Coverage Report

Created: 2023-09-25 06:42

/src/openssl111/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
28
 *
29
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
30
 * and Adam Langley's public domain 64-bit C implementation of curve25519
31
 */
32
33
#include <openssl/opensslconf.h>
34
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
35
NON_EMPTY_TRANSLATION_UNIT
36
#else
37
38
# include <stdint.h>
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/******************************************************************************/
55
/*-
56
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
57
 *
58
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
59
 * using 64-bit coefficients called 'limbs',
60
 * and sometimes (for multiplication results) as
61
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
62
 * using 128-bit coefficients called 'widelimbs'.
63
 * A 4-limb representation is an 'felem';
64
 * a 7-widelimb representation is a 'widefelem'.
65
 * Even within felems, bits of adjacent limbs overlap, and we don't always
66
 * reduce the representations: we ensure that inputs to each felem
67
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
68
 * and fit into a 128-bit word without overflow. The coefficients are then
69
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
70
 * We only reduce to the unique minimal representation at the end of the
71
 * computation.
72
 */
73
74
typedef uint64_t limb;
75
typedef uint64_t limb_aX __attribute((__aligned__(1)));
76
typedef uint128_t widelimb;
77
78
typedef limb felem[4];
79
typedef widelimb widefelem[7];
80
81
/*
82
 * Field element represented as a byte array. 28*8 = 224 bits is also the
83
 * group order size for the elliptic curve, and we also use this type for
84
 * scalars for point multiplication.
85
 */
86
typedef u8 felem_bytearray[28];
87
88
static const felem_bytearray nistp224_curve_params[5] = {
89
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
90
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
91
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
92
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
93
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
95
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
96
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
97
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
98
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
99
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
100
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
101
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
102
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
103
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
104
};
105
106
/*-
107
 * Precomputed multiples of the standard generator
108
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
109
 * (0 for the point at infinity).
110
 * For each field element, slice a_0 is word 0, etc.
111
 *
112
 * The table has 2 * 16 elements, starting with the following:
113
 * index | bits    | point
114
 * ------+---------+------------------------------
115
 *     0 | 0 0 0 0 | 0G
116
 *     1 | 0 0 0 1 | 1G
117
 *     2 | 0 0 1 0 | 2^56G
118
 *     3 | 0 0 1 1 | (2^56 + 1)G
119
 *     4 | 0 1 0 0 | 2^112G
120
 *     5 | 0 1 0 1 | (2^112 + 1)G
121
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
122
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
123
 *     8 | 1 0 0 0 | 2^168G
124
 *     9 | 1 0 0 1 | (2^168 + 1)G
125
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
126
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
127
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
128
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
129
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
130
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
131
 * followed by a copy of this with each element multiplied by 2^28.
132
 *
133
 * The reason for this is so that we can clock bits into four different
134
 * locations when doing simple scalar multiplies against the base point,
135
 * and then another four locations using the second 16 elements.
136
 */
137
static const felem gmul[2][16][3] = {
138
{{{0, 0, 0, 0},
139
  {0, 0, 0, 0},
140
  {0, 0, 0, 0}},
141
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
142
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
143
  {1, 0, 0, 0}},
144
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
145
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
146
  {1, 0, 0, 0}},
147
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
148
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
149
  {1, 0, 0, 0}},
150
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
151
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
152
  {1, 0, 0, 0}},
153
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
154
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
155
  {1, 0, 0, 0}},
156
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
157
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
158
  {1, 0, 0, 0}},
159
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
160
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
161
  {1, 0, 0, 0}},
162
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
163
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
164
  {1, 0, 0, 0}},
165
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
166
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
167
  {1, 0, 0, 0}},
168
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
169
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
170
  {1, 0, 0, 0}},
171
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
172
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
173
  {1, 0, 0, 0}},
174
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
175
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
176
  {1, 0, 0, 0}},
177
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
178
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
179
  {1, 0, 0, 0}},
180
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
181
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
182
  {1, 0, 0, 0}},
183
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
184
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
185
  {1, 0, 0, 0}}},
186
{{{0, 0, 0, 0},
187
  {0, 0, 0, 0},
188
  {0, 0, 0, 0}},
189
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
190
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
191
  {1, 0, 0, 0}},
192
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
193
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
194
  {1, 0, 0, 0}},
195
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
196
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
197
  {1, 0, 0, 0}},
198
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
199
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
200
  {1, 0, 0, 0}},
201
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
202
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
203
  {1, 0, 0, 0}},
204
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
205
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
206
  {1, 0, 0, 0}},
207
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
208
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
209
  {1, 0, 0, 0}},
210
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
211
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
212
  {1, 0, 0, 0}},
213
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
214
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
215
  {1, 0, 0, 0}},
216
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
217
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
218
  {1, 0, 0, 0}},
219
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
220
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
221
  {1, 0, 0, 0}},
222
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
223
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
224
  {1, 0, 0, 0}},
225
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
226
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
227
  {1, 0, 0, 0}},
228
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
229
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
230
  {1, 0, 0, 0}},
231
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
232
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
233
  {1, 0, 0, 0}}}
234
};
235
236
/* Precomputation for the group generator. */
237
struct nistp224_pre_comp_st {
238
    felem g_pre_comp[2][16][3];
239
    CRYPTO_REF_COUNT references;
240
    CRYPTO_RWLOCK *lock;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
2.56k
{
245
2.56k
    static const EC_METHOD ret = {
246
2.56k
        EC_FLAGS_DEFAULT_OCT,
247
2.56k
        NID_X9_62_prime_field,
248
2.56k
        ec_GFp_nistp224_group_init,
249
2.56k
        ec_GFp_simple_group_finish,
250
2.56k
        ec_GFp_simple_group_clear_finish,
251
2.56k
        ec_GFp_nist_group_copy,
252
2.56k
        ec_GFp_nistp224_group_set_curve,
253
2.56k
        ec_GFp_simple_group_get_curve,
254
2.56k
        ec_GFp_simple_group_get_degree,
255
2.56k
        ec_group_simple_order_bits,
256
2.56k
        ec_GFp_simple_group_check_discriminant,
257
2.56k
        ec_GFp_simple_point_init,
258
2.56k
        ec_GFp_simple_point_finish,
259
2.56k
        ec_GFp_simple_point_clear_finish,
260
2.56k
        ec_GFp_simple_point_copy,
261
2.56k
        ec_GFp_simple_point_set_to_infinity,
262
2.56k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
263
2.56k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
264
2.56k
        ec_GFp_simple_point_set_affine_coordinates,
265
2.56k
        ec_GFp_nistp224_point_get_affine_coordinates,
266
2.56k
        0 /* point_set_compressed_coordinates */ ,
267
2.56k
        0 /* point2oct */ ,
268
2.56k
        0 /* oct2point */ ,
269
2.56k
        ec_GFp_simple_add,
270
2.56k
        ec_GFp_simple_dbl,
271
2.56k
        ec_GFp_simple_invert,
272
2.56k
        ec_GFp_simple_is_at_infinity,
273
2.56k
        ec_GFp_simple_is_on_curve,
274
2.56k
        ec_GFp_simple_cmp,
275
2.56k
        ec_GFp_simple_make_affine,
276
2.56k
        ec_GFp_simple_points_make_affine,
277
2.56k
        ec_GFp_nistp224_points_mul,
278
2.56k
        ec_GFp_nistp224_precompute_mult,
279
2.56k
        ec_GFp_nistp224_have_precompute_mult,
280
2.56k
        ec_GFp_nist_field_mul,
281
2.56k
        ec_GFp_nist_field_sqr,
282
2.56k
        0 /* field_div */ ,
283
2.56k
        ec_GFp_simple_field_inv,
284
2.56k
        0 /* field_encode */ ,
285
2.56k
        0 /* field_decode */ ,
286
2.56k
        0,                      /* field_set_to_one */
287
2.56k
        ec_key_simple_priv2oct,
288
2.56k
        ec_key_simple_oct2priv,
289
2.56k
        0, /* set private */
290
2.56k
        ec_key_simple_generate_key,
291
2.56k
        ec_key_simple_check_key,
292
2.56k
        ec_key_simple_generate_public_key,
293
2.56k
        0, /* keycopy */
294
2.56k
        0, /* keyfinish */
295
2.56k
        ecdh_simple_compute_key,
296
2.56k
        0, /* field_inverse_mod_ord */
297
2.56k
        0, /* blind_coordinates */
298
2.56k
        0, /* ladder_pre */
299
2.56k
        0, /* ladder_step */
300
2.56k
        0  /* ladder_post */
301
2.56k
    };
302
303
2.56k
    return &ret;
304
2.56k
}
305
306
/*
307
 * Helper functions to convert field elements to/from internal representation
308
 */
309
static void bin28_to_felem(felem out, const u8 in[28])
310
483
{
311
483
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
312
483
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
313
483
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
314
483
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
315
483
}
316
317
static void felem_to_bin28(u8 out[28], const felem in)
318
358
{
319
358
    unsigned i;
320
2.86k
    for (i = 0; i < 7; ++i) {
321
2.50k
        out[i] = in[0] >> (8 * i);
322
2.50k
        out[i + 7] = in[1] >> (8 * i);
323
2.50k
        out[i + 14] = in[2] >> (8 * i);
324
2.50k
        out[i + 21] = in[3] >> (8 * i);
325
2.50k
    }
326
358
}
327
328
/* From OpenSSL BIGNUM to internal representation */
329
static int BN_to_felem(felem out, const BIGNUM *bn)
330
483
{
331
483
    felem_bytearray b_out;
332
483
    int num_bytes;
333
334
483
    if (BN_is_negative(bn)) {
335
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
336
0
        return 0;
337
0
    }
338
483
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
339
483
    if (num_bytes < 0) {
340
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
341
0
        return 0;
342
0
    }
343
483
    bin28_to_felem(out, b_out);
344
483
    return 1;
345
483
}
346
347
/* From internal representation to OpenSSL BIGNUM */
348
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
349
358
{
350
358
    felem_bytearray b_out;
351
358
    felem_to_bin28(b_out, in);
352
358
    return BN_lebin2bn(b_out, sizeof(b_out), out);
353
358
}
354
355
/******************************************************************************/
356
/*-
357
 *                              FIELD OPERATIONS
358
 *
359
 * Field operations, using the internal representation of field elements.
360
 * NB! These operations are specific to our point multiplication and cannot be
361
 * expected to be correct in general - e.g., multiplication with a large scalar
362
 * will cause an overflow.
363
 *
364
 */
365
366
static void felem_one(felem out)
367
0
{
368
0
    out[0] = 1;
369
0
    out[1] = 0;
370
0
    out[2] = 0;
371
0
    out[3] = 0;
372
0
}
373
374
static void felem_assign(felem out, const felem in)
375
3.30k
{
376
3.30k
    out[0] = in[0];
377
3.30k
    out[1] = in[1];
378
3.30k
    out[2] = in[2];
379
3.30k
    out[3] = in[3];
380
3.30k
}
381
382
/* Sum two field elements: out += in */
383
static void felem_sum(felem out, const felem in)
384
486
{
385
486
    out[0] += in[0];
386
486
    out[1] += in[1];
387
486
    out[2] += in[2];
388
486
    out[3] += in[3];
389
486
}
390
391
/* Subtract field elements: out -= in */
392
/* Assumes in[i] < 2^57 */
393
static void felem_diff(felem out, const felem in)
394
654
{
395
654
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
396
654
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
397
654
    static const limb two58m42m2 = (((limb) 1) << 58) -
398
654
        (((limb) 1) << 42) - (((limb) 1) << 2);
399
400
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
401
654
    out[0] += two58p2;
402
654
    out[1] += two58m42m2;
403
654
    out[2] += two58m2;
404
654
    out[3] += two58m2;
405
406
654
    out[0] -= in[0];
407
654
    out[1] -= in[1];
408
654
    out[2] -= in[2];
409
654
    out[3] -= in[3];
410
654
}
411
412
/* Subtract in unreduced 128-bit mode: out -= in */
413
/* Assumes in[i] < 2^119 */
414
static void widefelem_diff(widefelem out, const widefelem in)
415
492
{
416
492
    static const widelimb two120 = ((widelimb) 1) << 120;
417
492
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
418
492
        (((widelimb) 1) << 64);
419
492
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
420
492
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
421
422
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
423
492
    out[0] += two120;
424
492
    out[1] += two120m64;
425
492
    out[2] += two120m64;
426
492
    out[3] += two120;
427
492
    out[4] += two120m104m64;
428
492
    out[5] += two120m64;
429
492
    out[6] += two120m64;
430
431
492
    out[0] -= in[0];
432
492
    out[1] -= in[1];
433
492
    out[2] -= in[2];
434
492
    out[3] -= in[3];
435
492
    out[4] -= in[4];
436
492
    out[5] -= in[5];
437
492
    out[6] -= in[6];
438
492
}
439
440
/* Subtract in mixed mode: out128 -= in64 */
441
/* in[i] < 2^63 */
442
static void felem_diff_128_64(widefelem out, const felem in)
443
1.64k
{
444
1.64k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
445
1.64k
        (((widelimb) 1) << 8);
446
1.64k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
447
1.64k
        (((widelimb) 1) << 8);
448
1.64k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
449
1.64k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
450
451
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
452
1.64k
    out[0] += two64p8;
453
1.64k
    out[1] += two64m48m8;
454
1.64k
    out[2] += two64m8;
455
1.64k
    out[3] += two64m8;
456
457
1.64k
    out[0] -= in[0];
458
1.64k
    out[1] -= in[1];
459
1.64k
    out[2] -= in[2];
460
1.64k
    out[3] -= in[3];
461
1.64k
}
462
463
/*
464
 * Multiply a field element by a scalar: out = out * scalar The scalars we
465
 * actually use are small, so results fit without overflow
466
 */
467
static void felem_scalar(felem out, const limb scalar)
468
816
{
469
816
    out[0] *= scalar;
470
816
    out[1] *= scalar;
471
816
    out[2] *= scalar;
472
816
    out[3] *= scalar;
473
816
}
474
475
/*
476
 * Multiply an unreduced field element by a scalar: out = out * scalar The
477
 * scalars we actually use are small, so results fit without overflow
478
 */
479
static void widefelem_scalar(widefelem out, const widelimb scalar)
480
162
{
481
162
    out[0] *= scalar;
482
162
    out[1] *= scalar;
483
162
    out[2] *= scalar;
484
162
    out[3] *= scalar;
485
162
    out[4] *= scalar;
486
162
    out[5] *= scalar;
487
162
    out[6] *= scalar;
488
162
}
489
490
/* Square a field element: out = in^2 */
491
static void felem_square(widefelem out, const felem in)
492
37.8k
{
493
37.8k
    limb tmp0, tmp1, tmp2;
494
37.8k
    tmp0 = 2 * in[0];
495
37.8k
    tmp1 = 2 * in[1];
496
37.8k
    tmp2 = 2 * in[2];
497
37.8k
    out[0] = ((widelimb) in[0]) * in[0];
498
37.8k
    out[1] = ((widelimb) in[0]) * tmp1;
499
37.8k
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
500
37.8k
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
501
37.8k
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
502
37.8k
    out[5] = ((widelimb) in[3]) * tmp2;
503
37.8k
    out[6] = ((widelimb) in[3]) * in[3];
504
37.8k
}
505
506
/* Multiply two field elements: out = in1 * in2 */
507
static void felem_mul(widefelem out, const felem in1, const felem in2)
508
5.38k
{
509
5.38k
    out[0] = ((widelimb) in1[0]) * in2[0];
510
5.38k
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
511
5.38k
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
512
5.38k
             ((widelimb) in1[2]) * in2[0];
513
5.38k
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
514
5.38k
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
515
5.38k
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
516
5.38k
             ((widelimb) in1[3]) * in2[1];
517
5.38k
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
518
5.38k
    out[6] = ((widelimb) in1[3]) * in2[3];
519
5.38k
}
520
521
/*-
522
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
523
 * Requires in[i] < 2^126,
524
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
525
static void felem_reduce(felem out, const widefelem in)
526
42.7k
{
527
42.7k
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
528
42.7k
        (((widelimb) 1) << 15);
529
42.7k
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
530
42.7k
        (((widelimb) 1) << 71);
531
42.7k
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
532
42.7k
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
533
42.7k
    widelimb output[5];
534
535
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
536
42.7k
    output[0] = in[0] + two127p15;
537
42.7k
    output[1] = in[1] + two127m71m55;
538
42.7k
    output[2] = in[2] + two127m71;
539
42.7k
    output[3] = in[3];
540
42.7k
    output[4] = in[4];
541
542
    /* Eliminate in[4], in[5], in[6] */
543
42.7k
    output[4] += in[6] >> 16;
544
42.7k
    output[3] += (in[6] & 0xffff) << 40;
545
42.7k
    output[2] -= in[6];
546
547
42.7k
    output[3] += in[5] >> 16;
548
42.7k
    output[2] += (in[5] & 0xffff) << 40;
549
42.7k
    output[1] -= in[5];
550
551
42.7k
    output[2] += output[4] >> 16;
552
42.7k
    output[1] += (output[4] & 0xffff) << 40;
553
42.7k
    output[0] -= output[4];
554
555
    /* Carry 2 -> 3 -> 4 */
556
42.7k
    output[3] += output[2] >> 56;
557
42.7k
    output[2] &= 0x00ffffffffffffff;
558
559
42.7k
    output[4] = output[3] >> 56;
560
42.7k
    output[3] &= 0x00ffffffffffffff;
561
562
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
563
564
    /* Eliminate output[4] */
565
42.7k
    output[2] += output[4] >> 16;
566
    /* output[2] < 2^56 + 2^56 = 2^57 */
567
42.7k
    output[1] += (output[4] & 0xffff) << 40;
568
42.7k
    output[0] -= output[4];
569
570
    /* Carry 0 -> 1 -> 2 -> 3 */
571
42.7k
    output[1] += output[0] >> 56;
572
42.7k
    out[0] = output[0] & 0x00ffffffffffffff;
573
574
42.7k
    output[2] += output[1] >> 56;
575
    /* output[2] < 2^57 + 2^72 */
576
42.7k
    out[1] = output[1] & 0x00ffffffffffffff;
577
42.7k
    output[3] += output[2] >> 56;
578
    /* output[3] <= 2^56 + 2^16 */
579
42.7k
    out[2] = output[2] & 0x00ffffffffffffff;
580
581
    /*-
582
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
583
     * out[3] <= 2^56 + 2^16 (due to final carry),
584
     * so out < 2*p
585
     */
586
42.7k
    out[3] = output[3];
587
42.7k
}
588
589
static void felem_square_reduce(felem out, const felem in)
590
0
{
591
0
    widefelem tmp;
592
0
    felem_square(tmp, in);
593
0
    felem_reduce(out, tmp);
594
0
}
595
596
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
597
0
{
598
0
    widefelem tmp;
599
0
    felem_mul(tmp, in1, in2);
600
0
    felem_reduce(out, tmp);
601
0
}
602
603
/*
604
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
605
 * call felem_reduce first)
606
 */
607
static void felem_contract(felem out, const felem in)
608
340
{
609
340
    static const int64_t two56 = ((limb) 1) << 56;
610
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
611
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
612
340
    int64_t tmp[4], a;
613
340
    tmp[0] = in[0];
614
340
    tmp[1] = in[1];
615
340
    tmp[2] = in[2];
616
340
    tmp[3] = in[3];
617
    /* Case 1: a = 1 iff in >= 2^224 */
618
340
    a = (in[3] >> 56);
619
340
    tmp[0] -= a;
620
340
    tmp[1] += a << 40;
621
340
    tmp[3] &= 0x00ffffffffffffff;
622
    /*
623
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
624
     * and the lower part is non-zero
625
     */
626
340
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
627
340
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
628
340
    a &= 0x00ffffffffffffff;
629
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
630
340
    a = (a - 1) >> 63;
631
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
632
340
    tmp[3] &= a ^ 0xffffffffffffffff;
633
340
    tmp[2] &= a ^ 0xffffffffffffffff;
634
340
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
635
340
    tmp[0] -= 1 & a;
636
637
    /*
638
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
639
     * non-zero, so we only need one step
640
     */
641
340
    a = tmp[0] >> 63;
642
340
    tmp[0] += two56 & a;
643
340
    tmp[1] -= 1 & a;
644
645
    /* carry 1 -> 2 -> 3 */
646
340
    tmp[2] += tmp[1] >> 56;
647
340
    tmp[1] &= 0x00ffffffffffffff;
648
649
340
    tmp[3] += tmp[2] >> 56;
650
340
    tmp[2] &= 0x00ffffffffffffff;
651
652
    /* Now 0 <= out < p */
653
340
    out[0] = tmp[0];
654
340
    out[1] = tmp[1];
655
340
    out[2] = tmp[2];
656
340
    out[3] = tmp[3];
657
340
}
658
659
/*
660
 * Get negative value: out = -in
661
 * Requires in[i] < 2^63,
662
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
663
 */
664
static void felem_neg(felem out, const felem in)
665
0
{
666
0
    widefelem tmp = {0};
667
0
    felem_diff_128_64(tmp, in);
668
0
    felem_reduce(out, tmp);
669
0
}
670
671
/*
672
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
673
 * elements are reduced to in < 2^225, so we only need to check three cases:
674
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
675
 */
676
static limb felem_is_zero(const felem in)
677
1.32k
{
678
1.32k
    limb zero, two224m96p1, two225m97p2;
679
680
1.32k
    zero = in[0] | in[1] | in[2] | in[3];
681
1.32k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
682
1.32k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
683
1.32k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
684
1.32k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
685
1.32k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
686
1.32k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
687
1.32k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
688
1.32k
    return (zero | two224m96p1 | two225m97p2);
689
1.32k
}
690
691
static int felem_is_zero_int(const void *in)
692
0
{
693
0
    return (int)(felem_is_zero(in) & ((limb) 1));
694
0
}
695
696
/* Invert a field element */
697
/* Computation chain copied from djb's code */
698
static void felem_inv(felem out, const felem in)
699
161
{
700
161
    felem ftmp, ftmp2, ftmp3, ftmp4;
701
161
    widefelem tmp;
702
161
    unsigned i;
703
704
161
    felem_square(tmp, in);
705
161
    felem_reduce(ftmp, tmp);    /* 2 */
706
161
    felem_mul(tmp, in, ftmp);
707
161
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
708
161
    felem_square(tmp, ftmp);
709
161
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
710
161
    felem_mul(tmp, in, ftmp);
711
161
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
712
161
    felem_square(tmp, ftmp);
713
161
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
714
161
    felem_square(tmp, ftmp2);
715
161
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
716
161
    felem_square(tmp, ftmp2);
717
161
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
718
161
    felem_mul(tmp, ftmp2, ftmp);
719
161
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
720
161
    felem_square(tmp, ftmp);
721
161
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
722
966
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
723
805
        felem_square(tmp, ftmp2);
724
805
        felem_reduce(ftmp2, tmp);
725
805
    }
726
161
    felem_mul(tmp, ftmp2, ftmp);
727
161
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
728
161
    felem_square(tmp, ftmp2);
729
161
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
730
1.93k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
731
1.77k
        felem_square(tmp, ftmp3);
732
1.77k
        felem_reduce(ftmp3, tmp);
733
1.77k
    }
734
161
    felem_mul(tmp, ftmp3, ftmp2);
735
161
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
736
161
    felem_square(tmp, ftmp2);
737
161
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
738
3.86k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
739
3.70k
        felem_square(tmp, ftmp3);
740
3.70k
        felem_reduce(ftmp3, tmp);
741
3.70k
    }
742
161
    felem_mul(tmp, ftmp3, ftmp2);
743
161
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
744
161
    felem_square(tmp, ftmp3);
745
161
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
746
7.72k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
747
7.56k
        felem_square(tmp, ftmp4);
748
7.56k
        felem_reduce(ftmp4, tmp);
749
7.56k
    }
750
161
    felem_mul(tmp, ftmp3, ftmp4);
751
161
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
752
161
    felem_square(tmp, ftmp3);
753
161
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
754
3.86k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
755
3.70k
        felem_square(tmp, ftmp4);
756
3.70k
        felem_reduce(ftmp4, tmp);
757
3.70k
    }
758
161
    felem_mul(tmp, ftmp2, ftmp4);
759
161
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
760
1.12k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
761
966
        felem_square(tmp, ftmp2);
762
966
        felem_reduce(ftmp2, tmp);
763
966
    }
764
161
    felem_mul(tmp, ftmp2, ftmp);
765
161
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
766
161
    felem_square(tmp, ftmp);
767
161
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
768
161
    felem_mul(tmp, ftmp, in);
769
161
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
770
15.7k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
771
15.6k
        felem_square(tmp, ftmp);
772
15.6k
        felem_reduce(ftmp, tmp);
773
15.6k
    }
774
161
    felem_mul(tmp, ftmp, ftmp3);
775
161
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
776
161
}
777
778
/*
779
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
780
 * out to itself.
781
 */
782
static void copy_conditional(felem out, const felem in, limb icopy)
783
1.98k
{
784
1.98k
    unsigned i;
785
    /*
786
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
787
     */
788
1.98k
    const limb copy = -icopy;
789
9.90k
    for (i = 0; i < 4; ++i) {
790
7.92k
        const limb tmp = copy & (in[i] ^ out[i]);
791
7.92k
        out[i] ^= tmp;
792
7.92k
    }
793
1.98k
}
794
795
/******************************************************************************/
796
/*-
797
 *                       ELLIPTIC CURVE POINT OPERATIONS
798
 *
799
 * Points are represented in Jacobian projective coordinates:
800
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
801
 * or to the point at infinity if Z == 0.
802
 *
803
 */
804
805
/*-
806
 * Double an elliptic curve point:
807
 * (X', Y', Z') = 2 * (X, Y, Z), where
808
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
809
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
810
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
811
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
812
 * while x_out == y_in is not (maybe this works, but it's not tested).
813
 */
814
static void
815
point_double(felem x_out, felem y_out, felem z_out,
816
             const felem x_in, const felem y_in, const felem z_in)
817
162
{
818
162
    widefelem tmp, tmp2;
819
162
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
820
821
162
    felem_assign(ftmp, x_in);
822
162
    felem_assign(ftmp2, x_in);
823
824
    /* delta = z^2 */
825
162
    felem_square(tmp, z_in);
826
162
    felem_reduce(delta, tmp);
827
828
    /* gamma = y^2 */
829
162
    felem_square(tmp, y_in);
830
162
    felem_reduce(gamma, tmp);
831
832
    /* beta = x*gamma */
833
162
    felem_mul(tmp, x_in, gamma);
834
162
    felem_reduce(beta, tmp);
835
836
    /* alpha = 3*(x-delta)*(x+delta) */
837
162
    felem_diff(ftmp, delta);
838
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
839
162
    felem_sum(ftmp2, delta);
840
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
841
162
    felem_scalar(ftmp2, 3);
842
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
843
162
    felem_mul(tmp, ftmp, ftmp2);
844
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
845
162
    felem_reduce(alpha, tmp);
846
847
    /* x' = alpha^2 - 8*beta */
848
162
    felem_square(tmp, alpha);
849
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
850
162
    felem_assign(ftmp, beta);
851
162
    felem_scalar(ftmp, 8);
852
    /* ftmp[i] < 8 * 2^57 = 2^60 */
853
162
    felem_diff_128_64(tmp, ftmp);
854
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
855
162
    felem_reduce(x_out, tmp);
856
857
    /* z' = (y + z)^2 - gamma - delta */
858
162
    felem_sum(delta, gamma);
859
    /* delta[i] < 2^57 + 2^57 = 2^58 */
860
162
    felem_assign(ftmp, y_in);
861
162
    felem_sum(ftmp, z_in);
862
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
863
162
    felem_square(tmp, ftmp);
864
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
865
162
    felem_diff_128_64(tmp, delta);
866
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
867
162
    felem_reduce(z_out, tmp);
868
869
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
870
162
    felem_scalar(beta, 4);
871
    /* beta[i] < 4 * 2^57 = 2^59 */
872
162
    felem_diff(beta, x_out);
873
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
874
162
    felem_mul(tmp, alpha, beta);
875
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
876
162
    felem_square(tmp2, gamma);
877
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
878
162
    widefelem_scalar(tmp2, 8);
879
    /* tmp2[i] < 8 * 2^116 = 2^119 */
880
162
    widefelem_diff(tmp, tmp2);
881
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
882
162
    felem_reduce(y_out, tmp);
883
162
}
884
885
/*-
886
 * Add two elliptic curve points:
887
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
888
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
889
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
890
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
891
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
892
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
893
 *
894
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
895
 */
896
897
/*
898
 * This function is not entirely constant-time: it includes a branch for
899
 * checking whether the two input points are equal, (while not equal to the
900
 * point at infinity). This case never happens during single point
901
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
902
 */
903
static void point_add(felem x3, felem y3, felem z3,
904
                      const felem x1, const felem y1, const felem z1,
905
                      const int mixed, const felem x2, const felem y2,
906
                      const felem z2)
907
330
{
908
330
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
909
330
    widefelem tmp, tmp2;
910
330
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
911
330
    limb points_equal;
912
913
330
    if (!mixed) {
914
        /* ftmp2 = z2^2 */
915
0
        felem_square(tmp, z2);
916
0
        felem_reduce(ftmp2, tmp);
917
918
        /* ftmp4 = z2^3 */
919
0
        felem_mul(tmp, ftmp2, z2);
920
0
        felem_reduce(ftmp4, tmp);
921
922
        /* ftmp4 = z2^3*y1 */
923
0
        felem_mul(tmp2, ftmp4, y1);
924
0
        felem_reduce(ftmp4, tmp2);
925
926
        /* ftmp2 = z2^2*x1 */
927
0
        felem_mul(tmp2, ftmp2, x1);
928
0
        felem_reduce(ftmp2, tmp2);
929
330
    } else {
930
        /*
931
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
932
         */
933
934
        /* ftmp4 = z2^3*y1 */
935
330
        felem_assign(ftmp4, y1);
936
937
        /* ftmp2 = z2^2*x1 */
938
330
        felem_assign(ftmp2, x1);
939
330
    }
940
941
    /* ftmp = z1^2 */
942
330
    felem_square(tmp, z1);
943
330
    felem_reduce(ftmp, tmp);
944
945
    /* ftmp3 = z1^3 */
946
330
    felem_mul(tmp, ftmp, z1);
947
330
    felem_reduce(ftmp3, tmp);
948
949
    /* tmp = z1^3*y2 */
950
330
    felem_mul(tmp, ftmp3, y2);
951
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
952
953
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
954
330
    felem_diff_128_64(tmp, ftmp4);
955
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
956
330
    felem_reduce(ftmp3, tmp);
957
958
    /* tmp = z1^2*x2 */
959
330
    felem_mul(tmp, ftmp, x2);
960
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
961
962
    /* ftmp = z1^2*x2 - z2^2*x1 */
963
330
    felem_diff_128_64(tmp, ftmp2);
964
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
965
330
    felem_reduce(ftmp, tmp);
966
967
    /*
968
     * The formulae are incorrect if the points are equal, in affine coordinates
969
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
970
     * happens.
971
     *
972
     * We use bitwise operations to avoid potential side-channels introduced by
973
     * the short-circuiting behaviour of boolean operators.
974
     */
975
330
    x_equal = felem_is_zero(ftmp);
976
330
    y_equal = felem_is_zero(ftmp3);
977
    /*
978
     * The special case of either point being the point at infinity (z1 and/or
979
     * z2 are zero), is handled separately later on in this function, so we
980
     * avoid jumping to point_double here in those special cases.
981
     */
982
330
    z1_is_zero = felem_is_zero(z1);
983
330
    z2_is_zero = felem_is_zero(z2);
984
985
    /*
986
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
987
     * specific implementation `felem_is_zero()` returns truth as `0x1`
988
     * (rather than `0xff..ff`).
989
     *
990
     * This implies that `~true` in this implementation becomes
991
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
992
     * the if expression, we mask out only the last bit in the next
993
     * line.
994
     */
995
330
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
996
997
330
    if (points_equal) {
998
        /*
999
         * This is obviously not constant-time but, as mentioned before, this
1000
         * case never happens during single point multiplication, so there is no
1001
         * timing leak for ECDH or ECDSA signing.
1002
         */
1003
0
        point_double(x3, y3, z3, x1, y1, z1);
1004
0
        return;
1005
0
    }
1006
1007
    /* ftmp5 = z1*z2 */
1008
330
    if (!mixed) {
1009
0
        felem_mul(tmp, z1, z2);
1010
0
        felem_reduce(ftmp5, tmp);
1011
330
    } else {
1012
        /* special case z2 = 0 is handled later */
1013
330
        felem_assign(ftmp5, z1);
1014
330
    }
1015
1016
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1017
330
    felem_mul(tmp, ftmp, ftmp5);
1018
330
    felem_reduce(z_out, tmp);
1019
1020
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1021
330
    felem_assign(ftmp5, ftmp);
1022
330
    felem_square(tmp, ftmp);
1023
330
    felem_reduce(ftmp, tmp);
1024
1025
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1026
330
    felem_mul(tmp, ftmp, ftmp5);
1027
330
    felem_reduce(ftmp5, tmp);
1028
1029
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1030
330
    felem_mul(tmp, ftmp2, ftmp);
1031
330
    felem_reduce(ftmp2, tmp);
1032
1033
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1034
330
    felem_mul(tmp, ftmp4, ftmp5);
1035
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1036
1037
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1038
330
    felem_square(tmp2, ftmp3);
1039
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1042
330
    felem_diff_128_64(tmp2, ftmp5);
1043
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1044
1045
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1046
330
    felem_assign(ftmp5, ftmp2);
1047
330
    felem_scalar(ftmp5, 2);
1048
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1049
1050
    /*-
1051
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1052
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1053
     */
1054
330
    felem_diff_128_64(tmp2, ftmp5);
1055
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1056
330
    felem_reduce(x_out, tmp2);
1057
1058
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1059
330
    felem_diff(ftmp2, x_out);
1060
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1061
1062
    /*
1063
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1064
     */
1065
330
    felem_mul(tmp2, ftmp3, ftmp2);
1066
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1067
1068
    /*-
1069
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1070
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1071
     */
1072
330
    widefelem_diff(tmp2, tmp);
1073
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1074
330
    felem_reduce(y_out, tmp2);
1075
1076
    /*
1077
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1078
     * the point at infinity, so we need to check for this separately
1079
     */
1080
1081
    /*
1082
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1083
     */
1084
330
    copy_conditional(x_out, x2, z1_is_zero);
1085
330
    copy_conditional(x_out, x1, z2_is_zero);
1086
330
    copy_conditional(y_out, y2, z1_is_zero);
1087
330
    copy_conditional(y_out, y1, z2_is_zero);
1088
330
    copy_conditional(z_out, z2, z1_is_zero);
1089
330
    copy_conditional(z_out, z1, z2_is_zero);
1090
330
    felem_assign(x3, x_out);
1091
330
    felem_assign(y3, y_out);
1092
330
    felem_assign(z3, z_out);
1093
330
}
1094
1095
/*
1096
 * select_point selects the |idx|th point from a precomputation table and
1097
 * copies it to out.
1098
 * The pre_comp array argument should be size of |size| argument
1099
 */
1100
static void select_point(const u64 idx, unsigned int size,
1101
                         const felem pre_comp[][3], felem out[3])
1102
336
{
1103
336
    unsigned i, j;
1104
336
    limb *outlimbs = &out[0][0];
1105
1106
336
    memset(out, 0, sizeof(*out) * 3);
1107
5.71k
    for (i = 0; i < size; i++) {
1108
5.37k
        const limb *inlimbs = &pre_comp[i][0][0];
1109
5.37k
        u64 mask = i ^ idx;
1110
5.37k
        mask |= mask >> 4;
1111
5.37k
        mask |= mask >> 2;
1112
5.37k
        mask |= mask >> 1;
1113
5.37k
        mask &= 1;
1114
5.37k
        mask--;
1115
69.8k
        for (j = 0; j < 4 * 3; j++)
1116
64.5k
            outlimbs[j] |= inlimbs[j] & mask;
1117
5.37k
    }
1118
336
}
1119
1120
/* get_bit returns the |i|th bit in |in| */
1121
static char get_bit(const felem_bytearray in, unsigned i)
1122
1.34k
{
1123
1.34k
    if (i >= 224)
1124
0
        return 0;
1125
1.34k
    return (in[i >> 3] >> (i & 7)) & 1;
1126
1.34k
}
1127
1128
/*
1129
 * Interleaved point multiplication using precomputed point multiples: The
1130
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1131
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1132
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1133
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1134
 */
1135
static void batch_mul(felem x_out, felem y_out, felem z_out,
1136
                      const felem_bytearray scalars[],
1137
                      const unsigned num_points, const u8 *g_scalar,
1138
                      const int mixed, const felem pre_comp[][17][3],
1139
                      const felem g_pre_comp[2][16][3])
1140
6
{
1141
6
    int i, skip;
1142
6
    unsigned num;
1143
6
    unsigned gen_mul = (g_scalar != NULL);
1144
6
    felem nq[3], tmp[4];
1145
6
    u64 bits;
1146
6
    u8 sign, digit;
1147
1148
    /* set nq to the point at infinity */
1149
6
    memset(nq, 0, sizeof(nq));
1150
1151
    /*
1152
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1153
     * of the generator (two in each of the last 28 rounds) and additions of
1154
     * other points multiples (every 5th round).
1155
     */
1156
6
    skip = 1;                   /* save two point operations in the first
1157
                                 * round */
1158
174
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1159
        /* double */
1160
168
        if (!skip)
1161
162
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1162
1163
        /* add multiples of the generator */
1164
168
        if (gen_mul && (i <= 27)) {
1165
            /* first, look 28 bits upwards */
1166
168
            bits = get_bit(g_scalar, i + 196) << 3;
1167
168
            bits |= get_bit(g_scalar, i + 140) << 2;
1168
168
            bits |= get_bit(g_scalar, i + 84) << 1;
1169
168
            bits |= get_bit(g_scalar, i + 28);
1170
            /* select the point to add, in constant time */
1171
168
            select_point(bits, 16, g_pre_comp[1], tmp);
1172
1173
168
            if (!skip) {
1174
                /* value 1 below is argument for "mixed" */
1175
162
                point_add(nq[0], nq[1], nq[2],
1176
162
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1177
162
            } else {
1178
6
                memcpy(nq, tmp, 3 * sizeof(felem));
1179
6
                skip = 0;
1180
6
            }
1181
1182
            /* second, look at the current position */
1183
168
            bits = get_bit(g_scalar, i + 168) << 3;
1184
168
            bits |= get_bit(g_scalar, i + 112) << 2;
1185
168
            bits |= get_bit(g_scalar, i + 56) << 1;
1186
168
            bits |= get_bit(g_scalar, i);
1187
            /* select the point to add, in constant time */
1188
168
            select_point(bits, 16, g_pre_comp[0], tmp);
1189
168
            point_add(nq[0], nq[1], nq[2],
1190
168
                      nq[0], nq[1], nq[2],
1191
168
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1192
168
        }
1193
1194
        /* do other additions every 5 doublings */
1195
168
        if (num_points && (i % 5 == 0)) {
1196
            /* loop over all scalars */
1197
0
            for (num = 0; num < num_points; ++num) {
1198
0
                bits = get_bit(scalars[num], i + 4) << 5;
1199
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1200
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1201
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1202
0
                bits |= get_bit(scalars[num], i) << 1;
1203
0
                bits |= get_bit(scalars[num], i - 1);
1204
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1205
1206
                /* select the point to add or subtract */
1207
0
                select_point(digit, 17, pre_comp[num], tmp);
1208
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1209
                                            * point */
1210
0
                copy_conditional(tmp[1], tmp[3], sign);
1211
1212
0
                if (!skip) {
1213
0
                    point_add(nq[0], nq[1], nq[2],
1214
0
                              nq[0], nq[1], nq[2],
1215
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1216
0
                } else {
1217
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1218
0
                    skip = 0;
1219
0
                }
1220
0
            }
1221
0
        }
1222
168
    }
1223
6
    felem_assign(x_out, nq[0]);
1224
6
    felem_assign(y_out, nq[1]);
1225
6
    felem_assign(z_out, nq[2]);
1226
6
}
1227
1228
/******************************************************************************/
1229
/*
1230
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1231
 */
1232
1233
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1234
0
{
1235
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1236
1237
0
    if (!ret) {
1238
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1239
0
        return ret;
1240
0
    }
1241
1242
0
    ret->references = 1;
1243
1244
0
    ret->lock = CRYPTO_THREAD_lock_new();
1245
0
    if (ret->lock == NULL) {
1246
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1247
0
        OPENSSL_free(ret);
1248
0
        return NULL;
1249
0
    }
1250
0
    return ret;
1251
0
}
1252
1253
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1254
0
{
1255
0
    int i;
1256
0
    if (p != NULL)
1257
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1258
0
    return p;
1259
0
}
1260
1261
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1262
0
{
1263
0
    int i;
1264
1265
0
    if (p == NULL)
1266
0
        return;
1267
1268
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1269
0
    REF_PRINT_COUNT("EC_nistp224", x);
1270
0
    if (i > 0)
1271
0
        return;
1272
0
    REF_ASSERT_ISNT(i < 0);
1273
1274
0
    CRYPTO_THREAD_lock_free(p->lock);
1275
0
    OPENSSL_free(p);
1276
0
}
1277
1278
/******************************************************************************/
1279
/*
1280
 * OPENSSL EC_METHOD FUNCTIONS
1281
 */
1282
1283
int ec_GFp_nistp224_group_init(EC_GROUP *group)
1284
5.03k
{
1285
5.03k
    int ret;
1286
5.03k
    ret = ec_GFp_simple_group_init(group);
1287
5.03k
    group->a_is_minus3 = 1;
1288
5.03k
    return ret;
1289
5.03k
}
1290
1291
int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1292
                                    const BIGNUM *a, const BIGNUM *b,
1293
                                    BN_CTX *ctx)
1294
2.56k
{
1295
2.56k
    int ret = 0;
1296
2.56k
    BN_CTX *new_ctx = NULL;
1297
2.56k
    BIGNUM *curve_p, *curve_a, *curve_b;
1298
1299
2.56k
    if (ctx == NULL)
1300
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1301
0
            return 0;
1302
2.56k
    BN_CTX_start(ctx);
1303
2.56k
    curve_p = BN_CTX_get(ctx);
1304
2.56k
    curve_a = BN_CTX_get(ctx);
1305
2.56k
    curve_b = BN_CTX_get(ctx);
1306
2.56k
    if (curve_b == NULL)
1307
0
        goto err;
1308
2.56k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1309
2.56k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1310
2.56k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1311
2.56k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1312
0
        ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1313
0
              EC_R_WRONG_CURVE_PARAMETERS);
1314
0
        goto err;
1315
0
    }
1316
2.56k
    group->field_mod_func = BN_nist_mod_224;
1317
2.56k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1318
2.56k
 err:
1319
2.56k
    BN_CTX_end(ctx);
1320
2.56k
    BN_CTX_free(new_ctx);
1321
2.56k
    return ret;
1322
2.56k
}
1323
1324
/*
1325
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1326
 * (X/Z^2, Y/Z^3)
1327
 */
1328
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1329
                                                 const EC_POINT *point,
1330
                                                 BIGNUM *x, BIGNUM *y,
1331
                                                 BN_CTX *ctx)
1332
161
{
1333
161
    felem z1, z2, x_in, y_in, x_out, y_out;
1334
161
    widefelem tmp;
1335
1336
161
    if (EC_POINT_is_at_infinity(group, point)) {
1337
0
        ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1338
0
              EC_R_POINT_AT_INFINITY);
1339
0
        return 0;
1340
0
    }
1341
161
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1342
161
        (!BN_to_felem(z1, point->Z)))
1343
0
        return 0;
1344
161
    felem_inv(z2, z1);
1345
161
    felem_square(tmp, z2);
1346
161
    felem_reduce(z1, tmp);
1347
161
    felem_mul(tmp, x_in, z1);
1348
161
    felem_reduce(x_in, tmp);
1349
161
    felem_contract(x_out, x_in);
1350
161
    if (x != NULL) {
1351
161
        if (!felem_to_BN(x, x_out)) {
1352
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1353
0
                  ERR_R_BN_LIB);
1354
0
            return 0;
1355
0
        }
1356
161
    }
1357
161
    felem_mul(tmp, z1, z2);
1358
161
    felem_reduce(z1, tmp);
1359
161
    felem_mul(tmp, y_in, z1);
1360
161
    felem_reduce(y_in, tmp);
1361
161
    felem_contract(y_out, y_in);
1362
161
    if (y != NULL) {
1363
161
        if (!felem_to_BN(y, y_out)) {
1364
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1365
0
                  ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
161
    }
1369
161
    return 1;
1370
161
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                             points,
1381
0
                                             sizeof(felem),
1382
0
                                             tmp_felems,
1383
0
                                             (void (*)(void *))felem_one,
1384
0
                                             felem_is_zero_int,
1385
0
                                             (void (*)(void *, const void *))
1386
0
                                             felem_assign,
1387
0
                                             (void (*)(void *, const void *))
1388
0
                                             felem_square_reduce, (void (*)
1389
0
                                                                   (void *,
1390
0
                                                                    const void
1391
0
                                                                    *,
1392
0
                                                                    const void
1393
0
                                                                    *))
1394
0
                                             felem_mul_reduce,
1395
0
                                             (void (*)(void *, const void *))
1396
0
                                             felem_inv,
1397
0
                                             (void (*)(void *, const void *))
1398
0
                                             felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                               const BIGNUM *scalar, size_t num,
1407
                               const EC_POINT *points[],
1408
                               const BIGNUM *scalars[], BN_CTX *ctx)
1409
6
{
1410
6
    int ret = 0;
1411
6
    int j;
1412
6
    unsigned i;
1413
6
    int mixed = 0;
1414
6
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
6
    felem_bytearray g_secret;
1416
6
    felem_bytearray *secrets = NULL;
1417
6
    felem (*pre_comp)[17][3] = NULL;
1418
6
    felem *tmp_felems = NULL;
1419
6
    int num_bytes;
1420
6
    int have_pre_comp = 0;
1421
6
    size_t num_points = num;
1422
6
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
6
    NISTP224_PRE_COMP *pre = NULL;
1424
6
    const felem(*g_pre_comp)[16][3] = NULL;
1425
6
    EC_POINT *generator = NULL;
1426
6
    const EC_POINT *p = NULL;
1427
6
    const BIGNUM *p_scalar = NULL;
1428
1429
6
    BN_CTX_start(ctx);
1430
6
    x = BN_CTX_get(ctx);
1431
6
    y = BN_CTX_get(ctx);
1432
6
    z = BN_CTX_get(ctx);
1433
6
    tmp_scalar = BN_CTX_get(ctx);
1434
6
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
6
    if (scalar != NULL) {
1438
6
        pre = group->pre_comp.nistp224;
1439
6
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
6
        else
1443
            /* try to use the standard precomputation */
1444
6
            g_pre_comp = &gmul[0];
1445
6
        generator = EC_POINT_new(group);
1446
6
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
6
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
6
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
6
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
6
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1456
6
                                                      generator, x, y, z,
1457
6
                                                      ctx))
1458
0
            goto err;
1459
6
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
6
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
6
    }
1469
1470
6
    if (num_points > 0) {
1471
0
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
0
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
0
        if ((secrets == NULL) || (pre_comp == NULL)
1484
0
            || (mixed && (tmp_felems == NULL))) {
1485
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1486
0
            goto err;
1487
0
        }
1488
1489
        /*
1490
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1491
         * i.e., they contribute nothing to the linear combination
1492
         */
1493
0
        for (i = 0; i < num_points; ++i) {
1494
0
            if (i == num) {
1495
                /* the generator */
1496
0
                p = EC_GROUP_get0_generator(group);
1497
0
                p_scalar = scalar;
1498
0
            } else {
1499
                /* the i^th point */
1500
0
                p = points[i];
1501
0
                p_scalar = scalars[i];
1502
0
            }
1503
0
            if ((p_scalar != NULL) && (p != NULL)) {
1504
                /* reduce scalar to 0 <= scalar < 2^224 */
1505
0
                if ((BN_num_bits(p_scalar) > 224)
1506
0
                    || (BN_is_negative(p_scalar))) {
1507
                    /*
1508
                     * this is an unusual input, and we don't guarantee
1509
                     * constant-timeness
1510
                     */
1511
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1512
0
                        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1513
0
                        goto err;
1514
0
                    }
1515
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1516
0
                                               secrets[i], sizeof(secrets[i]));
1517
0
                } else {
1518
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1519
0
                                               secrets[i], sizeof(secrets[i]));
1520
0
                }
1521
0
                if (num_bytes < 0) {
1522
0
                    ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1523
0
                    goto err;
1524
0
                }
1525
                /* precompute multiples */
1526
0
                if ((!BN_to_felem(x_out, p->X)) ||
1527
0
                    (!BN_to_felem(y_out, p->Y)) ||
1528
0
                    (!BN_to_felem(z_out, p->Z)))
1529
0
                    goto err;
1530
0
                felem_assign(pre_comp[i][1][0], x_out);
1531
0
                felem_assign(pre_comp[i][1][1], y_out);
1532
0
                felem_assign(pre_comp[i][1][2], z_out);
1533
0
                for (j = 2; j <= 16; ++j) {
1534
0
                    if (j & 1) {
1535
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1536
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1537
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1538
0
                                  pre_comp[i][j - 1][0],
1539
0
                                  pre_comp[i][j - 1][1],
1540
0
                                  pre_comp[i][j - 1][2]);
1541
0
                    } else {
1542
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1543
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1544
0
                                     pre_comp[i][j / 2][1],
1545
0
                                     pre_comp[i][j / 2][2]);
1546
0
                    }
1547
0
                }
1548
0
            }
1549
0
        }
1550
0
        if (mixed)
1551
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1552
0
    }
1553
1554
    /* the scalar for the generator */
1555
6
    if ((scalar != NULL) && (have_pre_comp)) {
1556
6
        memset(g_secret, 0, sizeof(g_secret));
1557
        /* reduce scalar to 0 <= scalar < 2^224 */
1558
6
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1559
            /*
1560
             * this is an unusual input, and we don't guarantee
1561
             * constant-timeness
1562
             */
1563
2
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1564
0
                ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1565
0
                goto err;
1566
0
            }
1567
2
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1568
4
        } else {
1569
4
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1570
4
        }
1571
        /* do the multiplication with generator precomputation */
1572
6
        batch_mul(x_out, y_out, z_out,
1573
6
                  (const felem_bytearray(*))secrets, num_points,
1574
6
                  g_secret,
1575
6
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1576
6
    } else {
1577
        /* do the multiplication without generator precomputation */
1578
0
        batch_mul(x_out, y_out, z_out,
1579
0
                  (const felem_bytearray(*))secrets, num_points,
1580
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1581
0
    }
1582
    /* reduce the output to its unique minimal representation */
1583
6
    felem_contract(x_in, x_out);
1584
6
    felem_contract(y_in, y_out);
1585
6
    felem_contract(z_in, z_out);
1586
6
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1587
6
        (!felem_to_BN(z, z_in))) {
1588
0
        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1589
0
        goto err;
1590
0
    }
1591
6
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1592
1593
6
 err:
1594
6
    BN_CTX_end(ctx);
1595
6
    EC_POINT_free(generator);
1596
6
    OPENSSL_free(secrets);
1597
6
    OPENSSL_free(pre_comp);
1598
6
    OPENSSL_free(tmp_felems);
1599
6
    return ret;
1600
6
}
1601
1602
int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1603
0
{
1604
0
    int ret = 0;
1605
0
    NISTP224_PRE_COMP *pre = NULL;
1606
0
    int i, j;
1607
0
    BN_CTX *new_ctx = NULL;
1608
0
    BIGNUM *x, *y;
1609
0
    EC_POINT *generator = NULL;
1610
0
    felem tmp_felems[32];
1611
1612
    /* throw away old precomputation */
1613
0
    EC_pre_comp_free(group);
1614
0
    if (ctx == NULL)
1615
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1616
0
            return 0;
1617
0
    BN_CTX_start(ctx);
1618
0
    x = BN_CTX_get(ctx);
1619
0
    y = BN_CTX_get(ctx);
1620
0
    if (y == NULL)
1621
0
        goto err;
1622
    /* get the generator */
1623
0
    if (group->generator == NULL)
1624
0
        goto err;
1625
0
    generator = EC_POINT_new(group);
1626
0
    if (generator == NULL)
1627
0
        goto err;
1628
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1629
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1630
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1631
0
        goto err;
1632
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1633
0
        goto err;
1634
    /*
1635
     * if the generator is the standard one, use built-in precomputation
1636
     */
1637
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1638
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1639
0
        goto done;
1640
0
    }
1641
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1642
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1643
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1644
0
        goto err;
1645
    /*
1646
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1647
     * 2^140*G, 2^196*G for the second one
1648
     */
1649
0
    for (i = 1; i <= 8; i <<= 1) {
1650
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1651
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1652
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1653
0
        for (j = 0; j < 27; ++j) {
1654
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1655
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1656
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1657
0
        }
1658
0
        if (i == 8)
1659
0
            break;
1660
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1661
0
                     pre->g_pre_comp[0][2 * i][1],
1662
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1663
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1664
0
        for (j = 0; j < 27; ++j) {
1665
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1666
0
                         pre->g_pre_comp[0][2 * i][1],
1667
0
                         pre->g_pre_comp[0][2 * i][2],
1668
0
                         pre->g_pre_comp[0][2 * i][0],
1669
0
                         pre->g_pre_comp[0][2 * i][1],
1670
0
                         pre->g_pre_comp[0][2 * i][2]);
1671
0
        }
1672
0
    }
1673
0
    for (i = 0; i < 2; i++) {
1674
        /* g_pre_comp[i][0] is the point at infinity */
1675
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1676
        /* the remaining multiples */
1677
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1678
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1679
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1680
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1681
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1682
0
                  pre->g_pre_comp[i][2][2]);
1683
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1684
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1685
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1686
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1691
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1694
0
                  pre->g_pre_comp[i][4][2]);
1695
        /*
1696
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1697
         */
1698
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1699
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1700
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
0
        for (j = 1; j < 8; ++j) {
1704
            /* odd multiples: add G resp. 2^28*G */
1705
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1706
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1707
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1708
0
                      pre->g_pre_comp[i][2 * j][0],
1709
0
                      pre->g_pre_comp[i][2 * j][1],
1710
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1711
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1712
0
                      pre->g_pre_comp[i][1][2]);
1713
0
        }
1714
0
    }
1715
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1716
1717
0
 done:
1718
0
    SETPRECOMP(group, nistp224, pre);
1719
0
    pre = NULL;
1720
0
    ret = 1;
1721
0
 err:
1722
0
    BN_CTX_end(ctx);
1723
0
    EC_POINT_free(generator);
1724
0
    BN_CTX_free(new_ctx);
1725
0
    EC_nistp224_pre_comp_free(pre);
1726
0
    return ret;
1727
0
}
1728
1729
int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1730
0
{
1731
0
    return HAVEPRECOMP(group, nistp224);
1732
0
}
1733
1734
#endif