/src/openssl111/crypto/bn/bn_gcd.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the OpenSSL license (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | #include "internal/cryptlib.h" | 
| 11 |  | #include "bn_local.h" | 
| 12 |  |  | 
| 13 |  | /* | 
| 14 |  |  * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does | 
| 15 |  |  * not contain branches that may leak sensitive information. | 
| 16 |  |  * | 
| 17 |  |  * This is a static function, we ensure all callers in this file pass valid | 
| 18 |  |  * arguments: all passed pointers here are non-NULL. | 
| 19 |  |  */ | 
| 20 |  | static ossl_inline | 
| 21 |  | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in, | 
| 22 |  |                                  const BIGNUM *a, const BIGNUM *n, | 
| 23 |  |                                  BN_CTX *ctx, int *pnoinv) | 
| 24 | 0 | { | 
| 25 | 0 |     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | 
| 26 | 0 |     BIGNUM *ret = NULL; | 
| 27 | 0 |     int sign; | 
| 28 |  | 
 | 
| 29 | 0 |     bn_check_top(a); | 
| 30 | 0 |     bn_check_top(n); | 
| 31 |  | 
 | 
| 32 | 0 |     BN_CTX_start(ctx); | 
| 33 | 0 |     A = BN_CTX_get(ctx); | 
| 34 | 0 |     B = BN_CTX_get(ctx); | 
| 35 | 0 |     X = BN_CTX_get(ctx); | 
| 36 | 0 |     D = BN_CTX_get(ctx); | 
| 37 | 0 |     M = BN_CTX_get(ctx); | 
| 38 | 0 |     Y = BN_CTX_get(ctx); | 
| 39 | 0 |     T = BN_CTX_get(ctx); | 
| 40 | 0 |     if (T == NULL) | 
| 41 | 0 |         goto err; | 
| 42 |  |  | 
| 43 | 0 |     if (in == NULL) | 
| 44 | 0 |         R = BN_new(); | 
| 45 | 0 |     else | 
| 46 | 0 |         R = in; | 
| 47 | 0 |     if (R == NULL) | 
| 48 | 0 |         goto err; | 
| 49 |  |  | 
| 50 | 0 |     if (!BN_one(X)) | 
| 51 | 0 |         goto err; | 
| 52 | 0 |     BN_zero(Y); | 
| 53 | 0 |     if (BN_copy(B, a) == NULL) | 
| 54 | 0 |         goto err; | 
| 55 | 0 |     if (BN_copy(A, n) == NULL) | 
| 56 | 0 |         goto err; | 
| 57 | 0 |     A->neg = 0; | 
| 58 |  | 
 | 
| 59 | 0 |     if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
| 60 |  |         /* | 
| 61 |  |          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | 
| 62 |  |          * BN_div_no_branch will be called eventually. | 
| 63 |  |          */ | 
| 64 | 0 |          { | 
| 65 | 0 |             BIGNUM local_B; | 
| 66 | 0 |             bn_init(&local_B); | 
| 67 | 0 |             BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); | 
| 68 | 0 |             if (!BN_nnmod(B, &local_B, A, ctx)) | 
| 69 | 0 |                 goto err; | 
| 70 |  |             /* Ensure local_B goes out of scope before any further use of B */ | 
| 71 | 0 |         } | 
| 72 | 0 |     } | 
| 73 | 0 |     sign = -1; | 
| 74 |  |     /*- | 
| 75 |  |      * From  B = a mod |n|,  A = |n|  it follows that | 
| 76 |  |      * | 
| 77 |  |      *      0 <= B < A, | 
| 78 |  |      *     -sign*X*a  ==  B   (mod |n|), | 
| 79 |  |      *      sign*Y*a  ==  A   (mod |n|). | 
| 80 |  |      */ | 
| 81 |  | 
 | 
| 82 | 0 |     while (!BN_is_zero(B)) { | 
| 83 | 0 |         BIGNUM *tmp; | 
| 84 |  |  | 
| 85 |  |         /*- | 
| 86 |  |          *      0 < B < A, | 
| 87 |  |          * (*) -sign*X*a  ==  B   (mod |n|), | 
| 88 |  |          *      sign*Y*a  ==  A   (mod |n|) | 
| 89 |  |          */ | 
| 90 |  |  | 
| 91 |  |         /* | 
| 92 |  |          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | 
| 93 |  |          * BN_div_no_branch will be called eventually. | 
| 94 |  |          */ | 
| 95 | 0 |         { | 
| 96 | 0 |             BIGNUM local_A; | 
| 97 | 0 |             bn_init(&local_A); | 
| 98 | 0 |             BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); | 
| 99 |  |  | 
| 100 |  |             /* (D, M) := (A/B, A%B) ... */ | 
| 101 | 0 |             if (!BN_div(D, M, &local_A, B, ctx)) | 
| 102 | 0 |                 goto err; | 
| 103 |  |             /* Ensure local_A goes out of scope before any further use of A */ | 
| 104 | 0 |         } | 
| 105 |  |  | 
| 106 |  |         /*- | 
| 107 |  |          * Now | 
| 108 |  |          *      A = D*B + M; | 
| 109 |  |          * thus we have | 
| 110 |  |          * (**)  sign*Y*a  ==  D*B + M   (mod |n|). | 
| 111 |  |          */ | 
| 112 |  |  | 
| 113 | 0 |         tmp = A;                /* keep the BIGNUM object, the value does not | 
| 114 |  |                                  * matter */ | 
| 115 |  |  | 
| 116 |  |         /* (A, B) := (B, A mod B) ... */ | 
| 117 | 0 |         A = B; | 
| 118 | 0 |         B = M; | 
| 119 |  |         /* ... so we have  0 <= B < A  again */ | 
| 120 |  |  | 
| 121 |  |         /*- | 
| 122 |  |          * Since the former  M  is now  B  and the former  B  is now  A, | 
| 123 |  |          * (**) translates into | 
| 124 |  |          *       sign*Y*a  ==  D*A + B    (mod |n|), | 
| 125 |  |          * i.e. | 
| 126 |  |          *       sign*Y*a - D*A  ==  B    (mod |n|). | 
| 127 |  |          * Similarly, (*) translates into | 
| 128 |  |          *      -sign*X*a  ==  A          (mod |n|). | 
| 129 |  |          * | 
| 130 |  |          * Thus, | 
| 131 |  |          *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|), | 
| 132 |  |          * i.e. | 
| 133 |  |          *        sign*(Y + D*X)*a  ==  B  (mod |n|). | 
| 134 |  |          * | 
| 135 |  |          * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | 
| 136 |  |          *      -sign*X*a  ==  B   (mod |n|), | 
| 137 |  |          *       sign*Y*a  ==  A   (mod |n|). | 
| 138 |  |          * Note that  X  and  Y  stay non-negative all the time. | 
| 139 |  |          */ | 
| 140 |  | 
 | 
| 141 | 0 |         if (!BN_mul(tmp, D, X, ctx)) | 
| 142 | 0 |             goto err; | 
| 143 | 0 |         if (!BN_add(tmp, tmp, Y)) | 
| 144 | 0 |             goto err; | 
| 145 |  |  | 
| 146 | 0 |         M = Y;                  /* keep the BIGNUM object, the value does not | 
| 147 |  |                                  * matter */ | 
| 148 | 0 |         Y = X; | 
| 149 | 0 |         X = tmp; | 
| 150 | 0 |         sign = -sign; | 
| 151 | 0 |     } | 
| 152 |  |  | 
| 153 |  |     /*- | 
| 154 |  |      * The while loop (Euclid's algorithm) ends when | 
| 155 |  |      *      A == gcd(a,n); | 
| 156 |  |      * we have | 
| 157 |  |      *       sign*Y*a  ==  A  (mod |n|), | 
| 158 |  |      * where  Y  is non-negative. | 
| 159 |  |      */ | 
| 160 |  |  | 
| 161 | 0 |     if (sign < 0) { | 
| 162 | 0 |         if (!BN_sub(Y, n, Y)) | 
| 163 | 0 |             goto err; | 
| 164 | 0 |     } | 
| 165 |  |     /* Now  Y*a  ==  A  (mod |n|).  */ | 
| 166 |  |  | 
| 167 | 0 |     if (BN_is_one(A)) { | 
| 168 |  |         /* Y*a == 1  (mod |n|) */ | 
| 169 | 0 |         if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
| 170 | 0 |             if (!BN_copy(R, Y)) | 
| 171 | 0 |                 goto err; | 
| 172 | 0 |         } else { | 
| 173 | 0 |             if (!BN_nnmod(R, Y, n, ctx)) | 
| 174 | 0 |                 goto err; | 
| 175 | 0 |         } | 
| 176 | 0 |     } else { | 
| 177 | 0 |         *pnoinv = 1; | 
| 178 |  |         /* caller sets the BN_R_NO_INVERSE error */ | 
| 179 | 0 |         goto err; | 
| 180 | 0 |     } | 
| 181 |  |  | 
| 182 | 0 |     ret = R; | 
| 183 | 0 |     *pnoinv = 0; | 
| 184 |  | 
 | 
| 185 | 0 |  err: | 
| 186 | 0 |     if ((ret == NULL) && (in == NULL)) | 
| 187 | 0 |         BN_free(R); | 
| 188 | 0 |     BN_CTX_end(ctx); | 
| 189 | 0 |     bn_check_top(ret); | 
| 190 | 0 |     return ret; | 
| 191 | 0 | } | 
| 192 |  |  | 
| 193 |  | /* | 
| 194 |  |  * This is an internal function, we assume all callers pass valid arguments: | 
| 195 |  |  * all pointers passed here are assumed non-NULL. | 
| 196 |  |  */ | 
| 197 |  | BIGNUM *int_bn_mod_inverse(BIGNUM *in, | 
| 198 |  |                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, | 
| 199 |  |                            int *pnoinv) | 
| 200 | 0 | { | 
| 201 | 0 |     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | 
| 202 | 0 |     BIGNUM *ret = NULL; | 
| 203 | 0 |     int sign; | 
| 204 |  |  | 
| 205 |  |     /* This is invalid input so we don't worry about constant time here */ | 
| 206 | 0 |     if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { | 
| 207 | 0 |         *pnoinv = 1; | 
| 208 | 0 |         return NULL; | 
| 209 | 0 |     } | 
| 210 |  |  | 
| 211 | 0 |     *pnoinv = 0; | 
| 212 |  | 
 | 
| 213 | 0 |     if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) | 
| 214 | 0 |         || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { | 
| 215 | 0 |         return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv); | 
| 216 | 0 |     } | 
| 217 |  |  | 
| 218 | 0 |     bn_check_top(a); | 
| 219 | 0 |     bn_check_top(n); | 
| 220 |  | 
 | 
| 221 | 0 |     BN_CTX_start(ctx); | 
| 222 | 0 |     A = BN_CTX_get(ctx); | 
| 223 | 0 |     B = BN_CTX_get(ctx); | 
| 224 | 0 |     X = BN_CTX_get(ctx); | 
| 225 | 0 |     D = BN_CTX_get(ctx); | 
| 226 | 0 |     M = BN_CTX_get(ctx); | 
| 227 | 0 |     Y = BN_CTX_get(ctx); | 
| 228 | 0 |     T = BN_CTX_get(ctx); | 
| 229 | 0 |     if (T == NULL) | 
| 230 | 0 |         goto err; | 
| 231 |  |  | 
| 232 | 0 |     if (in == NULL) | 
| 233 | 0 |         R = BN_new(); | 
| 234 | 0 |     else | 
| 235 | 0 |         R = in; | 
| 236 | 0 |     if (R == NULL) | 
| 237 | 0 |         goto err; | 
| 238 |  |  | 
| 239 | 0 |     if (!BN_one(X)) | 
| 240 | 0 |         goto err; | 
| 241 | 0 |     BN_zero(Y); | 
| 242 | 0 |     if (BN_copy(B, a) == NULL) | 
| 243 | 0 |         goto err; | 
| 244 | 0 |     if (BN_copy(A, n) == NULL) | 
| 245 | 0 |         goto err; | 
| 246 | 0 |     A->neg = 0; | 
| 247 | 0 |     if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
| 248 | 0 |         if (!BN_nnmod(B, B, A, ctx)) | 
| 249 | 0 |             goto err; | 
| 250 | 0 |     } | 
| 251 | 0 |     sign = -1; | 
| 252 |  |     /*- | 
| 253 |  |      * From  B = a mod |n|,  A = |n|  it follows that | 
| 254 |  |      * | 
| 255 |  |      *      0 <= B < A, | 
| 256 |  |      *     -sign*X*a  ==  B   (mod |n|), | 
| 257 |  |      *      sign*Y*a  ==  A   (mod |n|). | 
| 258 |  |      */ | 
| 259 |  | 
 | 
| 260 | 0 |     if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { | 
| 261 |  |         /* | 
| 262 |  |          * Binary inversion algorithm; requires odd modulus. This is faster | 
| 263 |  |          * than the general algorithm if the modulus is sufficiently small | 
| 264 |  |          * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit | 
| 265 |  |          * systems) | 
| 266 |  |          */ | 
| 267 | 0 |         int shift; | 
| 268 |  | 
 | 
| 269 | 0 |         while (!BN_is_zero(B)) { | 
| 270 |  |             /*- | 
| 271 |  |              *      0 < B < |n|, | 
| 272 |  |              *      0 < A <= |n|, | 
| 273 |  |              * (1) -sign*X*a  ==  B   (mod |n|), | 
| 274 |  |              * (2)  sign*Y*a  ==  A   (mod |n|) | 
| 275 |  |              */ | 
| 276 |  |  | 
| 277 |  |             /* | 
| 278 |  |              * Now divide B by the maximum possible power of two in the | 
| 279 |  |              * integers, and divide X by the same value mod |n|. When we're | 
| 280 |  |              * done, (1) still holds. | 
| 281 |  |              */ | 
| 282 | 0 |             shift = 0; | 
| 283 | 0 |             while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ | 
| 284 | 0 |                 shift++; | 
| 285 |  | 
 | 
| 286 | 0 |                 if (BN_is_odd(X)) { | 
| 287 | 0 |                     if (!BN_uadd(X, X, n)) | 
| 288 | 0 |                         goto err; | 
| 289 | 0 |                 } | 
| 290 |  |                 /* | 
| 291 |  |                  * now X is even, so we can easily divide it by two | 
| 292 |  |                  */ | 
| 293 | 0 |                 if (!BN_rshift1(X, X)) | 
| 294 | 0 |                     goto err; | 
| 295 | 0 |             } | 
| 296 | 0 |             if (shift > 0) { | 
| 297 | 0 |                 if (!BN_rshift(B, B, shift)) | 
| 298 | 0 |                     goto err; | 
| 299 | 0 |             } | 
| 300 |  |  | 
| 301 |  |             /* | 
| 302 |  |              * Same for A and Y.  Afterwards, (2) still holds. | 
| 303 |  |              */ | 
| 304 | 0 |             shift = 0; | 
| 305 | 0 |             while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ | 
| 306 | 0 |                 shift++; | 
| 307 |  | 
 | 
| 308 | 0 |                 if (BN_is_odd(Y)) { | 
| 309 | 0 |                     if (!BN_uadd(Y, Y, n)) | 
| 310 | 0 |                         goto err; | 
| 311 | 0 |                 } | 
| 312 |  |                 /* now Y is even */ | 
| 313 | 0 |                 if (!BN_rshift1(Y, Y)) | 
| 314 | 0 |                     goto err; | 
| 315 | 0 |             } | 
| 316 | 0 |             if (shift > 0) { | 
| 317 | 0 |                 if (!BN_rshift(A, A, shift)) | 
| 318 | 0 |                     goto err; | 
| 319 | 0 |             } | 
| 320 |  |  | 
| 321 |  |             /*- | 
| 322 |  |              * We still have (1) and (2). | 
| 323 |  |              * Both  A  and  B  are odd. | 
| 324 |  |              * The following computations ensure that | 
| 325 |  |              * | 
| 326 |  |              *     0 <= B < |n|, | 
| 327 |  |              *      0 < A < |n|, | 
| 328 |  |              * (1) -sign*X*a  ==  B   (mod |n|), | 
| 329 |  |              * (2)  sign*Y*a  ==  A   (mod |n|), | 
| 330 |  |              * | 
| 331 |  |              * and that either  A  or  B  is even in the next iteration. | 
| 332 |  |              */ | 
| 333 | 0 |             if (BN_ucmp(B, A) >= 0) { | 
| 334 |  |                 /* -sign*(X + Y)*a == B - A  (mod |n|) */ | 
| 335 | 0 |                 if (!BN_uadd(X, X, Y)) | 
| 336 | 0 |                     goto err; | 
| 337 |  |                 /* | 
| 338 |  |                  * NB: we could use BN_mod_add_quick(X, X, Y, n), but that | 
| 339 |  |                  * actually makes the algorithm slower | 
| 340 |  |                  */ | 
| 341 | 0 |                 if (!BN_usub(B, B, A)) | 
| 342 | 0 |                     goto err; | 
| 343 | 0 |             } else { | 
| 344 |  |                 /*  sign*(X + Y)*a == A - B  (mod |n|) */ | 
| 345 | 0 |                 if (!BN_uadd(Y, Y, X)) | 
| 346 | 0 |                     goto err; | 
| 347 |  |                 /* | 
| 348 |  |                  * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down | 
| 349 |  |                  */ | 
| 350 | 0 |                 if (!BN_usub(A, A, B)) | 
| 351 | 0 |                     goto err; | 
| 352 | 0 |             } | 
| 353 | 0 |         } | 
| 354 | 0 |     } else { | 
| 355 |  |         /* general inversion algorithm */ | 
| 356 |  | 
 | 
| 357 | 0 |         while (!BN_is_zero(B)) { | 
| 358 | 0 |             BIGNUM *tmp; | 
| 359 |  |  | 
| 360 |  |             /*- | 
| 361 |  |              *      0 < B < A, | 
| 362 |  |              * (*) -sign*X*a  ==  B   (mod |n|), | 
| 363 |  |              *      sign*Y*a  ==  A   (mod |n|) | 
| 364 |  |              */ | 
| 365 |  |  | 
| 366 |  |             /* (D, M) := (A/B, A%B) ... */ | 
| 367 | 0 |             if (BN_num_bits(A) == BN_num_bits(B)) { | 
| 368 | 0 |                 if (!BN_one(D)) | 
| 369 | 0 |                     goto err; | 
| 370 | 0 |                 if (!BN_sub(M, A, B)) | 
| 371 | 0 |                     goto err; | 
| 372 | 0 |             } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | 
| 373 |  |                 /* A/B is 1, 2, or 3 */ | 
| 374 | 0 |                 if (!BN_lshift1(T, B)) | 
| 375 | 0 |                     goto err; | 
| 376 | 0 |                 if (BN_ucmp(A, T) < 0) { | 
| 377 |  |                     /* A < 2*B, so D=1 */ | 
| 378 | 0 |                     if (!BN_one(D)) | 
| 379 | 0 |                         goto err; | 
| 380 | 0 |                     if (!BN_sub(M, A, B)) | 
| 381 | 0 |                         goto err; | 
| 382 | 0 |                 } else { | 
| 383 |  |                     /* A >= 2*B, so D=2 or D=3 */ | 
| 384 | 0 |                     if (!BN_sub(M, A, T)) | 
| 385 | 0 |                         goto err; | 
| 386 | 0 |                     if (!BN_add(D, T, B)) | 
| 387 | 0 |                         goto err; /* use D (:= 3*B) as temp */ | 
| 388 | 0 |                     if (BN_ucmp(A, D) < 0) { | 
| 389 |  |                         /* A < 3*B, so D=2 */ | 
| 390 | 0 |                         if (!BN_set_word(D, 2)) | 
| 391 | 0 |                             goto err; | 
| 392 |  |                         /* | 
| 393 |  |                          * M (= A - 2*B) already has the correct value | 
| 394 |  |                          */ | 
| 395 | 0 |                     } else { | 
| 396 |  |                         /* only D=3 remains */ | 
| 397 | 0 |                         if (!BN_set_word(D, 3)) | 
| 398 | 0 |                             goto err; | 
| 399 |  |                         /* | 
| 400 |  |                          * currently M = A - 2*B, but we need M = A - 3*B | 
| 401 |  |                          */ | 
| 402 | 0 |                         if (!BN_sub(M, M, B)) | 
| 403 | 0 |                             goto err; | 
| 404 | 0 |                     } | 
| 405 | 0 |                 } | 
| 406 | 0 |             } else { | 
| 407 | 0 |                 if (!BN_div(D, M, A, B, ctx)) | 
| 408 | 0 |                     goto err; | 
| 409 | 0 |             } | 
| 410 |  |  | 
| 411 |  |             /*- | 
| 412 |  |              * Now | 
| 413 |  |              *      A = D*B + M; | 
| 414 |  |              * thus we have | 
| 415 |  |              * (**)  sign*Y*a  ==  D*B + M   (mod |n|). | 
| 416 |  |              */ | 
| 417 |  |  | 
| 418 | 0 |             tmp = A;    /* keep the BIGNUM object, the value does not matter */ | 
| 419 |  |  | 
| 420 |  |             /* (A, B) := (B, A mod B) ... */ | 
| 421 | 0 |             A = B; | 
| 422 | 0 |             B = M; | 
| 423 |  |             /* ... so we have  0 <= B < A  again */ | 
| 424 |  |  | 
| 425 |  |             /*- | 
| 426 |  |              * Since the former  M  is now  B  and the former  B  is now  A, | 
| 427 |  |              * (**) translates into | 
| 428 |  |              *       sign*Y*a  ==  D*A + B    (mod |n|), | 
| 429 |  |              * i.e. | 
| 430 |  |              *       sign*Y*a - D*A  ==  B    (mod |n|). | 
| 431 |  |              * Similarly, (*) translates into | 
| 432 |  |              *      -sign*X*a  ==  A          (mod |n|). | 
| 433 |  |              * | 
| 434 |  |              * Thus, | 
| 435 |  |              *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|), | 
| 436 |  |              * i.e. | 
| 437 |  |              *        sign*(Y + D*X)*a  ==  B  (mod |n|). | 
| 438 |  |              * | 
| 439 |  |              * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | 
| 440 |  |              *      -sign*X*a  ==  B   (mod |n|), | 
| 441 |  |              *       sign*Y*a  ==  A   (mod |n|). | 
| 442 |  |              * Note that  X  and  Y  stay non-negative all the time. | 
| 443 |  |              */ | 
| 444 |  |  | 
| 445 |  |             /* | 
| 446 |  |              * most of the time D is very small, so we can optimize tmp := D*X+Y | 
| 447 |  |              */ | 
| 448 | 0 |             if (BN_is_one(D)) { | 
| 449 | 0 |                 if (!BN_add(tmp, X, Y)) | 
| 450 | 0 |                     goto err; | 
| 451 | 0 |             } else { | 
| 452 | 0 |                 if (BN_is_word(D, 2)) { | 
| 453 | 0 |                     if (!BN_lshift1(tmp, X)) | 
| 454 | 0 |                         goto err; | 
| 455 | 0 |                 } else if (BN_is_word(D, 4)) { | 
| 456 | 0 |                     if (!BN_lshift(tmp, X, 2)) | 
| 457 | 0 |                         goto err; | 
| 458 | 0 |                 } else if (D->top == 1) { | 
| 459 | 0 |                     if (!BN_copy(tmp, X)) | 
| 460 | 0 |                         goto err; | 
| 461 | 0 |                     if (!BN_mul_word(tmp, D->d[0])) | 
| 462 | 0 |                         goto err; | 
| 463 | 0 |                 } else { | 
| 464 | 0 |                     if (!BN_mul(tmp, D, X, ctx)) | 
| 465 | 0 |                         goto err; | 
| 466 | 0 |                 } | 
| 467 | 0 |                 if (!BN_add(tmp, tmp, Y)) | 
| 468 | 0 |                     goto err; | 
| 469 | 0 |             } | 
| 470 |  |  | 
| 471 | 0 |             M = Y;      /* keep the BIGNUM object, the value does not matter */ | 
| 472 | 0 |             Y = X; | 
| 473 | 0 |             X = tmp; | 
| 474 | 0 |             sign = -sign; | 
| 475 | 0 |         } | 
| 476 | 0 |     } | 
| 477 |  |  | 
| 478 |  |     /*- | 
| 479 |  |      * The while loop (Euclid's algorithm) ends when | 
| 480 |  |      *      A == gcd(a,n); | 
| 481 |  |      * we have | 
| 482 |  |      *       sign*Y*a  ==  A  (mod |n|), | 
| 483 |  |      * where  Y  is non-negative. | 
| 484 |  |      */ | 
| 485 |  |  | 
| 486 | 0 |     if (sign < 0) { | 
| 487 | 0 |         if (!BN_sub(Y, n, Y)) | 
| 488 | 0 |             goto err; | 
| 489 | 0 |     } | 
| 490 |  |     /* Now  Y*a  ==  A  (mod |n|).  */ | 
| 491 |  |  | 
| 492 | 0 |     if (BN_is_one(A)) { | 
| 493 |  |         /* Y*a == 1  (mod |n|) */ | 
| 494 | 0 |         if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
| 495 | 0 |             if (!BN_copy(R, Y)) | 
| 496 | 0 |                 goto err; | 
| 497 | 0 |         } else { | 
| 498 | 0 |             if (!BN_nnmod(R, Y, n, ctx)) | 
| 499 | 0 |                 goto err; | 
| 500 | 0 |         } | 
| 501 | 0 |     } else { | 
| 502 | 0 |         *pnoinv = 1; | 
| 503 | 0 |         goto err; | 
| 504 | 0 |     } | 
| 505 | 0 |     ret = R; | 
| 506 | 0 |  err: | 
| 507 | 0 |     if ((ret == NULL) && (in == NULL)) | 
| 508 | 0 |         BN_free(R); | 
| 509 | 0 |     BN_CTX_end(ctx); | 
| 510 | 0 |     bn_check_top(ret); | 
| 511 | 0 |     return ret; | 
| 512 | 0 | } | 
| 513 |  |  | 
| 514 |  | /* solves ax == 1 (mod n) */ | 
| 515 |  | BIGNUM *BN_mod_inverse(BIGNUM *in, | 
| 516 |  |                        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | 
| 517 | 0 | { | 
| 518 | 0 |     BN_CTX *new_ctx = NULL; | 
| 519 | 0 |     BIGNUM *rv; | 
| 520 | 0 |     int noinv = 0; | 
| 521 |  | 
 | 
| 522 | 0 |     if (ctx == NULL) { | 
| 523 | 0 |         ctx = new_ctx = BN_CTX_new(); | 
| 524 | 0 |         if (ctx == NULL) { | 
| 525 | 0 |             BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE); | 
| 526 | 0 |             return NULL; | 
| 527 | 0 |         } | 
| 528 | 0 |     } | 
| 529 |  |  | 
| 530 | 0 |     rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); | 
| 531 | 0 |     if (noinv) | 
| 532 | 0 |         BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); | 
| 533 | 0 |     BN_CTX_free(new_ctx); | 
| 534 | 0 |     return rv; | 
| 535 | 0 | } | 
| 536 |  |  | 
| 537 |  | /*- | 
| 538 |  |  * This function is based on the constant-time GCD work by Bernstein and Yang: | 
| 539 |  |  * https://eprint.iacr.org/2019/266 | 
| 540 |  |  * Generalized fast GCD function to allow even inputs. | 
| 541 |  |  * The algorithm first finds the shared powers of 2 between | 
| 542 |  |  * the inputs, and removes them, reducing at least one of the | 
| 543 |  |  * inputs to an odd value. Then it proceeds to calculate the GCD. | 
| 544 |  |  * Before returning the resulting GCD, we take care of adding | 
| 545 |  |  * back the powers of two removed at the beginning. | 
| 546 |  |  * Note 1: we assume the bit length of both inputs is public information, | 
| 547 |  |  * since access to top potentially leaks this information. | 
| 548 |  |  */ | 
| 549 |  | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | 
| 550 | 0 | { | 
| 551 | 0 |     BIGNUM *g, *temp = NULL; | 
| 552 | 0 |     BN_ULONG mask = 0; | 
| 553 | 0 |     int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; | 
| 554 |  |  | 
| 555 |  |     /* Note 2: zero input corner cases are not constant-time since they are | 
| 556 |  |      * handled immediately. An attacker can run an attack under this | 
| 557 |  |      * assumption without the need of side-channel information. */ | 
| 558 | 0 |     if (BN_is_zero(in_b)) { | 
| 559 | 0 |         ret = BN_copy(r, in_a) != NULL; | 
| 560 | 0 |         r->neg = 0; | 
| 561 | 0 |         return ret; | 
| 562 | 0 |     } | 
| 563 | 0 |     if (BN_is_zero(in_a)) { | 
| 564 | 0 |         ret = BN_copy(r, in_b) != NULL; | 
| 565 | 0 |         r->neg = 0; | 
| 566 | 0 |         return ret; | 
| 567 | 0 |     } | 
| 568 |  |  | 
| 569 | 0 |     bn_check_top(in_a); | 
| 570 | 0 |     bn_check_top(in_b); | 
| 571 |  | 
 | 
| 572 | 0 |     BN_CTX_start(ctx); | 
| 573 | 0 |     temp = BN_CTX_get(ctx); | 
| 574 | 0 |     g = BN_CTX_get(ctx); | 
| 575 |  |  | 
| 576 |  |     /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ | 
| 577 | 0 |     if (g == NULL | 
| 578 | 0 |         || !BN_lshift1(g, in_b) | 
| 579 | 0 |         || !BN_lshift1(r, in_a)) | 
| 580 | 0 |         goto err; | 
| 581 |  |  | 
| 582 |  |     /* find shared powers of two, i.e. "shifts" >= 1 */ | 
| 583 | 0 |     for (i = 0; i < r->dmax && i < g->dmax; i++) { | 
| 584 | 0 |         mask = ~(r->d[i] | g->d[i]); | 
| 585 | 0 |         for (j = 0; j < BN_BITS2; j++) { | 
| 586 | 0 |             bit &= mask; | 
| 587 | 0 |             shifts += bit; | 
| 588 | 0 |             mask >>= 1; | 
| 589 | 0 |         } | 
| 590 | 0 |     } | 
| 591 |  |  | 
| 592 |  |     /* subtract shared powers of two; shifts >= 1 */ | 
| 593 | 0 |     if (!BN_rshift(r, r, shifts) | 
| 594 | 0 |         || !BN_rshift(g, g, shifts)) | 
| 595 | 0 |         goto err; | 
| 596 |  |  | 
| 597 |  |     /* expand to biggest nword, with room for a possible extra word */ | 
| 598 | 0 |     top = 1 + ((r->top >= g->top) ? r->top : g->top); | 
| 599 | 0 |     if (bn_wexpand(r, top) == NULL | 
| 600 | 0 |         || bn_wexpand(g, top) == NULL | 
| 601 | 0 |         || bn_wexpand(temp, top) == NULL) | 
| 602 | 0 |         goto err; | 
| 603 |  |  | 
| 604 |  |     /* re arrange inputs s.t. r is odd */ | 
| 605 | 0 |     BN_consttime_swap((~r->d[0]) & 1, r, g, top); | 
| 606 |  |  | 
| 607 |  |     /* compute the number of iterations */ | 
| 608 | 0 |     rlen = BN_num_bits(r); | 
| 609 | 0 |     glen = BN_num_bits(g); | 
| 610 | 0 |     m = 4 + 3 * ((rlen >= glen) ? rlen : glen); | 
| 611 |  | 
 | 
| 612 | 0 |     for (i = 0; i < m; i++) { | 
| 613 |  |         /* conditionally flip signs if delta is positive and g is odd */ | 
| 614 | 0 |         cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 | 
| 615 |  |             /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ | 
| 616 | 0 |             & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); | 
| 617 | 0 |         delta = (-cond & -delta) | ((cond - 1) & delta); | 
| 618 | 0 |         r->neg ^= cond; | 
| 619 |  |         /* swap */ | 
| 620 | 0 |         BN_consttime_swap(cond, r, g, top); | 
| 621 |  |  | 
| 622 |  |         /* elimination step */ | 
| 623 | 0 |         delta++; | 
| 624 | 0 |         if (!BN_add(temp, g, r)) | 
| 625 | 0 |             goto err; | 
| 626 | 0 |         BN_consttime_swap(g->d[0] & 1 /* g is odd */ | 
| 627 |  |                 /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ | 
| 628 | 0 |                 & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), | 
| 629 | 0 |                 g, temp, top); | 
| 630 | 0 |         if (!BN_rshift1(g, g)) | 
| 631 | 0 |             goto err; | 
| 632 | 0 |     } | 
| 633 |  |  | 
| 634 |  |     /* remove possible negative sign */ | 
| 635 | 0 |     r->neg = 0; | 
| 636 |  |     /* add powers of 2 removed, then correct the artificial shift */ | 
| 637 | 0 |     if (!BN_lshift(r, r, shifts) | 
| 638 | 0 |         || !BN_rshift1(r, r)) | 
| 639 | 0 |         goto err; | 
| 640 |  |  | 
| 641 | 0 |     ret = 1; | 
| 642 |  | 
 | 
| 643 | 0 |  err: | 
| 644 | 0 |     BN_CTX_end(ctx); | 
| 645 | 0 |     bn_check_top(r); | 
| 646 | 0 |     return ret; | 
| 647 | 0 | } |