Coverage Report

Created: 2023-09-25 06:43

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
2.79M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
102
{
145
102
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
102
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
102
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
102
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
102
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
102
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
102
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
102
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
102
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
102
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
320
{
162
320
    memset(out, 0, 66);
163
320
    (*((limb *) & out[0])) = in[0];
164
320
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
320
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
320
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
320
    (*((limb_aX *) & out[29])) = in[4];
168
320
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
320
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
320
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
320
    (*((limb_aX *) & out[58])) = in[8];
172
320
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
102
{
177
102
    felem_bytearray b_out;
178
102
    int num_bytes;
179
180
102
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
102
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
102
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
102
    bin66_to_felem(out, b_out);
190
102
    return 1;
191
102
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
320
{
196
320
    felem_bytearray b_out;
197
320
    felem_to_bin66(b_out, in);
198
320
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
320
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
82.5k
{
221
82.5k
    out[0] = in[0];
222
82.5k
    out[1] = in[1];
223
82.5k
    out[2] = in[2];
224
82.5k
    out[3] = in[3];
225
82.5k
    out[4] = in[4];
226
82.5k
    out[5] = in[5];
227
82.5k
    out[6] = in[6];
228
82.5k
    out[7] = in[7];
229
82.5k
    out[8] = in[8];
230
82.5k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
16.3k
{
235
16.3k
    out[0] += in[0];
236
16.3k
    out[1] += in[1];
237
16.3k
    out[2] += in[2];
238
16.3k
    out[3] += in[3];
239
16.3k
    out[4] += in[4];
240
16.3k
    out[5] += in[5];
241
16.3k
    out[6] += in[6];
242
16.3k
    out[7] += in[7];
243
16.3k
    out[8] += in[8];
244
16.3k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
189k
{
249
189k
    out[0] = in[0] * scalar;
250
189k
    out[1] = in[1] * scalar;
251
189k
    out[2] = in[2] * scalar;
252
189k
    out[3] = in[3] * scalar;
253
189k
    out[4] = in[4] * scalar;
254
189k
    out[5] = in[5] * scalar;
255
189k
    out[6] = in[6] * scalar;
256
189k
    out[7] = in[7] * scalar;
257
189k
    out[8] = in[8] * scalar;
258
189k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
32.7k
{
263
32.7k
    out[0] *= scalar;
264
32.7k
    out[1] *= scalar;
265
32.7k
    out[2] *= scalar;
266
32.7k
    out[3] *= scalar;
267
32.7k
    out[4] *= scalar;
268
32.7k
    out[5] *= scalar;
269
32.7k
    out[6] *= scalar;
270
32.7k
    out[7] *= scalar;
271
32.7k
    out[8] *= scalar;
272
32.7k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
10.9k
{
277
10.9k
    out[0] *= scalar;
278
10.9k
    out[1] *= scalar;
279
10.9k
    out[2] *= scalar;
280
10.9k
    out[3] *= scalar;
281
10.9k
    out[4] *= scalar;
282
10.9k
    out[5] *= scalar;
283
10.9k
    out[6] *= scalar;
284
10.9k
    out[7] *= scalar;
285
10.9k
    out[8] *= scalar;
286
10.9k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
16.3k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
16.3k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
16.3k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
16.3k
    out[0] += two62m3 - in[0];
328
16.3k
    out[1] += two62m2 - in[1];
329
16.3k
    out[2] += two62m2 - in[2];
330
16.3k
    out[3] += two62m2 - in[3];
331
16.3k
    out[4] += two62m2 - in[4];
332
16.3k
    out[5] += two62m2 - in[5];
333
16.3k
    out[6] += two62m2 - in[6];
334
16.3k
    out[7] += two62m2 - in[7];
335
16.3k
    out[8] += two62m2 - in[8];
336
16.3k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
32.7k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
32.7k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
32.7k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
32.7k
    out[0] += two63m6 - in[0];
359
32.7k
    out[1] += two63m5 - in[1];
360
32.7k
    out[2] += two63m5 - in[2];
361
32.7k
    out[3] += two63m5 - in[3];
362
32.7k
    out[4] += two63m5 - in[4];
363
32.7k
    out[5] += two63m5 - in[5];
364
32.7k
    out[6] += two63m5 - in[6];
365
32.7k
    out[7] += two63m5 - in[7];
366
32.7k
    out[8] += two63m5 - in[8];
367
32.7k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
10.9k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
10.9k
    static const uint128_t two127m70 =
382
10.9k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
10.9k
    static const uint128_t two127m69 =
384
10.9k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
10.9k
    out[0] += (two127m70 - in[0]);
387
10.9k
    out[1] += (two127m69 - in[1]);
388
10.9k
    out[2] += (two127m69 - in[2]);
389
10.9k
    out[3] += (two127m69 - in[3]);
390
10.9k
    out[4] += (two127m69 - in[4]);
391
10.9k
    out[5] += (two127m69 - in[5]);
392
10.9k
    out[6] += (two127m69 - in[6]);
393
10.9k
    out[7] += (two127m69 - in[7]);
394
10.9k
    out[8] += (two127m69 - in[8]);
395
10.9k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
61.4k
{
406
61.4k
    felem inx2, inx4;
407
61.4k
    felem_scalar(inx2, in, 2);
408
61.4k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
61.4k
    out[0] = ((uint128_t) in[0]) * in[0];
422
61.4k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
61.4k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
61.4k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
61.4k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
61.4k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
61.4k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
61.4k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
61.4k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
61.4k
             ((uint128_t) in[1]) * inx2[5] +
431
61.4k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
61.4k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
61.4k
             ((uint128_t) in[1]) * inx2[6] +
434
61.4k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
61.4k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
61.4k
             ((uint128_t) in[1]) * inx2[7] +
437
61.4k
             ((uint128_t) in[2]) * inx2[6] +
438
61.4k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
61.4k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
61.4k
              ((uint128_t) in[2]) * inx4[7] +
452
61.4k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
61.4k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
61.4k
              ((uint128_t) in[3]) * inx4[7] +
457
61.4k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
61.4k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
61.4k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
61.4k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
61.4k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
61.4k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
61.4k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
61.4k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
61.4k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
61.4k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
60.6k
{
490
60.6k
    felem in2x2;
491
60.6k
    felem_scalar(in2x2, in2, 2);
492
493
60.6k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
60.6k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
60.6k
             ((uint128_t) in1[1]) * in2[0];
497
498
60.6k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
60.6k
             ((uint128_t) in1[1]) * in2[1] +
500
60.6k
             ((uint128_t) in1[2]) * in2[0];
501
502
60.6k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
60.6k
             ((uint128_t) in1[1]) * in2[2] +
504
60.6k
             ((uint128_t) in1[2]) * in2[1] +
505
60.6k
             ((uint128_t) in1[3]) * in2[0];
506
507
60.6k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
60.6k
             ((uint128_t) in1[1]) * in2[3] +
509
60.6k
             ((uint128_t) in1[2]) * in2[2] +
510
60.6k
             ((uint128_t) in1[3]) * in2[1] +
511
60.6k
             ((uint128_t) in1[4]) * in2[0];
512
513
60.6k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
60.6k
             ((uint128_t) in1[1]) * in2[4] +
515
60.6k
             ((uint128_t) in1[2]) * in2[3] +
516
60.6k
             ((uint128_t) in1[3]) * in2[2] +
517
60.6k
             ((uint128_t) in1[4]) * in2[1] +
518
60.6k
             ((uint128_t) in1[5]) * in2[0];
519
520
60.6k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
60.6k
             ((uint128_t) in1[1]) * in2[5] +
522
60.6k
             ((uint128_t) in1[2]) * in2[4] +
523
60.6k
             ((uint128_t) in1[3]) * in2[3] +
524
60.6k
             ((uint128_t) in1[4]) * in2[2] +
525
60.6k
             ((uint128_t) in1[5]) * in2[1] +
526
60.6k
             ((uint128_t) in1[6]) * in2[0];
527
528
60.6k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
60.6k
             ((uint128_t) in1[1]) * in2[6] +
530
60.6k
             ((uint128_t) in1[2]) * in2[5] +
531
60.6k
             ((uint128_t) in1[3]) * in2[4] +
532
60.6k
             ((uint128_t) in1[4]) * in2[3] +
533
60.6k
             ((uint128_t) in1[5]) * in2[2] +
534
60.6k
             ((uint128_t) in1[6]) * in2[1] +
535
60.6k
             ((uint128_t) in1[7]) * in2[0];
536
537
60.6k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
60.6k
             ((uint128_t) in1[1]) * in2[7] +
539
60.6k
             ((uint128_t) in1[2]) * in2[6] +
540
60.6k
             ((uint128_t) in1[3]) * in2[5] +
541
60.6k
             ((uint128_t) in1[4]) * in2[4] +
542
60.6k
             ((uint128_t) in1[5]) * in2[3] +
543
60.6k
             ((uint128_t) in1[6]) * in2[2] +
544
60.6k
             ((uint128_t) in1[7]) * in2[1] +
545
60.6k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
60.6k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
60.6k
              ((uint128_t) in1[2]) * in2x2[7] +
551
60.6k
              ((uint128_t) in1[3]) * in2x2[6] +
552
60.6k
              ((uint128_t) in1[4]) * in2x2[5] +
553
60.6k
              ((uint128_t) in1[5]) * in2x2[4] +
554
60.6k
              ((uint128_t) in1[6]) * in2x2[3] +
555
60.6k
              ((uint128_t) in1[7]) * in2x2[2] +
556
60.6k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
60.6k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
60.6k
              ((uint128_t) in1[3]) * in2x2[7] +
560
60.6k
              ((uint128_t) in1[4]) * in2x2[6] +
561
60.6k
              ((uint128_t) in1[5]) * in2x2[5] +
562
60.6k
              ((uint128_t) in1[6]) * in2x2[4] +
563
60.6k
              ((uint128_t) in1[7]) * in2x2[3] +
564
60.6k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
60.6k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
60.6k
              ((uint128_t) in1[4]) * in2x2[7] +
568
60.6k
              ((uint128_t) in1[5]) * in2x2[6] +
569
60.6k
              ((uint128_t) in1[6]) * in2x2[5] +
570
60.6k
              ((uint128_t) in1[7]) * in2x2[4] +
571
60.6k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
60.6k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
60.6k
              ((uint128_t) in1[5]) * in2x2[7] +
575
60.6k
              ((uint128_t) in1[6]) * in2x2[6] +
576
60.6k
              ((uint128_t) in1[7]) * in2x2[5] +
577
60.6k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
60.6k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
60.6k
              ((uint128_t) in1[6]) * in2x2[7] +
581
60.6k
              ((uint128_t) in1[7]) * in2x2[6] +
582
60.6k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
60.6k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
60.6k
              ((uint128_t) in1[7]) * in2x2[7] +
586
60.6k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
60.6k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
60.6k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
60.6k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
60.6k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
111k
{
605
111k
    u64 overflow1, overflow2;
606
607
111k
    out[0] = ((limb) in[0]) & bottom58bits;
608
111k
    out[1] = ((limb) in[1]) & bottom58bits;
609
111k
    out[2] = ((limb) in[2]) & bottom58bits;
610
111k
    out[3] = ((limb) in[3]) & bottom58bits;
611
111k
    out[4] = ((limb) in[4]) & bottom58bits;
612
111k
    out[5] = ((limb) in[5]) & bottom58bits;
613
111k
    out[6] = ((limb) in[6]) & bottom58bits;
614
111k
    out[7] = ((limb) in[7]) & bottom58bits;
615
111k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
111k
    out[1] += ((limb) in[0]) >> 58;
620
111k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
111k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
111k
    out[2] += ((limb) in[1]) >> 58;
628
111k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
111k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
111k
    out[3] += ((limb) in[2]) >> 58;
632
111k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
111k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
111k
    out[4] += ((limb) in[3]) >> 58;
636
111k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
111k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
111k
    out[5] += ((limb) in[4]) >> 58;
640
111k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
111k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
111k
    out[6] += ((limb) in[5]) >> 58;
644
111k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
111k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
111k
    out[7] += ((limb) in[6]) >> 58;
648
111k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
111k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
111k
    out[8] += ((limb) in[7]) >> 58;
652
111k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
111k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
111k
    overflow1 += ((limb) in[8]) >> 58;
660
111k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
111k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
111k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
111k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
111k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
111k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
111k
    out[1] += out[0] >> 58;
670
111k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
111k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
61.4k
# define felem_square felem_square_ref
726
60.6k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
34
{
753
34
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
34
    largefelem tmp;
755
34
    unsigned i;
756
757
34
    felem_square(tmp, in);
758
34
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
34
    felem_mul(tmp, in, ftmp);
760
34
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
34
    felem_assign(ftmp2, ftmp);
762
34
    felem_square(tmp, ftmp);
763
34
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
34
    felem_mul(tmp, in, ftmp);
765
34
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
34
    felem_square(tmp, ftmp);
767
34
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
34
    felem_square(tmp, ftmp2);
770
34
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
34
    felem_square(tmp, ftmp3);
772
34
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
34
    felem_mul(tmp, ftmp3, ftmp2);
774
34
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
34
    felem_assign(ftmp2, ftmp3);
777
34
    felem_square(tmp, ftmp3);
778
34
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
34
    felem_square(tmp, ftmp3);
780
34
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
34
    felem_square(tmp, ftmp3);
782
34
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
34
    felem_square(tmp, ftmp3);
784
34
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
34
    felem_assign(ftmp4, ftmp3);
786
34
    felem_mul(tmp, ftmp3, ftmp);
787
34
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
34
    felem_square(tmp, ftmp4);
789
34
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
34
    felem_mul(tmp, ftmp3, ftmp2);
791
34
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
34
    felem_assign(ftmp2, ftmp3);
793
794
306
    for (i = 0; i < 8; i++) {
795
272
        felem_square(tmp, ftmp3);
796
272
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
272
    }
798
34
    felem_mul(tmp, ftmp3, ftmp2);
799
34
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
34
    felem_assign(ftmp2, ftmp3);
801
802
578
    for (i = 0; i < 16; i++) {
803
544
        felem_square(tmp, ftmp3);
804
544
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
544
    }
806
34
    felem_mul(tmp, ftmp3, ftmp2);
807
34
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
34
    felem_assign(ftmp2, ftmp3);
809
810
1.12k
    for (i = 0; i < 32; i++) {
811
1.08k
        felem_square(tmp, ftmp3);
812
1.08k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
1.08k
    }
814
34
    felem_mul(tmp, ftmp3, ftmp2);
815
34
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
34
    felem_assign(ftmp2, ftmp3);
817
818
2.21k
    for (i = 0; i < 64; i++) {
819
2.17k
        felem_square(tmp, ftmp3);
820
2.17k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
2.17k
    }
822
34
    felem_mul(tmp, ftmp3, ftmp2);
823
34
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
34
    felem_assign(ftmp2, ftmp3);
825
826
4.38k
    for (i = 0; i < 128; i++) {
827
4.35k
        felem_square(tmp, ftmp3);
828
4.35k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
4.35k
    }
830
34
    felem_mul(tmp, ftmp3, ftmp2);
831
34
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
34
    felem_assign(ftmp2, ftmp3);
833
834
8.73k
    for (i = 0; i < 256; i++) {
835
8.70k
        felem_square(tmp, ftmp3);
836
8.70k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
8.70k
    }
838
34
    felem_mul(tmp, ftmp3, ftmp2);
839
34
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
340
    for (i = 0; i < 9; i++) {
842
306
        felem_square(tmp, ftmp3);
843
306
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
306
    }
845
34
    felem_mul(tmp, ftmp3, ftmp4);
846
34
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
34
    felem_mul(tmp, ftmp3, in);
848
34
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
34
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
21.8k
{
866
21.8k
    felem ftmp;
867
21.8k
    limb is_zero, is_p;
868
21.8k
    felem_assign(ftmp, in);
869
870
21.8k
    ftmp[0] += ftmp[8] >> 57;
871
21.8k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
21.8k
    ftmp[1] += ftmp[0] >> 58;
874
21.8k
    ftmp[0] &= bottom58bits;
875
21.8k
    ftmp[2] += ftmp[1] >> 58;
876
21.8k
    ftmp[1] &= bottom58bits;
877
21.8k
    ftmp[3] += ftmp[2] >> 58;
878
21.8k
    ftmp[2] &= bottom58bits;
879
21.8k
    ftmp[4] += ftmp[3] >> 58;
880
21.8k
    ftmp[3] &= bottom58bits;
881
21.8k
    ftmp[5] += ftmp[4] >> 58;
882
21.8k
    ftmp[4] &= bottom58bits;
883
21.8k
    ftmp[6] += ftmp[5] >> 58;
884
21.8k
    ftmp[5] &= bottom58bits;
885
21.8k
    ftmp[7] += ftmp[6] >> 58;
886
21.8k
    ftmp[6] &= bottom58bits;
887
21.8k
    ftmp[8] += ftmp[7] >> 58;
888
21.8k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
21.8k
    is_zero = 0;
898
21.8k
    is_zero |= ftmp[0];
899
21.8k
    is_zero |= ftmp[1];
900
21.8k
    is_zero |= ftmp[2];
901
21.8k
    is_zero |= ftmp[3];
902
21.8k
    is_zero |= ftmp[4];
903
21.8k
    is_zero |= ftmp[5];
904
21.8k
    is_zero |= ftmp[6];
905
21.8k
    is_zero |= ftmp[7];
906
21.8k
    is_zero |= ftmp[8];
907
908
21.8k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
21.8k
    is_zero = 0 - (is_zero >> 63);
914
915
21.8k
    is_p = ftmp[0] ^ kPrime[0];
916
21.8k
    is_p |= ftmp[1] ^ kPrime[1];
917
21.8k
    is_p |= ftmp[2] ^ kPrime[2];
918
21.8k
    is_p |= ftmp[3] ^ kPrime[3];
919
21.8k
    is_p |= ftmp[4] ^ kPrime[4];
920
21.8k
    is_p |= ftmp[5] ^ kPrime[5];
921
21.8k
    is_p |= ftmp[6] ^ kPrime[6];
922
21.8k
    is_p |= ftmp[7] ^ kPrime[7];
923
21.8k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
21.8k
    is_p--;
926
21.8k
    is_p = 0 - (is_p >> 63);
927
928
21.8k
    is_zero |= is_p;
929
21.8k
    return is_zero;
930
21.8k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
194
{
944
194
    limb is_p, is_greater, sign;
945
194
    static const limb two58 = ((limb) 1) << 58;
946
947
194
    felem_assign(out, in);
948
949
194
    out[0] += out[8] >> 57;
950
194
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
194
    out[1] += out[0] >> 58;
953
194
    out[0] &= bottom58bits;
954
194
    out[2] += out[1] >> 58;
955
194
    out[1] &= bottom58bits;
956
194
    out[3] += out[2] >> 58;
957
194
    out[2] &= bottom58bits;
958
194
    out[4] += out[3] >> 58;
959
194
    out[3] &= bottom58bits;
960
194
    out[5] += out[4] >> 58;
961
194
    out[4] &= bottom58bits;
962
194
    out[6] += out[5] >> 58;
963
194
    out[5] &= bottom58bits;
964
194
    out[7] += out[6] >> 58;
965
194
    out[6] &= bottom58bits;
966
194
    out[8] += out[7] >> 58;
967
194
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
194
    is_p = out[0] ^ kPrime[0];
981
194
    is_p |= out[1] ^ kPrime[1];
982
194
    is_p |= out[2] ^ kPrime[2];
983
194
    is_p |= out[3] ^ kPrime[3];
984
194
    is_p |= out[4] ^ kPrime[4];
985
194
    is_p |= out[5] ^ kPrime[5];
986
194
    is_p |= out[6] ^ kPrime[6];
987
194
    is_p |= out[7] ^ kPrime[7];
988
194
    is_p |= out[8] ^ kPrime[8];
989
990
194
    is_p--;
991
194
    is_p &= is_p << 32;
992
194
    is_p &= is_p << 16;
993
194
    is_p &= is_p << 8;
994
194
    is_p &= is_p << 4;
995
194
    is_p &= is_p << 2;
996
194
    is_p &= is_p << 1;
997
194
    is_p = 0 - (is_p >> 63);
998
194
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
194
    out[0] &= is_p;
1003
194
    out[1] &= is_p;
1004
194
    out[2] &= is_p;
1005
194
    out[3] &= is_p;
1006
194
    out[4] &= is_p;
1007
194
    out[5] &= is_p;
1008
194
    out[6] &= is_p;
1009
194
    out[7] &= is_p;
1010
194
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
194
    is_greater = out[8] >> 57;
1017
194
    is_greater |= is_greater << 32;
1018
194
    is_greater |= is_greater << 16;
1019
194
    is_greater |= is_greater << 8;
1020
194
    is_greater |= is_greater << 4;
1021
194
    is_greater |= is_greater << 2;
1022
194
    is_greater |= is_greater << 1;
1023
194
    is_greater = 0 - (is_greater >> 63);
1024
1025
194
    out[0] -= kPrime[0] & is_greater;
1026
194
    out[1] -= kPrime[1] & is_greater;
1027
194
    out[2] -= kPrime[2] & is_greater;
1028
194
    out[3] -= kPrime[3] & is_greater;
1029
194
    out[4] -= kPrime[4] & is_greater;
1030
194
    out[5] -= kPrime[5] & is_greater;
1031
194
    out[6] -= kPrime[6] & is_greater;
1032
194
    out[7] -= kPrime[7] & is_greater;
1033
194
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
194
    sign = -(out[0] >> 63);
1037
194
    out[0] += (two58 & sign);
1038
194
    out[1] -= (1 & sign);
1039
194
    sign = -(out[1] >> 63);
1040
194
    out[1] += (two58 & sign);
1041
194
    out[2] -= (1 & sign);
1042
194
    sign = -(out[2] >> 63);
1043
194
    out[2] += (two58 & sign);
1044
194
    out[3] -= (1 & sign);
1045
194
    sign = -(out[3] >> 63);
1046
194
    out[3] += (two58 & sign);
1047
194
    out[4] -= (1 & sign);
1048
194
    sign = -(out[4] >> 63);
1049
194
    out[4] += (two58 & sign);
1050
194
    out[5] -= (1 & sign);
1051
194
    sign = -(out[0] >> 63);
1052
194
    out[5] += (two58 & sign);
1053
194
    out[6] -= (1 & sign);
1054
194
    sign = -(out[6] >> 63);
1055
194
    out[6] += (two58 & sign);
1056
194
    out[7] -= (1 & sign);
1057
194
    sign = -(out[7] >> 63);
1058
194
    out[7] += (two58 & sign);
1059
194
    out[8] -= (1 & sign);
1060
194
    sign = -(out[5] >> 63);
1061
194
    out[5] += (two58 & sign);
1062
194
    out[6] -= (1 & sign);
1063
194
    sign = -(out[6] >> 63);
1064
194
    out[6] += (two58 & sign);
1065
194
    out[7] -= (1 & sign);
1066
194
    sign = -(out[7] >> 63);
1067
194
    out[7] += (two58 & sign);
1068
194
    out[8] -= (1 & sign);
1069
194
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
5.46k
{
1091
5.46k
    largefelem tmp, tmp2;
1092
5.46k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
5.46k
    felem_assign(ftmp, x_in);
1095
5.46k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
5.46k
    felem_square(tmp, z_in);
1099
5.46k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
5.46k
    felem_square(tmp, y_in);
1103
5.46k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
5.46k
    felem_mul(tmp, x_in, gamma);
1107
5.46k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
5.46k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
5.46k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
5.46k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
5.46k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
5.46k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
5.46k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
5.46k
    felem_assign(ftmp, beta);
1132
5.46k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
5.46k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
5.46k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
5.46k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
5.46k
    felem_assign(ftmp, y_in);
1142
5.46k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
5.46k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
5.46k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
5.46k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
5.46k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
5.46k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
5.46k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
5.46k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
5.46k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
5.46k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
5.46k
    felem_reduce(y_out, tmp);
1183
5.46k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
32.7k
{
1188
32.7k
    unsigned i;
1189
327k
    for (i = 0; i < NLIMBS; ++i) {
1190
294k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
294k
        out[i] ^= tmp;
1192
294k
    }
1193
32.7k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
5.46k
{
1211
5.46k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
5.46k
    largefelem tmp, tmp2;
1213
5.46k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
5.46k
    limb points_equal;
1215
1216
5.46k
    z1_is_zero = felem_is_zero(z1);
1217
5.46k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
5.46k
    felem_square(tmp, z1);
1221
5.46k
    felem_reduce(ftmp, tmp);
1222
1223
5.46k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
0
        felem_square(tmp, z2);
1226
0
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
0
        felem_mul(tmp, x1, ftmp2);
1230
0
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
0
        felem_assign(ftmp5, z1);
1234
0
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
0
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
0
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
0
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
0
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
0
        felem_mul(tmp, ftmp2, z2);
1248
0
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
0
        felem_mul(tmp, y1, ftmp2);
1252
0
        felem_reduce(ftmp6, tmp);
1253
5.46k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
5.46k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
5.46k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
5.46k
        felem_assign(ftmp6, y1);
1266
5.46k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
5.46k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
5.46k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
5.46k
    felem_reduce(ftmp4, tmp);
1276
1277
5.46k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
5.46k
    felem_mul(tmp, ftmp5, ftmp4);
1281
5.46k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
5.46k
    felem_mul(tmp, ftmp, z1);
1285
5.46k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
5.46k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
5.46k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
5.46k
    felem_reduce(ftmp5, tmp);
1295
5.46k
    y_equal = felem_is_zero(ftmp5);
1296
5.46k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
5.46k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
5.46k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
5.46k
    felem_assign(ftmp, ftmp4);
1339
5.46k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
5.46k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
5.46k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
5.46k
    felem_mul(tmp, ftmp4, ftmp);
1347
5.46k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
5.46k
    felem_mul(tmp, ftmp3, ftmp);
1351
5.46k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
5.46k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
5.46k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
5.46k
    felem_assign(ftmp3, ftmp4);
1359
5.46k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
5.46k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
5.46k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
5.46k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
5.46k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
5.46k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
5.46k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
5.46k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
5.46k
    felem_reduce(y_out, tmp);
1383
1384
5.46k
    copy_conditional(x_out, x2, z1_is_zero);
1385
5.46k
    copy_conditional(x_out, x1, z2_is_zero);
1386
5.46k
    copy_conditional(y_out, y2, z1_is_zero);
1387
5.46k
    copy_conditional(y_out, y1, z2_is_zero);
1388
5.46k
    copy_conditional(z_out, z2, z1_is_zero);
1389
5.46k
    copy_conditional(z_out, z1, z2_is_zero);
1390
5.46k
    felem_assign(x3, x_out);
1391
5.46k
    felem_assign(y3, y_out);
1392
5.46k
    felem_assign(z3, z_out);
1393
5.46k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
5.50k
{
1549
5.50k
    unsigned i, j;
1550
5.50k
    limb *outlimbs = &out[0][0];
1551
1552
5.50k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
93.5k
    for (i = 0; i < size; i++) {
1555
88.0k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
88.0k
        limb mask = i ^ idx;
1557
88.0k
        mask |= mask >> 4;
1558
88.0k
        mask |= mask >> 2;
1559
88.0k
        mask |= mask >> 1;
1560
88.0k
        mask &= 1;
1561
88.0k
        mask--;
1562
2.46M
        for (j = 0; j < NLIMBS * 3; j++)
1563
2.37M
            outlimbs[j] |= inlimbs[j] & mask;
1564
88.0k
    }
1565
5.50k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
21.8k
{
1570
21.8k
    if (i < 0)
1571
0
        return 0;
1572
21.8k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
21.8k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
42
{
1588
42
    int i, skip;
1589
42
    unsigned num, gen_mul = (g_scalar != NULL);
1590
42
    felem nq[3], tmp[4];
1591
42
    limb bits;
1592
42
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
42
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
42
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
5.54k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
5.50k
        if (!skip)
1607
5.46k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
5.50k
        if (gen_mul && (i <= 130)) {
1611
5.50k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
5.50k
            if (i < 130) {
1613
5.46k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
5.46k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
5.46k
                bits |= get_bit(g_scalar, i);
1616
5.46k
            }
1617
            /* select the point to add, in constant time */
1618
5.50k
            select_point(bits, 16, g_pre_comp, tmp);
1619
5.50k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
5.46k
                point_add(nq[0], nq[1], nq[2],
1622
5.46k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
5.46k
            } else {
1624
42
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
42
                skip = 0;
1626
42
            }
1627
5.50k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
5.50k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
0
            for (num = 0; num < num_points; ++num) {
1633
0
                bits = get_bit(scalars[num], i + 4) << 5;
1634
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
0
                bits |= get_bit(scalars[num], i) << 1;
1638
0
                bits |= get_bit(scalars[num], i - 1);
1639
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
0
                select_point(digit, 17, pre_comp[num], tmp);
1645
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
0
                if (!skip) {
1650
0
                    point_add(nq[0], nq[1], nq[2],
1651
0
                              nq[0], nq[1], nq[2],
1652
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
0
                } else {
1654
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
0
                    skip = 0;
1656
0
                }
1657
0
            }
1658
0
        }
1659
5.50k
    }
1660
42
    felem_assign(x_out, nq[0]);
1661
42
    felem_assign(y_out, nq[1]);
1662
42
    felem_assign(z_out, nq[2]);
1663
42
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
1.65k
{
1674
1.65k
    static const EC_METHOD ret = {
1675
1.65k
        EC_FLAGS_DEFAULT_OCT,
1676
1.65k
        NID_X9_62_prime_field,
1677
1.65k
        ossl_ec_GFp_nistp521_group_init,
1678
1.65k
        ossl_ec_GFp_simple_group_finish,
1679
1.65k
        ossl_ec_GFp_simple_group_clear_finish,
1680
1.65k
        ossl_ec_GFp_nist_group_copy,
1681
1.65k
        ossl_ec_GFp_nistp521_group_set_curve,
1682
1.65k
        ossl_ec_GFp_simple_group_get_curve,
1683
1.65k
        ossl_ec_GFp_simple_group_get_degree,
1684
1.65k
        ossl_ec_group_simple_order_bits,
1685
1.65k
        ossl_ec_GFp_simple_group_check_discriminant,
1686
1.65k
        ossl_ec_GFp_simple_point_init,
1687
1.65k
        ossl_ec_GFp_simple_point_finish,
1688
1.65k
        ossl_ec_GFp_simple_point_clear_finish,
1689
1.65k
        ossl_ec_GFp_simple_point_copy,
1690
1.65k
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
1.65k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
1.65k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
1.65k
        0 /* point_set_compressed_coordinates */ ,
1694
1.65k
        0 /* point2oct */ ,
1695
1.65k
        0 /* oct2point */ ,
1696
1.65k
        ossl_ec_GFp_simple_add,
1697
1.65k
        ossl_ec_GFp_simple_dbl,
1698
1.65k
        ossl_ec_GFp_simple_invert,
1699
1.65k
        ossl_ec_GFp_simple_is_at_infinity,
1700
1.65k
        ossl_ec_GFp_simple_is_on_curve,
1701
1.65k
        ossl_ec_GFp_simple_cmp,
1702
1.65k
        ossl_ec_GFp_simple_make_affine,
1703
1.65k
        ossl_ec_GFp_simple_points_make_affine,
1704
1.65k
        ossl_ec_GFp_nistp521_points_mul,
1705
1.65k
        ossl_ec_GFp_nistp521_precompute_mult,
1706
1.65k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
1.65k
        ossl_ec_GFp_nist_field_mul,
1708
1.65k
        ossl_ec_GFp_nist_field_sqr,
1709
1.65k
        0 /* field_div */ ,
1710
1.65k
        ossl_ec_GFp_simple_field_inv,
1711
1.65k
        0 /* field_encode */ ,
1712
1.65k
        0 /* field_decode */ ,
1713
1.65k
        0,                      /* field_set_to_one */
1714
1.65k
        ossl_ec_key_simple_priv2oct,
1715
1.65k
        ossl_ec_key_simple_oct2priv,
1716
1.65k
        0, /* set private */
1717
1.65k
        ossl_ec_key_simple_generate_key,
1718
1.65k
        ossl_ec_key_simple_check_key,
1719
1.65k
        ossl_ec_key_simple_generate_public_key,
1720
1.65k
        0, /* keycopy */
1721
1.65k
        0, /* keyfinish */
1722
1.65k
        ossl_ecdh_simple_compute_key,
1723
1.65k
        ossl_ecdsa_simple_sign_setup,
1724
1.65k
        ossl_ecdsa_simple_sign_sig,
1725
1.65k
        ossl_ecdsa_simple_verify_sig,
1726
1.65k
        0, /* field_inverse_mod_ord */
1727
1.65k
        0, /* blind_coordinates */
1728
1.65k
        0, /* ladder_pre */
1729
1.65k
        0, /* ladder_step */
1730
1.65k
        0  /* ladder_post */
1731
1.65k
    };
1732
1733
1.65k
    return &ret;
1734
1.65k
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
3.26k
{
1793
3.26k
    int ret;
1794
3.26k
    ret = ossl_ec_GFp_simple_group_init(group);
1795
3.26k
    group->a_is_minus3 = 1;
1796
3.26k
    return ret;
1797
3.26k
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
1.65k
{
1803
1.65k
    int ret = 0;
1804
1.65k
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
1.65k
#ifndef FIPS_MODULE
1806
1.65k
    BN_CTX *new_ctx = NULL;
1807
1808
1.65k
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
1.65k
#endif
1811
1.65k
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
1.65k
    BN_CTX_start(ctx);
1815
1.65k
    curve_p = BN_CTX_get(ctx);
1816
1.65k
    curve_a = BN_CTX_get(ctx);
1817
1.65k
    curve_b = BN_CTX_get(ctx);
1818
1.65k
    if (curve_b == NULL)
1819
0
        goto err;
1820
1.65k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
1.65k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
1.65k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
1.65k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
1.65k
    group->field_mod_func = BN_nist_mod_521;
1828
1.65k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
1.65k
 err:
1830
1.65k
    BN_CTX_end(ctx);
1831
1.65k
#ifndef FIPS_MODULE
1832
1.65k
    BN_CTX_free(new_ctx);
1833
1.65k
#endif
1834
1.65k
    return ret;
1835
1.65k
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
34
{
1846
34
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
34
    largefelem tmp;
1848
1849
34
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
34
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
34
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
34
    felem_inv(z2, z1);
1857
34
    felem_square(tmp, z2);
1858
34
    felem_reduce(z1, tmp);
1859
34
    felem_mul(tmp, x_in, z1);
1860
34
    felem_reduce(x_in, tmp);
1861
34
    felem_contract(x_out, x_in);
1862
34
    if (x != NULL) {
1863
34
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
34
    }
1868
34
    felem_mul(tmp, z1, z2);
1869
34
    felem_reduce(z1, tmp);
1870
34
    felem_mul(tmp, y_in, z1);
1871
34
    felem_reduce(y_in, tmp);
1872
34
    felem_contract(y_out, y_in);
1873
34
    if (y != NULL) {
1874
34
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
34
    }
1879
34
    return 1;
1880
34
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
42
{
1921
42
    int ret = 0;
1922
42
    int j;
1923
42
    int mixed = 0;
1924
42
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
42
    felem_bytearray g_secret;
1926
42
    felem_bytearray *secrets = NULL;
1927
42
    felem (*pre_comp)[17][3] = NULL;
1928
42
    felem *tmp_felems = NULL;
1929
42
    unsigned i;
1930
42
    int num_bytes;
1931
42
    int have_pre_comp = 0;
1932
42
    size_t num_points = num;
1933
42
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
42
    NISTP521_PRE_COMP *pre = NULL;
1935
42
    felem(*g_pre_comp)[3] = NULL;
1936
42
    EC_POINT *generator = NULL;
1937
42
    const EC_POINT *p = NULL;
1938
42
    const BIGNUM *p_scalar = NULL;
1939
1940
42
    BN_CTX_start(ctx);
1941
42
    x = BN_CTX_get(ctx);
1942
42
    y = BN_CTX_get(ctx);
1943
42
    z = BN_CTX_get(ctx);
1944
42
    tmp_scalar = BN_CTX_get(ctx);
1945
42
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
42
    if (scalar != NULL) {
1949
42
        pre = group->pre_comp.nistp521;
1950
42
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
42
        else
1954
            /* try to use the standard precomputation */
1955
42
            g_pre_comp = (felem(*)[3]) gmul;
1956
42
        generator = EC_POINT_new(group);
1957
42
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
42
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
42
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
42
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
42
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
42
                                                                generator,
1968
42
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
42
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
42
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
42
    }
1980
1981
42
    if (num_points > 0) {
1982
0
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
0
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
0
        if ((secrets == NULL) || (pre_comp == NULL)
1995
0
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
0
        for (i = 0; i < num_points; ++i) {
2005
0
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
0
            } else {
2013
                /* the i^th point */
2014
0
                p = points[i];
2015
0
                p_scalar = scalars[i];
2016
0
            }
2017
0
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
0
                if ((BN_num_bits(p_scalar) > 521)
2020
0
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
0
                } else {
2032
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
0
                                               secrets[i], sizeof(secrets[i]));
2034
0
                }
2035
0
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
0
                if ((!BN_to_felem(x_out, p->X)) ||
2041
0
                    (!BN_to_felem(y_out, p->Y)) ||
2042
0
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
0
                for (j = 2; j <= 16; ++j) {
2048
0
                    if (j & 1) {
2049
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
0
                                  pre_comp[i][j - 1][0],
2053
0
                                  pre_comp[i][j - 1][1],
2054
0
                                  pre_comp[i][j - 1][2]);
2055
0
                    } else {
2056
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
0
                                     pre_comp[i][j / 2][1],
2059
0
                                     pre_comp[i][j / 2][2]);
2060
0
                    }
2061
0
                }
2062
0
            }
2063
0
        }
2064
0
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
0
    }
2067
2068
    /* the scalar for the generator */
2069
42
    if ((scalar != NULL) && (have_pre_comp)) {
2070
42
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
42
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
12
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
12
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
30
        } else {
2083
30
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
30
        }
2085
        /* do the multiplication with generator precomputation */
2086
42
        batch_mul(x_out, y_out, z_out,
2087
42
                  (const felem_bytearray(*))secrets, num_points,
2088
42
                  g_secret,
2089
42
                  mixed, (const felem(*)[17][3])pre_comp,
2090
42
                  (const felem(*)[3])g_pre_comp);
2091
42
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
42
    felem_contract(x_in, x_out);
2099
42
    felem_contract(y_in, y_out);
2100
42
    felem_contract(z_in, z_out);
2101
42
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
42
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
42
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
42
                                                             ctx);
2108
2109
42
 err:
2110
42
    BN_CTX_end(ctx);
2111
42
    EC_POINT_free(generator);
2112
42
    OPENSSL_free(secrets);
2113
42
    OPENSSL_free(pre_comp);
2114
42
    OPENSSL_free(tmp_felems);
2115
42
    return ret;
2116
42
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}