Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
0
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
33
{
144
33
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
33
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
33
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
33
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
33
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
33
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
33
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
33
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
33
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
33
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
22
{
161
22
    memset(out, 0, 66);
162
22
    (*((limb *) & out[0])) = in[0];
163
22
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
22
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
22
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
22
    (*((limb_aX *) & out[29])) = in[4];
167
22
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
22
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
22
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
22
    (*((limb_aX *) & out[58])) = in[8];
171
22
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
33
{
176
33
    felem_bytearray b_out;
177
33
    int num_bytes;
178
179
33
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
33
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
33
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
33
    bin66_to_felem(out, b_out);
189
33
    return 1;
190
33
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
22
{
195
22
    felem_bytearray b_out;
196
22
    felem_to_bin66(b_out, in);
197
22
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
22
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
121
{
220
121
    out[0] = in[0];
221
121
    out[1] = in[1];
222
121
    out[2] = in[2];
223
121
    out[3] = in[3];
224
121
    out[4] = in[4];
225
121
    out[5] = in[5];
226
121
    out[6] = in[6];
227
121
    out[7] = in[7];
228
121
    out[8] = in[8];
229
121
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
0
{
234
0
    out[0] += in[0];
235
0
    out[1] += in[1];
236
0
    out[2] += in[2];
237
0
    out[3] += in[3];
238
0
    out[4] += in[4];
239
0
    out[5] += in[5];
240
0
    out[6] += in[6];
241
0
    out[7] += in[7];
242
0
    out[8] += in[8];
243
0
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
11.7k
{
248
11.7k
    out[0] = in[0] * scalar;
249
11.7k
    out[1] = in[1] * scalar;
250
11.7k
    out[2] = in[2] * scalar;
251
11.7k
    out[3] = in[3] * scalar;
252
11.7k
    out[4] = in[4] * scalar;
253
11.7k
    out[5] = in[5] * scalar;
254
11.7k
    out[6] = in[6] * scalar;
255
11.7k
    out[7] = in[7] * scalar;
256
11.7k
    out[8] = in[8] * scalar;
257
11.7k
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
0
{
262
0
    out[0] *= scalar;
263
0
    out[1] *= scalar;
264
0
    out[2] *= scalar;
265
0
    out[3] *= scalar;
266
0
    out[4] *= scalar;
267
0
    out[5] *= scalar;
268
0
    out[6] *= scalar;
269
0
    out[7] *= scalar;
270
0
    out[8] *= scalar;
271
0
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
0
{
276
0
    out[0] *= scalar;
277
0
    out[1] *= scalar;
278
0
    out[2] *= scalar;
279
0
    out[3] *= scalar;
280
0
    out[4] *= scalar;
281
0
    out[5] *= scalar;
282
0
    out[6] *= scalar;
283
0
    out[7] *= scalar;
284
0
    out[8] *= scalar;
285
0
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
0
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
0
    out[0] = two62m3 - in[0];
301
0
    out[1] = two62m2 - in[1];
302
0
    out[2] = two62m2 - in[2];
303
0
    out[3] = two62m2 - in[3];
304
0
    out[4] = two62m2 - in[4];
305
0
    out[5] = two62m2 - in[5];
306
0
    out[6] = two62m2 - in[6];
307
0
    out[7] = two62m2 - in[7];
308
0
    out[8] = two62m2 - in[8];
309
0
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
0
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
0
    out[0] += two62m3 - in[0];
327
0
    out[1] += two62m2 - in[1];
328
0
    out[2] += two62m2 - in[2];
329
0
    out[3] += two62m2 - in[3];
330
0
    out[4] += two62m2 - in[4];
331
0
    out[5] += two62m2 - in[5];
332
0
    out[6] += two62m2 - in[6];
333
0
    out[7] += two62m2 - in[7];
334
0
    out[8] += two62m2 - in[8];
335
0
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
0
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
0
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
0
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
0
    out[0] += two63m6 - in[0];
358
0
    out[1] += two63m5 - in[1];
359
0
    out[2] += two63m5 - in[2];
360
0
    out[3] += two63m5 - in[3];
361
0
    out[4] += two63m5 - in[4];
362
0
    out[5] += two63m5 - in[5];
363
0
    out[6] += two63m5 - in[6];
364
0
    out[7] += two63m5 - in[7];
365
0
    out[8] += two63m5 - in[8];
366
0
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
0
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
0
    static const uint128_t two127m70 =
381
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
0
    static const uint128_t two127m69 =
383
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
0
    out[0] += (two127m70 - in[0]);
386
0
    out[1] += (two127m69 - in[1]);
387
0
    out[2] += (two127m69 - in[2]);
388
0
    out[3] += (two127m69 - in[3]);
389
0
    out[4] += (two127m69 - in[4]);
390
0
    out[5] += (two127m69 - in[5]);
391
0
    out[6] += (two127m69 - in[6]);
392
0
    out[7] += (two127m69 - in[7]);
393
0
    out[8] += (two127m69 - in[8]);
394
0
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
5.76k
{
405
5.76k
    felem inx2, inx4;
406
5.76k
    felem_scalar(inx2, in, 2);
407
5.76k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
5.76k
    out[0] = ((uint128_t) in[0]) * in[0];
421
5.76k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
5.76k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
5.76k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
5.76k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
5.76k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
5.76k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
5.76k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
5.76k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
5.76k
             ((uint128_t) in[1]) * inx2[5] +
430
5.76k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
5.76k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
5.76k
             ((uint128_t) in[1]) * inx2[6] +
433
5.76k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
5.76k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
5.76k
             ((uint128_t) in[1]) * inx2[7] +
436
5.76k
             ((uint128_t) in[2]) * inx2[6] +
437
5.76k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
5.76k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
5.76k
              ((uint128_t) in[2]) * inx4[7] +
451
5.76k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
5.76k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
5.76k
              ((uint128_t) in[3]) * inx4[7] +
456
5.76k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
5.76k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
5.76k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
5.76k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
5.76k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
5.76k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
5.76k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
5.76k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
5.76k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
5.76k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
176
{
489
176
    felem in2x2;
490
176
    felem_scalar(in2x2, in2, 2);
491
492
176
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
176
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
176
             ((uint128_t) in1[1]) * in2[0];
496
497
176
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
176
             ((uint128_t) in1[1]) * in2[1] +
499
176
             ((uint128_t) in1[2]) * in2[0];
500
501
176
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
176
             ((uint128_t) in1[1]) * in2[2] +
503
176
             ((uint128_t) in1[2]) * in2[1] +
504
176
             ((uint128_t) in1[3]) * in2[0];
505
506
176
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
176
             ((uint128_t) in1[1]) * in2[3] +
508
176
             ((uint128_t) in1[2]) * in2[2] +
509
176
             ((uint128_t) in1[3]) * in2[1] +
510
176
             ((uint128_t) in1[4]) * in2[0];
511
512
176
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
176
             ((uint128_t) in1[1]) * in2[4] +
514
176
             ((uint128_t) in1[2]) * in2[3] +
515
176
             ((uint128_t) in1[3]) * in2[2] +
516
176
             ((uint128_t) in1[4]) * in2[1] +
517
176
             ((uint128_t) in1[5]) * in2[0];
518
519
176
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
176
             ((uint128_t) in1[1]) * in2[5] +
521
176
             ((uint128_t) in1[2]) * in2[4] +
522
176
             ((uint128_t) in1[3]) * in2[3] +
523
176
             ((uint128_t) in1[4]) * in2[2] +
524
176
             ((uint128_t) in1[5]) * in2[1] +
525
176
             ((uint128_t) in1[6]) * in2[0];
526
527
176
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
176
             ((uint128_t) in1[1]) * in2[6] +
529
176
             ((uint128_t) in1[2]) * in2[5] +
530
176
             ((uint128_t) in1[3]) * in2[4] +
531
176
             ((uint128_t) in1[4]) * in2[3] +
532
176
             ((uint128_t) in1[5]) * in2[2] +
533
176
             ((uint128_t) in1[6]) * in2[1] +
534
176
             ((uint128_t) in1[7]) * in2[0];
535
536
176
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
176
             ((uint128_t) in1[1]) * in2[7] +
538
176
             ((uint128_t) in1[2]) * in2[6] +
539
176
             ((uint128_t) in1[3]) * in2[5] +
540
176
             ((uint128_t) in1[4]) * in2[4] +
541
176
             ((uint128_t) in1[5]) * in2[3] +
542
176
             ((uint128_t) in1[6]) * in2[2] +
543
176
             ((uint128_t) in1[7]) * in2[1] +
544
176
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
176
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
176
              ((uint128_t) in1[2]) * in2x2[7] +
550
176
              ((uint128_t) in1[3]) * in2x2[6] +
551
176
              ((uint128_t) in1[4]) * in2x2[5] +
552
176
              ((uint128_t) in1[5]) * in2x2[4] +
553
176
              ((uint128_t) in1[6]) * in2x2[3] +
554
176
              ((uint128_t) in1[7]) * in2x2[2] +
555
176
              ((uint128_t) in1[8]) * in2x2[1];
556
557
176
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
176
              ((uint128_t) in1[3]) * in2x2[7] +
559
176
              ((uint128_t) in1[4]) * in2x2[6] +
560
176
              ((uint128_t) in1[5]) * in2x2[5] +
561
176
              ((uint128_t) in1[6]) * in2x2[4] +
562
176
              ((uint128_t) in1[7]) * in2x2[3] +
563
176
              ((uint128_t) in1[8]) * in2x2[2];
564
565
176
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
176
              ((uint128_t) in1[4]) * in2x2[7] +
567
176
              ((uint128_t) in1[5]) * in2x2[6] +
568
176
              ((uint128_t) in1[6]) * in2x2[5] +
569
176
              ((uint128_t) in1[7]) * in2x2[4] +
570
176
              ((uint128_t) in1[8]) * in2x2[3];
571
572
176
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
176
              ((uint128_t) in1[5]) * in2x2[7] +
574
176
              ((uint128_t) in1[6]) * in2x2[6] +
575
176
              ((uint128_t) in1[7]) * in2x2[5] +
576
176
              ((uint128_t) in1[8]) * in2x2[4];
577
578
176
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
176
              ((uint128_t) in1[6]) * in2x2[7] +
580
176
              ((uint128_t) in1[7]) * in2x2[6] +
581
176
              ((uint128_t) in1[8]) * in2x2[5];
582
583
176
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
176
              ((uint128_t) in1[7]) * in2x2[7] +
585
176
              ((uint128_t) in1[8]) * in2x2[6];
586
587
176
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
176
              ((uint128_t) in1[8]) * in2x2[7];
589
590
176
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
176
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
5.94k
{
604
5.94k
    u64 overflow1, overflow2;
605
606
5.94k
    out[0] = ((limb) in[0]) & bottom58bits;
607
5.94k
    out[1] = ((limb) in[1]) & bottom58bits;
608
5.94k
    out[2] = ((limb) in[2]) & bottom58bits;
609
5.94k
    out[3] = ((limb) in[3]) & bottom58bits;
610
5.94k
    out[4] = ((limb) in[4]) & bottom58bits;
611
5.94k
    out[5] = ((limb) in[5]) & bottom58bits;
612
5.94k
    out[6] = ((limb) in[6]) & bottom58bits;
613
5.94k
    out[7] = ((limb) in[7]) & bottom58bits;
614
5.94k
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
5.94k
    out[1] += ((limb) in[0]) >> 58;
619
5.94k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
5.94k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
5.94k
    out[2] += ((limb) in[1]) >> 58;
627
5.94k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
5.94k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
5.94k
    out[3] += ((limb) in[2]) >> 58;
631
5.94k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
5.94k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
5.94k
    out[4] += ((limb) in[3]) >> 58;
635
5.94k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
5.94k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
5.94k
    out[5] += ((limb) in[4]) >> 58;
639
5.94k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
5.94k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
5.94k
    out[6] += ((limb) in[5]) >> 58;
643
5.94k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
5.94k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
5.94k
    out[7] += ((limb) in[6]) >> 58;
647
5.94k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
5.94k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
5.94k
    out[8] += ((limb) in[7]) >> 58;
651
5.94k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
5.94k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
5.94k
    overflow1 += ((limb) in[8]) >> 58;
659
5.94k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
5.94k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
5.94k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
5.94k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
5.94k
    out[0] += overflow1;        /* out[0] < 2^60 */
666
5.94k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
5.94k
    out[1] += out[0] >> 58;
669
5.94k
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
5.94k
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
11
{
701
11
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
11
    largefelem tmp;
703
11
    unsigned i;
704
705
11
    felem_square(tmp, in);
706
11
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
11
    felem_mul(tmp, in, ftmp);
708
11
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
11
    felem_assign(ftmp2, ftmp);
710
11
    felem_square(tmp, ftmp);
711
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
11
    felem_mul(tmp, in, ftmp);
713
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
11
    felem_square(tmp, ftmp);
715
11
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
11
    felem_square(tmp, ftmp2);
718
11
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
11
    felem_square(tmp, ftmp3);
720
11
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
11
    felem_mul(tmp, ftmp3, ftmp2);
722
11
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
11
    felem_assign(ftmp2, ftmp3);
725
11
    felem_square(tmp, ftmp3);
726
11
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
11
    felem_square(tmp, ftmp3);
728
11
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
11
    felem_square(tmp, ftmp3);
730
11
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
11
    felem_square(tmp, ftmp3);
732
11
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
11
    felem_assign(ftmp4, ftmp3);
734
11
    felem_mul(tmp, ftmp3, ftmp);
735
11
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
11
    felem_square(tmp, ftmp4);
737
11
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
11
    felem_mul(tmp, ftmp3, ftmp2);
739
11
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
11
    felem_assign(ftmp2, ftmp3);
741
742
99
    for (i = 0; i < 8; i++) {
743
88
        felem_square(tmp, ftmp3);
744
88
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
88
    }
746
11
    felem_mul(tmp, ftmp3, ftmp2);
747
11
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
11
    felem_assign(ftmp2, ftmp3);
749
750
187
    for (i = 0; i < 16; i++) {
751
176
        felem_square(tmp, ftmp3);
752
176
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
176
    }
754
11
    felem_mul(tmp, ftmp3, ftmp2);
755
11
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
11
    felem_assign(ftmp2, ftmp3);
757
758
363
    for (i = 0; i < 32; i++) {
759
352
        felem_square(tmp, ftmp3);
760
352
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
352
    }
762
11
    felem_mul(tmp, ftmp3, ftmp2);
763
11
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
11
    felem_assign(ftmp2, ftmp3);
765
766
715
    for (i = 0; i < 64; i++) {
767
704
        felem_square(tmp, ftmp3);
768
704
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
704
    }
770
11
    felem_mul(tmp, ftmp3, ftmp2);
771
11
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
11
    felem_assign(ftmp2, ftmp3);
773
774
1.41k
    for (i = 0; i < 128; i++) {
775
1.40k
        felem_square(tmp, ftmp3);
776
1.40k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
1.40k
    }
778
11
    felem_mul(tmp, ftmp3, ftmp2);
779
11
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
11
    felem_assign(ftmp2, ftmp3);
781
782
2.82k
    for (i = 0; i < 256; i++) {
783
2.81k
        felem_square(tmp, ftmp3);
784
2.81k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
2.81k
    }
786
11
    felem_mul(tmp, ftmp3, ftmp2);
787
11
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
110
    for (i = 0; i < 9; i++) {
790
99
        felem_square(tmp, ftmp3);
791
99
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
99
    }
793
11
    felem_mul(tmp, ftmp3, ftmp4);
794
11
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
11
    felem_mul(tmp, ftmp3, in);
796
11
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
11
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
0
{
814
0
    felem ftmp;
815
0
    limb is_zero, is_p;
816
0
    felem_assign(ftmp, in);
817
818
0
    ftmp[0] += ftmp[8] >> 57;
819
0
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
0
    ftmp[1] += ftmp[0] >> 58;
822
0
    ftmp[0] &= bottom58bits;
823
0
    ftmp[2] += ftmp[1] >> 58;
824
0
    ftmp[1] &= bottom58bits;
825
0
    ftmp[3] += ftmp[2] >> 58;
826
0
    ftmp[2] &= bottom58bits;
827
0
    ftmp[4] += ftmp[3] >> 58;
828
0
    ftmp[3] &= bottom58bits;
829
0
    ftmp[5] += ftmp[4] >> 58;
830
0
    ftmp[4] &= bottom58bits;
831
0
    ftmp[6] += ftmp[5] >> 58;
832
0
    ftmp[5] &= bottom58bits;
833
0
    ftmp[7] += ftmp[6] >> 58;
834
0
    ftmp[6] &= bottom58bits;
835
0
    ftmp[8] += ftmp[7] >> 58;
836
0
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
0
    is_zero = 0;
846
0
    is_zero |= ftmp[0];
847
0
    is_zero |= ftmp[1];
848
0
    is_zero |= ftmp[2];
849
0
    is_zero |= ftmp[3];
850
0
    is_zero |= ftmp[4];
851
0
    is_zero |= ftmp[5];
852
0
    is_zero |= ftmp[6];
853
0
    is_zero |= ftmp[7];
854
0
    is_zero |= ftmp[8];
855
856
0
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
0
    is_zero = 0 - (is_zero >> 63);
862
863
0
    is_p = ftmp[0] ^ kPrime[0];
864
0
    is_p |= ftmp[1] ^ kPrime[1];
865
0
    is_p |= ftmp[2] ^ kPrime[2];
866
0
    is_p |= ftmp[3] ^ kPrime[3];
867
0
    is_p |= ftmp[4] ^ kPrime[4];
868
0
    is_p |= ftmp[5] ^ kPrime[5];
869
0
    is_p |= ftmp[6] ^ kPrime[6];
870
0
    is_p |= ftmp[7] ^ kPrime[7];
871
0
    is_p |= ftmp[8] ^ kPrime[8];
872
873
0
    is_p--;
874
0
    is_p = 0 - (is_p >> 63);
875
876
0
    is_zero |= is_p;
877
0
    return is_zero;
878
0
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
22
{
892
22
    limb is_p, is_greater, sign;
893
22
    static const limb two58 = ((limb) 1) << 58;
894
895
22
    felem_assign(out, in);
896
897
22
    out[0] += out[8] >> 57;
898
22
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
22
    out[1] += out[0] >> 58;
901
22
    out[0] &= bottom58bits;
902
22
    out[2] += out[1] >> 58;
903
22
    out[1] &= bottom58bits;
904
22
    out[3] += out[2] >> 58;
905
22
    out[2] &= bottom58bits;
906
22
    out[4] += out[3] >> 58;
907
22
    out[3] &= bottom58bits;
908
22
    out[5] += out[4] >> 58;
909
22
    out[4] &= bottom58bits;
910
22
    out[6] += out[5] >> 58;
911
22
    out[5] &= bottom58bits;
912
22
    out[7] += out[6] >> 58;
913
22
    out[6] &= bottom58bits;
914
22
    out[8] += out[7] >> 58;
915
22
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
22
    is_p = out[0] ^ kPrime[0];
929
22
    is_p |= out[1] ^ kPrime[1];
930
22
    is_p |= out[2] ^ kPrime[2];
931
22
    is_p |= out[3] ^ kPrime[3];
932
22
    is_p |= out[4] ^ kPrime[4];
933
22
    is_p |= out[5] ^ kPrime[5];
934
22
    is_p |= out[6] ^ kPrime[6];
935
22
    is_p |= out[7] ^ kPrime[7];
936
22
    is_p |= out[8] ^ kPrime[8];
937
938
22
    is_p--;
939
22
    is_p &= is_p << 32;
940
22
    is_p &= is_p << 16;
941
22
    is_p &= is_p << 8;
942
22
    is_p &= is_p << 4;
943
22
    is_p &= is_p << 2;
944
22
    is_p &= is_p << 1;
945
22
    is_p = 0 - (is_p >> 63);
946
22
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
22
    out[0] &= is_p;
951
22
    out[1] &= is_p;
952
22
    out[2] &= is_p;
953
22
    out[3] &= is_p;
954
22
    out[4] &= is_p;
955
22
    out[5] &= is_p;
956
22
    out[6] &= is_p;
957
22
    out[7] &= is_p;
958
22
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
22
    is_greater = out[8] >> 57;
965
22
    is_greater |= is_greater << 32;
966
22
    is_greater |= is_greater << 16;
967
22
    is_greater |= is_greater << 8;
968
22
    is_greater |= is_greater << 4;
969
22
    is_greater |= is_greater << 2;
970
22
    is_greater |= is_greater << 1;
971
22
    is_greater = 0 - (is_greater >> 63);
972
973
22
    out[0] -= kPrime[0] & is_greater;
974
22
    out[1] -= kPrime[1] & is_greater;
975
22
    out[2] -= kPrime[2] & is_greater;
976
22
    out[3] -= kPrime[3] & is_greater;
977
22
    out[4] -= kPrime[4] & is_greater;
978
22
    out[5] -= kPrime[5] & is_greater;
979
22
    out[6] -= kPrime[6] & is_greater;
980
22
    out[7] -= kPrime[7] & is_greater;
981
22
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
22
    sign = -(out[0] >> 63);
985
22
    out[0] += (two58 & sign);
986
22
    out[1] -= (1 & sign);
987
22
    sign = -(out[1] >> 63);
988
22
    out[1] += (two58 & sign);
989
22
    out[2] -= (1 & sign);
990
22
    sign = -(out[2] >> 63);
991
22
    out[2] += (two58 & sign);
992
22
    out[3] -= (1 & sign);
993
22
    sign = -(out[3] >> 63);
994
22
    out[3] += (two58 & sign);
995
22
    out[4] -= (1 & sign);
996
22
    sign = -(out[4] >> 63);
997
22
    out[4] += (two58 & sign);
998
22
    out[5] -= (1 & sign);
999
22
    sign = -(out[0] >> 63);
1000
22
    out[5] += (two58 & sign);
1001
22
    out[6] -= (1 & sign);
1002
22
    sign = -(out[6] >> 63);
1003
22
    out[6] += (two58 & sign);
1004
22
    out[7] -= (1 & sign);
1005
22
    sign = -(out[7] >> 63);
1006
22
    out[7] += (two58 & sign);
1007
22
    out[8] -= (1 & sign);
1008
22
    sign = -(out[5] >> 63);
1009
22
    out[5] += (two58 & sign);
1010
22
    out[6] -= (1 & sign);
1011
22
    sign = -(out[6] >> 63);
1012
22
    out[6] += (two58 & sign);
1013
22
    out[7] -= (1 & sign);
1014
22
    sign = -(out[7] >> 63);
1015
22
    out[7] += (two58 & sign);
1016
22
    out[8] -= (1 & sign);
1017
22
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
0
{
1039
0
    largefelem tmp, tmp2;
1040
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
0
    felem_assign(ftmp, x_in);
1043
0
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
0
    felem_square(tmp, z_in);
1047
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
0
    felem_square(tmp, y_in);
1051
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
0
    felem_mul(tmp, x_in, gamma);
1055
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
0
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
0
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
0
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
0
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
0
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
0
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
0
    felem_assign(ftmp, beta);
1080
0
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
0
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
0
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
0
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
0
    felem_assign(ftmp, y_in);
1090
0
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
0
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
0
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
0
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
0
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
0
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
0
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
0
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
0
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
0
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
0
    felem_reduce(y_out, tmp);
1131
0
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
0
{
1136
0
    unsigned i;
1137
0
    for (i = 0; i < NLIMBS; ++i) {
1138
0
        const limb tmp = mask & (in[i] ^ out[i]);
1139
0
        out[i] ^= tmp;
1140
0
    }
1141
0
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
0
{
1159
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
0
    largefelem tmp, tmp2;
1161
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
0
    limb points_equal;
1163
1164
0
    z1_is_zero = felem_is_zero(z1);
1165
0
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
0
    felem_square(tmp, z1);
1169
0
    felem_reduce(ftmp, tmp);
1170
1171
0
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
0
        felem_square(tmp, z2);
1174
0
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
0
        felem_mul(tmp, x1, ftmp2);
1178
0
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
0
        felem_assign(ftmp5, z1);
1182
0
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
0
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
0
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
0
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
0
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
0
        felem_mul(tmp, ftmp2, z2);
1196
0
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
0
        felem_mul(tmp, y1, ftmp2);
1200
0
        felem_reduce(ftmp6, tmp);
1201
0
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
0
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
0
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
0
        felem_assign(ftmp6, y1);
1214
0
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
0
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
0
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
0
    felem_reduce(ftmp4, tmp);
1224
1225
0
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
0
    felem_mul(tmp, ftmp5, ftmp4);
1229
0
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
0
    felem_mul(tmp, ftmp, z1);
1233
0
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
0
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
0
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
0
    felem_reduce(ftmp5, tmp);
1243
0
    y_equal = felem_is_zero(ftmp5);
1244
0
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
0
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
0
    felem_assign(ftmp, ftmp4);
1287
0
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
0
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
0
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
0
    felem_mul(tmp, ftmp4, ftmp);
1295
0
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
0
    felem_mul(tmp, ftmp3, ftmp);
1299
0
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
0
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
0
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
0
    felem_assign(ftmp3, ftmp4);
1307
0
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
0
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
0
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
0
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
0
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
0
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
0
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
0
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
0
    felem_reduce(y_out, tmp);
1331
1332
0
    copy_conditional(x_out, x2, z1_is_zero);
1333
0
    copy_conditional(x_out, x1, z2_is_zero);
1334
0
    copy_conditional(y_out, y2, z1_is_zero);
1335
0
    copy_conditional(y_out, y1, z2_is_zero);
1336
0
    copy_conditional(z_out, z2, z1_is_zero);
1337
0
    copy_conditional(z_out, z1, z2_is_zero);
1338
0
    felem_assign(x3, x_out);
1339
0
    felem_assign(y3, y_out);
1340
0
    felem_assign(z3, z_out);
1341
0
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
0
{
1497
0
    unsigned i, j;
1498
0
    limb *outlimbs = &out[0][0];
1499
1500
0
    memset(out, 0, sizeof(*out) * 3);
1501
1502
0
    for (i = 0; i < size; i++) {
1503
0
        const limb *inlimbs = &pre_comp[i][0][0];
1504
0
        limb mask = i ^ idx;
1505
0
        mask |= mask >> 4;
1506
0
        mask |= mask >> 2;
1507
0
        mask |= mask >> 1;
1508
0
        mask &= 1;
1509
0
        mask--;
1510
0
        for (j = 0; j < NLIMBS * 3; j++)
1511
0
            outlimbs[j] |= inlimbs[j] & mask;
1512
0
    }
1513
0
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
0
{
1518
0
    if (i < 0)
1519
0
        return 0;
1520
0
    return (in[i >> 3] >> (i & 7)) & 1;
1521
0
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
0
{
1536
0
    int i, skip;
1537
0
    unsigned num, gen_mul = (g_scalar != NULL);
1538
0
    felem nq[3], tmp[4];
1539
0
    limb bits;
1540
0
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
0
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
0
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
0
        if (!skip)
1555
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
0
        if (gen_mul && (i <= 130)) {
1559
0
            bits = get_bit(g_scalar, i + 390) << 3;
1560
0
            if (i < 130) {
1561
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
0
                bits |= get_bit(g_scalar, i);
1564
0
            }
1565
            /* select the point to add, in constant time */
1566
0
            select_point(bits, 16, g_pre_comp, tmp);
1567
0
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
0
                point_add(nq[0], nq[1], nq[2],
1570
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
0
            } else {
1572
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
0
                skip = 0;
1574
0
            }
1575
0
        }
1576
1577
        /* do other additions every 5 doublings */
1578
0
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
0
            for (num = 0; num < num_points; ++num) {
1581
0
                bits = get_bit(scalars[num], i + 4) << 5;
1582
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
0
                bits |= get_bit(scalars[num], i) << 1;
1586
0
                bits |= get_bit(scalars[num], i - 1);
1587
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
0
                select_point(digit, 17, pre_comp[num], tmp);
1593
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
0
                if (!skip) {
1598
0
                    point_add(nq[0], nq[1], nq[2],
1599
0
                              nq[0], nq[1], nq[2],
1600
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
0
                } else {
1602
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
0
                    skip = 0;
1604
0
                }
1605
0
            }
1606
0
        }
1607
0
    }
1608
0
    felem_assign(x_out, nq[0]);
1609
0
    felem_assign(y_out, nq[1]);
1610
0
    felem_assign(z_out, nq[2]);
1611
0
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
43
{
1622
43
    static const EC_METHOD ret = {
1623
43
        EC_FLAGS_DEFAULT_OCT,
1624
43
        NID_X9_62_prime_field,
1625
43
        ec_GFp_nistp521_group_init,
1626
43
        ec_GFp_simple_group_finish,
1627
43
        ec_GFp_simple_group_clear_finish,
1628
43
        ec_GFp_nist_group_copy,
1629
43
        ec_GFp_nistp521_group_set_curve,
1630
43
        ec_GFp_simple_group_get_curve,
1631
43
        ec_GFp_simple_group_get_degree,
1632
43
        ec_group_simple_order_bits,
1633
43
        ec_GFp_simple_group_check_discriminant,
1634
43
        ec_GFp_simple_point_init,
1635
43
        ec_GFp_simple_point_finish,
1636
43
        ec_GFp_simple_point_clear_finish,
1637
43
        ec_GFp_simple_point_copy,
1638
43
        ec_GFp_simple_point_set_to_infinity,
1639
43
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
43
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
43
        ec_GFp_simple_point_set_affine_coordinates,
1642
43
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
43
        0 /* point_set_compressed_coordinates */ ,
1644
43
        0 /* point2oct */ ,
1645
43
        0 /* oct2point */ ,
1646
43
        ec_GFp_simple_add,
1647
43
        ec_GFp_simple_dbl,
1648
43
        ec_GFp_simple_invert,
1649
43
        ec_GFp_simple_is_at_infinity,
1650
43
        ec_GFp_simple_is_on_curve,
1651
43
        ec_GFp_simple_cmp,
1652
43
        ec_GFp_simple_make_affine,
1653
43
        ec_GFp_simple_points_make_affine,
1654
43
        ec_GFp_nistp521_points_mul,
1655
43
        ec_GFp_nistp521_precompute_mult,
1656
43
        ec_GFp_nistp521_have_precompute_mult,
1657
43
        ec_GFp_nist_field_mul,
1658
43
        ec_GFp_nist_field_sqr,
1659
43
        0 /* field_div */ ,
1660
43
        ec_GFp_simple_field_inv,
1661
43
        0 /* field_encode */ ,
1662
43
        0 /* field_decode */ ,
1663
43
        0,                      /* field_set_to_one */
1664
43
        ec_key_simple_priv2oct,
1665
43
        ec_key_simple_oct2priv,
1666
43
        0, /* set private */
1667
43
        ec_key_simple_generate_key,
1668
43
        ec_key_simple_check_key,
1669
43
        ec_key_simple_generate_public_key,
1670
43
        0, /* keycopy */
1671
43
        0, /* keyfinish */
1672
43
        ecdh_simple_compute_key,
1673
43
        0, /* field_inverse_mod_ord */
1674
43
        0, /* blind_coordinates */
1675
43
        0, /* ladder_pre */
1676
43
        0, /* ladder_step */
1677
43
        0  /* ladder_post */
1678
43
    };
1679
1680
43
    return &ret;
1681
43
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
86
{
1740
86
    int ret;
1741
86
    ret = ec_GFp_simple_group_init(group);
1742
86
    group->a_is_minus3 = 1;
1743
86
    return ret;
1744
86
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
43
{
1750
43
    int ret = 0;
1751
43
    BN_CTX *new_ctx = NULL;
1752
43
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
43
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
43
    BN_CTX_start(ctx);
1758
43
    curve_p = BN_CTX_get(ctx);
1759
43
    curve_a = BN_CTX_get(ctx);
1760
43
    curve_b = BN_CTX_get(ctx);
1761
43
    if (curve_b == NULL)
1762
0
        goto err;
1763
43
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
43
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
43
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
43
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
43
    group->field_mod_func = BN_nist_mod_521;
1772
43
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
43
 err:
1774
43
    BN_CTX_end(ctx);
1775
43
    BN_CTX_free(new_ctx);
1776
43
    return ret;
1777
43
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
11
{
1788
11
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
11
    largefelem tmp;
1790
1791
11
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
11
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
11
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
11
    felem_inv(z2, z1);
1800
11
    felem_square(tmp, z2);
1801
11
    felem_reduce(z1, tmp);
1802
11
    felem_mul(tmp, x_in, z1);
1803
11
    felem_reduce(x_in, tmp);
1804
11
    felem_contract(x_out, x_in);
1805
11
    if (x != NULL) {
1806
11
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
11
    }
1812
11
    felem_mul(tmp, z1, z2);
1813
11
    felem_reduce(z1, tmp);
1814
11
    felem_mul(tmp, y_in, z1);
1815
11
    felem_reduce(y_in, tmp);
1816
11
    felem_contract(y_out, y_in);
1817
11
    if (y != NULL) {
1818
11
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
11
    }
1824
11
    return 1;
1825
11
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
0
{
1866
0
    int ret = 0;
1867
0
    int j;
1868
0
    int mixed = 0;
1869
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
0
    felem_bytearray g_secret;
1871
0
    felem_bytearray *secrets = NULL;
1872
0
    felem (*pre_comp)[17][3] = NULL;
1873
0
    felem *tmp_felems = NULL;
1874
0
    unsigned i;
1875
0
    int num_bytes;
1876
0
    int have_pre_comp = 0;
1877
0
    size_t num_points = num;
1878
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
0
    NISTP521_PRE_COMP *pre = NULL;
1880
0
    felem(*g_pre_comp)[3] = NULL;
1881
0
    EC_POINT *generator = NULL;
1882
0
    const EC_POINT *p = NULL;
1883
0
    const BIGNUM *p_scalar = NULL;
1884
1885
0
    BN_CTX_start(ctx);
1886
0
    x = BN_CTX_get(ctx);
1887
0
    y = BN_CTX_get(ctx);
1888
0
    z = BN_CTX_get(ctx);
1889
0
    tmp_scalar = BN_CTX_get(ctx);
1890
0
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
0
    if (scalar != NULL) {
1894
0
        pre = group->pre_comp.nistp521;
1895
0
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
0
        else
1899
            /* try to use the standard precomputation */
1900
0
            g_pre_comp = (felem(*)[3]) gmul;
1901
0
        generator = EC_POINT_new(group);
1902
0
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
0
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
0
                                                      generator, x, y, z,
1913
0
                                                      ctx))
1914
0
            goto err;
1915
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
0
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
0
    }
1925
1926
0
    if (num_points > 0) {
1927
0
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
0
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
0
        if ((secrets == NULL) || (pre_comp == NULL)
1940
0
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
0
        for (i = 0; i < num_points; ++i) {
1950
0
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
0
            } else {
1958
                /* the i^th point */
1959
0
                p = points[i];
1960
0
                p_scalar = scalars[i];
1961
0
            }
1962
0
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
0
                if ((BN_num_bits(p_scalar) > 521)
1965
0
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
0
                } else {
1977
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
0
                                               secrets[i], sizeof(secrets[i]));
1979
0
                }
1980
0
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
0
                if ((!BN_to_felem(x_out, p->X)) ||
1986
0
                    (!BN_to_felem(y_out, p->Y)) ||
1987
0
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
0
                for (j = 2; j <= 16; ++j) {
1993
0
                    if (j & 1) {
1994
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
0
                                  pre_comp[i][j - 1][0],
1998
0
                                  pre_comp[i][j - 1][1],
1999
0
                                  pre_comp[i][j - 1][2]);
2000
0
                    } else {
2001
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
0
                                     pre_comp[i][j / 2][1],
2004
0
                                     pre_comp[i][j / 2][2]);
2005
0
                    }
2006
0
                }
2007
0
            }
2008
0
        }
2009
0
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
0
    }
2012
2013
    /* the scalar for the generator */
2014
0
    if ((scalar != NULL) && (have_pre_comp)) {
2015
0
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
0
        } else {
2028
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
0
        }
2030
        /* do the multiplication with generator precomputation */
2031
0
        batch_mul(x_out, y_out, z_out,
2032
0
                  (const felem_bytearray(*))secrets, num_points,
2033
0
                  g_secret,
2034
0
                  mixed, (const felem(*)[17][3])pre_comp,
2035
0
                  (const felem(*)[3])g_pre_comp);
2036
0
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
0
        batch_mul(x_out, y_out, z_out,
2039
0
                  (const felem_bytearray(*))secrets, num_points,
2040
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
0
    }
2042
    /* reduce the output to its unique minimal representation */
2043
0
    felem_contract(x_in, x_out);
2044
0
    felem_contract(y_in, y_out);
2045
0
    felem_contract(z_in, z_out);
2046
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
0
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
0
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
0
 err:
2054
0
    BN_CTX_end(ctx);
2055
0
    EC_POINT_free(generator);
2056
0
    OPENSSL_free(secrets);
2057
0
    OPENSSL_free(pre_comp);
2058
0
    OPENSSL_free(tmp_felems);
2059
0
    return ret;
2060
0
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif