Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/include/crypto/md32_common.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
# error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
# error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
# error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
# error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
# error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
# error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
# error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
# error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
0
#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),          \
101
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
102
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
103
0
                         l|=(((unsigned long)(*((c)++)))    )           )
104
508k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),      \
105
508k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
106
508k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
107
508k
                         *((c)++)=(unsigned char)(((l)    )&0xff),      \
108
508k
                         l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),          \
113
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
114
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
115
0
                         l|=(((unsigned long)(*((c)++)))<<24)           )
116
87.1k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),      \
117
87.1k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
118
87.1k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
119
87.1k
                         *((c)++)=(unsigned char)(((l)>>24)&0xff),      \
120
87.1k
                         l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
160k
{
130
160k
    const unsigned char *data = data_;
131
160k
    unsigned char *p;
132
160k
    HASH_LONG l;
133
160k
    size_t n;
134
135
160k
    if (len == 0)
136
1
        return 1;
137
138
160k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
160k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
160k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
160k
    c->Nl = l;
144
145
160k
    n = c->num;
146
160k
    if (n != 0) {
147
67.2k
        p = (unsigned char *)c->data;
148
149
67.2k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
34.5k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
34.5k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
34.5k
            n = HASH_CBLOCK - n;
153
34.5k
            data += n;
154
34.5k
            len -= n;
155
34.5k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
34.5k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
34.5k
        } else {
164
32.7k
            memcpy(p + n, data, len);
165
32.7k
            c->num += (unsigned int)len;
166
32.7k
            return 1;
167
32.7k
        }
168
67.2k
    }
169
170
127k
    n = len / HASH_CBLOCK;
171
127k
    if (n > 0) {
172
49.1k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
49.1k
        n *= HASH_CBLOCK;
174
49.1k
        data += n;
175
49.1k
        len -= n;
176
49.1k
    }
177
178
127k
    if (len != 0) {
179
108k
        p = (unsigned char *)c->data;
180
108k
        c->num = (unsigned int)len;
181
108k
        memcpy(p, data, len);
182
108k
    }
183
127k
    return 1;
184
160k
}
MD5_Update
Line
Count
Source
129
33.6k
{
130
33.6k
    const unsigned char *data = data_;
131
33.6k
    unsigned char *p;
132
33.6k
    HASH_LONG l;
133
33.6k
    size_t n;
134
135
33.6k
    if (len == 0)
136
1
        return 1;
137
138
33.6k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
33.6k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
33.6k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
33.6k
    c->Nl = l;
144
145
33.6k
    n = c->num;
146
33.6k
    if (n != 0) {
147
17.5k
        p = (unsigned char *)c->data;
148
149
17.5k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
14.3k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
14.3k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
14.3k
            n = HASH_CBLOCK - n;
153
14.3k
            data += n;
154
14.3k
            len -= n;
155
14.3k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
14.3k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
14.3k
        } else {
164
3.20k
            memcpy(p + n, data, len);
165
3.20k
            c->num += (unsigned int)len;
166
3.20k
            return 1;
167
3.20k
        }
168
17.5k
    }
169
170
30.4k
    n = len / HASH_CBLOCK;
171
30.4k
    if (n > 0) {
172
3.64k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
3.64k
        n *= HASH_CBLOCK;
174
3.64k
        data += n;
175
3.64k
        len -= n;
176
3.64k
    }
177
178
30.4k
    if (len != 0) {
179
29.5k
        p = (unsigned char *)c->data;
180
29.5k
        c->num = (unsigned int)len;
181
29.5k
        memcpy(p, data, len);
182
29.5k
    }
183
30.4k
    return 1;
184
33.6k
}
SHA1_Update
Line
Count
Source
129
70.2k
{
130
70.2k
    const unsigned char *data = data_;
131
70.2k
    unsigned char *p;
132
70.2k
    HASH_LONG l;
133
70.2k
    size_t n;
134
135
70.2k
    if (len == 0)
136
0
        return 1;
137
138
70.2k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
70.2k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
70.2k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
70.2k
    c->Nl = l;
144
145
70.2k
    n = c->num;
146
70.2k
    if (n != 0) {
147
35.1k
        p = (unsigned char *)c->data;
148
149
35.1k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
14.3k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
14.3k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
14.3k
            n = HASH_CBLOCK - n;
153
14.3k
            data += n;
154
14.3k
            len -= n;
155
14.3k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
14.3k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
20.7k
        } else {
164
20.7k
            memcpy(p + n, data, len);
165
20.7k
            c->num += (unsigned int)len;
166
20.7k
            return 1;
167
20.7k
        }
168
35.1k
    }
169
170
49.4k
    n = len / HASH_CBLOCK;
171
49.4k
    if (n > 0) {
172
22.9k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
22.9k
        n *= HASH_CBLOCK;
174
22.9k
        data += n;
175
22.9k
        len -= n;
176
22.9k
    }
177
178
49.4k
    if (len != 0) {
179
48.6k
        p = (unsigned char *)c->data;
180
48.6k
        c->num = (unsigned int)len;
181
48.6k
        memcpy(p, data, len);
182
48.6k
    }
183
49.4k
    return 1;
184
70.2k
}
SHA256_Update
Line
Count
Source
129
56.4k
{
130
56.4k
    const unsigned char *data = data_;
131
56.4k
    unsigned char *p;
132
56.4k
    HASH_LONG l;
133
56.4k
    size_t n;
134
135
56.4k
    if (len == 0)
136
0
        return 1;
137
138
56.4k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
56.4k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
56.4k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
56.4k
    c->Nl = l;
144
145
56.4k
    n = c->num;
146
56.4k
    if (n != 0) {
147
14.5k
        p = (unsigned char *)c->data;
148
149
14.5k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
5.80k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
5.80k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
5.80k
            n = HASH_CBLOCK - n;
153
5.80k
            data += n;
154
5.80k
            len -= n;
155
5.80k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
5.80k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
8.72k
        } else {
164
8.72k
            memcpy(p + n, data, len);
165
8.72k
            c->num += (unsigned int)len;
166
8.72k
            return 1;
167
8.72k
        }
168
14.5k
    }
169
170
47.7k
    n = len / HASH_CBLOCK;
171
47.7k
    if (n > 0) {
172
22.4k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
22.4k
        n *= HASH_CBLOCK;
174
22.4k
        data += n;
175
22.4k
        len -= n;
176
22.4k
    }
177
178
47.7k
    if (len != 0) {
179
30.3k
        p = (unsigned char *)c->data;
180
30.3k
        c->num = (unsigned int)len;
181
30.3k
        memcpy(p, data, len);
182
30.3k
    }
183
47.7k
    return 1;
184
56.4k
}
Unexecuted instantiation: sm3_update
Unexecuted instantiation: MD4_Update
Unexecuted instantiation: RIPEMD160_Update
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
9.01k
{
188
9.01k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
9.01k
}
Unexecuted instantiation: MD5_Transform
SHA1_Transform
Line
Count
Source
187
7.99k
{
188
7.99k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
7.99k
}
SHA256_Transform
Line
Count
Source
187
1.01k
{
188
1.01k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
1.01k
}
Unexecuted instantiation: sm3_transform
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: RIPEMD160_Transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
75.4k
{
193
75.4k
    unsigned char *p = (unsigned char *)c->data;
194
75.4k
    size_t n = c->num;
195
196
75.4k
    p[n] = 0x80;                /* there is always room for one */
197
75.4k
    n++;
198
199
75.4k
    if (n > (HASH_CBLOCK - 8)) {
200
385
        memset(p + n, 0, HASH_CBLOCK - n);
201
385
        n = 0;
202
385
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
385
    }
204
75.4k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
75.4k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
60.9k
    (void)HOST_l2c(c->Nh, p);
209
60.9k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
14.5k
    (void)HOST_l2c(c->Nl, p);
212
14.5k
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
75.4k
    p -= HASH_CBLOCK;
215
75.4k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
75.4k
    c->num = 0;
217
75.4k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
75.4k
    HASH_MAKE_STRING(c, md);
223
27.4k
#endif
224
225
27.4k
    return 1;
226
75.4k
}
MD5_Final
Line
Count
Source
192
14.5k
{
193
14.5k
    unsigned char *p = (unsigned char *)c->data;
194
14.5k
    size_t n = c->num;
195
196
14.5k
    p[n] = 0x80;                /* there is always room for one */
197
14.5k
    n++;
198
199
14.5k
    if (n > (HASH_CBLOCK - 8)) {
200
77
        memset(p + n, 0, HASH_CBLOCK - n);
201
77
        n = 0;
202
77
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
77
    }
204
14.5k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
14.5k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
14.5k
    (void)HOST_l2c(c->Nl, p);
212
14.5k
    (void)HOST_l2c(c->Nh, p);
213
14.5k
#endif
214
14.5k
    p -= HASH_CBLOCK;
215
14.5k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
14.5k
    c->num = 0;
217
14.5k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
14.5k
    HASH_MAKE_STRING(c, md);
223
14.5k
#endif
224
225
14.5k
    return 1;
226
14.5k
}
SHA1_Final
Line
Count
Source
192
33.4k
{
193
33.4k
    unsigned char *p = (unsigned char *)c->data;
194
33.4k
    size_t n = c->num;
195
196
33.4k
    p[n] = 0x80;                /* there is always room for one */
197
33.4k
    n++;
198
199
33.4k
    if (n > (HASH_CBLOCK - 8)) {
200
96
        memset(p + n, 0, HASH_CBLOCK - n);
201
96
        n = 0;
202
96
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
96
    }
204
33.4k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
33.4k
    p += HASH_CBLOCK - 8;
207
33.4k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
33.4k
    (void)HOST_l2c(c->Nh, p);
209
33.4k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
33.4k
    p -= HASH_CBLOCK;
215
33.4k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
33.4k
    c->num = 0;
217
33.4k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
33.4k
    HASH_MAKE_STRING(c, md);
223
33.4k
#endif
224
225
33.4k
    return 1;
226
33.4k
}
SHA256_Final
Line
Count
Source
192
27.4k
{
193
27.4k
    unsigned char *p = (unsigned char *)c->data;
194
27.4k
    size_t n = c->num;
195
196
27.4k
    p[n] = 0x80;                /* there is always room for one */
197
27.4k
    n++;
198
199
27.4k
    if (n > (HASH_CBLOCK - 8)) {
200
212
        memset(p + n, 0, HASH_CBLOCK - n);
201
212
        n = 0;
202
212
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
212
    }
204
27.4k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
27.4k
    p += HASH_CBLOCK - 8;
207
27.4k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
27.4k
    (void)HOST_l2c(c->Nh, p);
209
27.4k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
27.4k
    p -= HASH_CBLOCK;
215
27.4k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
27.4k
    c->num = 0;
217
27.4k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
27.4k
    HASH_MAKE_STRING(c, md);
223
27.4k
#endif
224
225
27.4k
    return 1;
226
27.4k
}
Unexecuted instantiation: sm3_final
Unexecuted instantiation: MD4_Final
Unexecuted instantiation: RIPEMD160_Final
227
228
#ifndef MD32_REG_T
229
# if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#  define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
# else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#  define MD32_REG_T int
255
# endif
256
#endif