Coverage Report

Created: 2023-06-08 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
5.97M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
351
{
145
351
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
351
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
351
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
351
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
351
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
351
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
351
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
351
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
351
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
351
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
660
{
162
660
    memset(out, 0, 66);
163
660
    (*((limb *) & out[0])) = in[0];
164
660
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
660
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
660
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
660
    (*((limb_aX *) & out[29])) = in[4];
168
660
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
660
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
660
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
660
    (*((limb_aX *) & out[58])) = in[8];
172
660
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
351
{
177
351
    felem_bytearray b_out;
178
351
    int num_bytes;
179
180
351
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
351
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
351
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
351
    bin66_to_felem(out, b_out);
190
351
    return 1;
191
351
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
660
{
196
660
    felem_bytearray b_out;
197
660
    felem_to_bin66(b_out, in);
198
660
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
660
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
213k
{
221
213k
    out[0] = in[0];
222
213k
    out[1] = in[1];
223
213k
    out[2] = in[2];
224
213k
    out[3] = in[3];
225
213k
    out[4] = in[4];
226
213k
    out[5] = in[5];
227
213k
    out[6] = in[6];
228
213k
    out[7] = in[7];
229
213k
    out[8] = in[8];
230
213k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
67.5k
{
235
67.5k
    out[0] += in[0];
236
67.5k
    out[1] += in[1];
237
67.5k
    out[2] += in[2];
238
67.5k
    out[3] += in[3];
239
67.5k
    out[4] += in[4];
240
67.5k
    out[5] += in[5];
241
67.5k
    out[6] += in[6];
242
67.5k
    out[7] += in[7];
243
67.5k
    out[8] += in[8];
244
67.5k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
570k
{
249
570k
    out[0] = in[0] * scalar;
250
570k
    out[1] = in[1] * scalar;
251
570k
    out[2] = in[2] * scalar;
252
570k
    out[3] = in[3] * scalar;
253
570k
    out[4] = in[4] * scalar;
254
570k
    out[5] = in[5] * scalar;
255
570k
    out[6] = in[6] * scalar;
256
570k
    out[7] = in[7] * scalar;
257
570k
    out[8] = in[8] * scalar;
258
570k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
99.8k
{
263
99.8k
    out[0] *= scalar;
264
99.8k
    out[1] *= scalar;
265
99.8k
    out[2] *= scalar;
266
99.8k
    out[3] *= scalar;
267
99.8k
    out[4] *= scalar;
268
99.8k
    out[5] *= scalar;
269
99.8k
    out[6] *= scalar;
270
99.8k
    out[7] *= scalar;
271
99.8k
    out[8] *= scalar;
272
99.8k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
33.2k
{
277
33.2k
    out[0] *= scalar;
278
33.2k
    out[1] *= scalar;
279
33.2k
    out[2] *= scalar;
280
33.2k
    out[3] *= scalar;
281
33.2k
    out[4] *= scalar;
282
33.2k
    out[5] *= scalar;
283
33.2k
    out[6] *= scalar;
284
33.2k
    out[7] *= scalar;
285
33.2k
    out[8] *= scalar;
286
33.2k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
2.52k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
2.52k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
2.52k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
2.52k
    out[0] = two62m3 - in[0];
302
2.52k
    out[1] = two62m2 - in[1];
303
2.52k
    out[2] = two62m2 - in[2];
304
2.52k
    out[3] = two62m2 - in[3];
305
2.52k
    out[4] = two62m2 - in[4];
306
2.52k
    out[5] = two62m2 - in[5];
307
2.52k
    out[6] = two62m2 - in[6];
308
2.52k
    out[7] = two62m2 - in[7];
309
2.52k
    out[8] = two62m2 - in[8];
310
2.52k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
54.9k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
54.9k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
54.9k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
54.9k
    out[0] += two62m3 - in[0];
328
54.9k
    out[1] += two62m2 - in[1];
329
54.9k
    out[2] += two62m2 - in[2];
330
54.9k
    out[3] += two62m2 - in[3];
331
54.9k
    out[4] += two62m2 - in[4];
332
54.9k
    out[5] += two62m2 - in[5];
333
54.9k
    out[6] += two62m2 - in[6];
334
54.9k
    out[7] += two62m2 - in[7];
335
54.9k
    out[8] += two62m2 - in[8];
336
54.9k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
95.1k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
95.1k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
95.1k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
95.1k
    out[0] += two63m6 - in[0];
359
95.1k
    out[1] += two63m5 - in[1];
360
95.1k
    out[2] += two63m5 - in[2];
361
95.1k
    out[3] += two63m5 - in[3];
362
95.1k
    out[4] += two63m5 - in[4];
363
95.1k
    out[5] += two63m5 - in[5];
364
95.1k
    out[6] += two63m5 - in[6];
365
95.1k
    out[7] += two63m5 - in[7];
366
95.1k
    out[8] += two63m5 - in[8];
367
95.1k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
33.2k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
33.2k
    static const uint128_t two127m70 =
382
33.2k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
33.2k
    static const uint128_t two127m69 =
384
33.2k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
33.2k
    out[0] += (two127m70 - in[0]);
387
33.2k
    out[1] += (two127m69 - in[1]);
388
33.2k
    out[2] += (two127m69 - in[2]);
389
33.2k
    out[3] += (two127m69 - in[3]);
390
33.2k
    out[4] += (two127m69 - in[4]);
391
33.2k
    out[5] += (two127m69 - in[5]);
392
33.2k
    out[6] += (two127m69 - in[6]);
393
33.2k
    out[7] += (two127m69 - in[7]);
394
33.2k
    out[8] += (two127m69 - in[8]);
395
33.2k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
197k
{
406
197k
    felem inx2, inx4;
407
197k
    felem_scalar(inx2, in, 2);
408
197k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
197k
    out[0] = ((uint128_t) in[0]) * in[0];
422
197k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
197k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
197k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
197k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
197k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
197k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
197k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
197k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
197k
             ((uint128_t) in[1]) * inx2[5] +
431
197k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
197k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
197k
             ((uint128_t) in[1]) * inx2[6] +
434
197k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
197k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
197k
             ((uint128_t) in[1]) * inx2[7] +
437
197k
             ((uint128_t) in[2]) * inx2[6] +
438
197k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
197k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
197k
              ((uint128_t) in[2]) * inx4[7] +
452
197k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
197k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
197k
              ((uint128_t) in[3]) * inx4[7] +
457
197k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
197k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
197k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
197k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
197k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
197k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
197k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
197k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
197k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
197k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
167k
{
490
167k
    felem in2x2;
491
167k
    felem_scalar(in2x2, in2, 2);
492
493
167k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
167k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
167k
             ((uint128_t) in1[1]) * in2[0];
497
498
167k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
167k
             ((uint128_t) in1[1]) * in2[1] +
500
167k
             ((uint128_t) in1[2]) * in2[0];
501
502
167k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
167k
             ((uint128_t) in1[1]) * in2[2] +
504
167k
             ((uint128_t) in1[2]) * in2[1] +
505
167k
             ((uint128_t) in1[3]) * in2[0];
506
507
167k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
167k
             ((uint128_t) in1[1]) * in2[3] +
509
167k
             ((uint128_t) in1[2]) * in2[2] +
510
167k
             ((uint128_t) in1[3]) * in2[1] +
511
167k
             ((uint128_t) in1[4]) * in2[0];
512
513
167k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
167k
             ((uint128_t) in1[1]) * in2[4] +
515
167k
             ((uint128_t) in1[2]) * in2[3] +
516
167k
             ((uint128_t) in1[3]) * in2[2] +
517
167k
             ((uint128_t) in1[4]) * in2[1] +
518
167k
             ((uint128_t) in1[5]) * in2[0];
519
520
167k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
167k
             ((uint128_t) in1[1]) * in2[5] +
522
167k
             ((uint128_t) in1[2]) * in2[4] +
523
167k
             ((uint128_t) in1[3]) * in2[3] +
524
167k
             ((uint128_t) in1[4]) * in2[2] +
525
167k
             ((uint128_t) in1[5]) * in2[1] +
526
167k
             ((uint128_t) in1[6]) * in2[0];
527
528
167k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
167k
             ((uint128_t) in1[1]) * in2[6] +
530
167k
             ((uint128_t) in1[2]) * in2[5] +
531
167k
             ((uint128_t) in1[3]) * in2[4] +
532
167k
             ((uint128_t) in1[4]) * in2[3] +
533
167k
             ((uint128_t) in1[5]) * in2[2] +
534
167k
             ((uint128_t) in1[6]) * in2[1] +
535
167k
             ((uint128_t) in1[7]) * in2[0];
536
537
167k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
167k
             ((uint128_t) in1[1]) * in2[7] +
539
167k
             ((uint128_t) in1[2]) * in2[6] +
540
167k
             ((uint128_t) in1[3]) * in2[5] +
541
167k
             ((uint128_t) in1[4]) * in2[4] +
542
167k
             ((uint128_t) in1[5]) * in2[3] +
543
167k
             ((uint128_t) in1[6]) * in2[2] +
544
167k
             ((uint128_t) in1[7]) * in2[1] +
545
167k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
167k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
167k
              ((uint128_t) in1[2]) * in2x2[7] +
551
167k
              ((uint128_t) in1[3]) * in2x2[6] +
552
167k
              ((uint128_t) in1[4]) * in2x2[5] +
553
167k
              ((uint128_t) in1[5]) * in2x2[4] +
554
167k
              ((uint128_t) in1[6]) * in2x2[3] +
555
167k
              ((uint128_t) in1[7]) * in2x2[2] +
556
167k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
167k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
167k
              ((uint128_t) in1[3]) * in2x2[7] +
560
167k
              ((uint128_t) in1[4]) * in2x2[6] +
561
167k
              ((uint128_t) in1[5]) * in2x2[5] +
562
167k
              ((uint128_t) in1[6]) * in2x2[4] +
563
167k
              ((uint128_t) in1[7]) * in2x2[3] +
564
167k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
167k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
167k
              ((uint128_t) in1[4]) * in2x2[7] +
568
167k
              ((uint128_t) in1[5]) * in2x2[6] +
569
167k
              ((uint128_t) in1[6]) * in2x2[5] +
570
167k
              ((uint128_t) in1[7]) * in2x2[4] +
571
167k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
167k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
167k
              ((uint128_t) in1[5]) * in2x2[7] +
575
167k
              ((uint128_t) in1[6]) * in2x2[6] +
576
167k
              ((uint128_t) in1[7]) * in2x2[5] +
577
167k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
167k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
167k
              ((uint128_t) in1[6]) * in2x2[7] +
581
167k
              ((uint128_t) in1[7]) * in2x2[6] +
582
167k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
167k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
167k
              ((uint128_t) in1[7]) * in2x2[7] +
586
167k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
167k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
167k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
167k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
167k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
331k
{
605
331k
    u64 overflow1, overflow2;
606
607
331k
    out[0] = ((limb) in[0]) & bottom58bits;
608
331k
    out[1] = ((limb) in[1]) & bottom58bits;
609
331k
    out[2] = ((limb) in[2]) & bottom58bits;
610
331k
    out[3] = ((limb) in[3]) & bottom58bits;
611
331k
    out[4] = ((limb) in[4]) & bottom58bits;
612
331k
    out[5] = ((limb) in[5]) & bottom58bits;
613
331k
    out[6] = ((limb) in[6]) & bottom58bits;
614
331k
    out[7] = ((limb) in[7]) & bottom58bits;
615
331k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
331k
    out[1] += ((limb) in[0]) >> 58;
620
331k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
331k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
331k
    out[2] += ((limb) in[1]) >> 58;
628
331k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
331k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
331k
    out[3] += ((limb) in[2]) >> 58;
632
331k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
331k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
331k
    out[4] += ((limb) in[3]) >> 58;
636
331k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
331k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
331k
    out[5] += ((limb) in[4]) >> 58;
640
331k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
331k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
331k
    out[6] += ((limb) in[5]) >> 58;
644
331k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
331k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
331k
    out[7] += ((limb) in[6]) >> 58;
648
331k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
331k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
331k
    out[8] += ((limb) in[7]) >> 58;
652
331k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
331k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
331k
    overflow1 += ((limb) in[8]) >> 58;
660
331k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
331k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
331k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
331k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
331k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
331k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
331k
    out[1] += out[0] >> 58;
670
331k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
331k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
197k
# define felem_square felem_square_ref
726
167k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
93
{
753
93
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
93
    largefelem tmp;
755
93
    unsigned i;
756
757
93
    felem_square(tmp, in);
758
93
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
93
    felem_mul(tmp, in, ftmp);
760
93
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
93
    felem_assign(ftmp2, ftmp);
762
93
    felem_square(tmp, ftmp);
763
93
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
93
    felem_mul(tmp, in, ftmp);
765
93
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
93
    felem_square(tmp, ftmp);
767
93
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
93
    felem_square(tmp, ftmp2);
770
93
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
93
    felem_square(tmp, ftmp3);
772
93
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
93
    felem_mul(tmp, ftmp3, ftmp2);
774
93
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
93
    felem_assign(ftmp2, ftmp3);
777
93
    felem_square(tmp, ftmp3);
778
93
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
93
    felem_square(tmp, ftmp3);
780
93
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
93
    felem_square(tmp, ftmp3);
782
93
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
93
    felem_square(tmp, ftmp3);
784
93
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
93
    felem_assign(ftmp4, ftmp3);
786
93
    felem_mul(tmp, ftmp3, ftmp);
787
93
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
93
    felem_square(tmp, ftmp4);
789
93
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
93
    felem_mul(tmp, ftmp3, ftmp2);
791
93
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
93
    felem_assign(ftmp2, ftmp3);
793
794
837
    for (i = 0; i < 8; i++) {
795
744
        felem_square(tmp, ftmp3);
796
744
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
744
    }
798
93
    felem_mul(tmp, ftmp3, ftmp2);
799
93
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
93
    felem_assign(ftmp2, ftmp3);
801
802
1.58k
    for (i = 0; i < 16; i++) {
803
1.48k
        felem_square(tmp, ftmp3);
804
1.48k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
1.48k
    }
806
93
    felem_mul(tmp, ftmp3, ftmp2);
807
93
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
93
    felem_assign(ftmp2, ftmp3);
809
810
3.06k
    for (i = 0; i < 32; i++) {
811
2.97k
        felem_square(tmp, ftmp3);
812
2.97k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
2.97k
    }
814
93
    felem_mul(tmp, ftmp3, ftmp2);
815
93
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
93
    felem_assign(ftmp2, ftmp3);
817
818
6.04k
    for (i = 0; i < 64; i++) {
819
5.95k
        felem_square(tmp, ftmp3);
820
5.95k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
5.95k
    }
822
93
    felem_mul(tmp, ftmp3, ftmp2);
823
93
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
93
    felem_assign(ftmp2, ftmp3);
825
826
11.9k
    for (i = 0; i < 128; i++) {
827
11.9k
        felem_square(tmp, ftmp3);
828
11.9k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
11.9k
    }
830
93
    felem_mul(tmp, ftmp3, ftmp2);
831
93
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
93
    felem_assign(ftmp2, ftmp3);
833
834
23.9k
    for (i = 0; i < 256; i++) {
835
23.8k
        felem_square(tmp, ftmp3);
836
23.8k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
23.8k
    }
838
93
    felem_mul(tmp, ftmp3, ftmp2);
839
93
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
930
    for (i = 0; i < 9; i++) {
842
837
        felem_square(tmp, ftmp3);
843
837
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
837
    }
845
93
    felem_mul(tmp, ftmp3, ftmp4);
846
93
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
93
    felem_mul(tmp, ftmp3, in);
848
93
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
93
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
46.5k
{
866
46.5k
    felem ftmp;
867
46.5k
    limb is_zero, is_p;
868
46.5k
    felem_assign(ftmp, in);
869
870
46.5k
    ftmp[0] += ftmp[8] >> 57;
871
46.5k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
46.5k
    ftmp[1] += ftmp[0] >> 58;
874
46.5k
    ftmp[0] &= bottom58bits;
875
46.5k
    ftmp[2] += ftmp[1] >> 58;
876
46.5k
    ftmp[1] &= bottom58bits;
877
46.5k
    ftmp[3] += ftmp[2] >> 58;
878
46.5k
    ftmp[2] &= bottom58bits;
879
46.5k
    ftmp[4] += ftmp[3] >> 58;
880
46.5k
    ftmp[3] &= bottom58bits;
881
46.5k
    ftmp[5] += ftmp[4] >> 58;
882
46.5k
    ftmp[4] &= bottom58bits;
883
46.5k
    ftmp[6] += ftmp[5] >> 58;
884
46.5k
    ftmp[5] &= bottom58bits;
885
46.5k
    ftmp[7] += ftmp[6] >> 58;
886
46.5k
    ftmp[6] &= bottom58bits;
887
46.5k
    ftmp[8] += ftmp[7] >> 58;
888
46.5k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
46.5k
    is_zero = 0;
898
46.5k
    is_zero |= ftmp[0];
899
46.5k
    is_zero |= ftmp[1];
900
46.5k
    is_zero |= ftmp[2];
901
46.5k
    is_zero |= ftmp[3];
902
46.5k
    is_zero |= ftmp[4];
903
46.5k
    is_zero |= ftmp[5];
904
46.5k
    is_zero |= ftmp[6];
905
46.5k
    is_zero |= ftmp[7];
906
46.5k
    is_zero |= ftmp[8];
907
908
46.5k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
46.5k
    is_zero = 0 - (is_zero >> 63);
914
915
46.5k
    is_p = ftmp[0] ^ kPrime[0];
916
46.5k
    is_p |= ftmp[1] ^ kPrime[1];
917
46.5k
    is_p |= ftmp[2] ^ kPrime[2];
918
46.5k
    is_p |= ftmp[3] ^ kPrime[3];
919
46.5k
    is_p |= ftmp[4] ^ kPrime[4];
920
46.5k
    is_p |= ftmp[5] ^ kPrime[5];
921
46.5k
    is_p |= ftmp[6] ^ kPrime[6];
922
46.5k
    is_p |= ftmp[7] ^ kPrime[7];
923
46.5k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
46.5k
    is_p--;
926
46.5k
    is_p = 0 - (is_p >> 63);
927
928
46.5k
    is_zero |= is_p;
929
46.5k
    return is_zero;
930
46.5k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
465
{
944
465
    limb is_p, is_greater, sign;
945
465
    static const limb two58 = ((limb) 1) << 58;
946
947
465
    felem_assign(out, in);
948
949
465
    out[0] += out[8] >> 57;
950
465
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
465
    out[1] += out[0] >> 58;
953
465
    out[0] &= bottom58bits;
954
465
    out[2] += out[1] >> 58;
955
465
    out[1] &= bottom58bits;
956
465
    out[3] += out[2] >> 58;
957
465
    out[2] &= bottom58bits;
958
465
    out[4] += out[3] >> 58;
959
465
    out[3] &= bottom58bits;
960
465
    out[5] += out[4] >> 58;
961
465
    out[4] &= bottom58bits;
962
465
    out[6] += out[5] >> 58;
963
465
    out[5] &= bottom58bits;
964
465
    out[7] += out[6] >> 58;
965
465
    out[6] &= bottom58bits;
966
465
    out[8] += out[7] >> 58;
967
465
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
465
    is_p = out[0] ^ kPrime[0];
981
465
    is_p |= out[1] ^ kPrime[1];
982
465
    is_p |= out[2] ^ kPrime[2];
983
465
    is_p |= out[3] ^ kPrime[3];
984
465
    is_p |= out[4] ^ kPrime[4];
985
465
    is_p |= out[5] ^ kPrime[5];
986
465
    is_p |= out[6] ^ kPrime[6];
987
465
    is_p |= out[7] ^ kPrime[7];
988
465
    is_p |= out[8] ^ kPrime[8];
989
990
465
    is_p--;
991
465
    is_p &= is_p << 32;
992
465
    is_p &= is_p << 16;
993
465
    is_p &= is_p << 8;
994
465
    is_p &= is_p << 4;
995
465
    is_p &= is_p << 2;
996
465
    is_p &= is_p << 1;
997
465
    is_p = 0 - (is_p >> 63);
998
465
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
465
    out[0] &= is_p;
1003
465
    out[1] &= is_p;
1004
465
    out[2] &= is_p;
1005
465
    out[3] &= is_p;
1006
465
    out[4] &= is_p;
1007
465
    out[5] &= is_p;
1008
465
    out[6] &= is_p;
1009
465
    out[7] &= is_p;
1010
465
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
465
    is_greater = out[8] >> 57;
1017
465
    is_greater |= is_greater << 32;
1018
465
    is_greater |= is_greater << 16;
1019
465
    is_greater |= is_greater << 8;
1020
465
    is_greater |= is_greater << 4;
1021
465
    is_greater |= is_greater << 2;
1022
465
    is_greater |= is_greater << 1;
1023
465
    is_greater = 0 - (is_greater >> 63);
1024
1025
465
    out[0] -= kPrime[0] & is_greater;
1026
465
    out[1] -= kPrime[1] & is_greater;
1027
465
    out[2] -= kPrime[2] & is_greater;
1028
465
    out[3] -= kPrime[3] & is_greater;
1029
465
    out[4] -= kPrime[4] & is_greater;
1030
465
    out[5] -= kPrime[5] & is_greater;
1031
465
    out[6] -= kPrime[6] & is_greater;
1032
465
    out[7] -= kPrime[7] & is_greater;
1033
465
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
465
    sign = -(out[0] >> 63);
1037
465
    out[0] += (two58 & sign);
1038
465
    out[1] -= (1 & sign);
1039
465
    sign = -(out[1] >> 63);
1040
465
    out[1] += (two58 & sign);
1041
465
    out[2] -= (1 & sign);
1042
465
    sign = -(out[2] >> 63);
1043
465
    out[2] += (two58 & sign);
1044
465
    out[3] -= (1 & sign);
1045
465
    sign = -(out[3] >> 63);
1046
465
    out[3] += (two58 & sign);
1047
465
    out[4] -= (1 & sign);
1048
465
    sign = -(out[4] >> 63);
1049
465
    out[4] += (two58 & sign);
1050
465
    out[5] -= (1 & sign);
1051
465
    sign = -(out[0] >> 63);
1052
465
    out[5] += (two58 & sign);
1053
465
    out[6] -= (1 & sign);
1054
465
    sign = -(out[6] >> 63);
1055
465
    out[6] += (two58 & sign);
1056
465
    out[7] -= (1 & sign);
1057
465
    sign = -(out[7] >> 63);
1058
465
    out[7] += (two58 & sign);
1059
465
    out[8] -= (1 & sign);
1060
465
    sign = -(out[5] >> 63);
1061
465
    out[5] += (two58 & sign);
1062
465
    out[6] -= (1 & sign);
1063
465
    sign = -(out[6] >> 63);
1064
465
    out[6] += (two58 & sign);
1065
465
    out[7] -= (1 & sign);
1066
465
    sign = -(out[7] >> 63);
1067
465
    out[7] += (two58 & sign);
1068
465
    out[8] -= (1 & sign);
1069
465
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
21.6k
{
1091
21.6k
    largefelem tmp, tmp2;
1092
21.6k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
21.6k
    felem_assign(ftmp, x_in);
1095
21.6k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
21.6k
    felem_square(tmp, z_in);
1099
21.6k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
21.6k
    felem_square(tmp, y_in);
1103
21.6k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
21.6k
    felem_mul(tmp, x_in, gamma);
1107
21.6k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
21.6k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
21.6k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
21.6k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
21.6k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
21.6k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
21.6k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
21.6k
    felem_assign(ftmp, beta);
1132
21.6k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
21.6k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
21.6k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
21.6k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
21.6k
    felem_assign(ftmp, y_in);
1142
21.6k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
21.6k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
21.6k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
21.6k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
21.6k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
21.6k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
21.6k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
21.6k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
21.6k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
21.6k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
21.6k
    felem_reduce(y_out, tmp);
1183
21.6k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
72.3k
{
1188
72.3k
    unsigned i;
1189
723k
    for (i = 0; i < NLIMBS; ++i) {
1190
650k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
650k
        out[i] ^= tmp;
1192
650k
    }
1193
72.3k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
11.6k
{
1211
11.6k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
11.6k
    largefelem tmp, tmp2;
1213
11.6k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
11.6k
    limb points_equal;
1215
1216
11.6k
    z1_is_zero = felem_is_zero(z1);
1217
11.6k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
11.6k
    felem_square(tmp, z1);
1221
11.6k
    felem_reduce(ftmp, tmp);
1222
1223
11.6k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
2.66k
        felem_square(tmp, z2);
1226
2.66k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
2.66k
        felem_mul(tmp, x1, ftmp2);
1230
2.66k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
2.66k
        felem_assign(ftmp5, z1);
1234
2.66k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
2.66k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
2.66k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
2.66k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
2.66k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
2.66k
        felem_mul(tmp, ftmp2, z2);
1248
2.66k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
2.66k
        felem_mul(tmp, y1, ftmp2);
1252
2.66k
        felem_reduce(ftmp6, tmp);
1253
8.97k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
8.97k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
8.97k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
8.97k
        felem_assign(ftmp6, y1);
1266
8.97k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
11.6k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
11.6k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
11.6k
    felem_reduce(ftmp4, tmp);
1276
1277
11.6k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
11.6k
    felem_mul(tmp, ftmp5, ftmp4);
1281
11.6k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
11.6k
    felem_mul(tmp, ftmp, z1);
1285
11.6k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
11.6k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
11.6k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
11.6k
    felem_reduce(ftmp5, tmp);
1295
11.6k
    y_equal = felem_is_zero(ftmp5);
1296
11.6k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
11.6k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
11.6k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
11.6k
    felem_assign(ftmp, ftmp4);
1339
11.6k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
11.6k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
11.6k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
11.6k
    felem_mul(tmp, ftmp4, ftmp);
1347
11.6k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
11.6k
    felem_mul(tmp, ftmp3, ftmp);
1351
11.6k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
11.6k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
11.6k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
11.6k
    felem_assign(ftmp3, ftmp4);
1359
11.6k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
11.6k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
11.6k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
11.6k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
11.6k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
11.6k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
11.6k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
11.6k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
11.6k
    felem_reduce(y_out, tmp);
1383
1384
11.6k
    copy_conditional(x_out, x2, z1_is_zero);
1385
11.6k
    copy_conditional(x_out, x1, z2_is_zero);
1386
11.6k
    copy_conditional(y_out, y2, z1_is_zero);
1387
11.6k
    copy_conditional(y_out, y1, z2_is_zero);
1388
11.6k
    copy_conditional(z_out, z2, z1_is_zero);
1389
11.6k
    copy_conditional(z_out, z1, z2_is_zero);
1390
11.6k
    felem_assign(x3, x_out);
1391
11.6k
    felem_assign(y3, y_out);
1392
11.6k
    felem_assign(z3, z_out);
1393
11.6k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
11.5k
{
1549
11.5k
    unsigned i, j;
1550
11.5k
    limb *outlimbs = &out[0][0];
1551
1552
11.5k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
199k
    for (i = 0; i < size; i++) {
1555
187k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
187k
        limb mask = i ^ idx;
1557
187k
        mask |= mask >> 4;
1558
187k
        mask |= mask >> 2;
1559
187k
        mask |= mask >> 1;
1560
187k
        mask &= 1;
1561
187k
        mask--;
1562
5.24M
        for (j = 0; j < NLIMBS * 3; j++)
1563
5.06M
            outlimbs[j] |= inlimbs[j] & mask;
1564
187k
    }
1565
11.5k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
51.0k
{
1570
51.0k
    if (i < 0)
1571
24
        return 0;
1572
51.0k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
51.0k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
93
{
1588
93
    int i, skip;
1589
93
    unsigned num, gen_mul = (g_scalar != NULL);
1590
93
    felem nq[3], tmp[4];
1591
93
    limb bits;
1592
93
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
93
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
93
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
21.6k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
21.5k
        if (!skip)
1607
21.4k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
21.5k
        if (gen_mul && (i <= 130)) {
1611
9.03k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
9.03k
            if (i < 130) {
1613
8.97k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
8.97k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
8.97k
                bits |= get_bit(g_scalar, i);
1616
8.97k
            }
1617
            /* select the point to add, in constant time */
1618
9.03k
            select_point(bits, 16, g_pre_comp, tmp);
1619
9.03k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
8.97k
                point_add(nq[0], nq[1], nq[2],
1622
8.97k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
8.97k
            } else {
1624
69
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
69
                skip = 0;
1626
69
            }
1627
9.03k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
21.5k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
5.04k
            for (num = 0; num < num_points; ++num) {
1633
2.52k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
2.52k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
2.52k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
2.52k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
2.52k
                bits |= get_bit(scalars[num], i) << 1;
1638
2.52k
                bits |= get_bit(scalars[num], i - 1);
1639
2.52k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
2.52k
                select_point(digit, 17, pre_comp[num], tmp);
1645
2.52k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
2.52k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
2.52k
                if (!skip) {
1650
2.49k
                    point_add(nq[0], nq[1], nq[2],
1651
2.49k
                              nq[0], nq[1], nq[2],
1652
2.49k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
2.49k
                } else {
1654
24
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
24
                    skip = 0;
1656
24
                }
1657
2.52k
            }
1658
2.52k
        }
1659
21.5k
    }
1660
93
    felem_assign(x_out, nq[0]);
1661
93
    felem_assign(y_out, nq[1]);
1662
93
    felem_assign(z_out, nq[2]);
1663
93
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
73
{
1674
73
    static const EC_METHOD ret = {
1675
73
        EC_FLAGS_DEFAULT_OCT,
1676
73
        NID_X9_62_prime_field,
1677
73
        ossl_ec_GFp_nistp521_group_init,
1678
73
        ossl_ec_GFp_simple_group_finish,
1679
73
        ossl_ec_GFp_simple_group_clear_finish,
1680
73
        ossl_ec_GFp_nist_group_copy,
1681
73
        ossl_ec_GFp_nistp521_group_set_curve,
1682
73
        ossl_ec_GFp_simple_group_get_curve,
1683
73
        ossl_ec_GFp_simple_group_get_degree,
1684
73
        ossl_ec_group_simple_order_bits,
1685
73
        ossl_ec_GFp_simple_group_check_discriminant,
1686
73
        ossl_ec_GFp_simple_point_init,
1687
73
        ossl_ec_GFp_simple_point_finish,
1688
73
        ossl_ec_GFp_simple_point_clear_finish,
1689
73
        ossl_ec_GFp_simple_point_copy,
1690
73
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
73
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
73
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
73
        0 /* point_set_compressed_coordinates */ ,
1694
73
        0 /* point2oct */ ,
1695
73
        0 /* oct2point */ ,
1696
73
        ossl_ec_GFp_simple_add,
1697
73
        ossl_ec_GFp_simple_dbl,
1698
73
        ossl_ec_GFp_simple_invert,
1699
73
        ossl_ec_GFp_simple_is_at_infinity,
1700
73
        ossl_ec_GFp_simple_is_on_curve,
1701
73
        ossl_ec_GFp_simple_cmp,
1702
73
        ossl_ec_GFp_simple_make_affine,
1703
73
        ossl_ec_GFp_simple_points_make_affine,
1704
73
        ossl_ec_GFp_nistp521_points_mul,
1705
73
        ossl_ec_GFp_nistp521_precompute_mult,
1706
73
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
73
        ossl_ec_GFp_nist_field_mul,
1708
73
        ossl_ec_GFp_nist_field_sqr,
1709
73
        0 /* field_div */ ,
1710
73
        ossl_ec_GFp_simple_field_inv,
1711
73
        0 /* field_encode */ ,
1712
73
        0 /* field_decode */ ,
1713
73
        0,                      /* field_set_to_one */
1714
73
        ossl_ec_key_simple_priv2oct,
1715
73
        ossl_ec_key_simple_oct2priv,
1716
73
        0, /* set private */
1717
73
        ossl_ec_key_simple_generate_key,
1718
73
        ossl_ec_key_simple_check_key,
1719
73
        ossl_ec_key_simple_generate_public_key,
1720
73
        0, /* keycopy */
1721
73
        0, /* keyfinish */
1722
73
        ossl_ecdh_simple_compute_key,
1723
73
        ossl_ecdsa_simple_sign_setup,
1724
73
        ossl_ecdsa_simple_sign_sig,
1725
73
        ossl_ecdsa_simple_verify_sig,
1726
73
        0, /* field_inverse_mod_ord */
1727
73
        0, /* blind_coordinates */
1728
73
        0, /* ladder_pre */
1729
73
        0, /* ladder_step */
1730
73
        0  /* ladder_post */
1731
73
    };
1732
1733
73
    return &ret;
1734
73
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
195
{
1793
195
    int ret;
1794
195
    ret = ossl_ec_GFp_simple_group_init(group);
1795
195
    group->a_is_minus3 = 1;
1796
195
    return ret;
1797
195
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
73
{
1803
73
    int ret = 0;
1804
73
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
73
#ifndef FIPS_MODULE
1806
73
    BN_CTX *new_ctx = NULL;
1807
1808
73
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
73
#endif
1811
73
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
73
    BN_CTX_start(ctx);
1815
73
    curve_p = BN_CTX_get(ctx);
1816
73
    curve_a = BN_CTX_get(ctx);
1817
73
    curve_b = BN_CTX_get(ctx);
1818
73
    if (curve_b == NULL)
1819
0
        goto err;
1820
73
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
73
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
73
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
73
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
73
    group->field_mod_func = BN_nist_mod_521;
1828
73
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
73
 err:
1830
73
    BN_CTX_end(ctx);
1831
73
#ifndef FIPS_MODULE
1832
73
    BN_CTX_free(new_ctx);
1833
73
#endif
1834
73
    return ret;
1835
73
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
93
{
1846
93
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
93
    largefelem tmp;
1848
1849
93
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
93
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
93
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
93
    felem_inv(z2, z1);
1857
93
    felem_square(tmp, z2);
1858
93
    felem_reduce(z1, tmp);
1859
93
    felem_mul(tmp, x_in, z1);
1860
93
    felem_reduce(x_in, tmp);
1861
93
    felem_contract(x_out, x_in);
1862
93
    if (x != NULL) {
1863
93
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
93
    }
1868
93
    felem_mul(tmp, z1, z2);
1869
93
    felem_reduce(z1, tmp);
1870
93
    felem_mul(tmp, y_in, z1);
1871
93
    felem_reduce(y_in, tmp);
1872
93
    felem_contract(y_out, y_in);
1873
93
    if (y != NULL) {
1874
81
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
81
    }
1879
93
    return 1;
1880
93
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
93
{
1921
93
    int ret = 0;
1922
93
    int j;
1923
93
    int mixed = 0;
1924
93
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
93
    felem_bytearray g_secret;
1926
93
    felem_bytearray *secrets = NULL;
1927
93
    felem (*pre_comp)[17][3] = NULL;
1928
93
    felem *tmp_felems = NULL;
1929
93
    unsigned i;
1930
93
    int num_bytes;
1931
93
    int have_pre_comp = 0;
1932
93
    size_t num_points = num;
1933
93
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
93
    NISTP521_PRE_COMP *pre = NULL;
1935
93
    felem(*g_pre_comp)[3] = NULL;
1936
93
    EC_POINT *generator = NULL;
1937
93
    const EC_POINT *p = NULL;
1938
93
    const BIGNUM *p_scalar = NULL;
1939
1940
93
    BN_CTX_start(ctx);
1941
93
    x = BN_CTX_get(ctx);
1942
93
    y = BN_CTX_get(ctx);
1943
93
    z = BN_CTX_get(ctx);
1944
93
    tmp_scalar = BN_CTX_get(ctx);
1945
93
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
93
    if (scalar != NULL) {
1949
69
        pre = group->pre_comp.nistp521;
1950
69
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
69
        else
1954
            /* try to use the standard precomputation */
1955
69
            g_pre_comp = (felem(*)[3]) gmul;
1956
69
        generator = EC_POINT_new(group);
1957
69
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
69
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
69
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
69
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
69
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
69
                                                                generator,
1968
69
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
69
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
69
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
69
    }
1980
1981
93
    if (num_points > 0) {
1982
24
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
24
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
24
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
24
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
24
        if ((secrets == NULL) || (pre_comp == NULL)
1995
24
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
48
        for (i = 0; i < num_points; ++i) {
2005
24
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
24
            } else {
2013
                /* the i^th point */
2014
24
                p = points[i];
2015
24
                p_scalar = scalars[i];
2016
24
            }
2017
24
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
24
                if ((BN_num_bits(p_scalar) > 521)
2020
24
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
24
                } else {
2032
24
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
24
                                               secrets[i], sizeof(secrets[i]));
2034
24
                }
2035
24
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
24
                if ((!BN_to_felem(x_out, p->X)) ||
2041
24
                    (!BN_to_felem(y_out, p->Y)) ||
2042
24
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
24
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
24
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
24
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
384
                for (j = 2; j <= 16; ++j) {
2048
360
                    if (j & 1) {
2049
168
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
168
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
168
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
168
                                  pre_comp[i][j - 1][0],
2053
168
                                  pre_comp[i][j - 1][1],
2054
168
                                  pre_comp[i][j - 1][2]);
2055
192
                    } else {
2056
192
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
192
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
192
                                     pre_comp[i][j / 2][1],
2059
192
                                     pre_comp[i][j / 2][2]);
2060
192
                    }
2061
360
                }
2062
24
            }
2063
24
        }
2064
24
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
24
    }
2067
2068
    /* the scalar for the generator */
2069
93
    if ((scalar != NULL) && (have_pre_comp)) {
2070
69
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
69
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
69
        } else {
2083
69
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
69
        }
2085
        /* do the multiplication with generator precomputation */
2086
69
        batch_mul(x_out, y_out, z_out,
2087
69
                  (const felem_bytearray(*))secrets, num_points,
2088
69
                  g_secret,
2089
69
                  mixed, (const felem(*)[17][3])pre_comp,
2090
69
                  (const felem(*)[3])g_pre_comp);
2091
69
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
24
        batch_mul(x_out, y_out, z_out,
2094
24
                  (const felem_bytearray(*))secrets, num_points,
2095
24
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
24
    }
2097
    /* reduce the output to its unique minimal representation */
2098
93
    felem_contract(x_in, x_out);
2099
93
    felem_contract(y_in, y_out);
2100
93
    felem_contract(z_in, z_out);
2101
93
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
93
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
93
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
93
                                                             ctx);
2108
2109
93
 err:
2110
93
    BN_CTX_end(ctx);
2111
93
    EC_POINT_free(generator);
2112
93
    OPENSSL_free(secrets);
2113
93
    OPENSSL_free(pre_comp);
2114
93
    OPENSSL_free(tmp_felems);
2115
93
    return ret;
2116
93
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}