Coverage Report

Created: 2023-09-25 06:42

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
797k
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
33
{
144
33
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
33
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
33
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
33
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
33
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
33
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
33
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
33
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
33
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
33
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
94
{
161
94
    memset(out, 0, 66);
162
94
    (*((limb *) & out[0])) = in[0];
163
94
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
94
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
94
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
94
    (*((limb_aX *) & out[29])) = in[4];
167
94
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
94
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
94
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
94
    (*((limb_aX *) & out[58])) = in[8];
171
94
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
33
{
176
33
    felem_bytearray b_out;
177
33
    int num_bytes;
178
179
33
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
33
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
33
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
33
    bin66_to_felem(out, b_out);
189
33
    return 1;
190
33
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
94
{
195
94
    felem_bytearray b_out;
196
94
    felem_to_bin66(b_out, in);
197
94
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
94
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
23.5k
{
220
23.5k
    out[0] = in[0];
221
23.5k
    out[1] = in[1];
222
23.5k
    out[2] = in[2];
223
23.5k
    out[3] = in[3];
224
23.5k
    out[4] = in[4];
225
23.5k
    out[5] = in[5];
226
23.5k
    out[6] = in[6];
227
23.5k
    out[7] = in[7];
228
23.5k
    out[8] = in[8];
229
23.5k
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
4.68k
{
234
4.68k
    out[0] += in[0];
235
4.68k
    out[1] += in[1];
236
4.68k
    out[2] += in[2];
237
4.68k
    out[3] += in[3];
238
4.68k
    out[4] += in[4];
239
4.68k
    out[5] += in[5];
240
4.68k
    out[6] += in[6];
241
4.68k
    out[7] += in[7];
242
4.68k
    out[8] += in[8];
243
4.68k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
55.3k
{
248
55.3k
    out[0] = in[0] * scalar;
249
55.3k
    out[1] = in[1] * scalar;
250
55.3k
    out[2] = in[2] * scalar;
251
55.3k
    out[3] = in[3] * scalar;
252
55.3k
    out[4] = in[4] * scalar;
253
55.3k
    out[5] = in[5] * scalar;
254
55.3k
    out[6] = in[6] * scalar;
255
55.3k
    out[7] = in[7] * scalar;
256
55.3k
    out[8] = in[8] * scalar;
257
55.3k
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
9.36k
{
262
9.36k
    out[0] *= scalar;
263
9.36k
    out[1] *= scalar;
264
9.36k
    out[2] *= scalar;
265
9.36k
    out[3] *= scalar;
266
9.36k
    out[4] *= scalar;
267
9.36k
    out[5] *= scalar;
268
9.36k
    out[6] *= scalar;
269
9.36k
    out[7] *= scalar;
270
9.36k
    out[8] *= scalar;
271
9.36k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
3.12k
{
276
3.12k
    out[0] *= scalar;
277
3.12k
    out[1] *= scalar;
278
3.12k
    out[2] *= scalar;
279
3.12k
    out[3] *= scalar;
280
3.12k
    out[4] *= scalar;
281
3.12k
    out[5] *= scalar;
282
3.12k
    out[6] *= scalar;
283
3.12k
    out[7] *= scalar;
284
3.12k
    out[8] *= scalar;
285
3.12k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
0
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
0
    out[0] = two62m3 - in[0];
301
0
    out[1] = two62m2 - in[1];
302
0
    out[2] = two62m2 - in[2];
303
0
    out[3] = two62m2 - in[3];
304
0
    out[4] = two62m2 - in[4];
305
0
    out[5] = two62m2 - in[5];
306
0
    out[6] = two62m2 - in[6];
307
0
    out[7] = two62m2 - in[7];
308
0
    out[8] = two62m2 - in[8];
309
0
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
4.68k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
4.68k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
4.68k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
4.68k
    out[0] += two62m3 - in[0];
327
4.68k
    out[1] += two62m2 - in[1];
328
4.68k
    out[2] += two62m2 - in[2];
329
4.68k
    out[3] += two62m2 - in[3];
330
4.68k
    out[4] += two62m2 - in[4];
331
4.68k
    out[5] += two62m2 - in[5];
332
4.68k
    out[6] += two62m2 - in[6];
333
4.68k
    out[7] += two62m2 - in[7];
334
4.68k
    out[8] += two62m2 - in[8];
335
4.68k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
9.36k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
9.36k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
9.36k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
9.36k
    out[0] += two63m6 - in[0];
358
9.36k
    out[1] += two63m5 - in[1];
359
9.36k
    out[2] += two63m5 - in[2];
360
9.36k
    out[3] += two63m5 - in[3];
361
9.36k
    out[4] += two63m5 - in[4];
362
9.36k
    out[5] += two63m5 - in[5];
363
9.36k
    out[6] += two63m5 - in[6];
364
9.36k
    out[7] += two63m5 - in[7];
365
9.36k
    out[8] += two63m5 - in[8];
366
9.36k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
3.12k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
3.12k
    static const uint128_t two127m70 =
381
3.12k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
3.12k
    static const uint128_t two127m69 =
383
3.12k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
3.12k
    out[0] += (two127m70 - in[0]);
386
3.12k
    out[1] += (two127m69 - in[1]);
387
3.12k
    out[2] += (two127m69 - in[2]);
388
3.12k
    out[3] += (two127m69 - in[3]);
389
3.12k
    out[4] += (two127m69 - in[4]);
390
3.12k
    out[5] += (two127m69 - in[5]);
391
3.12k
    out[6] += (two127m69 - in[6]);
392
3.12k
    out[7] += (two127m69 - in[7]);
393
3.12k
    out[8] += (two127m69 - in[8]);
394
3.12k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
18.2k
{
405
18.2k
    felem inx2, inx4;
406
18.2k
    felem_scalar(inx2, in, 2);
407
18.2k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
18.2k
    out[0] = ((uint128_t) in[0]) * in[0];
421
18.2k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
18.2k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
18.2k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
18.2k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
18.2k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
18.2k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
18.2k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
18.2k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
18.2k
             ((uint128_t) in[1]) * inx2[5] +
430
18.2k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
18.2k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
18.2k
             ((uint128_t) in[1]) * inx2[6] +
433
18.2k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
18.2k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
18.2k
             ((uint128_t) in[1]) * inx2[7] +
436
18.2k
             ((uint128_t) in[2]) * inx2[6] +
437
18.2k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
18.2k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
18.2k
              ((uint128_t) in[2]) * inx4[7] +
451
18.2k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
18.2k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
18.2k
              ((uint128_t) in[3]) * inx4[7] +
456
18.2k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
18.2k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
18.2k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
18.2k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
18.2k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
18.2k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
18.2k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
18.2k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
18.2k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
18.2k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
17.3k
{
489
17.3k
    felem in2x2;
490
17.3k
    felem_scalar(in2x2, in2, 2);
491
492
17.3k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
17.3k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
17.3k
             ((uint128_t) in1[1]) * in2[0];
496
497
17.3k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
17.3k
             ((uint128_t) in1[1]) * in2[1] +
499
17.3k
             ((uint128_t) in1[2]) * in2[0];
500
501
17.3k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
17.3k
             ((uint128_t) in1[1]) * in2[2] +
503
17.3k
             ((uint128_t) in1[2]) * in2[1] +
504
17.3k
             ((uint128_t) in1[3]) * in2[0];
505
506
17.3k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
17.3k
             ((uint128_t) in1[1]) * in2[3] +
508
17.3k
             ((uint128_t) in1[2]) * in2[2] +
509
17.3k
             ((uint128_t) in1[3]) * in2[1] +
510
17.3k
             ((uint128_t) in1[4]) * in2[0];
511
512
17.3k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
17.3k
             ((uint128_t) in1[1]) * in2[4] +
514
17.3k
             ((uint128_t) in1[2]) * in2[3] +
515
17.3k
             ((uint128_t) in1[3]) * in2[2] +
516
17.3k
             ((uint128_t) in1[4]) * in2[1] +
517
17.3k
             ((uint128_t) in1[5]) * in2[0];
518
519
17.3k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
17.3k
             ((uint128_t) in1[1]) * in2[5] +
521
17.3k
             ((uint128_t) in1[2]) * in2[4] +
522
17.3k
             ((uint128_t) in1[3]) * in2[3] +
523
17.3k
             ((uint128_t) in1[4]) * in2[2] +
524
17.3k
             ((uint128_t) in1[5]) * in2[1] +
525
17.3k
             ((uint128_t) in1[6]) * in2[0];
526
527
17.3k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
17.3k
             ((uint128_t) in1[1]) * in2[6] +
529
17.3k
             ((uint128_t) in1[2]) * in2[5] +
530
17.3k
             ((uint128_t) in1[3]) * in2[4] +
531
17.3k
             ((uint128_t) in1[4]) * in2[3] +
532
17.3k
             ((uint128_t) in1[5]) * in2[2] +
533
17.3k
             ((uint128_t) in1[6]) * in2[1] +
534
17.3k
             ((uint128_t) in1[7]) * in2[0];
535
536
17.3k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
17.3k
             ((uint128_t) in1[1]) * in2[7] +
538
17.3k
             ((uint128_t) in1[2]) * in2[6] +
539
17.3k
             ((uint128_t) in1[3]) * in2[5] +
540
17.3k
             ((uint128_t) in1[4]) * in2[4] +
541
17.3k
             ((uint128_t) in1[5]) * in2[3] +
542
17.3k
             ((uint128_t) in1[6]) * in2[2] +
543
17.3k
             ((uint128_t) in1[7]) * in2[1] +
544
17.3k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
17.3k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
17.3k
              ((uint128_t) in1[2]) * in2x2[7] +
550
17.3k
              ((uint128_t) in1[3]) * in2x2[6] +
551
17.3k
              ((uint128_t) in1[4]) * in2x2[5] +
552
17.3k
              ((uint128_t) in1[5]) * in2x2[4] +
553
17.3k
              ((uint128_t) in1[6]) * in2x2[3] +
554
17.3k
              ((uint128_t) in1[7]) * in2x2[2] +
555
17.3k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
17.3k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
17.3k
              ((uint128_t) in1[3]) * in2x2[7] +
559
17.3k
              ((uint128_t) in1[4]) * in2x2[6] +
560
17.3k
              ((uint128_t) in1[5]) * in2x2[5] +
561
17.3k
              ((uint128_t) in1[6]) * in2x2[4] +
562
17.3k
              ((uint128_t) in1[7]) * in2x2[3] +
563
17.3k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
17.3k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
17.3k
              ((uint128_t) in1[4]) * in2x2[7] +
567
17.3k
              ((uint128_t) in1[5]) * in2x2[6] +
568
17.3k
              ((uint128_t) in1[6]) * in2x2[5] +
569
17.3k
              ((uint128_t) in1[7]) * in2x2[4] +
570
17.3k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
17.3k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
17.3k
              ((uint128_t) in1[5]) * in2x2[7] +
574
17.3k
              ((uint128_t) in1[6]) * in2x2[6] +
575
17.3k
              ((uint128_t) in1[7]) * in2x2[5] +
576
17.3k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
17.3k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
17.3k
              ((uint128_t) in1[6]) * in2x2[7] +
580
17.3k
              ((uint128_t) in1[7]) * in2x2[6] +
581
17.3k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
17.3k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
17.3k
              ((uint128_t) in1[7]) * in2x2[7] +
585
17.3k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
17.3k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
17.3k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
17.3k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
17.3k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
32.4k
{
604
32.4k
    u64 overflow1, overflow2;
605
606
32.4k
    out[0] = ((limb) in[0]) & bottom58bits;
607
32.4k
    out[1] = ((limb) in[1]) & bottom58bits;
608
32.4k
    out[2] = ((limb) in[2]) & bottom58bits;
609
32.4k
    out[3] = ((limb) in[3]) & bottom58bits;
610
32.4k
    out[4] = ((limb) in[4]) & bottom58bits;
611
32.4k
    out[5] = ((limb) in[5]) & bottom58bits;
612
32.4k
    out[6] = ((limb) in[6]) & bottom58bits;
613
32.4k
    out[7] = ((limb) in[7]) & bottom58bits;
614
32.4k
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
32.4k
    out[1] += ((limb) in[0]) >> 58;
619
32.4k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
32.4k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
32.4k
    out[2] += ((limb) in[1]) >> 58;
627
32.4k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
32.4k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
32.4k
    out[3] += ((limb) in[2]) >> 58;
631
32.4k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
32.4k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
32.4k
    out[4] += ((limb) in[3]) >> 58;
635
32.4k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
32.4k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
32.4k
    out[5] += ((limb) in[4]) >> 58;
639
32.4k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
32.4k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
32.4k
    out[6] += ((limb) in[5]) >> 58;
643
32.4k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
32.4k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
32.4k
    out[7] += ((limb) in[6]) >> 58;
647
32.4k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
32.4k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
32.4k
    out[8] += ((limb) in[7]) >> 58;
651
32.4k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
32.4k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
32.4k
    overflow1 += ((limb) in[8]) >> 58;
659
32.4k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
32.4k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
32.4k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
32.4k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
32.4k
    out[0] += overflow1;        /* out[0] < 2^60 */
666
32.4k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
32.4k
    out[1] += out[0] >> 58;
669
32.4k
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
32.4k
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
11
{
701
11
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
11
    largefelem tmp;
703
11
    unsigned i;
704
705
11
    felem_square(tmp, in);
706
11
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
11
    felem_mul(tmp, in, ftmp);
708
11
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
11
    felem_assign(ftmp2, ftmp);
710
11
    felem_square(tmp, ftmp);
711
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
11
    felem_mul(tmp, in, ftmp);
713
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
11
    felem_square(tmp, ftmp);
715
11
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
11
    felem_square(tmp, ftmp2);
718
11
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
11
    felem_square(tmp, ftmp3);
720
11
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
11
    felem_mul(tmp, ftmp3, ftmp2);
722
11
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
11
    felem_assign(ftmp2, ftmp3);
725
11
    felem_square(tmp, ftmp3);
726
11
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
11
    felem_square(tmp, ftmp3);
728
11
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
11
    felem_square(tmp, ftmp3);
730
11
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
11
    felem_square(tmp, ftmp3);
732
11
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
11
    felem_assign(ftmp4, ftmp3);
734
11
    felem_mul(tmp, ftmp3, ftmp);
735
11
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
11
    felem_square(tmp, ftmp4);
737
11
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
11
    felem_mul(tmp, ftmp3, ftmp2);
739
11
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
11
    felem_assign(ftmp2, ftmp3);
741
742
99
    for (i = 0; i < 8; i++) {
743
88
        felem_square(tmp, ftmp3);
744
88
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
88
    }
746
11
    felem_mul(tmp, ftmp3, ftmp2);
747
11
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
11
    felem_assign(ftmp2, ftmp3);
749
750
187
    for (i = 0; i < 16; i++) {
751
176
        felem_square(tmp, ftmp3);
752
176
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
176
    }
754
11
    felem_mul(tmp, ftmp3, ftmp2);
755
11
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
11
    felem_assign(ftmp2, ftmp3);
757
758
363
    for (i = 0; i < 32; i++) {
759
352
        felem_square(tmp, ftmp3);
760
352
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
352
    }
762
11
    felem_mul(tmp, ftmp3, ftmp2);
763
11
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
11
    felem_assign(ftmp2, ftmp3);
765
766
715
    for (i = 0; i < 64; i++) {
767
704
        felem_square(tmp, ftmp3);
768
704
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
704
    }
770
11
    felem_mul(tmp, ftmp3, ftmp2);
771
11
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
11
    felem_assign(ftmp2, ftmp3);
773
774
1.41k
    for (i = 0; i < 128; i++) {
775
1.40k
        felem_square(tmp, ftmp3);
776
1.40k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
1.40k
    }
778
11
    felem_mul(tmp, ftmp3, ftmp2);
779
11
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
11
    felem_assign(ftmp2, ftmp3);
781
782
2.82k
    for (i = 0; i < 256; i++) {
783
2.81k
        felem_square(tmp, ftmp3);
784
2.81k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
2.81k
    }
786
11
    felem_mul(tmp, ftmp3, ftmp2);
787
11
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
110
    for (i = 0; i < 9; i++) {
790
99
        felem_square(tmp, ftmp3);
791
99
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
99
    }
793
11
    felem_mul(tmp, ftmp3, ftmp4);
794
11
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
11
    felem_mul(tmp, ftmp3, in);
796
11
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
11
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
6.24k
{
814
6.24k
    felem ftmp;
815
6.24k
    limb is_zero, is_p;
816
6.24k
    felem_assign(ftmp, in);
817
818
6.24k
    ftmp[0] += ftmp[8] >> 57;
819
6.24k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
6.24k
    ftmp[1] += ftmp[0] >> 58;
822
6.24k
    ftmp[0] &= bottom58bits;
823
6.24k
    ftmp[2] += ftmp[1] >> 58;
824
6.24k
    ftmp[1] &= bottom58bits;
825
6.24k
    ftmp[3] += ftmp[2] >> 58;
826
6.24k
    ftmp[2] &= bottom58bits;
827
6.24k
    ftmp[4] += ftmp[3] >> 58;
828
6.24k
    ftmp[3] &= bottom58bits;
829
6.24k
    ftmp[5] += ftmp[4] >> 58;
830
6.24k
    ftmp[4] &= bottom58bits;
831
6.24k
    ftmp[6] += ftmp[5] >> 58;
832
6.24k
    ftmp[5] &= bottom58bits;
833
6.24k
    ftmp[7] += ftmp[6] >> 58;
834
6.24k
    ftmp[6] &= bottom58bits;
835
6.24k
    ftmp[8] += ftmp[7] >> 58;
836
6.24k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
6.24k
    is_zero = 0;
846
6.24k
    is_zero |= ftmp[0];
847
6.24k
    is_zero |= ftmp[1];
848
6.24k
    is_zero |= ftmp[2];
849
6.24k
    is_zero |= ftmp[3];
850
6.24k
    is_zero |= ftmp[4];
851
6.24k
    is_zero |= ftmp[5];
852
6.24k
    is_zero |= ftmp[6];
853
6.24k
    is_zero |= ftmp[7];
854
6.24k
    is_zero |= ftmp[8];
855
856
6.24k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
6.24k
    is_zero = 0 - (is_zero >> 63);
862
863
6.24k
    is_p = ftmp[0] ^ kPrime[0];
864
6.24k
    is_p |= ftmp[1] ^ kPrime[1];
865
6.24k
    is_p |= ftmp[2] ^ kPrime[2];
866
6.24k
    is_p |= ftmp[3] ^ kPrime[3];
867
6.24k
    is_p |= ftmp[4] ^ kPrime[4];
868
6.24k
    is_p |= ftmp[5] ^ kPrime[5];
869
6.24k
    is_p |= ftmp[6] ^ kPrime[6];
870
6.24k
    is_p |= ftmp[7] ^ kPrime[7];
871
6.24k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
6.24k
    is_p--;
874
6.24k
    is_p = 0 - (is_p >> 63);
875
876
6.24k
    is_zero |= is_p;
877
6.24k
    return is_zero;
878
6.24k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
58
{
892
58
    limb is_p, is_greater, sign;
893
58
    static const limb two58 = ((limb) 1) << 58;
894
895
58
    felem_assign(out, in);
896
897
58
    out[0] += out[8] >> 57;
898
58
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
58
    out[1] += out[0] >> 58;
901
58
    out[0] &= bottom58bits;
902
58
    out[2] += out[1] >> 58;
903
58
    out[1] &= bottom58bits;
904
58
    out[3] += out[2] >> 58;
905
58
    out[2] &= bottom58bits;
906
58
    out[4] += out[3] >> 58;
907
58
    out[3] &= bottom58bits;
908
58
    out[5] += out[4] >> 58;
909
58
    out[4] &= bottom58bits;
910
58
    out[6] += out[5] >> 58;
911
58
    out[5] &= bottom58bits;
912
58
    out[7] += out[6] >> 58;
913
58
    out[6] &= bottom58bits;
914
58
    out[8] += out[7] >> 58;
915
58
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
58
    is_p = out[0] ^ kPrime[0];
929
58
    is_p |= out[1] ^ kPrime[1];
930
58
    is_p |= out[2] ^ kPrime[2];
931
58
    is_p |= out[3] ^ kPrime[3];
932
58
    is_p |= out[4] ^ kPrime[4];
933
58
    is_p |= out[5] ^ kPrime[5];
934
58
    is_p |= out[6] ^ kPrime[6];
935
58
    is_p |= out[7] ^ kPrime[7];
936
58
    is_p |= out[8] ^ kPrime[8];
937
938
58
    is_p--;
939
58
    is_p &= is_p << 32;
940
58
    is_p &= is_p << 16;
941
58
    is_p &= is_p << 8;
942
58
    is_p &= is_p << 4;
943
58
    is_p &= is_p << 2;
944
58
    is_p &= is_p << 1;
945
58
    is_p = 0 - (is_p >> 63);
946
58
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
58
    out[0] &= is_p;
951
58
    out[1] &= is_p;
952
58
    out[2] &= is_p;
953
58
    out[3] &= is_p;
954
58
    out[4] &= is_p;
955
58
    out[5] &= is_p;
956
58
    out[6] &= is_p;
957
58
    out[7] &= is_p;
958
58
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
58
    is_greater = out[8] >> 57;
965
58
    is_greater |= is_greater << 32;
966
58
    is_greater |= is_greater << 16;
967
58
    is_greater |= is_greater << 8;
968
58
    is_greater |= is_greater << 4;
969
58
    is_greater |= is_greater << 2;
970
58
    is_greater |= is_greater << 1;
971
58
    is_greater = 0 - (is_greater >> 63);
972
973
58
    out[0] -= kPrime[0] & is_greater;
974
58
    out[1] -= kPrime[1] & is_greater;
975
58
    out[2] -= kPrime[2] & is_greater;
976
58
    out[3] -= kPrime[3] & is_greater;
977
58
    out[4] -= kPrime[4] & is_greater;
978
58
    out[5] -= kPrime[5] & is_greater;
979
58
    out[6] -= kPrime[6] & is_greater;
980
58
    out[7] -= kPrime[7] & is_greater;
981
58
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
58
    sign = -(out[0] >> 63);
985
58
    out[0] += (two58 & sign);
986
58
    out[1] -= (1 & sign);
987
58
    sign = -(out[1] >> 63);
988
58
    out[1] += (two58 & sign);
989
58
    out[2] -= (1 & sign);
990
58
    sign = -(out[2] >> 63);
991
58
    out[2] += (two58 & sign);
992
58
    out[3] -= (1 & sign);
993
58
    sign = -(out[3] >> 63);
994
58
    out[3] += (two58 & sign);
995
58
    out[4] -= (1 & sign);
996
58
    sign = -(out[4] >> 63);
997
58
    out[4] += (two58 & sign);
998
58
    out[5] -= (1 & sign);
999
58
    sign = -(out[0] >> 63);
1000
58
    out[5] += (two58 & sign);
1001
58
    out[6] -= (1 & sign);
1002
58
    sign = -(out[6] >> 63);
1003
58
    out[6] += (two58 & sign);
1004
58
    out[7] -= (1 & sign);
1005
58
    sign = -(out[7] >> 63);
1006
58
    out[7] += (two58 & sign);
1007
58
    out[8] -= (1 & sign);
1008
58
    sign = -(out[5] >> 63);
1009
58
    out[5] += (two58 & sign);
1010
58
    out[6] -= (1 & sign);
1011
58
    sign = -(out[6] >> 63);
1012
58
    out[6] += (two58 & sign);
1013
58
    out[7] -= (1 & sign);
1014
58
    sign = -(out[7] >> 63);
1015
58
    out[7] += (two58 & sign);
1016
58
    out[8] -= (1 & sign);
1017
58
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
1.56k
{
1039
1.56k
    largefelem tmp, tmp2;
1040
1.56k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
1.56k
    felem_assign(ftmp, x_in);
1043
1.56k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
1.56k
    felem_square(tmp, z_in);
1047
1.56k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
1.56k
    felem_square(tmp, y_in);
1051
1.56k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
1.56k
    felem_mul(tmp, x_in, gamma);
1055
1.56k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
1.56k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
1.56k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
1.56k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
1.56k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
1.56k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
1.56k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
1.56k
    felem_assign(ftmp, beta);
1080
1.56k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
1.56k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
1.56k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
1.56k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
1.56k
    felem_assign(ftmp, y_in);
1090
1.56k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
1.56k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
1.56k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
1.56k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
1.56k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
1.56k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
1.56k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
1.56k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
1.56k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
1.56k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
1.56k
    felem_reduce(y_out, tmp);
1131
1.56k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
9.36k
{
1136
9.36k
    unsigned i;
1137
93.6k
    for (i = 0; i < NLIMBS; ++i) {
1138
84.2k
        const limb tmp = mask & (in[i] ^ out[i]);
1139
84.2k
        out[i] ^= tmp;
1140
84.2k
    }
1141
9.36k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
1.56k
{
1159
1.56k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
1.56k
    largefelem tmp, tmp2;
1161
1.56k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
1.56k
    limb points_equal;
1163
1164
1.56k
    z1_is_zero = felem_is_zero(z1);
1165
1.56k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
1.56k
    felem_square(tmp, z1);
1169
1.56k
    felem_reduce(ftmp, tmp);
1170
1171
1.56k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
0
        felem_square(tmp, z2);
1174
0
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
0
        felem_mul(tmp, x1, ftmp2);
1178
0
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
0
        felem_assign(ftmp5, z1);
1182
0
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
0
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
0
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
0
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
0
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
0
        felem_mul(tmp, ftmp2, z2);
1196
0
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
0
        felem_mul(tmp, y1, ftmp2);
1200
0
        felem_reduce(ftmp6, tmp);
1201
1.56k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
1.56k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
1.56k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
1.56k
        felem_assign(ftmp6, y1);
1214
1.56k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
1.56k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
1.56k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
1.56k
    felem_reduce(ftmp4, tmp);
1224
1225
1.56k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
1.56k
    felem_mul(tmp, ftmp5, ftmp4);
1229
1.56k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
1.56k
    felem_mul(tmp, ftmp, z1);
1233
1.56k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
1.56k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
1.56k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
1.56k
    felem_reduce(ftmp5, tmp);
1243
1.56k
    y_equal = felem_is_zero(ftmp5);
1244
1.56k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
1.56k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
1.56k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
1.56k
    felem_assign(ftmp, ftmp4);
1287
1.56k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
1.56k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
1.56k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
1.56k
    felem_mul(tmp, ftmp4, ftmp);
1295
1.56k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
1.56k
    felem_mul(tmp, ftmp3, ftmp);
1299
1.56k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
1.56k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
1.56k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
1.56k
    felem_assign(ftmp3, ftmp4);
1307
1.56k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
1.56k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
1.56k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
1.56k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
1.56k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
1.56k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
1.56k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
1.56k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
1.56k
    felem_reduce(y_out, tmp);
1331
1332
1.56k
    copy_conditional(x_out, x2, z1_is_zero);
1333
1.56k
    copy_conditional(x_out, x1, z2_is_zero);
1334
1.56k
    copy_conditional(y_out, y2, z1_is_zero);
1335
1.56k
    copy_conditional(y_out, y1, z2_is_zero);
1336
1.56k
    copy_conditional(z_out, z2, z1_is_zero);
1337
1.56k
    copy_conditional(z_out, z1, z2_is_zero);
1338
1.56k
    felem_assign(x3, x_out);
1339
1.56k
    felem_assign(y3, y_out);
1340
1.56k
    felem_assign(z3, z_out);
1341
1.56k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
1.57k
{
1497
1.57k
    unsigned i, j;
1498
1.57k
    limb *outlimbs = &out[0][0];
1499
1500
1.57k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
26.7k
    for (i = 0; i < size; i++) {
1503
25.1k
        const limb *inlimbs = &pre_comp[i][0][0];
1504
25.1k
        limb mask = i ^ idx;
1505
25.1k
        mask |= mask >> 4;
1506
25.1k
        mask |= mask >> 2;
1507
25.1k
        mask |= mask >> 1;
1508
25.1k
        mask &= 1;
1509
25.1k
        mask--;
1510
704k
        for (j = 0; j < NLIMBS * 3; j++)
1511
679k
            outlimbs[j] |= inlimbs[j] & mask;
1512
25.1k
    }
1513
1.57k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
6.25k
{
1518
6.25k
    if (i < 0)
1519
0
        return 0;
1520
6.25k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
6.25k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
12
{
1536
12
    int i, skip;
1537
12
    unsigned num, gen_mul = (g_scalar != NULL);
1538
12
    felem nq[3], tmp[4];
1539
12
    limb bits;
1540
12
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
12
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
12
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
1.58k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
1.57k
        if (!skip)
1555
1.56k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
1.57k
        if (gen_mul && (i <= 130)) {
1559
1.57k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
1.57k
            if (i < 130) {
1561
1.56k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
1.56k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
1.56k
                bits |= get_bit(g_scalar, i);
1564
1.56k
            }
1565
            /* select the point to add, in constant time */
1566
1.57k
            select_point(bits, 16, g_pre_comp, tmp);
1567
1.57k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
1.56k
                point_add(nq[0], nq[1], nq[2],
1570
1.56k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
1.56k
            } else {
1572
12
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
12
                skip = 0;
1574
12
            }
1575
1.57k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
1.57k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
0
            for (num = 0; num < num_points; ++num) {
1581
0
                bits = get_bit(scalars[num], i + 4) << 5;
1582
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
0
                bits |= get_bit(scalars[num], i) << 1;
1586
0
                bits |= get_bit(scalars[num], i - 1);
1587
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
0
                select_point(digit, 17, pre_comp[num], tmp);
1593
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
0
                if (!skip) {
1598
0
                    point_add(nq[0], nq[1], nq[2],
1599
0
                              nq[0], nq[1], nq[2],
1600
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
0
                } else {
1602
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
0
                    skip = 0;
1604
0
                }
1605
0
            }
1606
0
        }
1607
1.57k
    }
1608
12
    felem_assign(x_out, nq[0]);
1609
12
    felem_assign(y_out, nq[1]);
1610
12
    felem_assign(z_out, nq[2]);
1611
12
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
1.04k
{
1622
1.04k
    static const EC_METHOD ret = {
1623
1.04k
        EC_FLAGS_DEFAULT_OCT,
1624
1.04k
        NID_X9_62_prime_field,
1625
1.04k
        ec_GFp_nistp521_group_init,
1626
1.04k
        ec_GFp_simple_group_finish,
1627
1.04k
        ec_GFp_simple_group_clear_finish,
1628
1.04k
        ec_GFp_nist_group_copy,
1629
1.04k
        ec_GFp_nistp521_group_set_curve,
1630
1.04k
        ec_GFp_simple_group_get_curve,
1631
1.04k
        ec_GFp_simple_group_get_degree,
1632
1.04k
        ec_group_simple_order_bits,
1633
1.04k
        ec_GFp_simple_group_check_discriminant,
1634
1.04k
        ec_GFp_simple_point_init,
1635
1.04k
        ec_GFp_simple_point_finish,
1636
1.04k
        ec_GFp_simple_point_clear_finish,
1637
1.04k
        ec_GFp_simple_point_copy,
1638
1.04k
        ec_GFp_simple_point_set_to_infinity,
1639
1.04k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
1.04k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
1.04k
        ec_GFp_simple_point_set_affine_coordinates,
1642
1.04k
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
1.04k
        0 /* point_set_compressed_coordinates */ ,
1644
1.04k
        0 /* point2oct */ ,
1645
1.04k
        0 /* oct2point */ ,
1646
1.04k
        ec_GFp_simple_add,
1647
1.04k
        ec_GFp_simple_dbl,
1648
1.04k
        ec_GFp_simple_invert,
1649
1.04k
        ec_GFp_simple_is_at_infinity,
1650
1.04k
        ec_GFp_simple_is_on_curve,
1651
1.04k
        ec_GFp_simple_cmp,
1652
1.04k
        ec_GFp_simple_make_affine,
1653
1.04k
        ec_GFp_simple_points_make_affine,
1654
1.04k
        ec_GFp_nistp521_points_mul,
1655
1.04k
        ec_GFp_nistp521_precompute_mult,
1656
1.04k
        ec_GFp_nistp521_have_precompute_mult,
1657
1.04k
        ec_GFp_nist_field_mul,
1658
1.04k
        ec_GFp_nist_field_sqr,
1659
1.04k
        0 /* field_div */ ,
1660
1.04k
        ec_GFp_simple_field_inv,
1661
1.04k
        0 /* field_encode */ ,
1662
1.04k
        0 /* field_decode */ ,
1663
1.04k
        0,                      /* field_set_to_one */
1664
1.04k
        ec_key_simple_priv2oct,
1665
1.04k
        ec_key_simple_oct2priv,
1666
1.04k
        0, /* set private */
1667
1.04k
        ec_key_simple_generate_key,
1668
1.04k
        ec_key_simple_check_key,
1669
1.04k
        ec_key_simple_generate_public_key,
1670
1.04k
        0, /* keycopy */
1671
1.04k
        0, /* keyfinish */
1672
1.04k
        ecdh_simple_compute_key,
1673
1.04k
        0, /* field_inverse_mod_ord */
1674
1.04k
        0, /* blind_coordinates */
1675
1.04k
        0, /* ladder_pre */
1676
1.04k
        0, /* ladder_step */
1677
1.04k
        0  /* ladder_post */
1678
1.04k
    };
1679
1680
1.04k
    return &ret;
1681
1.04k
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
2.08k
{
1740
2.08k
    int ret;
1741
2.08k
    ret = ec_GFp_simple_group_init(group);
1742
2.08k
    group->a_is_minus3 = 1;
1743
2.08k
    return ret;
1744
2.08k
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
1.04k
{
1750
1.04k
    int ret = 0;
1751
1.04k
    BN_CTX *new_ctx = NULL;
1752
1.04k
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
1.04k
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
1.04k
    BN_CTX_start(ctx);
1758
1.04k
    curve_p = BN_CTX_get(ctx);
1759
1.04k
    curve_a = BN_CTX_get(ctx);
1760
1.04k
    curve_b = BN_CTX_get(ctx);
1761
1.04k
    if (curve_b == NULL)
1762
0
        goto err;
1763
1.04k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
1.04k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
1.04k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
1.04k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
1.04k
    group->field_mod_func = BN_nist_mod_521;
1772
1.04k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
1.04k
 err:
1774
1.04k
    BN_CTX_end(ctx);
1775
1.04k
    BN_CTX_free(new_ctx);
1776
1.04k
    return ret;
1777
1.04k
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
11
{
1788
11
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
11
    largefelem tmp;
1790
1791
11
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
11
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
11
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
11
    felem_inv(z2, z1);
1800
11
    felem_square(tmp, z2);
1801
11
    felem_reduce(z1, tmp);
1802
11
    felem_mul(tmp, x_in, z1);
1803
11
    felem_reduce(x_in, tmp);
1804
11
    felem_contract(x_out, x_in);
1805
11
    if (x != NULL) {
1806
11
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
11
    }
1812
11
    felem_mul(tmp, z1, z2);
1813
11
    felem_reduce(z1, tmp);
1814
11
    felem_mul(tmp, y_in, z1);
1815
11
    felem_reduce(y_in, tmp);
1816
11
    felem_contract(y_out, y_in);
1817
11
    if (y != NULL) {
1818
11
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
11
    }
1824
11
    return 1;
1825
11
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
12
{
1866
12
    int ret = 0;
1867
12
    int j;
1868
12
    int mixed = 0;
1869
12
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
12
    felem_bytearray g_secret;
1871
12
    felem_bytearray *secrets = NULL;
1872
12
    felem (*pre_comp)[17][3] = NULL;
1873
12
    felem *tmp_felems = NULL;
1874
12
    unsigned i;
1875
12
    int num_bytes;
1876
12
    int have_pre_comp = 0;
1877
12
    size_t num_points = num;
1878
12
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
12
    NISTP521_PRE_COMP *pre = NULL;
1880
12
    felem(*g_pre_comp)[3] = NULL;
1881
12
    EC_POINT *generator = NULL;
1882
12
    const EC_POINT *p = NULL;
1883
12
    const BIGNUM *p_scalar = NULL;
1884
1885
12
    BN_CTX_start(ctx);
1886
12
    x = BN_CTX_get(ctx);
1887
12
    y = BN_CTX_get(ctx);
1888
12
    z = BN_CTX_get(ctx);
1889
12
    tmp_scalar = BN_CTX_get(ctx);
1890
12
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
12
    if (scalar != NULL) {
1894
12
        pre = group->pre_comp.nistp521;
1895
12
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
12
        else
1899
            /* try to use the standard precomputation */
1900
12
            g_pre_comp = (felem(*)[3]) gmul;
1901
12
        generator = EC_POINT_new(group);
1902
12
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
12
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
12
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
12
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
12
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
12
                                                      generator, x, y, z,
1913
12
                                                      ctx))
1914
0
            goto err;
1915
12
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
12
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
12
    }
1925
1926
12
    if (num_points > 0) {
1927
0
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
0
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
0
        if ((secrets == NULL) || (pre_comp == NULL)
1940
0
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
0
        for (i = 0; i < num_points; ++i) {
1950
0
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
0
            } else {
1958
                /* the i^th point */
1959
0
                p = points[i];
1960
0
                p_scalar = scalars[i];
1961
0
            }
1962
0
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
0
                if ((BN_num_bits(p_scalar) > 521)
1965
0
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
0
                } else {
1977
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
0
                                               secrets[i], sizeof(secrets[i]));
1979
0
                }
1980
0
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
0
                if ((!BN_to_felem(x_out, p->X)) ||
1986
0
                    (!BN_to_felem(y_out, p->Y)) ||
1987
0
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
0
                for (j = 2; j <= 16; ++j) {
1993
0
                    if (j & 1) {
1994
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
0
                                  pre_comp[i][j - 1][0],
1998
0
                                  pre_comp[i][j - 1][1],
1999
0
                                  pre_comp[i][j - 1][2]);
2000
0
                    } else {
2001
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
0
                                     pre_comp[i][j / 2][1],
2004
0
                                     pre_comp[i][j / 2][2]);
2005
0
                    }
2006
0
                }
2007
0
            }
2008
0
        }
2009
0
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
0
    }
2012
2013
    /* the scalar for the generator */
2014
12
    if ((scalar != NULL) && (have_pre_comp)) {
2015
12
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
12
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
3
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
3
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
9
        } else {
2028
9
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
9
        }
2030
        /* do the multiplication with generator precomputation */
2031
12
        batch_mul(x_out, y_out, z_out,
2032
12
                  (const felem_bytearray(*))secrets, num_points,
2033
12
                  g_secret,
2034
12
                  mixed, (const felem(*)[17][3])pre_comp,
2035
12
                  (const felem(*)[3])g_pre_comp);
2036
12
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
0
        batch_mul(x_out, y_out, z_out,
2039
0
                  (const felem_bytearray(*))secrets, num_points,
2040
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
0
    }
2042
    /* reduce the output to its unique minimal representation */
2043
12
    felem_contract(x_in, x_out);
2044
12
    felem_contract(y_in, y_out);
2045
12
    felem_contract(z_in, z_out);
2046
12
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
12
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
12
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
12
 err:
2054
12
    BN_CTX_end(ctx);
2055
12
    EC_POINT_free(generator);
2056
12
    OPENSSL_free(secrets);
2057
12
    OPENSSL_free(pre_comp);
2058
12
    OPENSSL_free(tmp_felems);
2059
12
    return ret;
2060
12
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif