Coverage Report

Created: 2023-09-25 06:42

/src/openssl/crypto/x509/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include "internal/cryptlib.h"
20
#include <openssl/conf.h>
21
#include <openssl/asn1.h>
22
#include <openssl/asn1t.h>
23
#include <openssl/buffer.h>
24
#include <openssl/x509v3.h>
25
#include "crypto/x509.h"
26
#include "ext_dat.h"
27
#include "x509_local.h"
28
29
#ifndef OPENSSL_NO_RFC3779
30
31
/*
32
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33
 */
34
35
ASN1_SEQUENCE(IPAddressRange) = {
36
    ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37
    ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38
} ASN1_SEQUENCE_END(IPAddressRange)
39
40
ASN1_CHOICE(IPAddressOrRange) = {
41
    ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42
    ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
43
} ASN1_CHOICE_END(IPAddressOrRange)
44
45
ASN1_CHOICE(IPAddressChoice) = {
46
    ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
47
    ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48
} ASN1_CHOICE_END(IPAddressChoice)
49
50
ASN1_SEQUENCE(IPAddressFamily) = {
51
    ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
52
    ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53
} ASN1_SEQUENCE_END(IPAddressFamily)
54
55
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
56
    ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57
                          IPAddrBlocks, IPAddressFamily)
58
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59
60
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64
65
/*
66
 * How much buffer space do we need for a raw address?
67
 */
68
# define ADDR_RAW_BUF_LEN 16
69
70
/*
71
 * What's the address length associated with this AFI?
72
 */
73
static int length_from_afi(const unsigned afi)
74
0
{
75
0
    switch (afi) {
76
0
    case IANA_AFI_IPV4:
77
0
        return 4;
78
0
    case IANA_AFI_IPV6:
79
0
        return 16;
80
0
    default:
81
0
        return 0;
82
0
    }
83
0
}
84
85
/*
86
 * Extract the AFI from an IPAddressFamily.
87
 */
88
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89
0
{
90
0
    if (f == NULL
91
0
            || f->addressFamily == NULL
92
0
            || f->addressFamily->data == NULL
93
0
            || f->addressFamily->length < 2)
94
0
        return 0;
95
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96
0
}
97
98
/*
99
 * Expand the bitstring form of an address into a raw byte array.
100
 * At the moment this is coded for simplicity, not speed.
101
 */
102
static int addr_expand(unsigned char *addr,
103
                       const ASN1_BIT_STRING *bs,
104
                       const int length, const unsigned char fill)
105
0
{
106
0
    if (bs->length < 0 || bs->length > length)
107
0
        return 0;
108
0
    if (bs->length > 0) {
109
0
        memcpy(addr, bs->data, bs->length);
110
0
        if ((bs->flags & 7) != 0) {
111
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112
113
0
            if (fill == 0)
114
0
                addr[bs->length - 1] &= ~mask;
115
0
            else
116
0
                addr[bs->length - 1] |= mask;
117
0
        }
118
0
    }
119
0
    memset(addr + bs->length, fill, length - bs->length);
120
0
    return 1;
121
0
}
122
123
/*
124
 * Extract the prefix length from a bitstring.
125
 */
126
0
# define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
127
128
/*
129
 * i2r handler for one address bitstring.
130
 */
131
static int i2r_address(BIO *out,
132
                       const unsigned afi,
133
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
134
0
{
135
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
136
0
    int i, n;
137
138
0
    if (bs->length < 0)
139
0
        return 0;
140
0
    switch (afi) {
141
0
    case IANA_AFI_IPV4:
142
0
        if (!addr_expand(addr, bs, 4, fill))
143
0
            return 0;
144
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
145
0
        break;
146
0
    case IANA_AFI_IPV6:
147
0
        if (!addr_expand(addr, bs, 16, fill))
148
0
            return 0;
149
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
150
0
             n -= 2) ;
151
0
        for (i = 0; i < n; i += 2)
152
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
153
0
                       (i < 14 ? ":" : ""));
154
0
        if (i < 16)
155
0
            BIO_puts(out, ":");
156
0
        if (i == 0)
157
0
            BIO_puts(out, ":");
158
0
        break;
159
0
    default:
160
0
        for (i = 0; i < bs->length; i++)
161
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
162
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
163
0
        break;
164
0
    }
165
0
    return 1;
166
0
}
167
168
/*
169
 * i2r handler for a sequence of addresses and ranges.
170
 */
171
static int i2r_IPAddressOrRanges(BIO *out,
172
                                 const int indent,
173
                                 const IPAddressOrRanges *aors,
174
                                 const unsigned afi)
175
0
{
176
0
    int i;
177
178
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
179
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
180
181
0
        BIO_printf(out, "%*s", indent, "");
182
0
        switch (aor->type) {
183
0
        case IPAddressOrRange_addressPrefix:
184
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
185
0
                return 0;
186
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
187
0
            continue;
188
0
        case IPAddressOrRange_addressRange:
189
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
190
0
                return 0;
191
0
            BIO_puts(out, "-");
192
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
193
0
                return 0;
194
0
            BIO_puts(out, "\n");
195
0
            continue;
196
0
        }
197
0
    }
198
0
    return 1;
199
0
}
200
201
/*
202
 * i2r handler for an IPAddrBlocks extension.
203
 */
204
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
205
                            void *ext, BIO *out, int indent)
206
0
{
207
0
    const IPAddrBlocks *addr = ext;
208
0
    int i;
209
210
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
211
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
212
0
        const unsigned int afi = X509v3_addr_get_afi(f);
213
214
0
        switch (afi) {
215
0
        case IANA_AFI_IPV4:
216
0
            BIO_printf(out, "%*sIPv4", indent, "");
217
0
            break;
218
0
        case IANA_AFI_IPV6:
219
0
            BIO_printf(out, "%*sIPv6", indent, "");
220
0
            break;
221
0
        default:
222
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
223
0
            break;
224
0
        }
225
0
        if (f->addressFamily->length > 2) {
226
0
            switch (f->addressFamily->data[2]) {
227
0
            case 1:
228
0
                BIO_puts(out, " (Unicast)");
229
0
                break;
230
0
            case 2:
231
0
                BIO_puts(out, " (Multicast)");
232
0
                break;
233
0
            case 3:
234
0
                BIO_puts(out, " (Unicast/Multicast)");
235
0
                break;
236
0
            case 4:
237
0
                BIO_puts(out, " (MPLS)");
238
0
                break;
239
0
            case 64:
240
0
                BIO_puts(out, " (Tunnel)");
241
0
                break;
242
0
            case 65:
243
0
                BIO_puts(out, " (VPLS)");
244
0
                break;
245
0
            case 66:
246
0
                BIO_puts(out, " (BGP MDT)");
247
0
                break;
248
0
            case 128:
249
0
                BIO_puts(out, " (MPLS-labeled VPN)");
250
0
                break;
251
0
            default:
252
0
                BIO_printf(out, " (Unknown SAFI %u)",
253
0
                           (unsigned)f->addressFamily->data[2]);
254
0
                break;
255
0
            }
256
0
        }
257
0
        switch (f->ipAddressChoice->type) {
258
0
        case IPAddressChoice_inherit:
259
0
            BIO_puts(out, ": inherit\n");
260
0
            break;
261
0
        case IPAddressChoice_addressesOrRanges:
262
0
            BIO_puts(out, ":\n");
263
0
            if (!i2r_IPAddressOrRanges(out,
264
0
                                       indent + 2,
265
0
                                       f->ipAddressChoice->
266
0
                                       u.addressesOrRanges, afi))
267
0
                return 0;
268
0
            break;
269
0
        }
270
0
    }
271
0
    return 1;
272
0
}
273
274
/*
275
 * Sort comparison function for a sequence of IPAddressOrRange
276
 * elements.
277
 *
278
 * There's no sane answer we can give if addr_expand() fails, and an
279
 * assertion failure on externally supplied data is seriously uncool,
280
 * so we just arbitrarily declare that if given invalid inputs this
281
 * function returns -1.  If this messes up your preferred sort order
282
 * for garbage input, tough noogies.
283
 */
284
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
285
                                const IPAddressOrRange *b, const int length)
286
0
{
287
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
288
0
    int prefixlen_a = 0, prefixlen_b = 0;
289
0
    int r;
290
291
0
    switch (a->type) {
292
0
    case IPAddressOrRange_addressPrefix:
293
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
294
0
            return -1;
295
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
296
0
        break;
297
0
    case IPAddressOrRange_addressRange:
298
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
299
0
            return -1;
300
0
        prefixlen_a = length * 8;
301
0
        break;
302
0
    }
303
304
0
    switch (b->type) {
305
0
    case IPAddressOrRange_addressPrefix:
306
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
307
0
            return -1;
308
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
309
0
        break;
310
0
    case IPAddressOrRange_addressRange:
311
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
312
0
            return -1;
313
0
        prefixlen_b = length * 8;
314
0
        break;
315
0
    }
316
317
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
318
0
        return r;
319
0
    else
320
0
        return prefixlen_a - prefixlen_b;
321
0
}
322
323
/*
324
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
325
 * comparison routines are only allowed two arguments.
326
 */
327
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
328
                                  const IPAddressOrRange *const *b)
329
0
{
330
0
    return IPAddressOrRange_cmp(*a, *b, 4);
331
0
}
332
333
/*
334
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
335
 * comparison routines are only allowed two arguments.
336
 */
337
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
338
                                  const IPAddressOrRange *const *b)
339
0
{
340
0
    return IPAddressOrRange_cmp(*a, *b, 16);
341
0
}
342
343
/*
344
 * Calculate whether a range collapses to a prefix.
345
 * See last paragraph of RFC 3779 2.2.3.7.
346
 */
347
static int range_should_be_prefix(const unsigned char *min,
348
                                  const unsigned char *max, const int length)
349
0
{
350
0
    unsigned char mask;
351
0
    int i, j;
352
353
    /*
354
     * It is the responsibility of the caller to confirm min <= max. We don't
355
     * use ossl_assert() here since we have no way of signalling an error from
356
     * this function - so we just use a plain assert instead.
357
     */
358
0
    assert(memcmp(min, max, length) <= 0);
359
360
0
    for (i = 0; i < length && min[i] == max[i]; i++) ;
361
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
362
0
    if (i < j)
363
0
        return -1;
364
0
    if (i > j)
365
0
        return i * 8;
366
0
    mask = min[i] ^ max[i];
367
0
    switch (mask) {
368
0
    case 0x01:
369
0
        j = 7;
370
0
        break;
371
0
    case 0x03:
372
0
        j = 6;
373
0
        break;
374
0
    case 0x07:
375
0
        j = 5;
376
0
        break;
377
0
    case 0x0F:
378
0
        j = 4;
379
0
        break;
380
0
    case 0x1F:
381
0
        j = 3;
382
0
        break;
383
0
    case 0x3F:
384
0
        j = 2;
385
0
        break;
386
0
    case 0x7F:
387
0
        j = 1;
388
0
        break;
389
0
    default:
390
0
        return -1;
391
0
    }
392
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
393
0
        return -1;
394
0
    else
395
0
        return i * 8 + j;
396
0
}
397
398
/*
399
 * Construct a prefix.
400
 */
401
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
402
                              const int prefixlen, const int afilen)
403
0
{
404
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
405
0
    IPAddressOrRange *aor = IPAddressOrRange_new();
406
407
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
408
0
        return 0;
409
0
    if (aor == NULL)
410
0
        return 0;
411
0
    aor->type = IPAddressOrRange_addressPrefix;
412
0
    if (aor->u.addressPrefix == NULL &&
413
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
414
0
        goto err;
415
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
416
0
        goto err;
417
0
    if (bitlen > 0)
418
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
419
0
    ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);
420
421
0
    *result = aor;
422
0
    return 1;
423
424
0
 err:
425
0
    IPAddressOrRange_free(aor);
426
0
    return 0;
427
0
}
428
429
/*
430
 * Construct a range.  If it can be expressed as a prefix,
431
 * return a prefix instead.  Doing this here simplifies
432
 * the rest of the code considerably.
433
 */
434
static int make_addressRange(IPAddressOrRange **result,
435
                             unsigned char *min,
436
                             unsigned char *max, const int length)
437
0
{
438
0
    IPAddressOrRange *aor;
439
0
    int i, prefixlen;
440
441
0
    if (memcmp(min, max, length) > 0)
442
0
        return 0;
443
444
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
445
0
        return make_addressPrefix(result, min, prefixlen, length);
446
447
0
    if ((aor = IPAddressOrRange_new()) == NULL)
448
0
        return 0;
449
0
    aor->type = IPAddressOrRange_addressRange;
450
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
451
0
        goto err;
452
0
    if (aor->u.addressRange->min == NULL &&
453
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
454
0
        goto err;
455
0
    if (aor->u.addressRange->max == NULL &&
456
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
457
0
        goto err;
458
459
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
460
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
461
0
        goto err;
462
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);
463
0
    if (i > 0) {
464
0
        unsigned char b = min[i - 1];
465
0
        int j = 1;
466
467
0
        while ((b & (0xFFU >> j)) != 0)
468
0
            ++j;
469
0
        aor->u.addressRange->min->flags |= 8 - j;
470
0
    }
471
472
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
473
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
474
0
        goto err;
475
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);
476
0
    if (i > 0) {
477
0
        unsigned char b = max[i - 1];
478
0
        int j = 1;
479
480
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
481
0
            ++j;
482
0
        aor->u.addressRange->max->flags |= 8 - j;
483
0
    }
484
485
0
    *result = aor;
486
0
    return 1;
487
488
0
 err:
489
0
    IPAddressOrRange_free(aor);
490
0
    return 0;
491
0
}
492
493
/*
494
 * Construct a new address family or find an existing one.
495
 */
496
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
497
                                             const unsigned afi,
498
                                             const unsigned *safi)
499
0
{
500
0
    IPAddressFamily *f;
501
0
    unsigned char key[3];
502
0
    int keylen;
503
0
    int i;
504
505
0
    key[0] = (afi >> 8) & 0xFF;
506
0
    key[1] = afi & 0xFF;
507
0
    if (safi != NULL) {
508
0
        key[2] = *safi & 0xFF;
509
0
        keylen = 3;
510
0
    } else {
511
0
        keylen = 2;
512
0
    }
513
514
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
515
0
        f = sk_IPAddressFamily_value(addr, i);
516
0
        if (f->addressFamily->length == keylen &&
517
0
            !memcmp(f->addressFamily->data, key, keylen))
518
0
            return f;
519
0
    }
520
521
0
    if ((f = IPAddressFamily_new()) == NULL)
522
0
        goto err;
523
0
    if (f->ipAddressChoice == NULL &&
524
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
525
0
        goto err;
526
0
    if (f->addressFamily == NULL &&
527
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
528
0
        goto err;
529
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
530
0
        goto err;
531
0
    if (!sk_IPAddressFamily_push(addr, f))
532
0
        goto err;
533
534
0
    return f;
535
536
0
 err:
537
0
    IPAddressFamily_free(f);
538
0
    return NULL;
539
0
}
540
541
/*
542
 * Add an inheritance element.
543
 */
544
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
545
                            const unsigned afi, const unsigned *safi)
546
0
{
547
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
548
549
0
    if (f == NULL ||
550
0
        f->ipAddressChoice == NULL ||
551
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
552
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
553
0
        return 0;
554
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
555
0
        f->ipAddressChoice->u.inherit != NULL)
556
0
        return 1;
557
0
    if (f->ipAddressChoice->u.inherit == NULL &&
558
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
559
0
        return 0;
560
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
561
0
    return 1;
562
0
}
563
564
/*
565
 * Construct an IPAddressOrRange sequence, or return an existing one.
566
 */
567
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
568
                                               const unsigned afi,
569
                                               const unsigned *safi)
570
0
{
571
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
572
0
    IPAddressOrRanges *aors = NULL;
573
574
0
    if (f == NULL ||
575
0
        f->ipAddressChoice == NULL ||
576
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
577
0
         f->ipAddressChoice->u.inherit != NULL))
578
0
        return NULL;
579
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
580
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
581
0
    if (aors != NULL)
582
0
        return aors;
583
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
584
0
        return NULL;
585
0
    switch (afi) {
586
0
    case IANA_AFI_IPV4:
587
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
588
0
        break;
589
0
    case IANA_AFI_IPV6:
590
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
591
0
        break;
592
0
    }
593
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
594
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
595
0
    return aors;
596
0
}
597
598
/*
599
 * Add a prefix.
600
 */
601
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
602
                           const unsigned afi,
603
                           const unsigned *safi,
604
                           unsigned char *a, const int prefixlen)
605
0
{
606
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
607
0
    IPAddressOrRange *aor;
608
609
0
    if (aors == NULL
610
0
            || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
611
0
        return 0;
612
0
    if (sk_IPAddressOrRange_push(aors, aor))
613
0
        return 1;
614
0
    IPAddressOrRange_free(aor);
615
0
    return 0;
616
0
}
617
618
/*
619
 * Add a range.
620
 */
621
int X509v3_addr_add_range(IPAddrBlocks *addr,
622
                          const unsigned afi,
623
                          const unsigned *safi,
624
                          unsigned char *min, unsigned char *max)
625
0
{
626
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
627
0
    IPAddressOrRange *aor;
628
0
    int length = length_from_afi(afi);
629
630
0
    if (aors == NULL)
631
0
        return 0;
632
0
    if (!make_addressRange(&aor, min, max, length))
633
0
        return 0;
634
0
    if (sk_IPAddressOrRange_push(aors, aor))
635
0
        return 1;
636
0
    IPAddressOrRange_free(aor);
637
0
    return 0;
638
0
}
639
640
/*
641
 * Extract min and max values from an IPAddressOrRange.
642
 */
643
static int extract_min_max(IPAddressOrRange *aor,
644
                           unsigned char *min, unsigned char *max, int length)
645
0
{
646
0
    if (aor == NULL || min == NULL || max == NULL)
647
0
        return 0;
648
0
    switch (aor->type) {
649
0
    case IPAddressOrRange_addressPrefix:
650
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
651
0
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
652
0
    case IPAddressOrRange_addressRange:
653
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
654
0
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
655
0
    }
656
0
    return 0;
657
0
}
658
659
/*
660
 * Public wrapper for extract_min_max().
661
 */
662
int X509v3_addr_get_range(IPAddressOrRange *aor,
663
                          const unsigned afi,
664
                          unsigned char *min,
665
                          unsigned char *max, const int length)
666
0
{
667
0
    int afi_length = length_from_afi(afi);
668
669
0
    if (aor == NULL || min == NULL || max == NULL ||
670
0
        afi_length == 0 || length < afi_length ||
671
0
        (aor->type != IPAddressOrRange_addressPrefix &&
672
0
         aor->type != IPAddressOrRange_addressRange) ||
673
0
        !extract_min_max(aor, min, max, afi_length))
674
0
        return 0;
675
676
0
    return afi_length;
677
0
}
678
679
/*
680
 * Sort comparison function for a sequence of IPAddressFamily.
681
 *
682
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
683
 * the ordering: I can read it as meaning that IPv6 without a SAFI
684
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
685
 * examples in appendix B suggest that the author intended the
686
 * null-SAFI rule to apply only within a single AFI, which is what I
687
 * would have expected and is what the following code implements.
688
 */
689
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
690
                               const IPAddressFamily *const *b_)
691
0
{
692
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
693
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
694
0
    int len = ((a->length <= b->length) ? a->length : b->length);
695
0
    int cmp = memcmp(a->data, b->data, len);
696
697
0
    return cmp ? cmp : a->length - b->length;
698
0
}
699
700
static int IPAddressFamily_check_len(const IPAddressFamily *f)
701
0
{
702
0
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
703
0
        return 0;
704
0
    else
705
0
        return 1;
706
0
}
707
708
/*
709
 * Check whether an IPAddrBLocks is in canonical form.
710
 */
711
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
712
0
{
713
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
714
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
715
0
    IPAddressOrRanges *aors;
716
0
    int i, j, k;
717
718
    /*
719
     * Empty extension is canonical.
720
     */
721
0
    if (addr == NULL)
722
0
        return 1;
723
724
    /*
725
     * Check whether the top-level list is in order.
726
     */
727
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
728
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
729
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
730
731
0
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
732
0
            return 0;
733
734
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
735
0
            return 0;
736
0
    }
737
738
    /*
739
     * Top level's ok, now check each address family.
740
     */
741
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
742
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
743
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
744
745
        /*
746
         * Inheritance is canonical.  Anything other than inheritance or
747
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
748
         */
749
0
        if (f == NULL || f->ipAddressChoice == NULL)
750
0
            return 0;
751
0
        switch (f->ipAddressChoice->type) {
752
0
        case IPAddressChoice_inherit:
753
0
            continue;
754
0
        case IPAddressChoice_addressesOrRanges:
755
0
            break;
756
0
        default:
757
0
            return 0;
758
0
        }
759
760
0
        if (!IPAddressFamily_check_len(f))
761
0
            return 0;
762
763
        /*
764
         * It's an IPAddressOrRanges sequence, check it.
765
         */
766
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
767
0
        if (sk_IPAddressOrRange_num(aors) == 0)
768
0
            return 0;
769
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
770
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
771
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
772
773
0
            if (!extract_min_max(a, a_min, a_max, length) ||
774
0
                !extract_min_max(b, b_min, b_max, length))
775
0
                return 0;
776
777
            /*
778
             * Punt misordered list, overlapping start, or inverted range.
779
             */
780
0
            if (memcmp(a_min, b_min, length) >= 0 ||
781
0
                memcmp(a_min, a_max, length) > 0 ||
782
0
                memcmp(b_min, b_max, length) > 0)
783
0
                return 0;
784
785
            /*
786
             * Punt if adjacent or overlapping.  Check for adjacency by
787
             * subtracting one from b_min first.
788
             */
789
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
790
0
            if (memcmp(a_max, b_min, length) >= 0)
791
0
                return 0;
792
793
            /*
794
             * Check for range that should be expressed as a prefix.
795
             */
796
0
            if (a->type == IPAddressOrRange_addressRange &&
797
0
                range_should_be_prefix(a_min, a_max, length) >= 0)
798
0
                return 0;
799
0
        }
800
801
        /*
802
         * Check range to see if it's inverted or should be a
803
         * prefix.
804
         */
805
0
        j = sk_IPAddressOrRange_num(aors) - 1;
806
0
        {
807
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
808
809
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
810
0
                if (!extract_min_max(a, a_min, a_max, length))
811
0
                    return 0;
812
0
                if (memcmp(a_min, a_max, length) > 0 ||
813
0
                    range_should_be_prefix(a_min, a_max, length) >= 0)
814
0
                    return 0;
815
0
            }
816
0
        }
817
0
    }
818
819
    /*
820
     * If we made it through all that, we're happy.
821
     */
822
0
    return 1;
823
0
}
824
825
/*
826
 * Whack an IPAddressOrRanges into canonical form.
827
 */
828
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
829
                                      const unsigned afi)
830
0
{
831
0
    int i, j, length = length_from_afi(afi);
832
833
    /*
834
     * Sort the IPAddressOrRanges sequence.
835
     */
836
0
    sk_IPAddressOrRange_sort(aors);
837
838
    /*
839
     * Clean up representation issues, punt on duplicates or overlaps.
840
     */
841
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
842
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
843
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
844
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
845
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
846
847
0
        if (!extract_min_max(a, a_min, a_max, length) ||
848
0
            !extract_min_max(b, b_min, b_max, length))
849
0
            return 0;
850
851
        /*
852
         * Punt inverted ranges.
853
         */
854
0
        if (memcmp(a_min, a_max, length) > 0 ||
855
0
            memcmp(b_min, b_max, length) > 0)
856
0
            return 0;
857
858
        /*
859
         * Punt overlaps.
860
         */
861
0
        if (memcmp(a_max, b_min, length) >= 0)
862
0
            return 0;
863
864
        /*
865
         * Merge if a and b are adjacent.  We check for
866
         * adjacency by subtracting one from b_min first.
867
         */
868
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
869
0
        if (memcmp(a_max, b_min, length) == 0) {
870
0
            IPAddressOrRange *merged;
871
872
0
            if (!make_addressRange(&merged, a_min, b_max, length))
873
0
                return 0;
874
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
875
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
876
0
            IPAddressOrRange_free(a);
877
0
            IPAddressOrRange_free(b);
878
0
            --i;
879
0
            continue;
880
0
        }
881
0
    }
882
883
    /*
884
     * Check for inverted final range.
885
     */
886
0
    j = sk_IPAddressOrRange_num(aors) - 1;
887
0
    {
888
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
889
890
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
891
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
892
893
0
            if (!extract_min_max(a, a_min, a_max, length))
894
0
                return 0;
895
0
            if (memcmp(a_min, a_max, length) > 0)
896
0
                return 0;
897
0
        }
898
0
    }
899
900
0
    return 1;
901
0
}
902
903
/*
904
 * Whack an IPAddrBlocks extension into canonical form.
905
 */
906
int X509v3_addr_canonize(IPAddrBlocks *addr)
907
0
{
908
0
    int i;
909
910
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
911
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
912
913
0
        if (!IPAddressFamily_check_len(f))
914
0
            return 0;
915
916
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
917
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
918
0
                                        u.addressesOrRanges,
919
0
                                        X509v3_addr_get_afi(f)))
920
0
            return 0;
921
0
    }
922
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
923
0
    sk_IPAddressFamily_sort(addr);
924
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
925
0
        return 0;
926
0
    return 1;
927
0
}
928
929
/*
930
 * v2i handler for the IPAddrBlocks extension.
931
 */
932
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
933
                              struct v3_ext_ctx *ctx,
934
                              STACK_OF(CONF_VALUE) *values)
935
0
{
936
0
    static const char v4addr_chars[] = "0123456789.";
937
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
938
0
    IPAddrBlocks *addr = NULL;
939
0
    char *s = NULL, *t;
940
0
    int i;
941
942
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
943
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
944
0
        return NULL;
945
0
    }
946
947
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
948
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
949
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
950
0
        unsigned afi, *safi = NULL, safi_;
951
0
        const char *addr_chars = NULL;
952
0
        int prefixlen, i1, i2, delim, length;
953
954
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
955
0
            afi = IANA_AFI_IPV4;
956
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
957
0
            afi = IANA_AFI_IPV6;
958
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
959
0
            afi = IANA_AFI_IPV4;
960
0
            safi = &safi_;
961
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
962
0
            afi = IANA_AFI_IPV6;
963
0
            safi = &safi_;
964
0
        } else {
965
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
966
0
                           "%s", val->name);
967
0
            goto err;
968
0
        }
969
970
0
        switch (afi) {
971
0
        case IANA_AFI_IPV4:
972
0
            addr_chars = v4addr_chars;
973
0
            break;
974
0
        case IANA_AFI_IPV6:
975
0
            addr_chars = v6addr_chars;
976
0
            break;
977
0
        }
978
979
0
        length = length_from_afi(afi);
980
981
        /*
982
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
983
         * the other input values.
984
         */
985
0
        if (safi != NULL) {
986
0
            *safi = strtoul(val->value, &t, 0);
987
0
            t += strspn(t, " \t");
988
0
            if (*safi > 0xFF || *t++ != ':') {
989
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
990
0
                X509V3_conf_add_error_name_value(val);
991
0
                goto err;
992
0
            }
993
0
            t += strspn(t, " \t");
994
0
            s = OPENSSL_strdup(t);
995
0
        } else {
996
0
            s = OPENSSL_strdup(val->value);
997
0
        }
998
0
        if (s == NULL)
999
0
            goto err;
1000
1001
        /*
1002
         * Check for inheritance.  Not worth additional complexity to
1003
         * optimize this (seldom-used) case.
1004
         */
1005
0
        if (strcmp(s, "inherit") == 0) {
1006
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1007
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
1008
0
                X509V3_conf_add_error_name_value(val);
1009
0
                goto err;
1010
0
            }
1011
0
            OPENSSL_free(s);
1012
0
            s = NULL;
1013
0
            continue;
1014
0
        }
1015
1016
0
        i1 = strspn(s, addr_chars);
1017
0
        i2 = i1 + strspn(s + i1, " \t");
1018
0
        delim = s[i2++];
1019
0
        s[i1] = '\0';
1020
1021
0
        if (ossl_a2i_ipadd(min, s) != length) {
1022
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1023
0
            X509V3_conf_add_error_name_value(val);
1024
0
            goto err;
1025
0
        }
1026
1027
0
        switch (delim) {
1028
0
        case '/':
1029
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1030
0
            if (t == s + i2
1031
0
                    || *t != '\0'
1032
0
                    || prefixlen > (length * 8)
1033
0
                    || prefixlen < 0) {
1034
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1035
0
                X509V3_conf_add_error_name_value(val);
1036
0
                goto err;
1037
0
            }
1038
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1039
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1040
0
                goto err;
1041
0
            }
1042
0
            break;
1043
0
        case '-':
1044
0
            i1 = i2 + strspn(s + i2, " \t");
1045
0
            i2 = i1 + strspn(s + i1, addr_chars);
1046
0
            if (i1 == i2 || s[i2] != '\0') {
1047
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1048
0
                X509V3_conf_add_error_name_value(val);
1049
0
                goto err;
1050
0
            }
1051
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1052
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1053
0
                X509V3_conf_add_error_name_value(val);
1054
0
                goto err;
1055
0
            }
1056
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1057
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1058
0
                X509V3_conf_add_error_name_value(val);
1059
0
                goto err;
1060
0
            }
1061
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1062
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1063
0
                goto err;
1064
0
            }
1065
0
            break;
1066
0
        case '\0':
1067
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1068
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1069
0
                goto err;
1070
0
            }
1071
0
            break;
1072
0
        default:
1073
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1074
0
            X509V3_conf_add_error_name_value(val);
1075
0
            goto err;
1076
0
        }
1077
1078
0
        OPENSSL_free(s);
1079
0
        s = NULL;
1080
0
    }
1081
1082
    /*
1083
     * Canonize the result, then we're done.
1084
     */
1085
0
    if (!X509v3_addr_canonize(addr))
1086
0
        goto err;
1087
0
    return addr;
1088
1089
0
 err:
1090
0
    OPENSSL_free(s);
1091
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1092
0
    return NULL;
1093
0
}
1094
1095
/*
1096
 * OpenSSL dispatch
1097
 */
1098
const X509V3_EXT_METHOD ossl_v3_addr = {
1099
    NID_sbgp_ipAddrBlock,       /* nid */
1100
    0,                          /* flags */
1101
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1102
    0, 0, 0, 0,                 /* old functions, ignored */
1103
    0,                          /* i2s */
1104
    0,                          /* s2i */
1105
    0,                          /* i2v */
1106
    v2i_IPAddrBlocks,           /* v2i */
1107
    i2r_IPAddrBlocks,           /* i2r */
1108
    0,                          /* r2i */
1109
    NULL                        /* extension-specific data */
1110
};
1111
1112
/*
1113
 * Figure out whether extension sues inheritance.
1114
 */
1115
int X509v3_addr_inherits(IPAddrBlocks *addr)
1116
0
{
1117
0
    int i;
1118
1119
0
    if (addr == NULL)
1120
0
        return 0;
1121
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1122
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1123
1124
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1125
0
            return 1;
1126
0
    }
1127
0
    return 0;
1128
0
}
1129
1130
/*
1131
 * Figure out whether parent contains child.
1132
 */
1133
static int addr_contains(IPAddressOrRanges *parent,
1134
                         IPAddressOrRanges *child, int length)
1135
0
{
1136
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1137
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1138
0
    int p, c;
1139
1140
0
    if (child == NULL || parent == child)
1141
0
        return 1;
1142
0
    if (parent == NULL)
1143
0
        return 0;
1144
1145
0
    p = 0;
1146
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1147
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1148
0
                             c_min, c_max, length))
1149
0
            return 0;
1150
0
        for (;; p++) {
1151
0
            if (p >= sk_IPAddressOrRange_num(parent))
1152
0
                return 0;
1153
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1154
0
                                 p_min, p_max, length))
1155
0
                return 0;
1156
0
            if (memcmp(p_max, c_max, length) < 0)
1157
0
                continue;
1158
0
            if (memcmp(p_min, c_min, length) > 0)
1159
0
                return 0;
1160
0
            break;
1161
0
        }
1162
0
    }
1163
1164
0
    return 1;
1165
0
}
1166
1167
/*
1168
 * Test whether a is a subset of b.
1169
 */
1170
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1171
0
{
1172
0
    int i;
1173
1174
0
    if (a == NULL || a == b)
1175
0
        return 1;
1176
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1177
0
        return 0;
1178
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179
0
    sk_IPAddressFamily_sort(b);
1180
    /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */
1181
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1182
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1183
0
        int j = sk_IPAddressFamily_find(b, fa);
1184
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1185
1186
0
        if (fb == NULL)
1187
0
            return 0;
1188
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1189
0
            return 0;
1190
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1191
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1192
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1193
0
            return 0;
1194
0
    }
1195
0
    return 1;
1196
0
}
1197
1198
/*
1199
 * Validation error handling via callback.
1200
 */
1201
# define validation_err(_err_)            \
1202
0
    do {                                  \
1203
0
        if (ctx != NULL) {                \
1204
0
            ctx->error = _err_;           \
1205
0
            ctx->error_depth = i;         \
1206
0
            ctx->current_cert = x;        \
1207
0
            rv = ctx->verify_cb(0, ctx);  \
1208
0
        } else {                          \
1209
0
            rv = 0;                       \
1210
0
        }                                 \
1211
0
        if (rv == 0)                      \
1212
0
            goto done;                    \
1213
0
    } while (0)
1214
1215
/*
1216
 * Core code for RFC 3779 2.3 path validation.
1217
 *
1218
 * Returns 1 for success, 0 on error.
1219
 *
1220
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1221
 * X509_V_OK.
1222
 */
1223
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1224
                                       STACK_OF(X509) *chain,
1225
                                       IPAddrBlocks *ext)
1226
0
{
1227
0
    IPAddrBlocks *child = NULL;
1228
0
    int i, j, ret = 0, rv;
1229
0
    X509 *x;
1230
1231
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1232
0
            || !ossl_assert(ctx != NULL || ext != NULL)
1233
0
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1234
0
        if (ctx != NULL)
1235
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1236
0
        return 0;
1237
0
    }
1238
1239
    /*
1240
     * Figure out where to start.  If we don't have an extension to
1241
     * check, we're done.  Otherwise, check canonical form and
1242
     * set up for walking up the chain.
1243
     */
1244
0
    if (ext != NULL) {
1245
0
        i = -1;
1246
0
        x = NULL;
1247
0
    } else {
1248
0
        i = 0;
1249
0
        x = sk_X509_value(chain, i);
1250
0
        if ((ext = x->rfc3779_addr) == NULL)
1251
0
            return 1; /* Return success */
1252
0
    }
1253
0
    if (!X509v3_addr_is_canonical(ext))
1254
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1255
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1256
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1257
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
1258
0
        if (ctx != NULL)
1259
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1260
0
        goto done;
1261
0
    }
1262
0
    sk_IPAddressFamily_sort(child);
1263
1264
    /*
1265
     * Now walk up the chain.  No cert may list resources that its
1266
     * parent doesn't list.
1267
     */
1268
0
    for (i++; i < sk_X509_num(chain); i++) {
1269
0
        x = sk_X509_value(chain, i);
1270
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1271
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1272
0
        if (x->rfc3779_addr == NULL) {
1273
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1274
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1275
1276
0
                if (!IPAddressFamily_check_len(fc))
1277
0
                    goto done;
1278
1279
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1280
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1281
0
                    break;
1282
0
                }
1283
0
            }
1284
0
            continue;
1285
0
        }
1286
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1287
0
                                              IPAddressFamily_cmp);
1288
0
        sk_IPAddressFamily_sort(x->rfc3779_addr);
1289
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1290
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1291
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1292
0
            IPAddressFamily *fp =
1293
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1294
1295
0
            if (fp == NULL) {
1296
0
                if (fc->ipAddressChoice->type ==
1297
0
                    IPAddressChoice_addressesOrRanges) {
1298
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1299
0
                    break;
1300
0
                }
1301
0
                continue;
1302
0
            }
1303
1304
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1305
0
                goto done;
1306
1307
0
            if (fp->ipAddressChoice->type ==
1308
0
                IPAddressChoice_addressesOrRanges) {
1309
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1310
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1311
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1312
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1313
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1314
0
                else
1315
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1316
0
            }
1317
0
        }
1318
0
    }
1319
1320
    /*
1321
     * Trust anchor can't inherit.
1322
     */
1323
0
    if (x->rfc3779_addr != NULL) {
1324
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1325
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1326
1327
0
            if (!IPAddressFamily_check_len(fp))
1328
0
                goto done;
1329
1330
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1331
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1332
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1333
0
        }
1334
0
    }
1335
0
    ret = 1;
1336
0
 done:
1337
0
    sk_IPAddressFamily_free(child);
1338
0
    return ret;
1339
0
}
1340
1341
# undef validation_err
1342
1343
/*
1344
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1345
 */
1346
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1347
0
{
1348
0
    if (ctx->chain == NULL
1349
0
            || sk_X509_num(ctx->chain) == 0
1350
0
            || ctx->verify_cb == NULL) {
1351
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1352
0
        return 0;
1353
0
    }
1354
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1355
0
}
1356
1357
/*
1358
 * RFC 3779 2.3 path validation of an extension.
1359
 * Test whether chain covers extension.
1360
 */
1361
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1362
                                      IPAddrBlocks *ext, int allow_inheritance)
1363
0
{
1364
0
    if (ext == NULL)
1365
0
        return 1;
1366
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1367
0
        return 0;
1368
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1369
0
        return 0;
1370
0
    return addr_validate_path_internal(NULL, chain, ext);
1371
0
}
1372
1373
#endif /* OPENSSL_NO_RFC3779 */