Coverage Report

Created: 2023-06-08 06:40

/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
167
{
246
167
    static const EC_METHOD ret = {
247
167
        EC_FLAGS_DEFAULT_OCT,
248
167
        NID_X9_62_prime_field,
249
167
        ossl_ec_GFp_nistp224_group_init,
250
167
        ossl_ec_GFp_simple_group_finish,
251
167
        ossl_ec_GFp_simple_group_clear_finish,
252
167
        ossl_ec_GFp_nist_group_copy,
253
167
        ossl_ec_GFp_nistp224_group_set_curve,
254
167
        ossl_ec_GFp_simple_group_get_curve,
255
167
        ossl_ec_GFp_simple_group_get_degree,
256
167
        ossl_ec_group_simple_order_bits,
257
167
        ossl_ec_GFp_simple_group_check_discriminant,
258
167
        ossl_ec_GFp_simple_point_init,
259
167
        ossl_ec_GFp_simple_point_finish,
260
167
        ossl_ec_GFp_simple_point_clear_finish,
261
167
        ossl_ec_GFp_simple_point_copy,
262
167
        ossl_ec_GFp_simple_point_set_to_infinity,
263
167
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
167
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
167
        0 /* point_set_compressed_coordinates */ ,
266
167
        0 /* point2oct */ ,
267
167
        0 /* oct2point */ ,
268
167
        ossl_ec_GFp_simple_add,
269
167
        ossl_ec_GFp_simple_dbl,
270
167
        ossl_ec_GFp_simple_invert,
271
167
        ossl_ec_GFp_simple_is_at_infinity,
272
167
        ossl_ec_GFp_simple_is_on_curve,
273
167
        ossl_ec_GFp_simple_cmp,
274
167
        ossl_ec_GFp_simple_make_affine,
275
167
        ossl_ec_GFp_simple_points_make_affine,
276
167
        ossl_ec_GFp_nistp224_points_mul,
277
167
        ossl_ec_GFp_nistp224_precompute_mult,
278
167
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
167
        ossl_ec_GFp_nist_field_mul,
280
167
        ossl_ec_GFp_nist_field_sqr,
281
167
        0 /* field_div */ ,
282
167
        ossl_ec_GFp_simple_field_inv,
283
167
        0 /* field_encode */ ,
284
167
        0 /* field_decode */ ,
285
167
        0,                      /* field_set_to_one */
286
167
        ossl_ec_key_simple_priv2oct,
287
167
        ossl_ec_key_simple_oct2priv,
288
167
        0, /* set private */
289
167
        ossl_ec_key_simple_generate_key,
290
167
        ossl_ec_key_simple_check_key,
291
167
        ossl_ec_key_simple_generate_public_key,
292
167
        0, /* keycopy */
293
167
        0, /* keyfinish */
294
167
        ossl_ecdh_simple_compute_key,
295
167
        ossl_ecdsa_simple_sign_setup,
296
167
        ossl_ecdsa_simple_sign_sig,
297
167
        ossl_ecdsa_simple_verify_sig,
298
167
        0, /* field_inverse_mod_ord */
299
167
        0, /* blind_coordinates */
300
167
        0, /* ladder_pre */
301
167
        0, /* ladder_step */
302
167
        0  /* ladder_post */
303
167
    };
304
305
167
    return &ret;
306
167
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
42
{
313
42
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
42
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
42
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
42
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
42
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
28
{
321
28
    unsigned i;
322
224
    for (i = 0; i < 7; ++i) {
323
196
        out[i] = in[0] >> (8 * i);
324
196
        out[i + 7] = in[1] >> (8 * i);
325
196
        out[i + 14] = in[2] >> (8 * i);
326
196
        out[i + 21] = in[3] >> (8 * i);
327
196
    }
328
28
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
42
{
333
42
    felem_bytearray b_out;
334
42
    int num_bytes;
335
336
42
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
42
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
42
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
42
    bin28_to_felem(out, b_out);
346
42
    return 1;
347
42
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
28
{
352
28
    felem_bytearray b_out;
353
28
    felem_to_bin28(b_out, in);
354
28
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
28
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
0
{
378
0
    out[0] = in[0];
379
0
    out[1] = in[1];
380
0
    out[2] = in[2];
381
0
    out[3] = in[3];
382
0
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
0
{
387
0
    out[0] += in[0];
388
0
    out[1] += in[1];
389
0
    out[2] += in[2];
390
0
    out[3] += in[3];
391
0
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
0
{
397
0
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
0
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
0
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
0
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
0
    out[0] += two58p2;
404
0
    out[1] += two58m42m2;
405
0
    out[2] += two58m2;
406
0
    out[3] += two58m2;
407
408
0
    out[0] -= in[0];
409
0
    out[1] -= in[1];
410
0
    out[2] -= in[2];
411
0
    out[3] -= in[3];
412
0
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
0
{
418
0
    static const widelimb two120 = ((widelimb) 1) << 120;
419
0
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
0
        (((widelimb) 1) << 64);
421
0
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
0
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
0
    out[0] += two120;
426
0
    out[1] += two120m64;
427
0
    out[2] += two120m64;
428
0
    out[3] += two120;
429
0
    out[4] += two120m104m64;
430
0
    out[5] += two120m64;
431
0
    out[6] += two120m64;
432
433
0
    out[0] -= in[0];
434
0
    out[1] -= in[1];
435
0
    out[2] -= in[2];
436
0
    out[3] -= in[3];
437
0
    out[4] -= in[4];
438
0
    out[5] -= in[5];
439
0
    out[6] -= in[6];
440
0
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
0
{
446
0
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
0
        (((widelimb) 1) << 8);
448
0
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
0
        (((widelimb) 1) << 8);
450
0
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
0
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
0
    out[0] += two64p8;
455
0
    out[1] += two64m48m8;
456
0
    out[2] += two64m8;
457
0
    out[3] += two64m8;
458
459
0
    out[0] -= in[0];
460
0
    out[1] -= in[1];
461
0
    out[2] -= in[2];
462
0
    out[3] -= in[3];
463
0
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
0
{
471
0
    out[0] *= scalar;
472
0
    out[1] *= scalar;
473
0
    out[2] *= scalar;
474
0
    out[3] *= scalar;
475
0
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
0
{
483
0
    out[0] *= scalar;
484
0
    out[1] *= scalar;
485
0
    out[2] *= scalar;
486
0
    out[3] *= scalar;
487
0
    out[4] *= scalar;
488
0
    out[5] *= scalar;
489
0
    out[6] *= scalar;
490
0
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
3.13k
{
495
3.13k
    limb tmp0, tmp1, tmp2;
496
3.13k
    tmp0 = 2 * in[0];
497
3.13k
    tmp1 = 2 * in[1];
498
3.13k
    tmp2 = 2 * in[2];
499
3.13k
    out[0] = ((widelimb) in[0]) * in[0];
500
3.13k
    out[1] = ((widelimb) in[0]) * tmp1;
501
3.13k
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
3.13k
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
3.13k
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
3.13k
    out[5] = ((widelimb) in[3]) * tmp2;
505
3.13k
    out[6] = ((widelimb) in[3]) * in[3];
506
3.13k
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
196
{
511
196
    out[0] = ((widelimb) in1[0]) * in2[0];
512
196
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
196
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
196
             ((widelimb) in1[2]) * in2[0];
515
196
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
196
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
196
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
196
             ((widelimb) in1[3]) * in2[1];
519
196
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
196
    out[6] = ((widelimb) in1[3]) * in2[3];
521
196
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
3.33k
{
529
3.33k
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
3.33k
        (((widelimb) 1) << 15);
531
3.33k
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
3.33k
        (((widelimb) 1) << 71);
533
3.33k
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
3.33k
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
3.33k
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
3.33k
    output[0] = in[0] + two127p15;
539
3.33k
    output[1] = in[1] + two127m71m55;
540
3.33k
    output[2] = in[2] + two127m71;
541
3.33k
    output[3] = in[3];
542
3.33k
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
3.33k
    output[4] += in[6] >> 16;
546
3.33k
    output[3] += (in[6] & 0xffff) << 40;
547
3.33k
    output[2] -= in[6];
548
549
3.33k
    output[3] += in[5] >> 16;
550
3.33k
    output[2] += (in[5] & 0xffff) << 40;
551
3.33k
    output[1] -= in[5];
552
553
3.33k
    output[2] += output[4] >> 16;
554
3.33k
    output[1] += (output[4] & 0xffff) << 40;
555
3.33k
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
3.33k
    output[3] += output[2] >> 56;
559
3.33k
    output[2] &= 0x00ffffffffffffff;
560
561
3.33k
    output[4] = output[3] >> 56;
562
3.33k
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
3.33k
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
3.33k
    output[1] += (output[4] & 0xffff) << 40;
570
3.33k
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
3.33k
    output[1] += output[0] >> 56;
574
3.33k
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
3.33k
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
3.33k
    out[1] = output[1] & 0x00ffffffffffffff;
579
3.33k
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
3.33k
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
3.33k
    out[3] = output[3];
589
3.33k
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
28
{
611
28
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
28
    int64_t tmp[4], a;
615
28
    tmp[0] = in[0];
616
28
    tmp[1] = in[1];
617
28
    tmp[2] = in[2];
618
28
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
28
    a = (in[3] >> 56);
621
28
    tmp[0] -= a;
622
28
    tmp[1] += a << 40;
623
28
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
28
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
28
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
28
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
28
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
28
    tmp[3] &= a ^ 0xffffffffffffffff;
635
28
    tmp[2] &= a ^ 0xffffffffffffffff;
636
28
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
28
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
28
    a = tmp[0] >> 63;
644
28
    tmp[0] += two56 & a;
645
28
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
28
    tmp[2] += tmp[1] >> 56;
649
28
    tmp[1] &= 0x00ffffffffffffff;
650
651
28
    tmp[3] += tmp[2] >> 56;
652
28
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
28
    out[0] = tmp[0];
656
28
    out[1] = tmp[1];
657
28
    out[2] = tmp[2];
658
28
    out[3] = tmp[3];
659
28
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
0
{
668
0
    widefelem tmp;
669
670
0
    memset(tmp, 0, sizeof(tmp));
671
0
    felem_diff_128_64(tmp, in);
672
0
    felem_reduce(out, tmp);
673
0
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
0
{
682
0
    limb zero, two224m96p1, two225m97p2;
683
684
0
    zero = in[0] | in[1] | in[2] | in[3];
685
0
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
0
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
0
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
0
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
0
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
0
    return (zero | two224m96p1 | two225m97p2);
693
0
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
14
{
704
14
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
14
    widefelem tmp;
706
14
    unsigned i;
707
708
14
    felem_square(tmp, in);
709
14
    felem_reduce(ftmp, tmp);    /* 2 */
710
14
    felem_mul(tmp, in, ftmp);
711
14
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
14
    felem_square(tmp, ftmp);
713
14
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
14
    felem_mul(tmp, in, ftmp);
715
14
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
14
    felem_square(tmp, ftmp);
717
14
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
14
    felem_square(tmp, ftmp2);
719
14
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
14
    felem_square(tmp, ftmp2);
721
14
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
14
    felem_mul(tmp, ftmp2, ftmp);
723
14
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
14
    felem_square(tmp, ftmp);
725
14
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
84
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
70
        felem_square(tmp, ftmp2);
728
70
        felem_reduce(ftmp2, tmp);
729
70
    }
730
14
    felem_mul(tmp, ftmp2, ftmp);
731
14
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
14
    felem_square(tmp, ftmp2);
733
14
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
168
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
154
        felem_square(tmp, ftmp3);
736
154
        felem_reduce(ftmp3, tmp);
737
154
    }
738
14
    felem_mul(tmp, ftmp3, ftmp2);
739
14
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
14
    felem_square(tmp, ftmp2);
741
14
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
336
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
322
        felem_square(tmp, ftmp3);
744
322
        felem_reduce(ftmp3, tmp);
745
322
    }
746
14
    felem_mul(tmp, ftmp3, ftmp2);
747
14
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
14
    felem_square(tmp, ftmp3);
749
14
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
672
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
658
        felem_square(tmp, ftmp4);
752
658
        felem_reduce(ftmp4, tmp);
753
658
    }
754
14
    felem_mul(tmp, ftmp3, ftmp4);
755
14
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
14
    felem_square(tmp, ftmp3);
757
14
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
336
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
322
        felem_square(tmp, ftmp4);
760
322
        felem_reduce(ftmp4, tmp);
761
322
    }
762
14
    felem_mul(tmp, ftmp2, ftmp4);
763
14
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
98
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
84
        felem_square(tmp, ftmp2);
766
84
        felem_reduce(ftmp2, tmp);
767
84
    }
768
14
    felem_mul(tmp, ftmp2, ftmp);
769
14
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
14
    felem_square(tmp, ftmp);
771
14
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
14
    felem_mul(tmp, ftmp, in);
773
14
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
1.37k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
1.35k
        felem_square(tmp, ftmp);
776
1.35k
        felem_reduce(ftmp, tmp);
777
1.35k
    }
778
14
    felem_mul(tmp, ftmp, ftmp3);
779
14
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
14
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
0
{
788
0
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
0
    const limb copy = -icopy;
793
0
    for (i = 0; i < 4; ++i) {
794
0
        const limb tmp = copy & (in[i] ^ out[i]);
795
0
        out[i] ^= tmp;
796
0
    }
797
0
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
0
{
822
0
    widefelem tmp, tmp2;
823
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
0
    felem_assign(ftmp, x_in);
826
0
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
0
    felem_square(tmp, z_in);
830
0
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
0
    felem_square(tmp, y_in);
834
0
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
0
    felem_mul(tmp, x_in, gamma);
838
0
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
0
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
0
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
0
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
0
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
0
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
0
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
0
    felem_assign(ftmp, beta);
855
0
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
0
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
0
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
0
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
0
    felem_assign(ftmp, y_in);
865
0
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
0
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
0
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
0
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
0
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
0
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
0
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
0
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
0
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
0
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
0
    felem_reduce(y_out, tmp);
887
0
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
0
{
912
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
0
    widefelem tmp, tmp2;
914
0
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
0
    limb points_equal;
916
917
0
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
0
        felem_square(tmp, z2);
920
0
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
0
        felem_mul(tmp, ftmp2, z2);
924
0
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
0
        felem_mul(tmp2, ftmp4, y1);
928
0
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
0
        felem_mul(tmp2, ftmp2, x1);
932
0
        felem_reduce(ftmp2, tmp2);
933
0
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
0
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
0
        felem_assign(ftmp2, x1);
943
0
    }
944
945
    /* ftmp = z1^2 */
946
0
    felem_square(tmp, z1);
947
0
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
0
    felem_mul(tmp, ftmp, z1);
951
0
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
0
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
0
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
0
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
0
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
0
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
0
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
0
    x_equal = felem_is_zero(ftmp);
980
0
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
0
    z1_is_zero = felem_is_zero(z1);
987
0
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
0
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
0
    if (!mixed) {
1013
0
        felem_mul(tmp, z1, z2);
1014
0
        felem_reduce(ftmp5, tmp);
1015
0
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
0
        felem_assign(ftmp5, z1);
1018
0
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
0
    felem_mul(tmp, ftmp, ftmp5);
1022
0
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
0
    felem_assign(ftmp5, ftmp);
1026
0
    felem_square(tmp, ftmp);
1027
0
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
0
    felem_mul(tmp, ftmp, ftmp5);
1031
0
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
0
    felem_mul(tmp, ftmp2, ftmp);
1035
0
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
0
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
0
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
0
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
0
    felem_assign(ftmp5, ftmp2);
1051
0
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
0
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
0
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
0
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
0
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
0
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
0
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
0
    copy_conditional(x_out, x2, z1_is_zero);
1089
0
    copy_conditional(x_out, x1, z2_is_zero);
1090
0
    copy_conditional(y_out, y2, z1_is_zero);
1091
0
    copy_conditional(y_out, y1, z2_is_zero);
1092
0
    copy_conditional(z_out, z2, z1_is_zero);
1093
0
    copy_conditional(z_out, z1, z2_is_zero);
1094
0
    felem_assign(x3, x_out);
1095
0
    felem_assign(y3, y_out);
1096
0
    felem_assign(z3, z_out);
1097
0
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
0
{
1107
0
    unsigned i, j;
1108
0
    limb *outlimbs = &out[0][0];
1109
1110
0
    memset(out, 0, sizeof(*out) * 3);
1111
0
    for (i = 0; i < size; i++) {
1112
0
        const limb *inlimbs = &pre_comp[i][0][0];
1113
0
        u64 mask = i ^ idx;
1114
0
        mask |= mask >> 4;
1115
0
        mask |= mask >> 2;
1116
0
        mask |= mask >> 1;
1117
0
        mask &= 1;
1118
0
        mask--;
1119
0
        for (j = 0; j < 4 * 3; j++)
1120
0
            outlimbs[j] |= inlimbs[j] & mask;
1121
0
    }
1122
0
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
0
{
1127
0
    if (i >= 224)
1128
0
        return 0;
1129
0
    return (in[i >> 3] >> (i & 7)) & 1;
1130
0
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
0
{
1145
0
    int i, skip;
1146
0
    unsigned num;
1147
0
    unsigned gen_mul = (g_scalar != NULL);
1148
0
    felem nq[3], tmp[4];
1149
0
    u64 bits;
1150
0
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
0
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
0
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
0
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
0
        if (!skip)
1165
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
0
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
0
            bits = get_bit(g_scalar, i + 196) << 3;
1171
0
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
0
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
0
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
0
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
0
                point_add(nq[0], nq[1], nq[2],
1180
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
0
            } else {
1182
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
0
                skip = 0;
1184
0
            }
1185
1186
            /* second, look at the current position */
1187
0
            bits = get_bit(g_scalar, i + 168) << 3;
1188
0
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
0
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
0
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
0
            point_add(nq[0], nq[1], nq[2],
1194
0
                      nq[0], nq[1], nq[2],
1195
0
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
0
        }
1197
1198
        /* do other additions every 5 doublings */
1199
0
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
0
            for (num = 0; num < num_points; ++num) {
1202
0
                bits = get_bit(scalars[num], i + 4) << 5;
1203
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
0
                bits |= get_bit(scalars[num], i) << 1;
1207
0
                bits |= get_bit(scalars[num], i - 1);
1208
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
0
                select_point(digit, 17, pre_comp[num], tmp);
1212
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
0
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
0
                if (!skip) {
1217
0
                    point_add(nq[0], nq[1], nq[2],
1218
0
                              nq[0], nq[1], nq[2],
1219
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
0
                } else {
1221
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
0
                    skip = 0;
1223
0
                }
1224
0
            }
1225
0
        }
1226
0
    }
1227
0
    felem_assign(x_out, nq[0]);
1228
0
    felem_assign(y_out, nq[1]);
1229
0
    felem_assign(z_out, nq[2]);
1230
0
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
334
{
1289
334
    int ret;
1290
334
    ret = ossl_ec_GFp_simple_group_init(group);
1291
334
    group->a_is_minus3 = 1;
1292
334
    return ret;
1293
334
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
167
{
1299
167
    int ret = 0;
1300
167
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
167
#ifndef FIPS_MODULE
1302
167
    BN_CTX *new_ctx = NULL;
1303
1304
167
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
167
#endif
1307
167
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
167
    BN_CTX_start(ctx);
1311
167
    curve_p = BN_CTX_get(ctx);
1312
167
    curve_a = BN_CTX_get(ctx);
1313
167
    curve_b = BN_CTX_get(ctx);
1314
167
    if (curve_b == NULL)
1315
0
        goto err;
1316
167
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
167
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
167
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
167
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
167
    group->field_mod_func = BN_nist_mod_224;
1324
167
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
167
 err:
1326
167
    BN_CTX_end(ctx);
1327
167
#ifndef FIPS_MODULE
1328
167
    BN_CTX_free(new_ctx);
1329
167
#endif
1330
167
    return ret;
1331
167
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
14
{
1342
14
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
14
    widefelem tmp;
1344
1345
14
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
14
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
14
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
14
    felem_inv(z2, z1);
1353
14
    felem_square(tmp, z2);
1354
14
    felem_reduce(z1, tmp);
1355
14
    felem_mul(tmp, x_in, z1);
1356
14
    felem_reduce(x_in, tmp);
1357
14
    felem_contract(x_out, x_in);
1358
14
    if (x != NULL) {
1359
14
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
14
    }
1364
14
    felem_mul(tmp, z1, z2);
1365
14
    felem_reduce(z1, tmp);
1366
14
    felem_mul(tmp, y_in, z1);
1367
14
    felem_reduce(y_in, tmp);
1368
14
    felem_contract(y_out, y_in);
1369
14
    if (y != NULL) {
1370
14
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
14
    }
1375
14
    return 1;
1376
14
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
0
{
1416
0
    int ret = 0;
1417
0
    int j;
1418
0
    unsigned i;
1419
0
    int mixed = 0;
1420
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
0
    felem_bytearray g_secret;
1422
0
    felem_bytearray *secrets = NULL;
1423
0
    felem (*pre_comp)[17][3] = NULL;
1424
0
    felem *tmp_felems = NULL;
1425
0
    int num_bytes;
1426
0
    int have_pre_comp = 0;
1427
0
    size_t num_points = num;
1428
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
0
    NISTP224_PRE_COMP *pre = NULL;
1430
0
    const felem(*g_pre_comp)[16][3] = NULL;
1431
0
    EC_POINT *generator = NULL;
1432
0
    const EC_POINT *p = NULL;
1433
0
    const BIGNUM *p_scalar = NULL;
1434
1435
0
    BN_CTX_start(ctx);
1436
0
    x = BN_CTX_get(ctx);
1437
0
    y = BN_CTX_get(ctx);
1438
0
    z = BN_CTX_get(ctx);
1439
0
    tmp_scalar = BN_CTX_get(ctx);
1440
0
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
0
    if (scalar != NULL) {
1444
0
        pre = group->pre_comp.nistp224;
1445
0
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
0
        else
1449
            /* try to use the standard precomputation */
1450
0
            g_pre_comp = &gmul[0];
1451
0
        generator = EC_POINT_new(group);
1452
0
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
0
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
0
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
0
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
0
                                                                generator,
1463
0
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
0
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
0
    }
1475
1476
0
    if (num_points > 0) {
1477
0
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
0
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
0
        if ((secrets == NULL) || (pre_comp == NULL)
1490
0
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
0
        for (i = 0; i < num_points; ++i) {
1500
0
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
0
            } else {
1505
                /* the i^th point */
1506
0
                p = points[i];
1507
0
                p_scalar = scalars[i];
1508
0
            }
1509
0
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
0
                if ((BN_num_bits(p_scalar) > 224)
1512
0
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
0
                } else {
1524
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
0
                                               secrets[i], sizeof(secrets[i]));
1526
0
                }
1527
0
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
0
                if ((!BN_to_felem(x_out, p->X)) ||
1533
0
                    (!BN_to_felem(y_out, p->Y)) ||
1534
0
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
0
                felem_assign(pre_comp[i][1][0], x_out);
1537
0
                felem_assign(pre_comp[i][1][1], y_out);
1538
0
                felem_assign(pre_comp[i][1][2], z_out);
1539
0
                for (j = 2; j <= 16; ++j) {
1540
0
                    if (j & 1) {
1541
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
0
                                  pre_comp[i][j - 1][0],
1545
0
                                  pre_comp[i][j - 1][1],
1546
0
                                  pre_comp[i][j - 1][2]);
1547
0
                    } else {
1548
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
0
                                     pre_comp[i][j / 2][1],
1551
0
                                     pre_comp[i][j / 2][2]);
1552
0
                    }
1553
0
                }
1554
0
            }
1555
0
        }
1556
0
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
0
    }
1559
1560
    /* the scalar for the generator */
1561
0
    if ((scalar != NULL) && (have_pre_comp)) {
1562
0
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
0
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
0
        } else {
1575
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
0
        }
1577
        /* do the multiplication with generator precomputation */
1578
0
        batch_mul(x_out, y_out, z_out,
1579
0
                  (const felem_bytearray(*))secrets, num_points,
1580
0
                  g_secret,
1581
0
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
0
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
0
        batch_mul(x_out, y_out, z_out,
1585
0
                  (const felem_bytearray(*))secrets, num_points,
1586
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
0
    }
1588
    /* reduce the output to its unique minimal representation */
1589
0
    felem_contract(x_in, x_out);
1590
0
    felem_contract(y_in, y_out);
1591
0
    felem_contract(z_in, z_out);
1592
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
0
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
0
                                                             ctx);
1599
1600
0
 err:
1601
0
    BN_CTX_end(ctx);
1602
0
    EC_POINT_free(generator);
1603
0
    OPENSSL_free(secrets);
1604
0
    OPENSSL_free(pre_comp);
1605
0
    OPENSSL_free(tmp_felems);
1606
0
    return ret;
1607
0
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
0
    return HAVEPRECOMP(group, nistp224);
1748
0
}