Coverage Report

Created: 2023-06-08 06:40

/src/openssl/crypto/ec/ecp_nistz256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the Apache License 2.0 (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
/*
22
 * ECDSA low level APIs are deprecated for public use, but still ok for
23
 * internal use.
24
 */
25
#include "internal/deprecated.h"
26
27
#include <string.h>
28
29
#include "internal/cryptlib.h"
30
#include "crypto/bn.h"
31
#include "ec_local.h"
32
#include "internal/refcount.h"
33
34
#if BN_BITS2 != 64
35
# define TOBN(hi,lo)    lo,hi
36
#else
37
0
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
38
#endif
39
40
#if defined(__GNUC__)
41
0
# define ALIGN32        __attribute((aligned(32)))
42
#elif defined(_MSC_VER)
43
# define ALIGN32        __declspec(align(32))
44
#else
45
# define ALIGN32
46
#endif
47
48
0
#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
49
10
#define P256_LIMBS      (256/BN_BITS2)
50
51
typedef unsigned short u16;
52
53
typedef struct {
54
    BN_ULONG X[P256_LIMBS];
55
    BN_ULONG Y[P256_LIMBS];
56
    BN_ULONG Z[P256_LIMBS];
57
} P256_POINT;
58
59
typedef struct {
60
    BN_ULONG X[P256_LIMBS];
61
    BN_ULONG Y[P256_LIMBS];
62
} P256_POINT_AFFINE;
63
64
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66
/* structure for precomputed multiples of the generator */
67
struct nistz256_pre_comp_st {
68
    const EC_GROUP *group;      /* Parent EC_GROUP object */
69
    size_t w;                   /* Window size */
70
    /*
71
     * Constant time access to the X and Y coordinates of the pre-computed,
72
     * generator multiplies, in the Montgomery domain. Pre-calculated
73
     * multiplies are stored in affine form.
74
     */
75
    PRECOMP256_ROW *precomp;
76
    void *precomp_storage;
77
    CRYPTO_REF_COUNT references;
78
    CRYPTO_RWLOCK *lock;
79
};
80
81
/* Functions implemented in assembly */
82
/*
83
 * Most of below mentioned functions *preserve* the property of inputs
84
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85
 * inputs are fully reduced, then output is too. Note that reverse is
86
 * not true, in sense that given partially reduced inputs output can be
87
 * either, not unlikely reduced. And "most" in first sentence refers to
88
 * the fact that given the calculations flow one can tolerate that
89
 * addition, 1st function below, produces partially reduced result *if*
90
 * multiplications by 2 and 3, which customarily use addition, fully
91
 * reduce it. This effectively gives two options: a) addition produces
92
 * fully reduced result [as long as inputs are, just like remaining
93
 * functions]; b) addition is allowed to produce partially reduced
94
 * result, but multiplications by 2 and 3 perform additional reduction
95
 * step. Choice between the two can be platform-specific, but it was a)
96
 * in all cases so far...
97
 */
98
/* Modular add: res = a+b mod P   */
99
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100
                      const BN_ULONG a[P256_LIMBS],
101
                      const BN_ULONG b[P256_LIMBS]);
102
/* Modular mul by 2: res = 2*a mod P */
103
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104
                           const BN_ULONG a[P256_LIMBS]);
105
/* Modular mul by 3: res = 3*a mod P */
106
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107
                           const BN_ULONG a[P256_LIMBS]);
108
109
/* Modular div by 2: res = a/2 mod P */
110
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111
                           const BN_ULONG a[P256_LIMBS]);
112
/* Modular sub: res = a-b mod P   */
113
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114
                      const BN_ULONG a[P256_LIMBS],
115
                      const BN_ULONG b[P256_LIMBS]);
116
/* Modular neg: res = -a mod P    */
117
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118
/* Montgomery mul: res = a*b*2^-256 mod P */
119
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120
                           const BN_ULONG a[P256_LIMBS],
121
                           const BN_ULONG b[P256_LIMBS]);
122
/* Montgomery sqr: res = a*a*2^-256 mod P */
123
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124
                           const BN_ULONG a[P256_LIMBS]);
125
/* Convert a number from Montgomery domain, by multiplying with 1 */
126
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127
                            const BN_ULONG in[P256_LIMBS]);
128
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130
                          const BN_ULONG in[P256_LIMBS]);
131
/* Functions that perform constant time access to the precomputed tables */
132
void ecp_nistz256_scatter_w5(P256_POINT *val,
133
                             const P256_POINT *in_t, int idx);
134
void ecp_nistz256_gather_w5(P256_POINT *val,
135
                            const P256_POINT *in_t, int idx);
136
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
137
                             const P256_POINT_AFFINE *in_t, int idx);
138
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
139
                            const P256_POINT_AFFINE *in_t, int idx);
140
141
/* One converted into the Montgomery domain */
142
static const BN_ULONG ONE[P256_LIMBS] = {
143
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145
};
146
147
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
148
149
/* Precomputed tables for the default generator */
150
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
151
152
/* Recode window to a signed digit, see ecp_nistputil.c for details */
153
static unsigned int _booth_recode_w5(unsigned int in)
154
0
{
155
0
    unsigned int s, d;
156
157
0
    s = ~((in >> 5) - 1);
158
0
    d = (1 << 6) - in - 1;
159
0
    d = (d & s) | (in & ~s);
160
0
    d = (d >> 1) + (d & 1);
161
162
0
    return (d << 1) + (s & 1);
163
0
}
164
165
static unsigned int _booth_recode_w7(unsigned int in)
166
0
{
167
0
    unsigned int s, d;
168
169
0
    s = ~((in >> 7) - 1);
170
0
    d = (1 << 8) - in - 1;
171
0
    d = (d & s) | (in & ~s);
172
0
    d = (d >> 1) + (d & 1);
173
174
0
    return (d << 1) + (s & 1);
175
0
}
176
177
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179
0
{
180
0
    BN_ULONG mask1 = 0-move;
181
0
    BN_ULONG mask2 = ~mask1;
182
183
0
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184
0
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185
0
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186
0
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187
0
    if (P256_LIMBS == 8) {
188
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192
0
    }
193
0
}
194
195
static BN_ULONG is_zero(BN_ULONG in)
196
0
{
197
0
    in |= (0 - in);
198
0
    in = ~in;
199
0
    in >>= BN_BITS2 - 1;
200
0
    return in;
201
0
}
202
203
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204
                         const BN_ULONG b[P256_LIMBS])
205
0
{
206
0
    BN_ULONG res;
207
208
0
    res = a[0] ^ b[0];
209
0
    res |= a[1] ^ b[1];
210
0
    res |= a[2] ^ b[2];
211
0
    res |= a[3] ^ b[3];
212
0
    if (P256_LIMBS == 8) {
213
0
        res |= a[4] ^ b[4];
214
0
        res |= a[5] ^ b[5];
215
0
        res |= a[6] ^ b[6];
216
0
        res |= a[7] ^ b[7];
217
0
    }
218
219
0
    return is_zero(res);
220
0
}
221
222
static BN_ULONG is_one(const BIGNUM *z)
223
0
{
224
0
    BN_ULONG res = 0;
225
0
    BN_ULONG *a = bn_get_words(z);
226
227
0
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228
0
        res = a[0] ^ ONE[0];
229
0
        res |= a[1] ^ ONE[1];
230
0
        res |= a[2] ^ ONE[2];
231
0
        res |= a[3] ^ ONE[3];
232
0
        if (P256_LIMBS == 8) {
233
0
            res |= a[4] ^ ONE[4];
234
0
            res |= a[5] ^ ONE[5];
235
0
            res |= a[6] ^ ONE[6];
236
            /*
237
             * no check for a[7] (being zero) on 32-bit platforms,
238
             * because value of "one" takes only 7 limbs.
239
             */
240
0
        }
241
0
        res = is_zero(res);
242
0
    }
243
244
0
    return res;
245
0
}
246
247
/*
248
 * For reference, this macro is used only when new ecp_nistz256 assembly
249
 * module is being developed.  For example, configure with
250
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251
 * performing simplest arithmetic operations on 256-bit vectors. Then
252
 * work on implementation of higher-level functions performing point
253
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254
 * and never define it again. (The correct macro denoting presence of
255
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256
 */
257
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
258
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259
void ecp_nistz256_point_add(P256_POINT *r,
260
                            const P256_POINT *a, const P256_POINT *b);
261
void ecp_nistz256_point_add_affine(P256_POINT *r,
262
                                   const P256_POINT *a,
263
                                   const P256_POINT_AFFINE *b);
264
#else
265
/* Point double: r = 2*a */
266
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
267
{
268
    BN_ULONG S[P256_LIMBS];
269
    BN_ULONG M[P256_LIMBS];
270
    BN_ULONG Zsqr[P256_LIMBS];
271
    BN_ULONG tmp0[P256_LIMBS];
272
273
    const BN_ULONG *in_x = a->X;
274
    const BN_ULONG *in_y = a->Y;
275
    const BN_ULONG *in_z = a->Z;
276
277
    BN_ULONG *res_x = r->X;
278
    BN_ULONG *res_y = r->Y;
279
    BN_ULONG *res_z = r->Z;
280
281
    ecp_nistz256_mul_by_2(S, in_y);
282
283
    ecp_nistz256_sqr_mont(Zsqr, in_z);
284
285
    ecp_nistz256_sqr_mont(S, S);
286
287
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
288
    ecp_nistz256_mul_by_2(res_z, res_z);
289
290
    ecp_nistz256_add(M, in_x, Zsqr);
291
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292
293
    ecp_nistz256_sqr_mont(res_y, S);
294
    ecp_nistz256_div_by_2(res_y, res_y);
295
296
    ecp_nistz256_mul_mont(M, M, Zsqr);
297
    ecp_nistz256_mul_by_3(M, M);
298
299
    ecp_nistz256_mul_mont(S, S, in_x);
300
    ecp_nistz256_mul_by_2(tmp0, S);
301
302
    ecp_nistz256_sqr_mont(res_x, M);
303
304
    ecp_nistz256_sub(res_x, res_x, tmp0);
305
    ecp_nistz256_sub(S, S, res_x);
306
307
    ecp_nistz256_mul_mont(S, S, M);
308
    ecp_nistz256_sub(res_y, S, res_y);
309
}
310
311
/* Point addition: r = a+b */
312
static void ecp_nistz256_point_add(P256_POINT *r,
313
                                   const P256_POINT *a, const P256_POINT *b)
314
{
315
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317
    BN_ULONG Z1sqr[P256_LIMBS];
318
    BN_ULONG Z2sqr[P256_LIMBS];
319
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320
    BN_ULONG Hsqr[P256_LIMBS];
321
    BN_ULONG Rsqr[P256_LIMBS];
322
    BN_ULONG Hcub[P256_LIMBS];
323
324
    BN_ULONG res_x[P256_LIMBS];
325
    BN_ULONG res_y[P256_LIMBS];
326
    BN_ULONG res_z[P256_LIMBS];
327
328
    BN_ULONG in1infty, in2infty;
329
330
    const BN_ULONG *in1_x = a->X;
331
    const BN_ULONG *in1_y = a->Y;
332
    const BN_ULONG *in1_z = a->Z;
333
334
    const BN_ULONG *in2_x = b->X;
335
    const BN_ULONG *in2_y = b->Y;
336
    const BN_ULONG *in2_z = b->Z;
337
338
    /*
339
     * Infinity in encoded as (,,0)
340
     */
341
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
342
    if (P256_LIMBS == 8)
343
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
344
345
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
346
    if (P256_LIMBS == 8)
347
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
348
349
    in1infty = is_zero(in1infty);
350
    in2infty = is_zero(in2infty);
351
352
    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
353
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
354
355
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
356
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
357
358
    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
359
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
360
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
361
362
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
363
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
364
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
365
366
    /*
367
     * The formulae are incorrect if the points are equal so we check for
368
     * this and do doubling if this happens.
369
     *
370
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371
     * that are bound to the affine coordinates (xi, yi) by the following
372
     * equations:
373
     *     - xi = Xi / (Zi)^2
374
     *     - y1 = Yi / (Zi)^3
375
     *
376
     * For the sake of optimization, the algorithm operates over
377
     * intermediate variables U1, U2 and S1, S2 that are derived from
378
     * the projective coordinates:
379
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381
     *
382
     * It is easy to prove that is_equal(U1, U2) implies that the affine
383
     * x-coordinates are equal, or either point is at infinity.
384
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385
     * equal, or either point is at infinity.
386
     *
387
     * The special case of either point being the point at infinity (Z1 or Z2
388
     * is zero), is handled separately later on in this function, so we avoid
389
     * jumping to point_double here in those special cases.
390
     *
391
     * When both points are inverse of each other, we know that the affine
392
     * x-coordinates are equal, and the y-coordinates have different sign.
393
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394
     * will equal 0, thus the result is infinity, if we simply let this
395
     * function continue normally.
396
     *
397
     * We use bitwise operations to avoid potential side-channels introduced by
398
     * the short-circuiting behaviour of boolean operators.
399
     */
400
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401
        /*
402
         * This is obviously not constant-time but it should never happen during
403
         * single point multiplication, so there is no timing leak for ECDH or
404
         * ECDSA signing.
405
         */
406
        ecp_nistz256_point_double(r, a);
407
        return;
408
    }
409
410
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
411
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
412
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
413
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
415
416
    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
417
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
418
419
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420
    ecp_nistz256_sub(res_x, res_x, Hcub);
421
422
    ecp_nistz256_sub(res_y, U2, res_x);
423
424
    ecp_nistz256_mul_mont(S2, S1, Hcub);
425
    ecp_nistz256_mul_mont(res_y, R, res_y);
426
    ecp_nistz256_sub(res_y, res_y, S2);
427
428
    copy_conditional(res_x, in2_x, in1infty);
429
    copy_conditional(res_y, in2_y, in1infty);
430
    copy_conditional(res_z, in2_z, in1infty);
431
432
    copy_conditional(res_x, in1_x, in2infty);
433
    copy_conditional(res_y, in1_y, in2infty);
434
    copy_conditional(res_z, in1_z, in2infty);
435
436
    memcpy(r->X, res_x, sizeof(res_x));
437
    memcpy(r->Y, res_y, sizeof(res_y));
438
    memcpy(r->Z, res_z, sizeof(res_z));
439
}
440
441
/* Point addition when b is known to be affine: r = a+b */
442
static void ecp_nistz256_point_add_affine(P256_POINT *r,
443
                                          const P256_POINT *a,
444
                                          const P256_POINT_AFFINE *b)
445
{
446
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447
    BN_ULONG Z1sqr[P256_LIMBS];
448
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449
    BN_ULONG Hsqr[P256_LIMBS];
450
    BN_ULONG Rsqr[P256_LIMBS];
451
    BN_ULONG Hcub[P256_LIMBS];
452
453
    BN_ULONG res_x[P256_LIMBS];
454
    BN_ULONG res_y[P256_LIMBS];
455
    BN_ULONG res_z[P256_LIMBS];
456
457
    BN_ULONG in1infty, in2infty;
458
459
    const BN_ULONG *in1_x = a->X;
460
    const BN_ULONG *in1_y = a->Y;
461
    const BN_ULONG *in1_z = a->Z;
462
463
    const BN_ULONG *in2_x = b->X;
464
    const BN_ULONG *in2_y = b->Y;
465
466
    /*
467
     * Infinity in encoded as (,,0)
468
     */
469
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
470
    if (P256_LIMBS == 8)
471
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
472
473
    /*
474
     * In affine representation we encode infinity as (0,0), which is
475
     * not on the curve, so it is OK
476
     */
477
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
478
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
479
    if (P256_LIMBS == 8)
480
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
481
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
482
483
    in1infty = is_zero(in1infty);
484
    in2infty = is_zero(in2infty);
485
486
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
487
488
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
489
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
490
491
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
492
493
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
494
495
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
496
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
497
498
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
499
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
500
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
501
502
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
503
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
504
505
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
506
    ecp_nistz256_sub(res_x, res_x, Hcub);
507
    ecp_nistz256_sub(H, U2, res_x);
508
509
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
510
    ecp_nistz256_mul_mont(H, H, R);
511
    ecp_nistz256_sub(res_y, H, S2);
512
513
    copy_conditional(res_x, in2_x, in1infty);
514
    copy_conditional(res_x, in1_x, in2infty);
515
516
    copy_conditional(res_y, in2_y, in1infty);
517
    copy_conditional(res_y, in1_y, in2infty);
518
519
    copy_conditional(res_z, ONE, in1infty);
520
    copy_conditional(res_z, in1_z, in2infty);
521
522
    memcpy(r->X, res_x, sizeof(res_x));
523
    memcpy(r->Y, res_y, sizeof(res_y));
524
    memcpy(r->Z, res_z, sizeof(res_z));
525
}
526
#endif
527
528
/* r = in^-1 mod p */
529
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
530
                                     const BN_ULONG in[P256_LIMBS])
531
2
{
532
    /*
533
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
534
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
535
     */
536
2
    BN_ULONG p2[P256_LIMBS];
537
2
    BN_ULONG p4[P256_LIMBS];
538
2
    BN_ULONG p8[P256_LIMBS];
539
2
    BN_ULONG p16[P256_LIMBS];
540
2
    BN_ULONG p32[P256_LIMBS];
541
2
    BN_ULONG res[P256_LIMBS];
542
2
    int i;
543
544
2
    ecp_nistz256_sqr_mont(res, in);
545
2
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
546
547
2
    ecp_nistz256_sqr_mont(res, p2);
548
2
    ecp_nistz256_sqr_mont(res, res);
549
2
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
550
551
2
    ecp_nistz256_sqr_mont(res, p4);
552
2
    ecp_nistz256_sqr_mont(res, res);
553
2
    ecp_nistz256_sqr_mont(res, res);
554
2
    ecp_nistz256_sqr_mont(res, res);
555
2
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
556
557
2
    ecp_nistz256_sqr_mont(res, p8);
558
16
    for (i = 0; i < 7; i++)
559
14
        ecp_nistz256_sqr_mont(res, res);
560
2
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
561
562
2
    ecp_nistz256_sqr_mont(res, p16);
563
32
    for (i = 0; i < 15; i++)
564
30
        ecp_nistz256_sqr_mont(res, res);
565
2
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
566
567
2
    ecp_nistz256_sqr_mont(res, p32);
568
64
    for (i = 0; i < 31; i++)
569
62
        ecp_nistz256_sqr_mont(res, res);
570
2
    ecp_nistz256_mul_mont(res, res, in);
571
572
258
    for (i = 0; i < 32 * 4; i++)
573
256
        ecp_nistz256_sqr_mont(res, res);
574
2
    ecp_nistz256_mul_mont(res, res, p32);
575
576
66
    for (i = 0; i < 32; i++)
577
64
        ecp_nistz256_sqr_mont(res, res);
578
2
    ecp_nistz256_mul_mont(res, res, p32);
579
580
34
    for (i = 0; i < 16; i++)
581
32
        ecp_nistz256_sqr_mont(res, res);
582
2
    ecp_nistz256_mul_mont(res, res, p16);
583
584
18
    for (i = 0; i < 8; i++)
585
16
        ecp_nistz256_sqr_mont(res, res);
586
2
    ecp_nistz256_mul_mont(res, res, p8);
587
588
2
    ecp_nistz256_sqr_mont(res, res);
589
2
    ecp_nistz256_sqr_mont(res, res);
590
2
    ecp_nistz256_sqr_mont(res, res);
591
2
    ecp_nistz256_sqr_mont(res, res);
592
2
    ecp_nistz256_mul_mont(res, res, p4);
593
594
2
    ecp_nistz256_sqr_mont(res, res);
595
2
    ecp_nistz256_sqr_mont(res, res);
596
2
    ecp_nistz256_mul_mont(res, res, p2);
597
598
2
    ecp_nistz256_sqr_mont(res, res);
599
2
    ecp_nistz256_sqr_mont(res, res);
600
2
    ecp_nistz256_mul_mont(res, res, in);
601
602
2
    memcpy(r, res, sizeof(res));
603
2
}
604
605
/*
606
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
607
 * returns one if it fits. Otherwise it returns zero.
608
 */
609
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
610
                                                    const BIGNUM *in)
611
6
{
612
6
    return bn_copy_words(out, in, P256_LIMBS);
613
6
}
614
615
/* r = sum(scalar[i]*point[i]) */
616
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
617
                                            P256_POINT *r,
618
                                            const BIGNUM **scalar,
619
                                            const EC_POINT **point,
620
                                            size_t num, BN_CTX *ctx)
621
0
{
622
0
    size_t i;
623
0
    int j, ret = 0;
624
0
    unsigned int idx;
625
0
    unsigned char (*p_str)[33] = NULL;
626
0
    const unsigned int window_size = 5;
627
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
628
0
    unsigned int wvalue;
629
0
    P256_POINT *temp;           /* place for 5 temporary points */
630
0
    const BIGNUM **scalars = NULL;
631
0
    P256_POINT (*table)[16] = NULL;
632
0
    void *table_storage = NULL;
633
634
0
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
635
0
        || (table_storage =
636
0
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
637
0
        || (p_str =
638
0
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
639
0
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL)
640
0
        goto err;
641
642
0
    table = (void *)ALIGNPTR(table_storage, 64);
643
0
    temp = (P256_POINT *)(table + num);
644
645
0
    for (i = 0; i < num; i++) {
646
0
        P256_POINT *row = table[i];
647
648
        /* This is an unusual input, we don't guarantee constant-timeness. */
649
0
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
650
0
            BIGNUM *mod;
651
652
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
653
0
                goto err;
654
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
655
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
656
0
                goto err;
657
0
            }
658
0
            scalars[i] = mod;
659
0
        } else
660
0
            scalars[i] = scalar[i];
661
662
0
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
663
0
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
664
665
0
            p_str[i][j + 0] = (unsigned char)d;
666
0
            p_str[i][j + 1] = (unsigned char)(d >> 8);
667
0
            p_str[i][j + 2] = (unsigned char)(d >> 16);
668
0
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
669
0
            if (BN_BYTES == 8) {
670
0
                d >>= 8;
671
0
                p_str[i][j + 4] = (unsigned char)d;
672
0
                p_str[i][j + 5] = (unsigned char)(d >> 8);
673
0
                p_str[i][j + 6] = (unsigned char)(d >> 16);
674
0
                p_str[i][j + 7] = (unsigned char)(d >> 24);
675
0
            }
676
0
        }
677
0
        for (; j < 33; j++)
678
0
            p_str[i][j] = 0;
679
680
0
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
681
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
682
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
683
0
            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
684
0
            goto err;
685
0
        }
686
687
        /*
688
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
689
         * is not stored. All other values are actually stored with an offset
690
         * of -1 in table.
691
         */
692
693
0
        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
694
0
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
695
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
696
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
697
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
698
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
699
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
700
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
701
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
702
0
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
703
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
704
0
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
705
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
706
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
707
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
708
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
709
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
710
0
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
711
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
712
0
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
713
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
714
0
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
715
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
716
0
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
717
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
718
0
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
719
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
720
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
721
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
722
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
723
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
724
0
    }
725
726
0
    idx = 255;
727
728
0
    wvalue = p_str[0][(idx - 1) / 8];
729
0
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
730
731
    /*
732
     * We gather to temp[0], because we know it's position relative
733
     * to table
734
     */
735
0
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
736
0
    memcpy(r, &temp[0], sizeof(temp[0]));
737
738
0
    while (idx >= 5) {
739
0
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
740
0
            unsigned int off = (idx - 1) / 8;
741
742
0
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
743
0
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
744
745
0
            wvalue = _booth_recode_w5(wvalue);
746
747
0
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
748
749
0
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
750
0
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
751
752
0
            ecp_nistz256_point_add(r, r, &temp[0]);
753
0
        }
754
755
0
        idx -= window_size;
756
757
0
        ecp_nistz256_point_double(r, r);
758
0
        ecp_nistz256_point_double(r, r);
759
0
        ecp_nistz256_point_double(r, r);
760
0
        ecp_nistz256_point_double(r, r);
761
0
        ecp_nistz256_point_double(r, r);
762
0
    }
763
764
    /* Final window */
765
0
    for (i = 0; i < num; i++) {
766
0
        wvalue = p_str[i][0];
767
0
        wvalue = (wvalue << 1) & mask;
768
769
0
        wvalue = _booth_recode_w5(wvalue);
770
771
0
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
772
773
0
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
774
0
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
775
776
0
        ecp_nistz256_point_add(r, r, &temp[0]);
777
0
    }
778
779
0
    ret = 1;
780
0
 err:
781
0
    OPENSSL_free(table_storage);
782
0
    OPENSSL_free(p_str);
783
0
    OPENSSL_free(scalars);
784
0
    return ret;
785
0
}
786
787
/* Coordinates of G, for which we have precomputed tables */
788
static const BN_ULONG def_xG[P256_LIMBS] = {
789
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
790
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
791
};
792
793
static const BN_ULONG def_yG[P256_LIMBS] = {
794
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
795
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
796
};
797
798
/*
799
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
800
 * generator.
801
 */
802
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
803
0
{
804
0
    return (bn_get_top(generator->X) == P256_LIMBS) &&
805
0
        (bn_get_top(generator->Y) == P256_LIMBS) &&
806
0
        is_equal(bn_get_words(generator->X), def_xG) &&
807
0
        is_equal(bn_get_words(generator->Y), def_yG) &&
808
0
        is_one(generator->Z);
809
0
}
810
811
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
812
0
{
813
    /*
814
     * We precompute a table for a Booth encoded exponent (wNAF) based
815
     * computation. Each table holds 64 values for safe access, with an
816
     * implicit value of infinity at index zero. We use window of size 7, and
817
     * therefore require ceil(256/7) = 37 tables.
818
     */
819
0
    const BIGNUM *order;
820
0
    EC_POINT *P = NULL, *T = NULL;
821
0
    const EC_POINT *generator;
822
0
    NISTZ256_PRE_COMP *pre_comp;
823
0
    BN_CTX *new_ctx = NULL;
824
0
    int i, j, k, ret = 0;
825
0
    size_t w;
826
827
0
    PRECOMP256_ROW *preComputedTable = NULL;
828
0
    unsigned char *precomp_storage = NULL;
829
830
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
831
0
    EC_pre_comp_free(group);
832
0
    generator = EC_GROUP_get0_generator(group);
833
0
    if (generator == NULL) {
834
0
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
835
0
        return 0;
836
0
    }
837
838
0
    if (ecp_nistz256_is_affine_G(generator)) {
839
        /*
840
         * No need to calculate tables for the standard generator because we
841
         * have them statically.
842
         */
843
0
        return 1;
844
0
    }
845
846
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
847
0
        return 0;
848
849
0
    if (ctx == NULL) {
850
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
851
0
        if (ctx == NULL)
852
0
            goto err;
853
0
    }
854
855
0
    BN_CTX_start(ctx);
856
857
0
    order = EC_GROUP_get0_order(group);
858
0
    if (order == NULL)
859
0
        goto err;
860
861
0
    if (BN_is_zero(order)) {
862
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
863
0
        goto err;
864
0
    }
865
866
0
    w = 7;
867
868
0
    if ((precomp_storage =
869
0
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL)
870
0
        goto err;
871
872
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
873
874
0
    P = EC_POINT_new(group);
875
0
    T = EC_POINT_new(group);
876
0
    if (P == NULL || T == NULL)
877
0
        goto err;
878
879
    /*
880
     * The zero entry is implicitly infinity, and we skip it, storing other
881
     * values with -1 offset.
882
     */
883
0
    if (!EC_POINT_copy(T, generator))
884
0
        goto err;
885
886
0
    for (k = 0; k < 64; k++) {
887
0
        if (!EC_POINT_copy(P, T))
888
0
            goto err;
889
0
        for (j = 0; j < 37; j++) {
890
0
            P256_POINT_AFFINE temp;
891
            /*
892
             * It would be faster to use EC_POINTs_make_affine and
893
             * make multiple points affine at the same time.
894
             */
895
0
            if (group->meth->make_affine == NULL
896
0
                || !group->meth->make_affine(group, P, ctx))
897
0
                goto err;
898
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
899
0
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
900
0
                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
901
0
                goto err;
902
0
            }
903
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
904
0
            for (i = 0; i < 7; i++) {
905
0
                if (!EC_POINT_dbl(group, P, P, ctx))
906
0
                    goto err;
907
0
            }
908
0
        }
909
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
910
0
            goto err;
911
0
    }
912
913
0
    pre_comp->group = group;
914
0
    pre_comp->w = w;
915
0
    pre_comp->precomp = preComputedTable;
916
0
    pre_comp->precomp_storage = precomp_storage;
917
0
    precomp_storage = NULL;
918
0
    SETPRECOMP(group, nistz256, pre_comp);
919
0
    pre_comp = NULL;
920
0
    ret = 1;
921
922
0
 err:
923
0
    BN_CTX_end(ctx);
924
0
    BN_CTX_free(new_ctx);
925
926
0
    EC_nistz256_pre_comp_free(pre_comp);
927
0
    OPENSSL_free(precomp_storage);
928
0
    EC_POINT_free(P);
929
0
    EC_POINT_free(T);
930
0
    return ret;
931
0
}
932
933
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
934
                                               const P256_POINT_AFFINE *in,
935
                                               BN_CTX *ctx)
936
0
{
937
0
    int ret = 0;
938
939
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
940
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
941
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
942
0
        out->Z_is_one = 1;
943
944
0
    return ret;
945
0
}
946
947
/* r = scalar*G + sum(scalars[i]*points[i]) */
948
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
949
                                          EC_POINT *r,
950
                                          const BIGNUM *scalar,
951
                                          size_t num,
952
                                          const EC_POINT *points[],
953
                                          const BIGNUM *scalars[], BN_CTX *ctx)
954
0
{
955
0
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
956
0
    unsigned char p_str[33] = { 0 };
957
0
    const PRECOMP256_ROW *preComputedTable = NULL;
958
0
    const NISTZ256_PRE_COMP *pre_comp = NULL;
959
0
    const EC_POINT *generator = NULL;
960
0
    const BIGNUM **new_scalars = NULL;
961
0
    const EC_POINT **new_points = NULL;
962
0
    unsigned int idx = 0;
963
0
    const unsigned int window_size = 7;
964
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
965
0
    unsigned int wvalue;
966
0
    ALIGN32 union {
967
0
        P256_POINT p;
968
0
        P256_POINT_AFFINE a;
969
0
    } t, p;
970
0
    BIGNUM *tmp_scalar;
971
972
0
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
973
0
        ERR_raise(ERR_LIB_EC, ERR_R_PASSED_INVALID_ARGUMENT);
974
0
        return 0;
975
0
    }
976
977
0
    memset(&p, 0, sizeof(p));
978
0
    BN_CTX_start(ctx);
979
980
0
    if (scalar) {
981
0
        generator = EC_GROUP_get0_generator(group);
982
0
        if (generator == NULL) {
983
0
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
984
0
            goto err;
985
0
        }
986
987
        /* look if we can use precomputed multiples of generator */
988
0
        pre_comp = group->pre_comp.nistz256;
989
990
0
        if (pre_comp) {
991
            /*
992
             * If there is a precomputed table for the generator, check that
993
             * it was generated with the same generator.
994
             */
995
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
996
0
            if (pre_comp_generator == NULL)
997
0
                goto err;
998
999
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1000
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1001
0
                                              group, &p.a, ctx)) {
1002
0
                EC_POINT_free(pre_comp_generator);
1003
0
                goto err;
1004
0
            }
1005
1006
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1007
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1008
1009
0
            EC_POINT_free(pre_comp_generator);
1010
0
        }
1011
1012
0
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1013
            /*
1014
             * If there is no precomputed data, but the generator is the
1015
             * default, a hardcoded table of precomputed data is used. This
1016
             * is because applications, such as Apache, do not use
1017
             * EC_KEY_precompute_mult.
1018
             */
1019
0
            preComputedTable = ecp_nistz256_precomputed;
1020
0
        }
1021
1022
0
        if (preComputedTable) {
1023
0
            BN_ULONG infty;
1024
1025
0
            if ((BN_num_bits(scalar) > 256)
1026
0
                || BN_is_negative(scalar)) {
1027
0
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1028
0
                    goto err;
1029
1030
0
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1031
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1032
0
                    goto err;
1033
0
                }
1034
0
                scalar = tmp_scalar;
1035
0
            }
1036
1037
0
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1038
0
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1039
1040
0
                p_str[i + 0] = (unsigned char)d;
1041
0
                p_str[i + 1] = (unsigned char)(d >> 8);
1042
0
                p_str[i + 2] = (unsigned char)(d >> 16);
1043
0
                p_str[i + 3] = (unsigned char)(d >>= 24);
1044
0
                if (BN_BYTES == 8) {
1045
0
                    d >>= 8;
1046
0
                    p_str[i + 4] = (unsigned char)d;
1047
0
                    p_str[i + 5] = (unsigned char)(d >> 8);
1048
0
                    p_str[i + 6] = (unsigned char)(d >> 16);
1049
0
                    p_str[i + 7] = (unsigned char)(d >> 24);
1050
0
                }
1051
0
            }
1052
1053
0
            for (; i < 33; i++)
1054
0
                p_str[i] = 0;
1055
1056
            /* First window */
1057
0
            wvalue = (p_str[0] << 1) & mask;
1058
0
            idx += window_size;
1059
1060
0
            wvalue = _booth_recode_w7(wvalue);
1061
1062
0
            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1063
0
                                   wvalue >> 1);
1064
1065
0
            ecp_nistz256_neg(p.p.Z, p.p.Y);
1066
0
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1067
1068
            /*
1069
             * Since affine infinity is encoded as (0,0) and
1070
             * Jacobian is (,,0), we need to harmonize them
1071
             * by assigning "one" or zero to Z.
1072
             */
1073
0
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1074
0
                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1075
0
            if (P256_LIMBS == 8)
1076
0
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1077
0
                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1078
1079
0
            infty = 0 - is_zero(infty);
1080
0
            infty = ~infty;
1081
1082
0
            p.p.Z[0] = ONE[0] & infty;
1083
0
            p.p.Z[1] = ONE[1] & infty;
1084
0
            p.p.Z[2] = ONE[2] & infty;
1085
0
            p.p.Z[3] = ONE[3] & infty;
1086
0
            if (P256_LIMBS == 8) {
1087
0
                p.p.Z[4] = ONE[4] & infty;
1088
0
                p.p.Z[5] = ONE[5] & infty;
1089
0
                p.p.Z[6] = ONE[6] & infty;
1090
0
                p.p.Z[7] = ONE[7] & infty;
1091
0
            }
1092
1093
0
            for (i = 1; i < 37; i++) {
1094
0
                unsigned int off = (idx - 1) / 8;
1095
0
                wvalue = p_str[off] | p_str[off + 1] << 8;
1096
0
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1097
0
                idx += window_size;
1098
1099
0
                wvalue = _booth_recode_w7(wvalue);
1100
1101
0
                ecp_nistz256_gather_w7(&t.a,
1102
0
                                       preComputedTable[i], wvalue >> 1);
1103
1104
0
                ecp_nistz256_neg(t.p.Z, t.a.Y);
1105
0
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1106
1107
0
                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1108
0
            }
1109
0
        } else {
1110
0
            p_is_infinity = 1;
1111
0
            no_precomp_for_generator = 1;
1112
0
        }
1113
0
    } else
1114
0
        p_is_infinity = 1;
1115
1116
0
    if (no_precomp_for_generator) {
1117
        /*
1118
         * Without a precomputed table for the generator, it has to be
1119
         * handled like a normal point.
1120
         */
1121
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1122
0
        if (new_scalars == NULL)
1123
0
            goto err;
1124
1125
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1126
0
        if (new_points == NULL)
1127
0
            goto err;
1128
1129
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1130
0
        new_scalars[num] = scalar;
1131
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1132
0
        new_points[num] = generator;
1133
1134
0
        scalars = new_scalars;
1135
0
        points = new_points;
1136
0
        num++;
1137
0
    }
1138
1139
0
    if (num) {
1140
0
        P256_POINT *out = &t.p;
1141
0
        if (p_is_infinity)
1142
0
            out = &p.p;
1143
1144
0
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1145
0
            goto err;
1146
1147
0
        if (!p_is_infinity)
1148
0
            ecp_nistz256_point_add(&p.p, &p.p, out);
1149
0
    }
1150
1151
    /* Not constant-time, but we're only operating on the public output. */
1152
0
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1153
0
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1154
0
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1155
0
        goto err;
1156
0
    }
1157
0
    r->Z_is_one = is_one(r->Z) & 1;
1158
1159
0
    ret = 1;
1160
1161
0
err:
1162
0
    BN_CTX_end(ctx);
1163
0
    OPENSSL_free(new_points);
1164
0
    OPENSSL_free(new_scalars);
1165
0
    return ret;
1166
0
}
1167
1168
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1169
                                          const EC_POINT *point,
1170
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1171
2
{
1172
2
    BN_ULONG z_inv2[P256_LIMBS];
1173
2
    BN_ULONG z_inv3[P256_LIMBS];
1174
2
    BN_ULONG x_aff[P256_LIMBS];
1175
2
    BN_ULONG y_aff[P256_LIMBS];
1176
2
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1177
2
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1178
1179
2
    if (EC_POINT_is_at_infinity(group, point)) {
1180
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1181
0
        return 0;
1182
0
    }
1183
1184
2
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1185
2
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1186
2
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1187
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1188
0
        return 0;
1189
0
    }
1190
1191
2
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1192
2
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1193
2
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1194
1195
2
    if (x != NULL) {
1196
2
        ecp_nistz256_from_mont(x_ret, x_aff);
1197
2
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1198
0
            return 0;
1199
2
    }
1200
1201
2
    if (y != NULL) {
1202
2
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1203
2
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1204
2
        ecp_nistz256_from_mont(y_ret, y_aff);
1205
2
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1206
0
            return 0;
1207
2
    }
1208
1209
2
    return 1;
1210
2
}
1211
1212
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1213
0
{
1214
0
    NISTZ256_PRE_COMP *ret = NULL;
1215
1216
0
    if (!group)
1217
0
        return NULL;
1218
1219
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1220
1221
0
    if (ret == NULL)
1222
0
        return ret;
1223
1224
0
    ret->group = group;
1225
0
    ret->w = 6;                 /* default */
1226
0
    ret->references = 1;
1227
1228
0
    ret->lock = CRYPTO_THREAD_lock_new();
1229
0
    if (ret->lock == NULL) {
1230
0
        ERR_raise(ERR_LIB_EC, ERR_R_CRYPTO_LIB);
1231
0
        OPENSSL_free(ret);
1232
0
        return NULL;
1233
0
    }
1234
0
    return ret;
1235
0
}
1236
1237
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1238
0
{
1239
0
    int i;
1240
0
    if (p != NULL)
1241
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1242
0
    return p;
1243
0
}
1244
1245
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1246
0
{
1247
0
    int i;
1248
1249
0
    if (pre == NULL)
1250
0
        return;
1251
1252
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1253
0
    REF_PRINT_COUNT("EC_nistz256", pre);
1254
0
    if (i > 0)
1255
0
        return;
1256
0
    REF_ASSERT_ISNT(i < 0);
1257
1258
0
    OPENSSL_free(pre->precomp_storage);
1259
0
    CRYPTO_THREAD_lock_free(pre->lock);
1260
0
    OPENSSL_free(pre);
1261
0
}
1262
1263
1264
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1265
0
{
1266
    /* There is a hard-coded table for the default generator. */
1267
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1268
1269
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1270
        /* There is a hard-coded table for the default generator. */
1271
0
        return 1;
1272
0
    }
1273
1274
0
    return HAVEPRECOMP(group, nistz256);
1275
0
}
1276
1277
#if defined(__x86_64) || defined(__x86_64__) || \
1278
    defined(_M_AMD64) || defined(_M_X64) || \
1279
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1280
    defined(__aarch64__)
1281
/*
1282
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1283
 */
1284
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1285
                               const BN_ULONG a[P256_LIMBS],
1286
                               const BN_ULONG b[P256_LIMBS]);
1287
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1288
                               const BN_ULONG a[P256_LIMBS],
1289
                               BN_ULONG rep);
1290
1291
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1292
                                    const BIGNUM *x, BN_CTX *ctx)
1293
0
{
1294
    /* RR = 2^512 mod ord(p256) */
1295
0
    static const BN_ULONG RR[P256_LIMBS]  = {
1296
0
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1297
0
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1298
0
    };
1299
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1300
0
    static const BN_ULONG one[P256_LIMBS] = {
1301
0
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1302
0
    };
1303
    /*
1304
     * We don't use entry 0 in the table, so we omit it and address
1305
     * with -1 offset.
1306
     */
1307
0
    BN_ULONG table[15][P256_LIMBS];
1308
0
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1309
0
    int i, ret = 0;
1310
0
    enum {
1311
0
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1312
0
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1313
0
    };
1314
1315
    /*
1316
     * Catch allocation failure early.
1317
     */
1318
0
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1319
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1320
0
        goto err;
1321
0
    }
1322
1323
0
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1324
0
        BIGNUM *tmp;
1325
1326
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1327
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1328
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1329
0
            goto err;
1330
0
        }
1331
0
        x = tmp;
1332
0
    }
1333
1334
0
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1335
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1336
0
        goto err;
1337
0
    }
1338
1339
0
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1340
#if 0
1341
    /*
1342
     * Original sparse-then-fixed-window algorithm, retained for reference.
1343
     */
1344
    for (i = 2; i < 16; i += 2) {
1345
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1346
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1347
    }
1348
1349
    /*
1350
     * The top 128bit of the exponent are highly redudndant, so we
1351
     * perform an optimized flow
1352
     */
1353
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1354
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1355
1356
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1357
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1358
1359
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1360
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1361
1362
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1363
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1364
1365
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1366
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1367
1368
    /*
1369
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1370
     */
1371
    for (i = 0; i < 32; i++) {
1372
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1373
         * split into nibbles */
1374
        static const unsigned char expLo[32]  = {
1375
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1376
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1377
        };
1378
1379
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1380
        /* The exponent is public, no need in constant-time access */
1381
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1382
    }
1383
#else
1384
    /*
1385
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1386
     *
1387
     * Even though this code path spares 12 squarings, 4.5%, and 13
1388
     * multiplications, 25%, on grand scale sign operation is not that
1389
     * much faster, not more that 2%...
1390
     */
1391
1392
    /* pre-calculate powers */
1393
0
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1394
1395
0
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1396
1397
0
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1398
1399
0
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1400
1401
0
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1402
1403
0
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1404
1405
0
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1406
0
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1407
1408
0
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1409
1410
0
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1411
1412
0
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1413
1414
0
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1415
0
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1416
1417
0
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1418
0
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1419
1420
0
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1421
0
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1422
1423
    /* calculations */
1424
0
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1425
0
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1426
1427
0
    for (i = 0; i < 27; i++) {
1428
0
        static const struct { unsigned char p, i; } chain[27] = {
1429
0
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1430
0
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1431
0
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1432
0
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1433
0
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1434
0
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1435
0
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1436
0
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1437
0
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1438
0
        };
1439
1440
0
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1441
0
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1442
0
    }
1443
0
#endif
1444
0
    ecp_nistz256_ord_mul_mont(out, out, one);
1445
1446
    /*
1447
     * Can't fail, but check return code to be consistent anyway.
1448
     */
1449
0
    if (!bn_set_words(r, out, P256_LIMBS))
1450
0
        goto err;
1451
1452
0
    ret = 1;
1453
0
err:
1454
0
    return ret;
1455
0
}
1456
#else
1457
# define ecp_nistz256_inv_mod_ord NULL
1458
#endif
1459
1460
const EC_METHOD *EC_GFp_nistz256_method(void)
1461
7
{
1462
7
    static const EC_METHOD ret = {
1463
7
        EC_FLAGS_DEFAULT_OCT,
1464
7
        NID_X9_62_prime_field,
1465
7
        ossl_ec_GFp_mont_group_init,
1466
7
        ossl_ec_GFp_mont_group_finish,
1467
7
        ossl_ec_GFp_mont_group_clear_finish,
1468
7
        ossl_ec_GFp_mont_group_copy,
1469
7
        ossl_ec_GFp_mont_group_set_curve,
1470
7
        ossl_ec_GFp_simple_group_get_curve,
1471
7
        ossl_ec_GFp_simple_group_get_degree,
1472
7
        ossl_ec_group_simple_order_bits,
1473
7
        ossl_ec_GFp_simple_group_check_discriminant,
1474
7
        ossl_ec_GFp_simple_point_init,
1475
7
        ossl_ec_GFp_simple_point_finish,
1476
7
        ossl_ec_GFp_simple_point_clear_finish,
1477
7
        ossl_ec_GFp_simple_point_copy,
1478
7
        ossl_ec_GFp_simple_point_set_to_infinity,
1479
7
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1480
7
        ecp_nistz256_get_affine,
1481
7
        0, 0, 0,
1482
7
        ossl_ec_GFp_simple_add,
1483
7
        ossl_ec_GFp_simple_dbl,
1484
7
        ossl_ec_GFp_simple_invert,
1485
7
        ossl_ec_GFp_simple_is_at_infinity,
1486
7
        ossl_ec_GFp_simple_is_on_curve,
1487
7
        ossl_ec_GFp_simple_cmp,
1488
7
        ossl_ec_GFp_simple_make_affine,
1489
7
        ossl_ec_GFp_simple_points_make_affine,
1490
7
        ecp_nistz256_points_mul,                    /* mul */
1491
7
        ecp_nistz256_mult_precompute,               /* precompute_mult */
1492
7
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1493
7
        ossl_ec_GFp_mont_field_mul,
1494
7
        ossl_ec_GFp_mont_field_sqr,
1495
7
        0,                                          /* field_div */
1496
7
        ossl_ec_GFp_mont_field_inv,
1497
7
        ossl_ec_GFp_mont_field_encode,
1498
7
        ossl_ec_GFp_mont_field_decode,
1499
7
        ossl_ec_GFp_mont_field_set_to_one,
1500
7
        ossl_ec_key_simple_priv2oct,
1501
7
        ossl_ec_key_simple_oct2priv,
1502
7
        0, /* set private */
1503
7
        ossl_ec_key_simple_generate_key,
1504
7
        ossl_ec_key_simple_check_key,
1505
7
        ossl_ec_key_simple_generate_public_key,
1506
7
        0, /* keycopy */
1507
7
        0, /* keyfinish */
1508
7
        ossl_ecdh_simple_compute_key,
1509
7
        ossl_ecdsa_simple_sign_setup,
1510
7
        ossl_ecdsa_simple_sign_sig,
1511
7
        ossl_ecdsa_simple_verify_sig,
1512
7
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1513
7
        0,                                          /* blind_coordinates */
1514
7
        0,                                          /* ladder_pre */
1515
7
        0,                                          /* ladder_step */
1516
7
        0                                           /* ladder_post */
1517
7
    };
1518
1519
7
    return &ret;
1520
7
}