 0 | if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0) |
1137 | 0 | return 0; |
1138 | | /* Delta CRL number must exceed full CRL number */ |
1139 | 0 | if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0) |
1140 | 0 | return 1; |
1141 | 0 | return 0; |
1142 | 0 | } |
1143 | | |
1144 | | /* |
1145 | | * For a given base CRL find a delta... maybe extend to delta scoring or |
1146 | | * retrieve a chain of deltas... |
1147 | | */ |
1148 | | |
1149 | | static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore, |
1150 | | X509_CRL *base, STACK_OF(X509_CRL) *crls) |
1151 | 0 | { |
1152 | 0 | X509_CRL *delta; |
1153 | 0 | int i; |
1154 | 0 | if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS)) |
1155 | 0 | return; |
1156 | 0 | if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST)) |
1157 | 0 | return; |
1158 | 0 | for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
1159 | 0 | delta = sk_X509_CRL_value(crls, i); |
1160 | 0 | if (check_delta_base(delta, base)) { |
1161 | 0 | if (check_crl_time(ctx, delta, 0)) |
1162 | 0 | *pscore |= CRL_SCORE_TIME_DELTA; |
1163 | 0 | X509_CRL_up_ref(delta); |
1164 | 0 | *dcrl = delta; |
1165 | 0 | return; |
1166 | 0 | } |
1167 | 0 | } |
1168 | 0 | *dcrl = NULL; |
1169 | 0 | } |
1170 | | |
1171 | | /* |
1172 | | * For a given CRL return how suitable it is for the supplied certificate |
1173 | | * 'x'. The return value is a mask of several criteria. If the issuer is not |
1174 | | * the certificate issuer this is returned in *pissuer. The reasons mask is |
1175 | | * also used to determine if the CRL is suitable: if no new reasons the CRL |
1176 | | * is rejected, otherwise reasons is updated. |
1177 | | */ |
1178 | | |
1179 | | static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
1180 | | unsigned int *preasons, X509_CRL *crl, X509 *x) |
1181 | 0 | { |
1182 | |
|
1183 | 0 | int crl_score = 0; |
1184 | 0 | unsigned int tmp_reasons = *preasons, crl_reasons; |
1185 | | |
1186 | | /* First see if we can reject CRL straight away */ |
1187 | | |
1188 | | /* Invalid IDP cannot be processed */ |
1189 | 0 | if (crl->idp_flags & IDP_INVALID) |
1190 | 0 | return 0; |
1191 | | /* Reason codes or indirect CRLs need extended CRL support */ |
1192 | 0 | if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) { |
1193 | 0 | if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) |
1194 | 0 | return 0; |
1195 | 0 | } else if (crl->idp_flags & IDP_REASONS) { |
1196 | | /* If no new reasons reject */ |
1197 | 0 | if (!(crl->idp_reasons & ~tmp_reasons)) |
1198 | 0 | return 0; |
1199 | 0 | } |
1200 | | /* Don't process deltas at this stage */ |
1201 | 0 | else if (crl->base_crl_number) |
1202 | 0 | return 0; |
1203 | | /* If issuer name doesn't match certificate need indirect CRL */ |
1204 | 0 | if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { |
1205 | 0 | if (!(crl->idp_flags & IDP_INDIRECT)) |
1206 | 0 | return 0; |
1207 | 0 | } else |
1208 | 0 | crl_score |= CRL_SCORE_ISSUER_NAME; |
1209 | | |
1210 | 0 | if (!(crl->flags & EXFLAG_CRITICAL)) |
1211 | 0 | crl_score |= CRL_SCORE_NOCRITICAL; |
1212 | | |
1213 | | /* Check expiry */ |
1214 | 0 | if (check_crl_time(ctx, crl, 0)) |
1215 | 0 | crl_score |= CRL_SCORE_TIME; |
1216 | | |
1217 | | /* Check authority key ID and locate certificate issuer */ |
1218 | 0 | crl_akid_check(ctx, crl, pissuer, &crl_score); |
1219 | | |
1220 | | /* If we can't locate certificate issuer at this point forget it */ |
1221 | |
|
1222 | 0 | if (!(crl_score & CRL_SCORE_AKID)) |
1223 | 0 | return 0; |
1224 | | |
1225 | | /* Check cert for matching CRL distribution points */ |
1226 | | |
1227 | 0 | if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) { |
1228 | | /* If no new reasons reject */ |
1229 | 0 | if (!(crl_reasons & ~tmp_reasons)) |
1230 | 0 | return 0; |
1231 | 0 | tmp_reasons |= crl_reasons; |
1232 | 0 | crl_score |= CRL_SCORE_SCOPE; |
1233 | 0 | } |
1234 | | |
1235 | 0 | *preasons = tmp_reasons; |
1236 | |
|
1237 | 0 | return crl_score; |
1238 | |
|
1239 | 0 | } |
1240 | | |
1241 | | static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, |
1242 | | X509 **pissuer, int *pcrl_score) |
1243 | 0 | { |
1244 | 0 | X509 *crl_issuer = NULL; |
1245 | 0 | X509_NAME *cnm = X509_CRL_get_issuer(crl); |
1246 | 0 | int cidx = ctx->error_depth; |
1247 | 0 | int i; |
1248 | |
|
1249 | 0 | if (cidx != sk_X509_num(ctx->chain) - 1) |
1250 | 0 | cidx++; |
1251 | |
|
1252 | 0 | crl_issuer = sk_X509_value(ctx->chain, cidx); |
1253 | |
|
1254 | 0 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
1255 | 0 | if (*pcrl_score & CRL_SCORE_ISSUER_NAME) { |
1256 | 0 | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; |
1257 | 0 | *pissuer = crl_issuer; |
1258 | 0 | return; |
1259 | 0 | } |
1260 | 0 | } |
1261 | | |
1262 | 0 | for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) { |
1263 | 0 | crl_issuer = sk_X509_value(ctx->chain, cidx); |
1264 | 0 | if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
1265 | 0 | continue; |
1266 | 0 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
1267 | 0 | *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; |
1268 | 0 | *pissuer = crl_issuer; |
1269 | 0 | return; |
1270 | 0 | } |
1271 | 0 | } |
1272 | | |
1273 | | /* Anything else needs extended CRL support */ |
1274 | | |
1275 | 0 | if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) |
1276 | 0 | return; |
1277 | | |
1278 | | /* |
1279 | | * Otherwise the CRL issuer is not on the path. Look for it in the set of |
1280 | | * untrusted certificates. |
1281 | | */ |
1282 | 0 | for (i = 0; i < sk_X509_num(ctx->untrusted); i++) { |
1283 | 0 | crl_issuer = sk_X509_value(ctx->untrusted, i); |
1284 | 0 | if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
1285 | 0 | continue; |
1286 | 0 | if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
1287 | 0 | *pissuer = crl_issuer; |
1288 | 0 | *pcrl_score |= CRL_SCORE_AKID; |
1289 | 0 | return; |
1290 | 0 | } |
1291 | 0 | } |
1292 | 0 | } |
1293 | | |
1294 | | /* |
1295 | | * Check the path of a CRL issuer certificate. This creates a new |
1296 | | * X509_STORE_CTX and populates it with most of the parameters from the |
1297 | | * parent. This could be optimised somewhat since a lot of path checking will |
1298 | | * be duplicated by the parent, but this will rarely be used in practice. |
1299 | | */ |
1300 | | |
1301 | | static int check_crl_path(X509_STORE_CTX *ctx, X509 *x) |
1302 | 0 | { |
1303 | 0 | X509_STORE_CTX crl_ctx; |
1304 | 0 | int ret; |
1305 | | |
1306 | | /* Don't allow recursive CRL path validation */ |
1307 | 0 | if (ctx->parent) |
1308 | 0 | return 0; |
1309 | 0 | if (!X509_STORE_CTX_init(&crl_ctx, ctx->ctx, x, ctx->untrusted)) |
1310 | 0 | return -1; |
1311 | | |
1312 | 0 | crl_ctx.crls = ctx->crls; |
1313 | | /* Copy verify params across */ |
1314 | 0 | X509_STORE_CTX_set0_param(&crl_ctx, ctx->param); |
1315 | |
|
1316 | 0 | crl_ctx.parent = ctx; |
1317 | 0 | crl_ctx.verify_cb = ctx->verify_cb; |
1318 | | |
1319 | | /* Verify CRL issuer */ |
1320 | 0 | ret = X509_verify_cert(&crl_ctx); |
1321 | 0 | if (ret <= 0) |
1322 | 0 | goto err; |
1323 | | |
1324 | | /* Check chain is acceptable */ |
1325 | 0 | ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain); |
1326 | 0 | err: |
1327 | 0 | X509_STORE_CTX_cleanup(&crl_ctx); |
1328 | 0 | return ret; |
1329 | 0 | } |
1330 | | |
1331 | | /* |
1332 | | * RFC3280 says nothing about the relationship between CRL path and |
1333 | | * certificate path, which could lead to situations where a certificate could |
1334 | | * be revoked or validated by a CA not authorised to do so. RFC5280 is more |
1335 | | * strict and states that the two paths must end in the same trust anchor, |
1336 | | * though some discussions remain... until this is resolved we use the |
1337 | | * RFC5280 version |
1338 | | */ |
1339 | | |
1340 | | static int check_crl_chain(X509_STORE_CTX *ctx, |
1341 | | STACK_OF(X509) *cert_path, |
1342 | | STACK_OF(X509) *crl_path) |
1343 | 0 | { |
1344 | 0 | X509 *cert_ta, *crl_ta; |
1345 | 0 | cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1); |
1346 | 0 | crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1); |
1347 | 0 | if (!X509_cmp(cert_ta, crl_ta)) |
1348 | 0 | return 1; |
1349 | 0 | return 0; |
1350 | 0 | } |
1351 | | |
1352 | | /*- |
1353 | | * Check for match between two dist point names: three separate cases. |
1354 | | * 1. Both are relative names and compare X509_NAME types. |
1355 | | * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES. |
1356 | | * 3. Both are full names and compare two GENERAL_NAMES. |
1357 | | * 4. One is NULL: automatic match. |
1358 | | */ |
1359 | | |
1360 | | static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) |
1361 | 0 | { |
1362 | 0 | X509_NAME *nm = NULL; |
1363 | 0 | GENERAL_NAMES *gens = NULL; |
1364 | 0 | GENERAL_NAME *gena, *genb; |
1365 | 0 | int i, j; |
1366 | 0 | if (!a || !b) |
1367 | 0 | return 1; |
1368 | 0 | if (a->type == 1) { |
1369 | 0 | if (!a->dpname) |
1370 | 0 | return 0; |
1371 | | /* Case 1: two X509_NAME */ |
1372 | 0 | if (b->type == 1) { |
1373 | 0 | if (!b->dpname) |
1374 | 0 | return 0; |
1375 | 0 | if (!X509_NAME_cmp(a->dpname, b->dpname)) |
1376 | 0 | return 1; |
1377 | 0 | else |
1378 | 0 | return 0; |
1379 | 0 | } |
1380 | | /* Case 2: set name and GENERAL_NAMES appropriately */ |
1381 | 0 | nm = a->dpname; |
1382 | 0 | gens = b->name.fullname; |
1383 | 0 | } else if (b->type == 1) { |
1384 | 0 | if (!b->dpname) |
1385 | 0 | return 0; |
1386 | | /* Case 2: set name and GENERAL_NAMES appropriately */ |
1387 | 0 | gens = a->name.fullname; |
1388 | 0 | nm = b->dpname; |
1389 | 0 | } |
1390 | | |
1391 | | /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */ |
1392 | 0 | if (nm) { |
1393 | 0 | for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
1394 | 0 | gena = sk_GENERAL_NAME_value(gens, i); |
1395 | 0 | if (gena->type != GEN_DIRNAME) |
1396 | 0 | continue; |
1397 | 0 | if (!X509_NAME_cmp(nm, gena->d.directoryName)) |
1398 | 0 | return 1; |
1399 | 0 | } |
1400 | 0 | return 0; |
1401 | 0 | } |
1402 | | |
1403 | | /* Else case 3: two GENERAL_NAMES */ |
1404 | | |
1405 | 0 | for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { |
1406 | 0 | gena = sk_GENERAL_NAME_value(a->name.fullname, i); |
1407 | 0 | for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { |
1408 | 0 | genb = sk_GENERAL_NAME_value(b->name.fullname, j); |
1409 | 0 | if (!GENERAL_NAME_cmp(gena, genb)) |
1410 | 0 | return 1; |
1411 | 0 | } |
1412 | 0 | } |
1413 | | |
1414 | 0 | return 0; |
1415 | |
|
1416 | 0 | } |
1417 | | |
1418 | | static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score) |
1419 | 0 | { |
1420 | 0 | int i; |
1421 | 0 | X509_NAME *nm = X509_CRL_get_issuer(crl); |
1422 | | /* If no CRLissuer return is successful iff don't need a match */ |
1423 | 0 | if (!dp->CRLissuer) |
1424 | 0 | return ! !(crl_score & CRL_SCORE_ISSUER_NAME); |
1425 | 0 | for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { |
1426 | 0 | GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); |
1427 | 0 | if (gen->type != GEN_DIRNAME) |
1428 | 0 | continue; |
1429 | 0 | if (!X509_NAME_cmp(gen->d.directoryName, nm)) |
1430 | 0 | return 1; |
1431 | 0 | } |
1432 | 0 | return 0; |
1433 | 0 | } |
1434 | | |
1435 | | /* Check CRLDP and IDP */ |
1436 | | |
1437 | | static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
1438 | | unsigned int *preasons) |
1439 | 0 | { |
1440 | 0 | int i; |
1441 | 0 | if (crl->idp_flags & IDP_ONLYATTR) |
1442 | 0 | return 0; |
1443 | 0 | if (x->ex_flags & EXFLAG_CA) { |
1444 | 0 | if (crl->idp_flags & IDP_ONLYUSER) |
1445 | 0 | return 0; |
1446 | 0 | } else { |
1447 | 0 | if (crl->idp_flags & IDP_ONLYCA) |
1448 | 0 | return 0; |
1449 | 0 | } |
1450 | 0 | *preasons = crl->idp_reasons; |
1451 | 0 | for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { |
1452 | 0 | DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); |
1453 | 0 | if (crldp_check_crlissuer(dp, crl, crl_score)) { |
1454 | 0 | if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) { |
1455 | 0 | *preasons &= dp->dp_reasons; |
1456 | 0 | return 1; |
1457 | 0 | } |
1458 | 0 | } |
1459 | 0 | } |
1460 | 0 | if ((!crl->idp || !crl->idp->distpoint) |
1461 | 0 | && (crl_score & CRL_SCORE_ISSUER_NAME)) |
1462 | 0 | return 1; |
1463 | 0 | return 0; |
1464 | 0 | } |
1465 | | |
1466 | | /* |
1467 | | * Retrieve CRL corresponding to current certificate. If deltas enabled try |
1468 | | * to find a delta CRL too |
1469 | | */ |
1470 | | |
1471 | | static int get_crl_delta(X509_STORE_CTX *ctx, |
1472 | | X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x) |
1473 | 0 | { |
1474 | 0 | int ok; |
1475 | 0 | X509 *issuer = NULL; |
1476 | 0 | int crl_score = 0; |
1477 | 0 | unsigned int reasons; |
1478 | 0 | X509_CRL *crl = NULL, *dcrl = NULL; |
1479 | 0 | STACK_OF(X509_CRL) *skcrl; |
1480 | 0 | X509_NAME *nm = X509_get_issuer_name(x); |
1481 | |
|
1482 | 0 | reasons = ctx->current_reasons; |
1483 | 0 | ok = get_crl_sk(ctx, &crl, &dcrl, |
1484 | 0 | &issuer, &crl_score, &reasons, ctx->crls); |
1485 | 0 | if (ok) |
1486 | 0 | goto done; |
1487 | | |
1488 | | /* Lookup CRLs from store */ |
1489 | | |
1490 | 0 | skcrl = ctx->lookup_crls(ctx, nm); |
1491 | | |
1492 | | /* If no CRLs found and a near match from get_crl_sk use that */ |
1493 | 0 | if (!skcrl && crl) |
1494 | 0 | goto done; |
1495 | | |
1496 | 0 | get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl); |
1497 | |
|
1498 | 0 | sk_X509_CRL_pop_free(skcrl, X509_CRL_free); |
1499 | |
|
1500 | 0 | done: |
1501 | | /* If we got any kind of CRL use it and return success */ |
1502 | 0 | if (crl) { |
1503 | 0 | ctx->current_issuer = issuer; |
1504 | 0 | ctx->current_crl_score = crl_score; |
1505 | 0 | ctx->current_reasons = reasons; |
1506 | 0 | *pcrl = crl; |
1507 | 0 | *pdcrl = dcrl; |
1508 | 0 | return 1; |
1509 | 0 | } |
1510 | 0 | return 0; |
1511 | 0 | } |
1512 | | |
1513 | | /* Check CRL validity */ |
1514 | | static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) |
1515 | 0 | { |
1516 | 0 | X509 *issuer = NULL; |
1517 | 0 | EVP_PKEY *ikey = NULL; |
1518 | 0 | int cnum = ctx->error_depth; |
1519 | 0 | int chnum = sk_X509_num(ctx->chain) - 1; |
1520 | | |
1521 | | /* if we have an alternative CRL issuer cert use that */ |
1522 | 0 | if (ctx->current_issuer) |
1523 | 0 | issuer = ctx->current_issuer; |
1524 | | /* |
1525 | | * Else find CRL issuer: if not last certificate then issuer is next |
1526 | | * certificate in chain. |
1527 | | */ |
1528 | 0 | else if (cnum < chnum) |
1529 | 0 | issuer = sk_X509_value(ctx->chain, cnum + 1); |
1530 | 0 | else { |
1531 | 0 | issuer = sk_X509_value(ctx->chain, chnum); |
1532 | | /* If not self signed, can't check signature */ |
1533 | 0 | if (!ctx->check_issued(ctx, issuer, issuer) && |
1534 | 0 | !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER)) |
1535 | 0 | return 0; |
1536 | 0 | } |
1537 | | |
1538 | 0 | if (issuer == NULL) |
1539 | 0 | return 1; |
1540 | | |
1541 | | /* |
1542 | | * Skip most tests for deltas because they have already been done |
1543 | | */ |
1544 | 0 | if (!crl->base_crl_number) { |
1545 | | /* Check for cRLSign bit if keyUsage present */ |
1546 | 0 | if ((issuer->ex_flags & EXFLAG_KUSAGE) && |
1547 | 0 | !(issuer->ex_kusage & KU_CRL_SIGN) && |
1548 | 0 | !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN)) |
1549 | 0 | return 0; |
1550 | | |
1551 | 0 | if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) && |
1552 | 0 | !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE)) |
1553 | 0 | return 0; |
1554 | | |
1555 | 0 | if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) && |
1556 | 0 | check_crl_path(ctx, ctx->current_issuer) <= 0 && |
1557 | 0 | !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR)) |
1558 | 0 | return 0; |
1559 | | |
1560 | 0 | if ((crl->idp_flags & IDP_INVALID) && |
1561 | 0 | !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION)) |
1562 | 0 | return 0; |
1563 | 0 | } |
1564 | | |
1565 | 0 | if (!(ctx->current_crl_score & CRL_SCORE_TIME) && |
1566 | 0 | !check_crl_time(ctx, crl, 1)) |
1567 | 0 | return 0; |
1568 | | |
1569 | | /* Attempt to get issuer certificate public key */ |
1570 | 0 | ikey = X509_get0_pubkey(issuer); |
1571 | |
|
1572 | 0 | if (!ikey && |
1573 | 0 | !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) |
1574 | 0 | return 0; |
1575 | | |
1576 | 0 | if (ikey) { |
1577 | 0 | int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags); |
1578 | |
|
1579 | 0 | if (rv != X509_V_OK && !verify_cb_crl(ctx, rv)) |
1580 | 0 | return 0; |
1581 | | /* Verify CRL signature */ |
1582 | 0 | if (X509_CRL_verify(crl, ikey) <= 0 && |
1583 | 0 | !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE)) |
1584 | 0 | return 0; |
1585 | 0 | } |
1586 | 0 | return 1; |
1587 | 0 | } |
1588 | | |
1589 | | /* Check certificate against CRL */ |
1590 | | static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) |
1591 | 0 | { |
1592 | 0 | X509_REVOKED *rev; |
1593 | | |
1594 | | /* |
1595 | | * The rules changed for this... previously if a CRL contained unhandled |
1596 | | * critical extensions it could still be used to indicate a certificate |
1597 | | * was revoked. This has since been changed since critical extensions can |
1598 | | * change the meaning of CRL entries. |
1599 | | */ |
1600 | 0 | if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
1601 | 0 | && (crl->flags & EXFLAG_CRITICAL) && |
1602 | 0 | !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION)) |
1603 | 0 | return 0; |
1604 | | /* |
1605 | | * Look for serial number of certificate in CRL. If found, make sure |
1606 | | * reason is not removeFromCRL. |
1607 | | */ |
1608 | 0 | if (X509_CRL_get0_by_cert(crl, &rev, x)) { |
1609 | 0 | if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) |
1610 | 0 | return 2; |
1611 | 0 | if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED)) |
1612 | 0 | return 0; |
1613 | 0 | } |
1614 | | |
1615 | 0 | return 1; |
1616 | 0 | } |
1617 | | |
1618 | | static int check_policy(X509_STORE_CTX *ctx) |
1619 | 0 | { |
1620 | 0 | int ret; |
1621 | |
|
1622 | 0 | if (ctx->parent) |
1623 | 0 | return 1; |
1624 | | /* |
1625 | | * With DANE, the trust anchor might be a bare public key, not a |
1626 | | * certificate! In that case our chain does not have the trust anchor |
1627 | | * certificate as a top-most element. This comports well with RFC5280 |
1628 | | * chain verification, since there too, the trust anchor is not part of the |
1629 | | * chain to be verified. In particular, X509_policy_check() does not look |
1630 | | * at the TA cert, but assumes that it is present as the top-most chain |
1631 | | * element. We therefore temporarily push a NULL cert onto the chain if it |
1632 | | * was verified via a bare public key, and pop it off right after the |
1633 | | * X509_policy_check() call. |
1634 | | */ |
1635 | 0 | if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) { |
1636 | 0 | X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
1637 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
1638 | 0 | return 0; |
1639 | 0 | } |
1640 | 0 | ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain, |
1641 | 0 | ctx->param->policies, ctx->param->flags); |
1642 | 0 | if (ctx->bare_ta_signed) |
1643 | 0 | sk_X509_pop(ctx->chain); |
1644 | |
|
1645 | 0 | if (ret == X509_PCY_TREE_INTERNAL) { |
1646 | 0 | X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
1647 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
1648 | 0 | return 0; |
1649 | 0 | } |
1650 | | /* Invalid or inconsistent extensions */ |
1651 | 0 | if (ret == X509_PCY_TREE_INVALID) { |
1652 | 0 | int i, cbcalled = 0; |
1653 | | |
1654 | | /* Locate certificates with bad extensions and notify callback. */ |
1655 | 0 | for (i = 0; i < sk_X509_num(ctx->chain); i++) { |
1656 | 0 | X509 *x = sk_X509_value(ctx->chain, i); |
1657 | |
|
1658 | 0 | if (!(x->ex_flags & EXFLAG_INVALID_POLICY)) |
1659 | 0 | continue; |
1660 | 0 | cbcalled = 1; |
1661 | 0 | if (!verify_cb_cert(ctx, x, i, |
1662 | 0 | X509_V_ERR_INVALID_POLICY_EXTENSION)) |
1663 | 0 | return 0; |
1664 | 0 | } |
1665 | 0 | if (!cbcalled) { |
1666 | | /* Should not be able to get here */ |
1667 | 0 | X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR); |
1668 | 0 | return 0; |
1669 | 0 | } |
1670 | | /* The callback ignored the error so we return success */ |
1671 | 0 | return 1; |
1672 | 0 | } |
1673 | 0 | if (ret == X509_PCY_TREE_FAILURE) { |
1674 | 0 | ctx->current_cert = NULL; |
1675 | 0 | ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY; |
1676 | 0 | return ctx->verify_cb(0, ctx); |
1677 | 0 | } |
1678 | 0 | if (ret != X509_PCY_TREE_VALID) { |
1679 | 0 | X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR); |
1680 | 0 | return 0; |
1681 | 0 | } |
1682 | | |
1683 | 0 | if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) { |
1684 | 0 | ctx->current_cert = NULL; |
1685 | | /* |
1686 | | * Verification errors need to be "sticky", a callback may have allowed |
1687 | | * an SSL handshake to continue despite an error, and we must then |
1688 | | * remain in an error state. Therefore, we MUST NOT clear earlier |
1689 | | * verification errors by setting the error to X509_V_OK. |
1690 | | */ |
1691 | 0 | if (!ctx->verify_cb(2, ctx)) |
1692 | 0 | return 0; |
1693 | 0 | } |
1694 | | |
1695 | 0 | return 1; |
1696 | 0 | } |
1697 | | |
1698 | | /*- |
1699 | | * Check certificate validity times. |
1700 | | * If depth >= 0, invoke verification callbacks on error, otherwise just return |
1701 | | * the validation status. |
1702 | | * |
1703 | | * Return 1 on success, 0 otherwise. |
1704 | | */ |
1705 | | int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth) |
1706 | 0 | { |
1707 | 0 | time_t *ptime; |
1708 | 0 | int i; |
1709 | |
|
1710 | 0 | if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
1711 | 0 | ptime = &ctx->param->check_time; |
1712 | 0 | else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
1713 | 0 | return 1; |
1714 | 0 | else |
1715 | 0 | ptime = NULL; |
1716 | | |
1717 | 0 | i = X509_cmp_time(X509_get0_notBefore(x), ptime); |
1718 | 0 | if (i >= 0 && depth < 0) |
1719 | 0 | return 0; |
1720 | 0 | if (i == 0 && !verify_cb_cert(ctx, x, depth, |
1721 | 0 | X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD)) |
1722 | 0 | return 0; |
1723 | 0 | if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID)) |
1724 | 0 | return 0; |
1725 | | |
1726 | 0 | i = X509_cmp_time(X509_get0_notAfter(x), ptime); |
1727 | 0 | if (i <= 0 && depth < 0) |
1728 | 0 | return 0; |
1729 | 0 | if (i == 0 && !verify_cb_cert(ctx, x, depth, |
1730 | 0 | X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD)) |
1731 | 0 | return 0; |
1732 | 0 | if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED)) |
1733 | 0 | return 0; |
1734 | 0 | return 1; |
1735 | 0 | } |
1736 | | |
1737 | | /* verify the issuer signatures and cert times of ctx->chain */ |
1738 | | static int internal_verify(X509_STORE_CTX *ctx) |
1739 | 0 | { |
1740 | 0 | int n = sk_X509_num(ctx->chain) - 1; |
1741 | 0 | X509 *xi = sk_X509_value(ctx->chain, n); |
1742 | 0 | X509 *xs; |
1743 | | |
1744 | | /* |
1745 | | * With DANE-verified bare public key TA signatures, it remains only to |
1746 | | * check the timestamps of the top certificate. We report the issuer as |
1747 | | * NULL, since all we have is a bare key. |
1748 | | */ |
1749 | 0 | if (ctx->bare_ta_signed) { |
1750 | 0 | xs = xi; |
1751 | 0 | xi = NULL; |
1752 | 0 | goto check_cert_time; |
1753 | 0 | } |
1754 | | |
1755 | 0 | if (ctx->check_issued(ctx, xi, xi)) |
1756 | 0 | xs = xi; /* the typical case: last cert in the chain is self-issued */ |
1757 | 0 | else { |
1758 | 0 | if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
1759 | 0 | xs = xi; |
1760 | 0 | goto check_cert_time; |
1761 | 0 | } |
1762 | 0 | if (n <= 0) { |
1763 | 0 | if (!verify_cb_cert(ctx, xi, 0, |
1764 | 0 | X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE)) |
1765 | 0 | return 0; |
1766 | | |
1767 | 0 | xs = xi; |
1768 | 0 | goto check_cert_time; |
1769 | 0 | } |
1770 | | |
1771 | 0 | n--; |
1772 | 0 | ctx->error_depth = n; |
1773 | 0 | xs = sk_X509_value(ctx->chain, n); |
1774 | 0 | } |
1775 | | |
1776 | | /* |
1777 | | * Do not clear ctx->error=0, it must be "sticky", only the user's callback |
1778 | | * is allowed to reset errors (at its own peril). |
1779 | | */ |
1780 | 0 | while (n >= 0) { |
1781 | | /* |
1782 | | * For each iteration of this loop: |
1783 | | * n is the subject depth |
1784 | | * xs is the subject cert, for which the signature is to be checked |
1785 | | * xi is the supposed issuer cert containing the public key to use |
1786 | | * Initially xs == xi if the last cert in the chain is self-issued. |
1787 | | * |
1788 | | * Skip signature check for self-signed certificates unless explicitly |
1789 | | * asked for because it does not add any security and just wastes time. |
1790 | | */ |
1791 | 0 | if (xs != xi || ((ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE) |
1792 | 0 | && (xi->ex_flags & EXFLAG_SS) != 0)) { |
1793 | 0 | EVP_PKEY *pkey; |
1794 | | /* |
1795 | | * If the issuer's public key is not available or its key usage |
1796 | | * does not support issuing the subject cert, report the issuer |
1797 | | * cert and its depth (rather than n, the depth of the subject). |
1798 | | */ |
1799 | 0 | int issuer_depth = n + (xs == xi ? 0 : 1); |
1800 | | /* |
1801 | | * According to https://tools.ietf.org/html/rfc5280#section-6.1.4 |
1802 | | * step (n) we must check any given key usage extension in a CA cert |
1803 | | * when preparing the verification of a certificate issued by it. |
1804 | | * According to https://tools.ietf.org/html/rfc5280#section-4.2.1.3 |
1805 | | * we must not verify a certifiate signature if the key usage of the |
1806 | | * CA certificate that issued the certificate prohibits signing. |
1807 | | * In case the 'issuing' certificate is the last in the chain and is |
1808 | | * not a CA certificate but a 'self-issued' end-entity cert (i.e., |
1809 | | * xs == xi && !(xi->ex_flags & EXFLAG_CA)) RFC 5280 does not apply |
1810 | | * (see https://tools.ietf.org/html/rfc6818#section-2) and thus |
1811 | | * we are free to ignore any key usage restrictions on such certs. |
1812 | | */ |
1813 | 0 | int ret = xs == xi && (xi->ex_flags & EXFLAG_CA) == 0 |
1814 | 0 | ? X509_V_OK : x509_signing_allowed(xi, xs); |
1815 | |
|
1816 | 0 | if (ret != X509_V_OK && !verify_cb_cert(ctx, xi, issuer_depth, ret)) |
1817 | 0 | return 0; |
1818 | 0 | if ((pkey = X509_get0_pubkey(xi)) == NULL) { |
1819 | 0 | ret = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; |
1820 | 0 | if (!verify_cb_cert(ctx, xi, issuer_depth, ret)) |
1821 | 0 | return 0; |
1822 | 0 | } else if (X509_verify(xs, pkey) <= 0) { |
1823 | 0 | ret = X509_V_ERR_CERT_SIGNATURE_FAILURE; |
1824 | 0 | if (!verify_cb_cert(ctx, xs, n, ret)) |
1825 | 0 | return 0; |
1826 | 0 | } |
1827 | 0 | } |
1828 | | |
1829 | 0 | check_cert_time: /* in addition to RFC 5280, do also for trusted (root) cert */ |
1830 | | /* Calls verify callback as needed */ |
1831 | 0 | if (!x509_check_cert_time(ctx, xs, n)) |
1832 | 0 | return 0; |
1833 | | |
1834 | | /* |
1835 | | * Signal success at this depth. However, the previous error (if any) |
1836 | | * is retained. |
1837 | | */ |
1838 | 0 | ctx->current_issuer = xi; |
1839 | 0 | ctx->current_cert = xs; |
1840 | 0 | ctx->error_depth = n; |
1841 | 0 | if (!ctx->verify_cb(1, ctx)) |
1842 | 0 | return 0; |
1843 | | |
1844 | 0 | if (--n >= 0) { |
1845 | 0 | xi = xs; |
1846 | 0 | xs = sk_X509_value(ctx->chain, n); |
1847 | 0 | } |
1848 | 0 | } |
1849 | 0 | return 1; |
1850 | 0 | } |
1851 | | |
1852 | | int X509_cmp_current_time(const ASN1_TIME *ctm) |
1853 | 0 | { |
1854 | 0 | return X509_cmp_time(ctm, NULL); |
1855 | 0 | } |
1856 | | |
1857 | | int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time) |
1858 | 0 | { |
1859 | 0 | static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1; |
1860 | 0 | static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1; |
1861 | 0 | ASN1_TIME *asn1_cmp_time = NULL; |
1862 | 0 | int i, day, sec, ret = 0; |
1863 | | #ifdef CHARSET_EBCDIC |
1864 | | const char upper_z = 0x5A; |
1865 | | #else |
1866 | 0 | const char upper_z = 'Z'; |
1867 | 0 | #endif |
1868 | | /* |
1869 | | * Note that ASN.1 allows much more slack in the time format than RFC5280. |
1870 | | * In RFC5280, the representation is fixed: |
1871 | | * UTCTime: YYMMDDHHMMSSZ |
1872 | | * GeneralizedTime: YYYYMMDDHHMMSSZ |
1873 | | * |
1874 | | * We do NOT currently enforce the following RFC 5280 requirement: |
1875 | | * "CAs conforming to this profile MUST always encode certificate |
1876 | | * validity dates through the year 2049 as UTCTime; certificate validity |
1877 | | * dates in 2050 or later MUST be encoded as GeneralizedTime." |
1878 | | */ |
1879 | 0 | switch (ctm->type) { |
1880 | 0 | case V_ASN1_UTCTIME: |
1881 | 0 | if (ctm->length != (int)(utctime_length)) |
1882 | 0 | return 0; |
1883 | 0 | break; |
1884 | 0 | case V_ASN1_GENERALIZEDTIME: |
1885 | 0 | if (ctm->length != (int)(generalizedtime_length)) |
1886 | 0 | return 0; |
1887 | 0 | break; |
1888 | 0 | default: |
1889 | 0 | return 0; |
1890 | 0 | } |
1891 | | |
1892 | | /** |
1893 | | * Verify the format: the ASN.1 functions we use below allow a more |
1894 | | * flexible format than what's mandated by RFC 5280. |
1895 | | * Digit and date ranges will be verified in the conversion methods. |
1896 | | */ |
1897 | 0 | for (i = 0; i < ctm->length - 1; i++) { |
1898 | 0 | if (!ascii_isdigit(ctm->data[i])) |
1899 | 0 | return 0; |
1900 | 0 | } |
1901 | 0 | if (ctm->data[ctm->length - 1] != upper_z) |
1902 | 0 | return 0; |
1903 | | |
1904 | | /* |
1905 | | * There is ASN1_UTCTIME_cmp_time_t but no |
1906 | | * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t, |
1907 | | * so we go through ASN.1 |
1908 | | */ |
1909 | 0 | asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time); |
1910 | 0 | if (asn1_cmp_time == NULL) |
1911 | 0 | goto err; |
1912 | 0 | if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time)) |
1913 | 0 | goto err; |
1914 | | |
1915 | | /* |
1916 | | * X509_cmp_time comparison is <=. |
1917 | | * The return value 0 is reserved for errors. |
1918 | | */ |
1919 | 0 | ret = (day >= 0 && sec >= 0) ? -1 : 1; |
1920 | |
|
1921 | 0 | err: |
1922 | 0 | ASN1_TIME_free(asn1_cmp_time); |
1923 | 0 | return ret; |
1924 | 0 | } |
1925 | | |
1926 | | ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj) |
1927 | 0 | { |
1928 | 0 | return X509_time_adj(s, adj, NULL); |
1929 | 0 | } |
1930 | | |
1931 | | ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm) |
1932 | 0 | { |
1933 | 0 | return X509_time_adj_ex(s, 0, offset_sec, in_tm); |
1934 | 0 | } |
1935 | | |
1936 | | ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, |
1937 | | int offset_day, long offset_sec, time_t *in_tm) |
1938 | 0 | { |
1939 | 0 | time_t t; |
1940 | |
|
1941 | 0 | if (in_tm) |
1942 | 0 | t = *in_tm; |
1943 | 0 | else |
1944 | 0 | time(&t); |
1945 | |
|
1946 | 0 | if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) { |
1947 | 0 | if (s->type == V_ASN1_UTCTIME) |
1948 | 0 | return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec); |
1949 | 0 | if (s->type == V_ASN1_GENERALIZEDTIME) |
1950 | 0 | return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec); |
1951 | 0 | } |
1952 | 0 | return ASN1_TIME_adj(s, t, offset_day, offset_sec); |
1953 | 0 | } |
1954 | | |
1955 | | int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain) |
1956 | 3.24k | { |
1957 | 3.24k | EVP_PKEY *ktmp = NULL, *ktmp2; |
1958 | 3.24k | int i, j; |
1959 | | |
1960 | 3.24k | if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey)) |
1961 | 0 | return 1; |
1962 | | |
1963 | 3.24k | for (i = 0; i < sk_X509_num(chain); i++) { |
1964 | 3.24k | ktmp = X509_get0_pubkey(sk_X509_value(chain, i)); |
1965 | 3.24k | if (ktmp == NULL) { |
1966 | 0 | X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
1967 | 0 | X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY); |
1968 | 0 | return 0; |
1969 | 0 | } |
1970 | 3.24k | if (!EVP_PKEY_missing_parameters(ktmp)) |
1971 | 3.24k | break; |
1972 | 3.24k | } |
1973 | 3.24k | if (ktmp == NULL) { |
1974 | 0 | X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
1975 | 0 | X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN); |
1976 | 0 | return 0; |
1977 | 0 | } |
1978 | | |
1979 | | /* first, populate the other certs */ |
1980 | 3.24k | for (j = i - 1; j >= 0; j--) { |
1981 | 0 | ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j)); |
1982 | 0 | EVP_PKEY_copy_parameters(ktmp2, ktmp); |
1983 | 0 | } |
1984 | | |
1985 | 3.24k | if (pkey != NULL) |
1986 | 0 | EVP_PKEY_copy_parameters(pkey, ktmp); |
1987 | 3.24k | return 1; |
1988 | 3.24k | } |
1989 | | |
1990 | | /* Make a delta CRL as the diff between two full CRLs */ |
1991 | | |
1992 | | X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer, |
1993 | | EVP_PKEY *skey, const EVP_MD *md, unsigned int flags) |
1994 | 0 | { |
1995 | 0 | X509_CRL *crl = NULL; |
1996 | 0 | int i; |
1997 | 0 | STACK_OF(X509_REVOKED) *revs = NULL; |
1998 | | /* CRLs can't be delta already */ |
1999 | 0 | if (base->base_crl_number || newer->base_crl_number) { |
2000 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA); |
2001 | 0 | return NULL; |
2002 | 0 | } |
2003 | | /* Base and new CRL must have a CRL number */ |
2004 | 0 | if (!base->crl_number || !newer->crl_number) { |
2005 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER); |
2006 | 0 | return NULL; |
2007 | 0 | } |
2008 | | /* Issuer names must match */ |
2009 | 0 | if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) { |
2010 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH); |
2011 | 0 | return NULL; |
2012 | 0 | } |
2013 | | /* AKID and IDP must match */ |
2014 | 0 | if (!crl_extension_match(base, newer, NID_authority_key_identifier)) { |
2015 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH); |
2016 | 0 | return NULL; |
2017 | 0 | } |
2018 | 0 | if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) { |
2019 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH); |
2020 | 0 | return NULL; |
2021 | 0 | } |
2022 | | /* Newer CRL number must exceed full CRL number */ |
2023 | 0 | if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) { |
2024 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER); |
2025 | 0 | return NULL; |
2026 | 0 | } |
2027 | | /* CRLs must verify */ |
2028 | 0 | if (skey && (X509_CRL_verify(base, skey) <= 0 || |
2029 | 0 | X509_CRL_verify(newer, skey) <= 0)) { |
2030 | 0 | X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE); |
2031 | 0 | return NULL; |
2032 | 0 | } |
2033 | | /* Create new CRL */ |
2034 | 0 | crl = X509_CRL_new(); |
2035 | 0 | if (crl == NULL || !X509_CRL_set_version(crl, 1)) |
2036 | 0 | goto memerr; |
2037 | | /* Set issuer name */ |
2038 | 0 | if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer))) |
2039 | 0 | goto memerr; |
2040 | | |
2041 | 0 | if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer))) |
2042 | 0 | goto memerr; |
2043 | 0 | if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer))) |
2044 | 0 | goto memerr; |
2045 | | |
2046 | | /* Set base CRL number: must be critical */ |
2047 | | |
2048 | 0 | if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0)) |
2049 | 0 | goto memerr; |
2050 | | |
2051 | | /* |
2052 | | * Copy extensions across from newest CRL to delta: this will set CRL |
2053 | | * number to correct value too. |
2054 | | */ |
2055 | | |
2056 | 0 | for (i = 0; i < X509_CRL_get_ext_count(newer); i++) { |
2057 | 0 | X509_EXTENSION *ext; |
2058 | 0 | ext = X509_CRL_get_ext(newer, i); |
2059 | 0 | if (!X509_CRL_add_ext(crl, ext, -1)) |
2060 | 0 | goto memerr; |
2061 | 0 | } |
2062 | | |
2063 | | /* Go through revoked entries, copying as needed */ |
2064 | | |
2065 | 0 | revs = X509_CRL_get_REVOKED(newer); |
2066 | |
|
2067 | 0 | for (i = 0; i < sk_X509_REVOKED_num(revs); i++) { |
2068 | 0 | X509_REVOKED *rvn, *rvtmp; |
2069 | 0 | rvn = sk_X509_REVOKED_value(revs, i); |
2070 | | /* |
2071 | | * Add only if not also in base. TODO: need something cleverer here |
2072 | | * for some more complex CRLs covering multiple CAs. |
2073 | | */ |
2074 | 0 | if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) { |
2075 | 0 | rvtmp = X509_REVOKED_dup(rvn); |
2076 | 0 | if (!rvtmp) |
2077 | 0 | goto memerr; |
2078 | 0 | if (!X509_CRL_add0_revoked(crl, rvtmp)) { |
2079 | 0 | X509_REVOKED_free(rvtmp); |
2080 | 0 | goto memerr; |
2081 | 0 | } |
2082 | 0 | } |
2083 | 0 | } |
2084 | | /* TODO: optionally prune deleted entries */ |
2085 | | |
2086 | 0 | if (skey && md && !X509_CRL_sign(crl, skey, md)) |
2087 | 0 | goto memerr; |
2088 | | |
2089 | 0 | return crl; |
2090 | | |
2091 | 0 | memerr: |
2092 | 0 | X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE); |
2093 | 0 | X509_CRL_free(crl); |
2094 | 0 | return NULL; |
2095 | 0 | } |
2096 | | |
2097 | | int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) |
2098 | 0 | { |
2099 | 0 | return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); |
2100 | 0 | } |
2101 | | |
2102 | | void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) |
2103 | 0 | { |
2104 | 0 | return CRYPTO_get_ex_data(&ctx->ex_data, idx); |
2105 | 0 | } |
2106 | | |
2107 | | int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx) |
2108 | 0 | { |
2109 | 0 | return ctx->error; |
2110 | 0 | } |
2111 | | |
2112 | | void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) |
2113 | 0 | { |
2114 | 0 | ctx->error = err; |
2115 | 0 | } |
2116 | | |
2117 | | int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx) |
2118 | 0 | { |
2119 | 0 | return ctx->error_depth; |
2120 | 0 | } |
2121 | | |
2122 | | void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth) |
2123 | 0 | { |
2124 | 0 | ctx->error_depth = depth; |
2125 | 0 | } |
2126 | | |
2127 | | X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx) |
2128 | 0 | { |
2129 | 0 | return ctx->current_cert; |
2130 | 0 | } |
2131 | | |
2132 | | void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x) |
2133 | 0 | { |
2134 | 0 | ctx->current_cert = x; |
2135 | 0 | } |
2136 | | |
2137 | | STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx) |
2138 | 3.24k | { |
2139 | 3.24k | return ctx->chain; |
2140 | 3.24k | } |
2141 | | |
2142 | | STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx) |
2143 | 0 | { |
2144 | 0 | if (!ctx->chain) |
2145 | 0 | return NULL; |
2146 | 0 | return X509_chain_up_ref(ctx->chain); |
2147 | 0 | } |
2148 | | |
2149 | | X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx) |
2150 | 0 | { |
2151 | 0 | return ctx->current_issuer; |
2152 | 0 | } |
2153 | | |
2154 | | X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx) |
2155 | 0 | { |
2156 | 0 | return ctx->current_crl; |
2157 | 0 | } |
2158 | | |
2159 | | X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx) |
2160 | 0 | { |
2161 | 0 | return ctx->parent; |
2162 | 0 | } |
2163 | | |
2164 | | void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x) |
2165 | 0 | { |
2166 | 0 | ctx->cert = x; |
2167 | 0 | } |
2168 | | |
2169 | | void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) |
2170 | 0 | { |
2171 | 0 | ctx->crls = sk; |
2172 | 0 | } |
2173 | | |
2174 | | int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) |
2175 | 0 | { |
2176 | | /* |
2177 | | * XXX: Why isn't this function always used to set the associated trust? |
2178 | | * Should there even be a VPM->trust field at all? Or should the trust |
2179 | | * always be inferred from the purpose by X509_STORE_CTX_init(). |
2180 | | */ |
2181 | 0 | return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0); |
2182 | 0 | } |
2183 | | |
2184 | | int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) |
2185 | 0 | { |
2186 | | /* |
2187 | | * XXX: See above, this function would only be needed when the default |
2188 | | * trust for the purpose needs an override in a corner case. |
2189 | | */ |
2190 | 0 | return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust); |
2191 | 0 | } |
2192 | | |
2193 | | /* |
2194 | | * This function is used to set the X509_STORE_CTX purpose and trust values. |
2195 | | * This is intended to be used when another structure has its own trust and |
2196 | | * purpose values which (if set) will be inherited by the ctx. If they aren't |
2197 | | * set then we will usually have a default purpose in mind which should then |
2198 | | * be used to set the trust value. An example of this is SSL use: an SSL |
2199 | | * structure will have its own purpose and trust settings which the |
2200 | | * application can set: if they aren't set then we use the default of SSL |
2201 | | * client/server. |
2202 | | */ |
2203 | | |
2204 | | int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose, |
2205 | | int purpose, int trust) |
2206 | 0 | { |
2207 | 0 | int idx; |
2208 | | /* If purpose not set use default */ |
2209 | 0 | if (!purpose) |
2210 | 0 | purpose = def_purpose; |
2211 | | /* |
2212 | | * If purpose is set but we don't have a default then set the default to |
2213 | | * the current purpose |
2214 | | */ |
2215 | 0 | else if (def_purpose == 0) |
2216 | 0 | def_purpose = purpose; |
2217 | | /* If we have a purpose then check it is valid */ |
2218 | 0 | if (purpose) { |
2219 | 0 | X509_PURPOSE *ptmp; |
2220 | 0 | idx = X509_PURPOSE_get_by_id(purpose); |
2221 | 0 | if (idx == -1) { |
2222 | 0 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
2223 | 0 | X509_R_UNKNOWN_PURPOSE_ID); |
2224 | 0 | return 0; |
2225 | 0 | } |
2226 | 0 | ptmp = X509_PURPOSE_get0(idx); |
2227 | 0 | if (ptmp->trust == X509_TRUST_DEFAULT) { |
2228 | 0 | idx = X509_PURPOSE_get_by_id(def_purpose); |
2229 | 0 | if (idx == -1) { |
2230 | 0 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
2231 | 0 | X509_R_UNKNOWN_PURPOSE_ID); |
2232 | 0 | return 0; |
2233 | 0 | } |
2234 | 0 | ptmp = X509_PURPOSE_get0(idx); |
2235 | 0 | } |
2236 | | /* If trust not set then get from purpose default */ |
2237 | 0 | if (!trust) |
2238 | 0 | trust = ptmp->trust; |
2239 | 0 | } |
2240 | 0 | if (trust) { |
2241 | 0 | idx = X509_TRUST_get_by_id(trust); |
2242 | 0 | if (idx == -1) { |
2243 | 0 | X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
2244 | 0 | X509_R_UNKNOWN_TRUST_ID); |
2245 | 0 | return 0; |
2246 | 0 | } |
2247 | 0 | } |
2248 | | |
2249 | 0 | if (purpose && !ctx->param->purpose) |
2250 | 0 | ctx->param->purpose = purpose; |
2251 | 0 | if (trust && !ctx->param->trust) |
2252 | 0 | ctx->param->trust = trust; |
2253 | 0 | return 1; |
2254 | 0 | } |
2255 | | |
2256 | | X509_STORE_CTX *X509_STORE_CTX_new(void) |
2257 | 3.24k | { |
2258 | 3.24k | X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); |
2259 | | |
2260 | 3.24k | if (ctx == NULL) { |
2261 | 0 | X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE); |
2262 | 0 | return NULL; |
2263 | 0 | } |
2264 | 3.24k | return ctx; |
2265 | 3.24k | } |
2266 | | |
2267 | | void X509_STORE_CTX_free(X509_STORE_CTX *ctx) |
2268 | 3.24k | { |
2269 | 3.24k | if (ctx == NULL) |
2270 | 0 | return; |
2271 | | |
2272 | 3.24k | X509_STORE_CTX_cleanup(ctx); |
2273 | 3.24k | OPENSSL_free(ctx); |
2274 | 3.24k | } |
2275 | | |
2276 | | int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, |
2277 | | STACK_OF(X509) *chain) |
2278 | 3.24k | { |
2279 | 3.24k | int ret = 1; |
2280 | | |
2281 | 3.24k | ctx->ctx = store; |
2282 | 3.24k | ctx->cert = x509; |
2283 | 3.24k | ctx->untrusted = chain; |
2284 | 3.24k | ctx->crls = NULL; |
2285 | 3.24k | ctx->num_untrusted = 0; |
2286 | 3.24k | ctx->other_ctx = NULL; |
2287 | 3.24k | ctx->valid = 0; |
2288 | 3.24k | ctx->chain = NULL; |
2289 | 3.24k | ctx->error = 0; |
2290 | 3.24k | ctx->explicit_policy = 0; |
2291 | 3.24k | ctx->error_depth = 0; |
2292 | 3.24k | ctx->current_cert = NULL; |
2293 | 3.24k | ctx->current_issuer = NULL; |
2294 | 3.24k | ctx->current_crl = NULL; |
2295 | 3.24k | ctx->current_crl_score = 0; |
2296 | 3.24k | ctx->current_reasons = 0; |
2297 | 3.24k | ctx->tree = NULL; |
2298 | 3.24k | ctx->parent = NULL; |
2299 | 3.24k | ctx->dane = NULL; |
2300 | 3.24k | ctx->bare_ta_signed = 0; |
2301 | | /* Zero ex_data to make sure we're cleanup-safe */ |
2302 | 3.24k | memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
2303 | | |
2304 | | /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */ |
2305 | 3.24k | if (store) |
2306 | 3.24k | ctx->cleanup = store->cleanup; |
2307 | 0 | else |
2308 | 0 | ctx->cleanup = 0; |
2309 | | |
2310 | 3.24k | if (store && store->check_issued) |
2311 | 0 | ctx->check_issued = store->check_issued; |
2312 | 3.24k | else |
2313 | 3.24k | ctx->check_issued = check_issued; |
2314 | | |
2315 | 3.24k | if (store && store->get_issuer) |
2316 | 0 | ctx->get_issuer = store->get_issuer; |
2317 | 3.24k | else |
2318 | 3.24k | ctx->get_issuer = X509_STORE_CTX_get1_issuer; |
2319 | | |
2320 | 3.24k | if (store && store->verify_cb) |
2321 | 0 | ctx->verify_cb = store->verify_cb; |
2322 | 3.24k | else |
2323 | 3.24k | ctx->verify_cb = null_callback; |
2324 | | |
2325 | 3.24k | if (store && store->verify) |
2326 | 0 | ctx->verify = store->verify; |
2327 | 3.24k | else |
2328 | 3.24k | ctx->verify = internal_verify; |
2329 | | |
2330 | 3.24k | if (store && store->check_revocation) |
2331 | 0 | ctx->check_revocation = store->check_revocation; |
2332 | 3.24k | else |
2333 | 3.24k | ctx->check_revocation = check_revocation; |
2334 | | |
2335 | 3.24k | if (store && store->get_crl) |
2336 | 0 | ctx->get_crl = store->get_crl; |
2337 | 3.24k | else |
2338 | 3.24k | ctx->get_crl = NULL; |
2339 | | |
2340 | 3.24k | if (store && store->check_crl) |
2341 | 0 | ctx->check_crl = store->check_crl; |
2342 | 3.24k | else |
2343 | 3.24k | ctx->check_crl = check_crl; |
2344 | | |
2345 | 3.24k | if (store && store->cert_crl) |
2346 | 0 | ctx->cert_crl = store->cert_crl; |
2347 | 3.24k | else |
2348 | 3.24k | ctx->cert_crl = cert_crl; |
2349 | | |
2350 | 3.24k | if (store && store->check_policy) |
2351 | 0 | ctx->check_policy = store->check_policy; |
2352 | 3.24k | else |
2353 | 3.24k | ctx->check_policy = check_policy; |
2354 | | |
2355 | 3.24k | if (store && store->lookup_certs) |
2356 | 0 | ctx->lookup_certs = store->lookup_certs; |
2357 | 3.24k | else |
2358 | 3.24k | ctx->lookup_certs = X509_STORE_CTX_get1_certs; |
2359 | | |
2360 | 3.24k | if (store && store->lookup_crls) |
2361 | 0 | ctx->lookup_crls = store->lookup_crls; |
2362 | 3.24k | else |
2363 | 3.24k | ctx->lookup_crls = X509_STORE_CTX_get1_crls; |
2364 | | |
2365 | 3.24k | ctx->param = X509_VERIFY_PARAM_new(); |
2366 | 3.24k | if (ctx->param == NULL) { |
2367 | 0 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
2368 | 0 | goto err; |
2369 | 0 | } |
2370 | | |
2371 | | /* |
2372 | | * Inherit callbacks and flags from X509_STORE if not set use defaults. |
2373 | | */ |
2374 | 3.24k | if (store) |
2375 | 3.24k | ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param); |
2376 | 0 | else |
2377 | 0 | ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE; |
2378 | | |
2379 | 3.24k | if (ret) |
2380 | 3.24k | ret = X509_VERIFY_PARAM_inherit(ctx->param, |
2381 | 3.24k | X509_VERIFY_PARAM_lookup("default")); |
2382 | | |
2383 | 3.24k | if (ret == 0) { |
2384 | 0 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
2385 | 0 | goto err; |
2386 | 0 | } |
2387 | | |
2388 | | /* |
2389 | | * XXX: For now, continue to inherit trust from VPM, but infer from the |
2390 | | * purpose if this still yields the default value. |
2391 | | */ |
2392 | 3.24k | if (ctx->param->trust == X509_TRUST_DEFAULT) { |
2393 | 3.24k | int idx = X509_PURPOSE_get_by_id(ctx->param->purpose); |
2394 | 3.24k | X509_PURPOSE *xp = X509_PURPOSE_get0(idx); |
2395 | | |
2396 | 3.24k | if (xp != NULL) |
2397 | 0 | ctx->param->trust = X509_PURPOSE_get_trust(xp); |
2398 | 3.24k | } |
2399 | | |
2400 | 3.24k | if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, |
2401 | 3.24k | &ctx->ex_data)) |
2402 | 3.24k | return 1; |
2403 | 0 | X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
2404 | |
|
2405 | 0 | err: |
2406 | | /* |
2407 | | * On error clean up allocated storage, if the store context was not |
2408 | | * allocated with X509_STORE_CTX_new() this is our last chance to do so. |
2409 | | */ |
2410 | 0 | X509_STORE_CTX_cleanup(ctx); |
2411 | 0 | return 0; |
2412 | 0 | } |
2413 | | |
2414 | | /* |
2415 | | * Set alternative lookup method: just a STACK of trusted certificates. This |
2416 | | * avoids X509_STORE nastiness where it isn't needed. |
2417 | | */ |
2418 | | void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
2419 | 0 | { |
2420 | 0 | ctx->other_ctx = sk; |
2421 | 0 | ctx->get_issuer = get_issuer_sk; |
2422 | 0 | ctx->lookup_certs = lookup_certs_sk; |
2423 | 0 | } |
2424 | | |
2425 | | void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) |
2426 | 3.24k | { |
2427 | | /* |
2428 | | * We need to be idempotent because, unfortunately, free() also calls |
2429 | | * cleanup(), so the natural call sequence new(), init(), cleanup(), free() |
2430 | | * calls cleanup() for the same object twice! Thus we must zero the |
2431 | | * pointers below after they're freed! |
2432 | | */ |
2433 | | /* Seems to always be 0 in OpenSSL, do this at most once. */ |
2434 | 3.24k | if (ctx->cleanup != NULL) { |
2435 | 0 | ctx->cleanup(ctx); |
2436 | 0 | ctx->cleanup = NULL; |
2437 | 0 | } |
2438 | 3.24k | if (ctx->param != NULL) { |
2439 | 3.24k | if (ctx->parent == NULL) |
2440 | 3.24k | X509_VERIFY_PARAM_free(ctx->param); |
2441 | 3.24k | ctx->param = NULL; |
2442 | 3.24k | } |
2443 | 3.24k | X509_policy_tree_free(ctx->tree); |
2444 | 3.24k | ctx->tree = NULL; |
2445 | 3.24k | sk_X509_pop_free(ctx->chain, X509_free); |
2446 | 3.24k | ctx->chain = NULL; |
2447 | 3.24k | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data)); |
2448 | 3.24k | memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
2449 | 3.24k | } |
2450 | | |
2451 | | void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) |
2452 | 0 | { |
2453 | 0 | X509_VERIFY_PARAM_set_depth(ctx->param, depth); |
2454 | 0 | } |
2455 | | |
2456 | | void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) |
2457 | 0 | { |
2458 | 0 | X509_VERIFY_PARAM_set_flags(ctx->param, flags); |
2459 | 0 | } |
2460 | | |
2461 | | void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, |
2462 | | time_t t) |
2463 | 0 | { |
2464 | 0 | X509_VERIFY_PARAM_set_time(ctx->param, t); |
2465 | 0 | } |
2466 | | |
2467 | | X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx) |
2468 | 0 | { |
2469 | 0 | return ctx->cert; |
2470 | 0 | } |
2471 | | |
2472 | | STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx) |
2473 | 0 | { |
2474 | 0 | return ctx->untrusted; |
2475 | 0 | } |
2476 | | |
2477 | | void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
2478 | 0 | { |
2479 | 0 | ctx->untrusted = sk; |
2480 | 0 | } |
2481 | | |
2482 | | void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
2483 | 0 | { |
2484 | 0 | sk_X509_pop_free(ctx->chain, X509_free); |
2485 | 0 | ctx->chain = sk; |
2486 | 0 | } |
2487 | | |
2488 | | void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, |
2489 | | X509_STORE_CTX_verify_cb verify_cb) |
2490 | 0 | { |
2491 | 0 | ctx->verify_cb = verify_cb; |
2492 | 0 | } |
2493 | | |
2494 | | X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx) |
2495 | 0 | { |
2496 | 0 | return ctx->verify_cb; |
2497 | 0 | } |
2498 | | |
2499 | | void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx, |
2500 | | X509_STORE_CTX_verify_fn verify) |
2501 | 0 | { |
2502 | 0 | ctx->verify = verify; |
2503 | 0 | } |
2504 | | |
2505 | | X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx) |
2506 | 0 | { |
2507 | 0 | return ctx->verify; |
2508 | 0 | } |
2509 | | |
2510 | | X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx) |
2511 | 0 | { |
2512 | 0 | return ctx->get_issuer; |
2513 | 0 | } |
2514 | | |
2515 | | X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx) |
2516 | 0 | { |
2517 | 0 | return ctx->check_issued; |
2518 | 0 | } |
2519 | | |
2520 | | X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx) |
2521 | 0 | { |
2522 | 0 | return ctx->check_revocation; |
2523 | 0 | } |
2524 | | |
2525 | | X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx) |
2526 | 0 | { |
2527 | 0 | return ctx->get_crl; |
2528 | 0 | } |
2529 | | |
2530 | | X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx) |
2531 | 0 | { |
2532 | 0 | return ctx->check_crl; |
2533 | 0 | } |
2534 | | |
2535 | | X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx) |
2536 | 0 | { |
2537 | 0 | return ctx->cert_crl; |
2538 | 0 | } |
2539 | | |
2540 | | X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx) |
2541 | 0 | { |
2542 | 0 | return ctx->check_policy; |
2543 | 0 | } |
2544 | | |
2545 | | X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx) |
2546 | 0 | { |
2547 | 0 | return ctx->lookup_certs; |
2548 | 0 | } |
2549 | | |
2550 | | X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx) |
2551 | 0 | { |
2552 | 0 | return ctx->lookup_crls; |
2553 | 0 | } |
2554 | | |
2555 | | X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx) |
2556 | 0 | { |
2557 | 0 | return ctx->cleanup; |
2558 | 0 | } |
2559 | | |
2560 | | X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx) |
2561 | 0 | { |
2562 | 0 | return ctx->tree; |
2563 | 0 | } |
2564 | | |
2565 | | int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx) |
2566 | 0 | { |
2567 | 0 | return ctx->explicit_policy; |
2568 | 0 | } |
2569 | | |
2570 | | int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx) |
2571 | 0 | { |
2572 | 0 | return ctx->num_untrusted; |
2573 | 0 | } |
2574 | | |
2575 | | int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) |
2576 | 0 | { |
2577 | 0 | const X509_VERIFY_PARAM *param; |
2578 | 0 | param = X509_VERIFY_PARAM_lookup(name); |
2579 | 0 | if (!param) |
2580 | 0 | return 0; |
2581 | 0 | return X509_VERIFY_PARAM_inherit(ctx->param, param); |
2582 | 0 | } |
2583 | | |
2584 | | X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) |
2585 | 0 | { |
2586 | 0 | return ctx->param; |
2587 | 0 | } |
2588 | | |
2589 | | void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) |
2590 | 0 | { |
2591 | 0 | X509_VERIFY_PARAM_free(ctx->param); |
2592 | 0 | ctx->param = param; |
2593 | 0 | } |
2594 | | |
2595 | | void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane) |
2596 | 0 | { |
2597 | 0 | ctx->dane = dane; |
2598 | 0 | } |
2599 | | |
2600 | | static unsigned char *dane_i2d( |
2601 | | X509 *cert, |
2602 | | uint8_t selector, |
2603 | | unsigned int *i2dlen) |
2604 | 0 | { |
2605 | 0 | unsigned char *buf = NULL; |
2606 | 0 | int len; |
2607 | | |
2608 | | /* |
2609 | | * Extract ASN.1 DER form of certificate or public key. |
2610 | | */ |
2611 | 0 | switch (selector) { |
2612 | 0 | case DANETLS_SELECTOR_CERT: |
2613 | 0 | len = i2d_X509(cert, &buf); |
2614 | 0 | break; |
2615 | 0 | case DANETLS_SELECTOR_SPKI: |
2616 | 0 | len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf); |
2617 | 0 | break; |
2618 | 0 | default: |
2619 | 0 | X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR); |
2620 | 0 | return NULL; |
2621 | 0 | } |
2622 | | |
2623 | 0 | if (len < 0 || buf == NULL) { |
2624 | 0 | X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE); |
2625 | 0 | return NULL; |
2626 | 0 | } |
2627 | | |
2628 | 0 | *i2dlen = (unsigned int)len; |
2629 | 0 | return buf; |
2630 | 0 | } |
2631 | | |
2632 | 0 | #define DANETLS_NONE 256 /* impossible uint8_t */ |
2633 | | |
2634 | | static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth) |
2635 | 0 | { |
2636 | 0 | SSL_DANE *dane = ctx->dane; |
2637 | 0 | unsigned usage = DANETLS_NONE; |
2638 | 0 | unsigned selector = DANETLS_NONE; |
2639 | 0 | unsigned ordinal = DANETLS_NONE; |
2640 | 0 | unsigned mtype = DANETLS_NONE; |
2641 | 0 | unsigned char *i2dbuf = NULL; |
2642 | 0 | unsigned int i2dlen = 0; |
2643 | 0 | unsigned char mdbuf[EVP_MAX_MD_SIZE]; |
2644 | 0 | unsigned char *cmpbuf = NULL; |
2645 | 0 | unsigned int cmplen = 0; |
2646 | 0 | int i; |
2647 | 0 | int recnum; |
2648 | 0 | int matched = 0; |
2649 | 0 | danetls_record *t = NULL; |
2650 | 0 | uint32_t mask; |
2651 | |
|
2652 | 0 | mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK; |
2653 | | |
2654 | | /* |
2655 | | * The trust store is not applicable with DANE-TA(2) |
2656 | | */ |
2657 | 0 | if (depth >= ctx->num_untrusted) |
2658 | 0 | mask &= DANETLS_PKIX_MASK; |
2659 | | |
2660 | | /* |
2661 | | * If we've previously matched a PKIX-?? record, no need to test any |
2662 | | * further PKIX-?? records, it remains to just build the PKIX chain. |
2663 | | * Had the match been a DANE-?? record, we'd be done already. |
2664 | | */ |
2665 | 0 | if (dane->mdpth >= 0) |
2666 | 0 | mask &= ~DANETLS_PKIX_MASK; |
2667 | | |
2668 | | /*- |
2669 | | * https://tools.ietf.org/html/rfc7671#section-5.1 |
2670 | | * https://tools.ietf.org/html/rfc7671#section-5.2 |
2671 | | * https://tools.ietf.org/html/rfc7671#section-5.3 |
2672 | | * https://tools.ietf.org/html/rfc7671#section-5.4 |
2673 | | * |
2674 | | * We handle DANE-EE(3) records first as they require no chain building |
2675 | | * and no expiration or hostname checks. We also process digests with |
2676 | | * higher ordinals first and ignore lower priorities except Full(0) which |
2677 | | * is always processed (last). If none match, we then process PKIX-EE(1). |
2678 | | * |
2679 | | * NOTE: This relies on DANE usages sorting before the corresponding PKIX |
2680 | | * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest |
2681 | | * priorities. See twin comment in ssl/ssl_lib.c. |
2682 | | * |
2683 | | * We expect that most TLSA RRsets will have just a single usage, so we |
2684 | | * don't go out of our way to cache multiple selector-specific i2d buffers |
2685 | | * across usages, but if the selector happens to remain the same as switch |
2686 | | * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1", |
2687 | | * records would result in us generating each of the certificate and public |
2688 | | * key DER forms twice, but more typically we'd just see multiple "3 1 1" |
2689 | | * or multiple "3 0 1" records. |
2690 | | * |
2691 | | * As soon as we find a match at any given depth, we stop, because either |
2692 | | * we've matched a DANE-?? record and the peer is authenticated, or, after |
2693 | | * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is |
2694 | | * sufficient for DANE, and what remains to do is ordinary PKIX validation. |
2695 | | */ |
2696 | 0 | recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0; |
2697 | 0 | for (i = 0; matched == 0 && i < recnum; ++i) { |
2698 | 0 | t = sk_danetls_record_value(dane->trecs, i); |
2699 | 0 | if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0) |
2700 | 0 | continue; |
2701 | 0 | if (t->usage != usage) { |
2702 | 0 | usage = t->usage; |
2703 | | |
2704 | | /* Reset digest agility for each usage/selector pair */ |
2705 | 0 | mtype = DANETLS_NONE; |
2706 | 0 | ordinal = dane->dctx->mdord[t->mtype]; |
2707 | 0 | } |
2708 | 0 | if (t->selector != selector) { |
2709 | 0 | selector = t->selector; |
2710 | | |
2711 | | /* Update per-selector state */ |
2712 | 0 | OPENSSL_free(i2dbuf); |
2713 | 0 | i2dbuf = dane_i2d(cert, selector, &i2dlen); |
2714 | 0 | if (i2dbuf == NULL) |
2715 | 0 | return -1; |
2716 | | |
2717 | | /* Reset digest agility for each usage/selector pair */ |
2718 | 0 | mtype = DANETLS_NONE; |
2719 | 0 | ordinal = dane->dctx->mdord[t->mtype]; |
2720 | 0 | } else if (t->mtype != DANETLS_MATCHING_FULL) { |
2721 | | /*- |
2722 | | * Digest agility: |
2723 | | * |
2724 | | * <https://tools.ietf.org/html/rfc7671#section-9> |
2725 | | * |
2726 | | * For a fixed selector, after processing all records with the |
2727 | | * highest mtype ordinal, ignore all mtypes with lower ordinals |
2728 | | * other than "Full". |
2729 | | */ |
2730 | 0 | if (dane->dctx->mdord[t->mtype] < ordinal) |
2731 | 0 | continue; |
2732 | 0 | } |
2733 | | |
2734 | | /* |
2735 | | * Each time we hit a (new selector or) mtype, re-compute the relevant |
2736 | | * digest, more complex caching is not worth the code space. |
2737 | | */ |
2738 | 0 | if (t->mtype != mtype) { |
2739 | 0 | const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype]; |
2740 | 0 | cmpbuf = i2dbuf; |
2741 | 0 | cmplen = i2dlen; |
2742 | |
|
2743 | 0 | if (md != NULL) { |
2744 | 0 | cmpbuf = mdbuf; |
2745 | 0 | if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) { |
2746 | 0 | matched = -1; |
2747 | 0 | break; |
2748 | 0 | } |
2749 | 0 | } |
2750 | 0 | } |
2751 | | |
2752 | | /* |
2753 | | * Squirrel away the certificate and depth if we have a match. Any |
2754 | | * DANE match is dispositive, but with PKIX we still need to build a |
2755 | | * full chain. |
2756 | | */ |
2757 | 0 | if (cmplen == t->dlen && |
2758 | 0 | memcmp(cmpbuf, t->data, cmplen) == 0) { |
2759 | 0 | if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK) |
2760 | 0 | matched = 1; |
2761 | 0 | if (matched || dane->mdpth < 0) { |
2762 | 0 | dane->mdpth = depth; |
2763 | 0 | dane->mtlsa = t; |
2764 | 0 | OPENSSL_free(dane->mcert); |
2765 | 0 | dane->mcert = cert; |
2766 | 0 | X509_up_ref(cert); |
2767 | 0 | } |
2768 | 0 | break; |
2769 | 0 | } |
2770 | 0 | } |
2771 | | |
2772 | | /* Clear the one-element DER cache */ |
2773 | 0 | OPENSSL_free(i2dbuf); |
2774 | 0 | return matched; |
2775 | 0 | } |
2776 | | |
2777 | | static int check_dane_issuer(X509_STORE_CTX *ctx, int depth) |
2778 | 0 | { |
2779 | 0 | SSL_DANE *dane = ctx->dane; |
2780 | 0 | int matched = 0; |
2781 | 0 | X509 *cert; |
2782 | |
|
2783 | 0 | if (!DANETLS_HAS_TA(dane) || depth == 0) |
2784 | 0 | return X509_TRUST_UNTRUSTED; |
2785 | | |
2786 | | /* |
2787 | | * Record any DANE trust-anchor matches, for the first depth to test, if |
2788 | | * there's one at that depth. (This'll be false for length 1 chains looking |
2789 | | * for an exact match for the leaf certificate). |
2790 | | */ |
2791 | 0 | cert = sk_X509_value(ctx->chain, depth); |
2792 | 0 | if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0) |
2793 | 0 | return X509_TRUST_REJECTED; |
2794 | 0 | if (matched > 0) { |
2795 | 0 | ctx->num_untrusted = depth - 1; |
2796 | 0 | return X509_TRUST_TRUSTED; |
2797 | 0 | } |
2798 | | |
2799 | 0 | return X509_TRUST_UNTRUSTED; |
2800 | 0 | } |
2801 | | |
2802 | | static int check_dane_pkeys(X509_STORE_CTX *ctx) |
2803 | 0 | { |
2804 | 0 | SSL_DANE *dane = ctx->dane; |
2805 | 0 | danetls_record *t; |
2806 | 0 | int num = ctx->num_untrusted; |
2807 | 0 | X509 *cert = sk_X509_value(ctx->chain, num - 1); |
2808 | 0 | int recnum = sk_danetls_record_num(dane->trecs); |
2809 | 0 | int i; |
2810 | |
|
2811 | 0 | for (i = 0; i < recnum; ++i) { |
2812 | 0 | t = sk_danetls_record_value(dane->trecs, i); |
2813 | 0 | if (t->usage != DANETLS_USAGE_DANE_TA || |
2814 | 0 | t->selector != DANETLS_SELECTOR_SPKI || |
2815 | 0 | t->mtype != DANETLS_MATCHING_FULL || |
2816 | 0 | X509_verify(cert, t->spki) <= 0) |
2817 | 0 | continue; |
2818 | | |
2819 | | /* Clear any PKIX-?? matches that failed to extend to a full chain */ |
2820 | 0 | X509_free(dane->mcert); |
2821 | 0 | dane->mcert = NULL; |
2822 | | |
2823 | | /* Record match via a bare TA public key */ |
2824 | 0 | ctx->bare_ta_signed = 1; |
2825 | 0 | dane->mdpth = num - 1; |
2826 | 0 | dane->mtlsa = t; |
2827 | | |
2828 | | /* Prune any excess chain certificates */ |
2829 | 0 | num = sk_X509_num(ctx->chain); |
2830 | 0 | for (; num > ctx->num_untrusted; --num) |
2831 | 0 | X509_free(sk_X509_pop(ctx->chain)); |
2832 | |
|
2833 | 0 | return X509_TRUST_TRUSTED; |
2834 | 0 | } |
2835 | | |
2836 | 0 | return X509_TRUST_UNTRUSTED; |
2837 | 0 | } |
2838 | | |
2839 | | static void dane_reset(SSL_DANE *dane) |
2840 | 0 | { |
2841 | | /* |
2842 | | * Reset state to verify another chain, or clear after failure. |
2843 | | */ |
2844 | 0 | X509_free(dane->mcert); |
2845 | 0 | dane->mcert = NULL; |
2846 | 0 | dane->mtlsa = NULL; |
2847 | 0 | dane->mdpth = -1; |
2848 | 0 | dane->pdpth = -1; |
2849 | 0 | } |
2850 | | |
2851 | | static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert) |
2852 | 0 | { |
2853 | 0 | int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags); |
2854 | |
|
2855 | 0 | if (err == X509_V_OK) |
2856 | 0 | return 1; |
2857 | 0 | return verify_cb_cert(ctx, cert, 0, err); |
2858 | 0 | } |
2859 | | |
2860 | | static int dane_verify(X509_STORE_CTX *ctx) |
2861 | 0 | { |
2862 | 0 | X509 *cert = ctx->cert; |
2863 | 0 | SSL_DANE *dane = ctx->dane; |
2864 | 0 | int matched; |
2865 | 0 | int done; |
2866 | |
|
2867 | 0 | dane_reset(dane); |
2868 | | |
2869 | | /*- |
2870 | | * When testing the leaf certificate, if we match a DANE-EE(3) record, |
2871 | | * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1) |
2872 | | * record, the match depth and matching TLSA record are recorded, but the |
2873 | | * return value is 0, because we still need to find a PKIX trust-anchor. |
2874 | | * Therefore, when DANE authentication is enabled (required), we're done |
2875 | | * if: |
2876 | | * + matched < 0, internal error. |
2877 | | * + matched == 1, we matched a DANE-EE(3) record |
2878 | | * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no |
2879 | | * DANE-TA(2) or PKIX-TA(0) to test. |
2880 | | */ |
2881 | 0 | matched = dane_match(ctx, ctx->cert, 0); |
2882 | 0 | done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0); |
2883 | |
|
2884 | 0 | if (done) |
2885 | 0 | X509_get_pubkey_parameters(NULL, ctx->chain); |
2886 | |
|
2887 | 0 | if (matched > 0) { |
2888 | | /* Callback invoked as needed */ |
2889 | 0 | if (!check_leaf_suiteb(ctx, cert)) |
2890 | 0 | return 0; |
2891 | | /* Callback invoked as needed */ |
2892 | 0 | if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 && |
2893 | 0 | !check_id(ctx)) |
2894 | 0 | return 0; |
2895 | | /* Bypass internal_verify(), issue depth 0 success callback */ |
2896 | 0 | ctx->error_depth = 0; |
2897 | 0 | ctx->current_cert = cert; |
2898 | 0 | return ctx->verify_cb(1, ctx); |
2899 | 0 | } |
2900 | | |
2901 | 0 | if (matched < 0) { |
2902 | 0 | ctx->error_depth = 0; |
2903 | 0 | ctx->current_cert = cert; |
2904 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
2905 | 0 | return -1; |
2906 | 0 | } |
2907 | | |
2908 | 0 | if (done) { |
2909 | | /* Fail early, TA-based success is not possible */ |
2910 | 0 | if (!check_leaf_suiteb(ctx, cert)) |
2911 | 0 | return 0; |
2912 | 0 | return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH); |
2913 | 0 | } |
2914 | | |
2915 | | /* |
2916 | | * Chain verification for usages 0/1/2. TLSA record matching of depth > 0 |
2917 | | * certificates happens in-line with building the rest of the chain. |
2918 | | */ |
2919 | 0 | return verify_chain(ctx); |
2920 | 0 | } |
2921 | | |
2922 | | /* Get issuer, without duplicate suppression */ |
2923 | | static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert) |
2924 | 3.24k | { |
2925 | 3.24k | STACK_OF(X509) *saved_chain = ctx->chain; |
2926 | 3.24k | int ok; |
2927 | | |
2928 | 3.24k | ctx->chain = NULL; |
2929 | 3.24k | ok = ctx->get_issuer(issuer, ctx, cert); |
2930 | 3.24k | ctx->chain = saved_chain; |
2931 | | |
2932 | 3.24k | return ok; |
2933 | 3.24k | } |
2934 | | |
2935 | | static int augment_stack(STACK_OF(X509) *src, STACK_OF(X509) **dstPtr) |
2936 | 3.24k | { |
2937 | 3.24k | if (src) { |
2938 | 0 | STACK_OF(X509) *dst; |
2939 | 0 | int i; |
2940 | |
|
2941 | 0 | if (*dstPtr == NULL) |
2942 | 0 | return ((*dstPtr = sk_X509_dup(src)) != NULL); |
2943 | | |
2944 | 0 | for (dst = *dstPtr, i = 0; i < sk_X509_num(src); ++i) { |
2945 | 0 | if (!sk_X509_push(dst, sk_X509_value(src, i))) { |
2946 | 0 | sk_X509_free(dst); |
2947 | 0 | *dstPtr = NULL; |
2948 | 0 | return 0; |
2949 | 0 | } |
2950 | 0 | } |
2951 | 0 | } |
2952 | 3.24k | return 1; |
2953 | 3.24k | } |
2954 | | |
2955 | | static int build_chain(X509_STORE_CTX *ctx) |
2956 | 3.24k | { |
2957 | 3.24k | SSL_DANE *dane = ctx->dane; |
2958 | 3.24k | int num = sk_X509_num(ctx->chain); |
2959 | 3.24k | X509 *cert = sk_X509_value(ctx->chain, num - 1); |
2960 | 3.24k | int ss = cert_self_signed(cert); |
2961 | 3.24k | STACK_OF(X509) *sktmp = NULL; |
2962 | 3.24k | unsigned int search; |
2963 | 3.24k | int may_trusted = 0; |
2964 | 3.24k | int may_alternate = 0; |
2965 | 3.24k | int trust = X509_TRUST_UNTRUSTED; |
2966 | 3.24k | int alt_untrusted = 0; |
2967 | 3.24k | int depth; |
2968 | 3.24k | int ok = 0; |
2969 | 3.24k | int i; |
2970 | | |
2971 | | /* Our chain starts with a single untrusted element. */ |
2972 | 3.24k | if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) { |
2973 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
2974 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
2975 | 0 | return 0; |
2976 | 0 | } |
2977 | | |
2978 | 3.24k | #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */ |
2979 | 6.49k | #define S_DOTRUSTED (1 << 1) /* Search trusted store */ |
2980 | 6.49k | #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */ |
2981 | | /* |
2982 | | * Set up search policy, untrusted if possible, trusted-first if enabled. |
2983 | | * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the |
2984 | | * trust_store, otherwise we might look there first. If not trusted-first, |
2985 | | * and alternate chains are not disabled, try building an alternate chain |
2986 | | * if no luck with untrusted first. |
2987 | | */ |
2988 | 3.24k | search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0; |
2989 | 3.24k | if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) { |
2990 | 3.24k | if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) |
2991 | 3.24k | search |= S_DOTRUSTED; |
2992 | 0 | else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) |
2993 | 0 | may_alternate = 1; |
2994 | 3.24k | may_trusted = 1; |
2995 | 3.24k | } |
2996 | | |
2997 | | /* |
2998 | | * If we got any "Cert(0) Full(0)" issuer certificates from DNS, *prepend* |
2999 | | * them to our working copy of the untrusted certificate stack. Since the |
3000 | | * caller of X509_STORE_CTX_init() may have provided only a leaf cert with |
3001 | | * no corresponding stack of untrusted certificates, we may need to create |
3002 | | * an empty stack first. [ At present only the ssl library provides DANE |
3003 | | * support, and ssl_verify_cert_chain() always provides a non-null stack |
3004 | | * containing at least the leaf certificate, but we must be prepared for |
3005 | | * this to change. ] |
3006 | | */ |
3007 | 3.24k | if (DANETLS_ENABLED(dane) && !augment_stack(dane->certs, &sktmp)) { |
3008 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
3009 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
3010 | 0 | return 0; |
3011 | 0 | } |
3012 | | |
3013 | | /* |
3014 | | * Shallow-copy the stack of untrusted certificates (with TLS, this is |
3015 | | * typically the content of the peer's certificate message) so can make |
3016 | | * multiple passes over it, while free to remove elements as we go. |
3017 | | */ |
3018 | 3.24k | if (!augment_stack(ctx->untrusted, &sktmp)) { |
3019 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
3020 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
3021 | 0 | return 0; |
3022 | 0 | } |
3023 | | |
3024 | | /* |
3025 | | * Still absurdly large, but arithmetically safe, a lower hard upper bound |
3026 | | * might be reasonable. |
3027 | | */ |
3028 | 3.24k | if (ctx->param->depth > INT_MAX/2) |
3029 | 0 | ctx->param->depth = INT_MAX/2; |
3030 | | |
3031 | | /* |
3032 | | * Try to Extend the chain until we reach an ultimately trusted issuer. |
3033 | | * Build chains up to one longer the limit, later fail if we hit the limit, |
3034 | | * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code. |
3035 | | */ |
3036 | 3.24k | depth = ctx->param->depth + 1; |
3037 | | |
3038 | 3.24k | while (search != 0) { |
3039 | 3.24k | X509 *x; |
3040 | 3.24k | X509 *xtmp = NULL; |
3041 | | |
3042 | | /* |
3043 | | * Look in the trust store if enabled for first lookup, or we've run |
3044 | | * out of untrusted issuers and search here is not disabled. When we |
3045 | | * reach the depth limit, we stop extending the chain, if by that point |
3046 | | * we've not found a trust-anchor, any trusted chain would be too long. |
3047 | | * |
3048 | | * The error reported to the application verify callback is at the |
3049 | | * maximal valid depth with the current certificate equal to the last |
3050 | | * not ultimately-trusted issuer. For example, with verify_depth = 0, |
3051 | | * the callback will report errors at depth=1 when the immediate issuer |
3052 | | * of the leaf certificate is not a trust anchor. No attempt will be |
3053 | | * made to locate an issuer for that certificate, since such a chain |
3054 | | * would be a-priori too long. |
3055 | | */ |
3056 | 3.24k | if ((search & S_DOTRUSTED) != 0) { |
3057 | 3.24k | i = num = sk_X509_num(ctx->chain); |
3058 | 3.24k | if ((search & S_DOALTERNATE) != 0) { |
3059 | | /* |
3060 | | * As high up the chain as we can, look for an alternative |
3061 | | * trusted issuer of an untrusted certificate that currently |
3062 | | * has an untrusted issuer. We use the alt_untrusted variable |
3063 | | * to track how far up the chain we find the first match. It |
3064 | | * is only if and when we find a match, that we prune the chain |
3065 | | * and reset ctx->num_untrusted to the reduced count of |
3066 | | * untrusted certificates. While we're searching for such a |
3067 | | * match (which may never be found), it is neither safe nor |
3068 | | * wise to preemptively modify either the chain or |
3069 | | * ctx->num_untrusted. |
3070 | | * |
3071 | | * Note, like ctx->num_untrusted, alt_untrusted is a count of |
3072 | | * untrusted certificates, not a "depth". |
3073 | | */ |
3074 | 0 | i = alt_untrusted; |
3075 | 0 | } |
3076 | 3.24k | x = sk_X509_value(ctx->chain, i-1); |
3077 | | |
3078 | 3.24k | ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x); |
3079 | | |
3080 | 3.24k | if (ok < 0) { |
3081 | 0 | trust = X509_TRUST_REJECTED; |
3082 | 0 | ctx->error = X509_V_ERR_STORE_LOOKUP; |
3083 | 0 | search = 0; |
3084 | 0 | continue; |
3085 | 0 | } |
3086 | | |
3087 | 3.24k | if (ok > 0) { |
3088 | | /* |
3089 | | * Alternative trusted issuer for a mid-chain untrusted cert? |
3090 | | * Pop the untrusted cert's successors and retry. We might now |
3091 | | * be able to complete a valid chain via the trust store. Note |
3092 | | * that despite the current trust-store match we might still |
3093 | | * fail complete the chain to a suitable trust-anchor, in which |
3094 | | * case we may prune some more untrusted certificates and try |
3095 | | * again. Thus the S_DOALTERNATE bit may yet be turned on |
3096 | | * again with an even shorter untrusted chain! |
3097 | | * |
3098 | | * If in the process we threw away our matching PKIX-TA trust |
3099 | | * anchor, reset DANE trust. We might find a suitable trusted |
3100 | | * certificate among the ones from the trust store. |
3101 | | */ |
3102 | 0 | if ((search & S_DOALTERNATE) != 0) { |
3103 | 0 | if (!ossl_assert(num > i && i > 0 && ss == 0)) { |
3104 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
3105 | 0 | X509_free(xtmp); |
3106 | 0 | trust = X509_TRUST_REJECTED; |
3107 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
3108 | 0 | search = 0; |
3109 | 0 | continue; |
3110 | 0 | } |
3111 | 0 | search &= ~S_DOALTERNATE; |
3112 | 0 | for (; num > i; --num) |
3113 | 0 | X509_free(sk_X509_pop(ctx->chain)); |
3114 | 0 | ctx->num_untrusted = num; |
3115 | |
|
3116 | 0 | if (DANETLS_ENABLED(dane) && |
3117 | 0 | dane->mdpth >= ctx->num_untrusted) { |
3118 | 0 | dane->mdpth = -1; |
3119 | 0 | X509_free(dane->mcert); |
3120 | 0 | dane->mcert = NULL; |
3121 | 0 | } |
3122 | 0 | if (DANETLS_ENABLED(dane) && |
3123 | 0 | dane->pdpth >= ctx->num_untrusted) |
3124 | 0 | dane->pdpth = -1; |
3125 | 0 | } |
3126 | | |
3127 | | /* |
3128 | | * Self-signed untrusted certificates get replaced by their |
3129 | | * trusted matching issuer. Otherwise, grow the chain. |
3130 | | */ |
3131 | 0 | if (ss == 0) { |
3132 | 0 | if (!sk_X509_push(ctx->chain, x = xtmp)) { |
3133 | 0 | X509_free(xtmp); |
3134 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
3135 | 0 | trust = X509_TRUST_REJECTED; |
3136 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
3137 | 0 | search = 0; |
3138 | 0 | continue; |
3139 | 0 | } |
3140 | 0 | ss = cert_self_signed(x); |
3141 | 0 | } else if (num == ctx->num_untrusted) { |
3142 | | /* |
3143 | | * We have a self-signed certificate that has the same |
3144 | | * subject name (and perhaps keyid and/or serial number) as |
3145 | | * a trust-anchor. We must have an exact match to avoid |
3146 | | * possible impersonation via key substitution etc. |
3147 | | */ |
3148 | 0 | if (X509_cmp(x, xtmp) != 0) { |
3149 | | /* Self-signed untrusted mimic. */ |
3150 | 0 | X509_free(xtmp); |
3151 | 0 | ok = 0; |
3152 | 0 | } else { |
3153 | 0 | X509_free(x); |
3154 | 0 | ctx->num_untrusted = --num; |
3155 | 0 | (void) sk_X509_set(ctx->chain, num, x = xtmp); |
3156 | 0 | } |
3157 | 0 | } |
3158 | | |
3159 | | /* |
3160 | | * We've added a new trusted certificate to the chain, recheck |
3161 | | * trust. If not done, and not self-signed look deeper. |
3162 | | * Whether or not we're doing "trusted first", we no longer |
3163 | | * look for untrusted certificates from the peer's chain. |
3164 | | * |
3165 | | * At this point ctx->num_trusted and num must reflect the |
3166 | | * correct number of untrusted certificates, since the DANE |
3167 | | * logic in check_trust() depends on distinguishing CAs from |
3168 | | * "the wire" from CAs from the trust store. In particular, the |
3169 | | * certificate at depth "num" should be the new trusted |
3170 | | * certificate with ctx->num_untrusted <= num. |
3171 | | */ |
3172 | 0 | if (ok) { |
3173 | 0 | if (!ossl_assert(ctx->num_untrusted <= num)) { |
3174 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
3175 | 0 | trust = X509_TRUST_REJECTED; |
3176 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
3177 | 0 | search = 0; |
3178 | 0 | continue; |
3179 | 0 | } |
3180 | 0 | search &= ~S_DOUNTRUSTED; |
3181 | 0 | switch (trust = check_trust(ctx, num)) { |
3182 | 0 | case X509_TRUST_TRUSTED: |
3183 | 0 | case X509_TRUST_REJECTED: |
3184 | 0 | search = 0; |
3185 | 0 | continue; |
3186 | 0 | } |
3187 | 0 | if (ss == 0) |
3188 | 0 | continue; |
3189 | 0 | } |
3190 | 0 | } |
3191 | | |
3192 | | /* |
3193 | | * No dispositive decision, and either self-signed or no match, if |
3194 | | * we were doing untrusted-first, and alt-chains are not disabled, |
3195 | | * do that, by repeatedly losing one untrusted element at a time, |
3196 | | * and trying to extend the shorted chain. |
3197 | | */ |
3198 | 3.24k | if ((search & S_DOUNTRUSTED) == 0) { |
3199 | | /* Continue search for a trusted issuer of a shorter chain? */ |
3200 | 3.24k | if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0) |
3201 | 0 | continue; |
3202 | | /* Still no luck and no fallbacks left? */ |
3203 | 3.24k | if (!may_alternate || (search & S_DOALTERNATE) != 0 || |
3204 | 3.24k | ctx->num_untrusted < 2) |
3205 | 3.24k | break; |
3206 | | /* Search for a trusted issuer of a shorter chain */ |
3207 | 0 | search |= S_DOALTERNATE; |
3208 | 0 | alt_untrusted = ctx->num_untrusted - 1; |
3209 | 0 | ss = 0; |
3210 | 0 | } |
3211 | 3.24k | } |
3212 | | |
3213 | | /* |
3214 | | * Extend chain with peer-provided certificates |
3215 | | */ |
3216 | 0 | if ((search & S_DOUNTRUSTED) != 0) { |
3217 | 0 | num = sk_X509_num(ctx->chain); |
3218 | 0 | if (!ossl_assert(num == ctx->num_untrusted)) { |
3219 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
3220 | 0 | trust = X509_TRUST_REJECTED; |
3221 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
3222 | 0 | search = 0; |
3223 | 0 | continue; |
3224 | 0 | } |
3225 | 0 | x = sk_X509_value(ctx->chain, num-1); |
3226 | | |
3227 | | /* |
3228 | | * Once we run out of untrusted issuers, we stop looking for more |
3229 | | * and start looking only in the trust store if enabled. |
3230 | | */ |
3231 | 0 | xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x); |
3232 | 0 | if (xtmp == NULL) { |
3233 | 0 | search &= ~S_DOUNTRUSTED; |
3234 | 0 | if (may_trusted) |
3235 | 0 | search |= S_DOTRUSTED; |
3236 | 0 | continue; |
3237 | 0 | } |
3238 | | |
3239 | | /* Drop this issuer from future consideration */ |
3240 | 0 | (void) sk_X509_delete_ptr(sktmp, xtmp); |
3241 | |
|
3242 | 0 | if (!X509_up_ref(xtmp)) { |
3243 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
3244 | 0 | trust = X509_TRUST_REJECTED; |
3245 | 0 | ctx->error = X509_V_ERR_UNSPECIFIED; |
3246 | 0 | search = 0; |
3247 | 0 | continue; |
3248 | 0 | } |
3249 | | |
3250 | 0 | if (!sk_X509_push(ctx->chain, xtmp)) { |
3251 | 0 | X509_free(xtmp); |
3252 | 0 | X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
3253 | 0 | trust = X509_TRUST_REJECTED; |
3254 | 0 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
3255 | 0 | search = 0; |
3256 | 0 | continue; |
3257 | 0 | } |
3258 | | |
3259 | 0 | x = xtmp; |
3260 | 0 | ++ctx->num_untrusted; |
3261 | 0 | ss = cert_self_signed(xtmp); |
3262 | | |
3263 | | /* |
3264 | | * Check for DANE-TA trust of the topmost untrusted certificate. |
3265 | | */ |
3266 | 0 | switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) { |
3267 | 0 | case X509_TRUST_TRUSTED: |
3268 | 0 | case X509_TRUST_REJECTED: |
3269 | 0 | search = 0; |
3270 | 0 | continue; |
3271 | 0 | } |
3272 | 0 | } |
3273 | 0 | } |
3274 | 3.24k | sk_X509_free(sktmp); |
3275 | | |
3276 | | /* |
3277 | | * Last chance to make a trusted chain, either bare DANE-TA public-key |
3278 | | * signers, or else direct leaf PKIX trust. |
3279 | | */ |
3280 | 3.24k | num = sk_X509_num(ctx->chain); |
3281 | 3.24k | if (num <= depth) { |
3282 | 3.24k | if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane)) |
3283 | 0 | trust = check_dane_pkeys(ctx); |
3284 | 3.24k | if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted) |
3285 | 3.24k | trust = check_trust(ctx, num); |
3286 | 3.24k | } |
3287 | | |
3288 | 3.24k | switch (trust) { |
3289 | 0 | case X509_TRUST_TRUSTED: |
3290 | 0 | return 1; |
3291 | 0 | case X509_TRUST_REJECTED: |
3292 | | /* Callback already issued */ |
3293 | 0 | return 0; |
3294 | 3.24k | case X509_TRUST_UNTRUSTED: |
3295 | 3.24k | default: |
3296 | 3.24k | num = sk_X509_num(ctx->chain); |
3297 | 3.24k | if (num > depth) |
3298 | 0 | return verify_cb_cert(ctx, NULL, num-1, |
3299 | 0 | X509_V_ERR_CERT_CHAIN_TOO_LONG); |
3300 | 3.24k | if (DANETLS_ENABLED(dane) && |
3301 | 3.24k | (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0)) |
3302 | 0 | return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH); |
3303 | 3.24k | if (ss && sk_X509_num(ctx->chain) == 1) |
3304 | 3.24k | return verify_cb_cert(ctx, NULL, num-1, |
3305 | 3.24k | X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT); |
3306 | 0 | if (ss) |
3307 | 0 | return verify_cb_cert(ctx, NULL, num-1, |
3308 | 0 | X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN); |
3309 | 0 | if (ctx->num_untrusted < num) |
3310 | 0 | return verify_cb_cert(ctx, NULL, num-1, |
3311 | 0 | X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT); |
3312 | 0 | return verify_cb_cert(ctx, NULL, num-1, |
3313 | 0 | X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY); |
3314 | 3.24k | } |
3315 | 3.24k | } |
3316 | | |
3317 | | static const int minbits_table[] = { 80, 112, 128, 192, 256 }; |
3318 | | static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table); |
3319 | | |
3320 | | /* |
3321 | | * Check whether the public key of ``cert`` meets the security level of |
3322 | | * ``ctx``. |
3323 | | * |
3324 | | * Returns 1 on success, 0 otherwise. |
3325 | | */ |
3326 | | static int check_key_level(X509_STORE_CTX *ctx, X509 *cert) |
3327 | 3.24k | { |
3328 | 3.24k | EVP_PKEY *pkey = X509_get0_pubkey(cert); |
3329 | 3.24k | int level = ctx->param->auth_level; |
3330 | | |
3331 | | /* |
3332 | | * At security level zero, return without checking for a supported public |
3333 | | * key type. Some engines support key types not understood outside the |
3334 | | * engine, and we only need to understand the key when enforcing a security |
3335 | | * floor. |
3336 | | */ |
3337 | 3.24k | if (level <= 0) |
3338 | 3.24k | return 1; |
3339 | | |
3340 | | /* Unsupported or malformed keys are not secure */ |
3341 | 0 | if (pkey == NULL) |
3342 | 0 | return 0; |
3343 | | |
3344 | 0 | if (level > NUM_AUTH_LEVELS) |
3345 | 0 | level = NUM_AUTH_LEVELS; |
3346 | |
|
3347 | 0 | return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1]; |
3348 | 0 | } |
3349 | | |
3350 | | /* |
3351 | | * Check whether the public key of ``cert`` does not use explicit params |
3352 | | * for an elliptic curve. |
3353 | | * |
3354 | | * Returns 1 on success, 0 if check fails, -1 for other errors. |
3355 | | */ |
3356 | | static int check_curve(X509 *cert) |
3357 | 0 | { |
3358 | 0 | #ifndef OPENSSL_NO_EC |
3359 | 0 | EVP_PKEY *pkey = X509_get0_pubkey(cert); |
3360 | | |
3361 | | /* Unsupported or malformed key */ |
3362 | 0 | if (pkey == NULL) |
3363 | 0 | return -1; |
3364 | | |
3365 | 0 | if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) { |
3366 | 0 | int ret; |
3367 | |
|
3368 | 0 | ret = EC_KEY_decoded_from_explicit_params(EVP_PKEY_get0_EC_KEY(pkey)); |
3369 | 0 | return ret < 0 ? ret : !ret; |
3370 | 0 | } |
3371 | 0 | #endif |
3372 | | |
3373 | 0 | return 1; |
3374 | 0 | } |
3375 | | |
3376 | | /* |
3377 | | * Check whether the signature digest algorithm of ``cert`` meets the security |
3378 | | * level of ``ctx``. Should not be checked for trust anchors (whether |
3379 | | * self-signed or otherwise). |
3380 | | * |
3381 | | * Returns 1 on success, 0 otherwise. |
3382 | | */ |
3383 | | static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert) |
3384 | 0 | { |
3385 | 0 | int secbits = -1; |
3386 | 0 | int level = ctx->param->auth_level; |
3387 | |
|
3388 | 0 | if (level <= 0) |
3389 | 0 | return 1; |
3390 | 0 | if (level > NUM_AUTH_LEVELS) |
3391 | 0 | level = NUM_AUTH_LEVELS; |
3392 | |
|
3393 | 0 | if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL)) |
3394 | 0 | return 0; |
3395 | | |
3396 | 0 | return secbits >= minbits_table[level - 1]; |
3397 | 0 | } |