/src/openssl111/crypto/ec/ecp_nistp256.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the OpenSSL license (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* Copyright 2011 Google Inc. | 
| 11 |  |  * | 
| 12 |  |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
| 13 |  |  * | 
| 14 |  |  * you may not use this file except in compliance with the License. | 
| 15 |  |  * You may obtain a copy of the License at | 
| 16 |  |  * | 
| 17 |  |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
| 18 |  |  * | 
| 19 |  |  *  Unless required by applicable law or agreed to in writing, software | 
| 20 |  |  *  distributed under the License is distributed on an "AS IS" BASIS, | 
| 21 |  |  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 22 |  |  *  See the License for the specific language governing permissions and | 
| 23 |  |  *  limitations under the License. | 
| 24 |  |  */ | 
| 25 |  |  | 
| 26 |  | /* | 
| 27 |  |  * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication | 
| 28 |  |  * | 
| 29 |  |  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | 
| 30 |  |  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | 
| 31 |  |  * work which got its smarts from Daniel J. Bernstein's work on the same. | 
| 32 |  |  */ | 
| 33 |  |  | 
| 34 |  | #include <openssl/opensslconf.h> | 
| 35 |  | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 | 
| 36 |  | NON_EMPTY_TRANSLATION_UNIT | 
| 37 |  | #else | 
| 38 |  |  | 
| 39 |  | # include <stdint.h> | 
| 40 |  | # include <string.h> | 
| 41 |  | # include <openssl/err.h> | 
| 42 |  | # include "ec_local.h" | 
| 43 |  |  | 
| 44 |  | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 | 
| 45 |  |   /* even with gcc, the typedef won't work for 32-bit platforms */ | 
| 46 |  | typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit | 
| 47 |  |                                  * platforms */ | 
| 48 |  | typedef __int128_t int128_t; | 
| 49 |  | # else | 
| 50 |  | #  error "Your compiler doesn't appear to support 128-bit integer types" | 
| 51 |  | # endif | 
| 52 |  |  | 
| 53 |  | typedef uint8_t u8; | 
| 54 |  | typedef uint32_t u32; | 
| 55 |  | typedef uint64_t u64; | 
| 56 |  |  | 
| 57 |  | /* | 
| 58 |  |  * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We | 
| 59 |  |  * can serialise an element of this field into 32 bytes. We call this an | 
| 60 |  |  * felem_bytearray. | 
| 61 |  |  */ | 
| 62 |  |  | 
| 63 |  | typedef u8 felem_bytearray[32]; | 
| 64 |  |  | 
| 65 |  | /* | 
| 66 |  |  * These are the parameters of P256, taken from FIPS 186-3, page 86. These | 
| 67 |  |  * values are big-endian. | 
| 68 |  |  */ | 
| 69 |  | static const felem_bytearray nistp256_curve_params[5] = { | 
| 70 |  |     {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ | 
| 71 |  |      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
| 72 |  |      0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | 
| 73 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
| 74 |  |     {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ | 
| 75 |  |      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
| 76 |  |      0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | 
| 77 |  |      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, | 
| 78 |  |     {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */ | 
| 79 |  |      0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, | 
| 80 |  |      0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, | 
| 81 |  |      0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, | 
| 82 |  |     {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ | 
| 83 |  |      0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, | 
| 84 |  |      0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | 
| 85 |  |      0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, | 
| 86 |  |     {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ | 
| 87 |  |      0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | 
| 88 |  |      0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | 
| 89 |  |      0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} | 
| 90 |  | }; | 
| 91 |  |  | 
| 92 |  | /*- | 
| 93 |  |  * The representation of field elements. | 
| 94 |  |  * ------------------------------------ | 
| 95 |  |  * | 
| 96 |  |  * We represent field elements with either four 128-bit values, eight 128-bit | 
| 97 |  |  * values, or four 64-bit values. The field element represented is: | 
| 98 |  |  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p) | 
| 99 |  |  * or: | 
| 100 |  |  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p) | 
| 101 |  |  * | 
| 102 |  |  * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits | 
| 103 |  |  * apart, but are 128-bits wide, the most significant bits of each limb overlap | 
| 104 |  |  * with the least significant bits of the next. | 
| 105 |  |  * | 
| 106 |  |  * A field element with four limbs is an 'felem'. One with eight limbs is a | 
| 107 |  |  * 'longfelem' | 
| 108 |  |  * | 
| 109 |  |  * A field element with four, 64-bit values is called a 'smallfelem'. Small | 
| 110 |  |  * values are used as intermediate values before multiplication. | 
| 111 |  |  */ | 
| 112 |  |  | 
| 113 | 0 | # define NLIMBS 4 | 
| 114 |  |  | 
| 115 |  | typedef uint128_t limb; | 
| 116 |  | typedef limb felem[NLIMBS]; | 
| 117 |  | typedef limb longfelem[NLIMBS * 2]; | 
| 118 |  | typedef u64 smallfelem[NLIMBS]; | 
| 119 |  |  | 
| 120 |  | /* This is the value of the prime as four 64-bit words, little-endian. */ | 
| 121 |  | static const u64 kPrime[4] = | 
| 122 |  |     { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul }; | 
| 123 |  | static const u64 bottom63bits = 0x7ffffffffffffffful; | 
| 124 |  |  | 
| 125 |  | /* | 
| 126 |  |  * bin32_to_felem takes a little-endian byte array and converts it into felem | 
| 127 |  |  * form. This assumes that the CPU is little-endian. | 
| 128 |  |  */ | 
| 129 |  | static void bin32_to_felem(felem out, const u8 in[32]) | 
| 130 | 0 | { | 
| 131 | 0 |     out[0] = *((u64 *)&in[0]); | 
| 132 | 0 |     out[1] = *((u64 *)&in[8]); | 
| 133 | 0 |     out[2] = *((u64 *)&in[16]); | 
| 134 | 0 |     out[3] = *((u64 *)&in[24]); | 
| 135 | 0 | } | 
| 136 |  |  | 
| 137 |  | /* | 
| 138 |  |  * smallfelem_to_bin32 takes a smallfelem and serialises into a little | 
| 139 |  |  * endian, 32 byte array. This assumes that the CPU is little-endian. | 
| 140 |  |  */ | 
| 141 |  | static void smallfelem_to_bin32(u8 out[32], const smallfelem in) | 
| 142 | 0 | { | 
| 143 | 0 |     *((u64 *)&out[0]) = in[0]; | 
| 144 | 0 |     *((u64 *)&out[8]) = in[1]; | 
| 145 | 0 |     *((u64 *)&out[16]) = in[2]; | 
| 146 | 0 |     *((u64 *)&out[24]) = in[3]; | 
| 147 | 0 | } | 
| 148 |  |  | 
| 149 |  | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | 
| 150 |  | static int BN_to_felem(felem out, const BIGNUM *bn) | 
| 151 | 0 | { | 
| 152 | 0 |     felem_bytearray b_out; | 
| 153 | 0 |     int num_bytes; | 
| 154 |  | 
 | 
| 155 | 0 |     if (BN_is_negative(bn)) { | 
| 156 | 0 |         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 157 | 0 |         return 0; | 
| 158 | 0 |     } | 
| 159 | 0 |     num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); | 
| 160 | 0 |     if (num_bytes < 0) { | 
| 161 | 0 |         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | 
| 162 | 0 |         return 0; | 
| 163 | 0 |     } | 
| 164 | 0 |     bin32_to_felem(out, b_out); | 
| 165 | 0 |     return 1; | 
| 166 | 0 | } | 
| 167 |  |  | 
| 168 |  | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | 
| 169 |  | static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) | 
| 170 | 0 | { | 
| 171 | 0 |     felem_bytearray b_out; | 
| 172 | 0 |     smallfelem_to_bin32(b_out, in); | 
| 173 | 0 |     return BN_lebin2bn(b_out, sizeof(b_out), out); | 
| 174 | 0 | } | 
| 175 |  |  | 
| 176 |  | /*- | 
| 177 |  |  * Field operations | 
| 178 |  |  * ---------------- | 
| 179 |  |  */ | 
| 180 |  |  | 
| 181 |  | static void smallfelem_one(smallfelem out) | 
| 182 | 0 | { | 
| 183 | 0 |     out[0] = 1; | 
| 184 | 0 |     out[1] = 0; | 
| 185 | 0 |     out[2] = 0; | 
| 186 | 0 |     out[3] = 0; | 
| 187 | 0 | } | 
| 188 |  |  | 
| 189 |  | static void smallfelem_assign(smallfelem out, const smallfelem in) | 
| 190 | 0 | { | 
| 191 | 0 |     out[0] = in[0]; | 
| 192 | 0 |     out[1] = in[1]; | 
| 193 | 0 |     out[2] = in[2]; | 
| 194 | 0 |     out[3] = in[3]; | 
| 195 | 0 | } | 
| 196 |  |  | 
| 197 |  | static void felem_assign(felem out, const felem in) | 
| 198 | 0 | { | 
| 199 | 0 |     out[0] = in[0]; | 
| 200 | 0 |     out[1] = in[1]; | 
| 201 | 0 |     out[2] = in[2]; | 
| 202 | 0 |     out[3] = in[3]; | 
| 203 | 0 | } | 
| 204 |  |  | 
| 205 |  | /* felem_sum sets out = out + in. */ | 
| 206 |  | static void felem_sum(felem out, const felem in) | 
| 207 | 0 | { | 
| 208 | 0 |     out[0] += in[0]; | 
| 209 | 0 |     out[1] += in[1]; | 
| 210 | 0 |     out[2] += in[2]; | 
| 211 | 0 |     out[3] += in[3]; | 
| 212 | 0 | } | 
| 213 |  |  | 
| 214 |  | /* felem_small_sum sets out = out + in. */ | 
| 215 |  | static void felem_small_sum(felem out, const smallfelem in) | 
| 216 | 0 | { | 
| 217 | 0 |     out[0] += in[0]; | 
| 218 | 0 |     out[1] += in[1]; | 
| 219 | 0 |     out[2] += in[2]; | 
| 220 | 0 |     out[3] += in[3]; | 
| 221 | 0 | } | 
| 222 |  |  | 
| 223 |  | /* felem_scalar sets out = out * scalar */ | 
| 224 |  | static void felem_scalar(felem out, const u64 scalar) | 
| 225 | 0 | { | 
| 226 | 0 |     out[0] *= scalar; | 
| 227 | 0 |     out[1] *= scalar; | 
| 228 | 0 |     out[2] *= scalar; | 
| 229 | 0 |     out[3] *= scalar; | 
| 230 | 0 | } | 
| 231 |  |  | 
| 232 |  | /* longfelem_scalar sets out = out * scalar */ | 
| 233 |  | static void longfelem_scalar(longfelem out, const u64 scalar) | 
| 234 | 0 | { | 
| 235 | 0 |     out[0] *= scalar; | 
| 236 | 0 |     out[1] *= scalar; | 
| 237 | 0 |     out[2] *= scalar; | 
| 238 | 0 |     out[3] *= scalar; | 
| 239 | 0 |     out[4] *= scalar; | 
| 240 | 0 |     out[5] *= scalar; | 
| 241 | 0 |     out[6] *= scalar; | 
| 242 | 0 |     out[7] *= scalar; | 
| 243 | 0 | } | 
| 244 |  |  | 
| 245 |  | # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) | 
| 246 |  | # define two105 (((limb)1) << 105) | 
| 247 |  | # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) | 
| 248 |  |  | 
| 249 |  | /* zero105 is 0 mod p */ | 
| 250 |  | static const felem zero105 = | 
| 251 |  |     { two105m41m9, two105, two105m41p9, two105m41p9 }; | 
| 252 |  |  | 
| 253 |  | /*- | 
| 254 |  |  * smallfelem_neg sets |out| to |-small| | 
| 255 |  |  * On exit: | 
| 256 |  |  *   out[i] < out[i] + 2^105 | 
| 257 |  |  */ | 
| 258 |  | static void smallfelem_neg(felem out, const smallfelem small) | 
| 259 | 0 | { | 
| 260 |  |     /* In order to prevent underflow, we subtract from 0 mod p. */ | 
| 261 | 0 |     out[0] = zero105[0] - small[0]; | 
| 262 | 0 |     out[1] = zero105[1] - small[1]; | 
| 263 | 0 |     out[2] = zero105[2] - small[2]; | 
| 264 | 0 |     out[3] = zero105[3] - small[3]; | 
| 265 | 0 | } | 
| 266 |  |  | 
| 267 |  | /*- | 
| 268 |  |  * felem_diff subtracts |in| from |out| | 
| 269 |  |  * On entry: | 
| 270 |  |  *   in[i] < 2^104 | 
| 271 |  |  * On exit: | 
| 272 |  |  *   out[i] < out[i] + 2^105 | 
| 273 |  |  */ | 
| 274 |  | static void felem_diff(felem out, const felem in) | 
| 275 | 0 | { | 
| 276 |  |     /* | 
| 277 |  |      * In order to prevent underflow, we add 0 mod p before subtracting. | 
| 278 |  |      */ | 
| 279 | 0 |     out[0] += zero105[0]; | 
| 280 | 0 |     out[1] += zero105[1]; | 
| 281 | 0 |     out[2] += zero105[2]; | 
| 282 | 0 |     out[3] += zero105[3]; | 
| 283 |  | 
 | 
| 284 | 0 |     out[0] -= in[0]; | 
| 285 | 0 |     out[1] -= in[1]; | 
| 286 | 0 |     out[2] -= in[2]; | 
| 287 | 0 |     out[3] -= in[3]; | 
| 288 | 0 | } | 
| 289 |  |  | 
| 290 |  | # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) | 
| 291 |  | # define two107 (((limb)1) << 107) | 
| 292 |  | # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) | 
| 293 |  |  | 
| 294 |  | /* zero107 is 0 mod p */ | 
| 295 |  | static const felem zero107 = | 
| 296 |  |     { two107m43m11, two107, two107m43p11, two107m43p11 }; | 
| 297 |  |  | 
| 298 |  | /*- | 
| 299 |  |  * An alternative felem_diff for larger inputs |in| | 
| 300 |  |  * felem_diff_zero107 subtracts |in| from |out| | 
| 301 |  |  * On entry: | 
| 302 |  |  *   in[i] < 2^106 | 
| 303 |  |  * On exit: | 
| 304 |  |  *   out[i] < out[i] + 2^107 | 
| 305 |  |  */ | 
| 306 |  | static void felem_diff_zero107(felem out, const felem in) | 
| 307 | 0 | { | 
| 308 |  |     /* | 
| 309 |  |      * In order to prevent underflow, we add 0 mod p before subtracting. | 
| 310 |  |      */ | 
| 311 | 0 |     out[0] += zero107[0]; | 
| 312 | 0 |     out[1] += zero107[1]; | 
| 313 | 0 |     out[2] += zero107[2]; | 
| 314 | 0 |     out[3] += zero107[3]; | 
| 315 |  | 
 | 
| 316 | 0 |     out[0] -= in[0]; | 
| 317 | 0 |     out[1] -= in[1]; | 
| 318 | 0 |     out[2] -= in[2]; | 
| 319 | 0 |     out[3] -= in[3]; | 
| 320 | 0 | } | 
| 321 |  |  | 
| 322 |  | /*- | 
| 323 |  |  * longfelem_diff subtracts |in| from |out| | 
| 324 |  |  * On entry: | 
| 325 |  |  *   in[i] < 7*2^67 | 
| 326 |  |  * On exit: | 
| 327 |  |  *   out[i] < out[i] + 2^70 + 2^40 | 
| 328 |  |  */ | 
| 329 |  | static void longfelem_diff(longfelem out, const longfelem in) | 
| 330 | 0 | { | 
| 331 | 0 |     static const limb two70m8p6 = | 
| 332 | 0 |         (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); | 
| 333 | 0 |     static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); | 
| 334 | 0 |     static const limb two70 = (((limb) 1) << 70); | 
| 335 | 0 |     static const limb two70m40m38p6 = | 
| 336 | 0 |         (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + | 
| 337 | 0 |         (((limb) 1) << 6); | 
| 338 | 0 |     static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); | 
| 339 |  |  | 
| 340 |  |     /* add 0 mod p to avoid underflow */ | 
| 341 | 0 |     out[0] += two70m8p6; | 
| 342 | 0 |     out[1] += two70p40; | 
| 343 | 0 |     out[2] += two70; | 
| 344 | 0 |     out[3] += two70m40m38p6; | 
| 345 | 0 |     out[4] += two70m6; | 
| 346 | 0 |     out[5] += two70m6; | 
| 347 | 0 |     out[6] += two70m6; | 
| 348 | 0 |     out[7] += two70m6; | 
| 349 |  |  | 
| 350 |  |     /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ | 
| 351 | 0 |     out[0] -= in[0]; | 
| 352 | 0 |     out[1] -= in[1]; | 
| 353 | 0 |     out[2] -= in[2]; | 
| 354 | 0 |     out[3] -= in[3]; | 
| 355 | 0 |     out[4] -= in[4]; | 
| 356 | 0 |     out[5] -= in[5]; | 
| 357 | 0 |     out[6] -= in[6]; | 
| 358 | 0 |     out[7] -= in[7]; | 
| 359 | 0 | } | 
| 360 |  |  | 
| 361 |  | # define two64m0 (((limb)1) << 64) - 1 | 
| 362 |  | # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 | 
| 363 |  | # define two64m46 (((limb)1) << 64) - (((limb)1) << 46) | 
| 364 |  | # define two64m32 (((limb)1) << 64) - (((limb)1) << 32) | 
| 365 |  |  | 
| 366 |  | /* zero110 is 0 mod p */ | 
| 367 |  | static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; | 
| 368 |  |  | 
| 369 |  | /*- | 
| 370 |  |  * felem_shrink converts an felem into a smallfelem. The result isn't quite | 
| 371 |  |  * minimal as the value may be greater than p. | 
| 372 |  |  * | 
| 373 |  |  * On entry: | 
| 374 |  |  *   in[i] < 2^109 | 
| 375 |  |  * On exit: | 
| 376 |  |  *   out[i] < 2^64 | 
| 377 |  |  */ | 
| 378 |  | static void felem_shrink(smallfelem out, const felem in) | 
| 379 | 0 | { | 
| 380 | 0 |     felem tmp; | 
| 381 | 0 |     u64 a, b, mask; | 
| 382 | 0 |     u64 high, low; | 
| 383 | 0 |     static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ | 
| 384 |  |  | 
| 385 |  |     /* Carry 2->3 */ | 
| 386 | 0 |     tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64)); | 
| 387 |  |     /* tmp[3] < 2^110 */ | 
| 388 |  | 
 | 
| 389 | 0 |     tmp[2] = zero110[2] + (u64)in[2]; | 
| 390 | 0 |     tmp[0] = zero110[0] + in[0]; | 
| 391 | 0 |     tmp[1] = zero110[1] + in[1]; | 
| 392 |  |     /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ | 
| 393 |  |  | 
| 394 |  |     /* | 
| 395 |  |      * We perform two partial reductions where we eliminate the high-word of | 
| 396 |  |      * tmp[3]. We don't update the other words till the end. | 
| 397 |  |      */ | 
| 398 | 0 |     a = tmp[3] >> 64;           /* a < 2^46 */ | 
| 399 | 0 |     tmp[3] = (u64)tmp[3]; | 
| 400 | 0 |     tmp[3] -= a; | 
| 401 | 0 |     tmp[3] += ((limb) a) << 32; | 
| 402 |  |     /* tmp[3] < 2^79 */ | 
| 403 |  | 
 | 
| 404 | 0 |     b = a; | 
| 405 | 0 |     a = tmp[3] >> 64;           /* a < 2^15 */ | 
| 406 | 0 |     b += a;                     /* b < 2^46 + 2^15 < 2^47 */ | 
| 407 | 0 |     tmp[3] = (u64)tmp[3]; | 
| 408 | 0 |     tmp[3] -= a; | 
| 409 | 0 |     tmp[3] += ((limb) a) << 32; | 
| 410 |  |     /* tmp[3] < 2^64 + 2^47 */ | 
| 411 |  |  | 
| 412 |  |     /* | 
| 413 |  |      * This adjusts the other two words to complete the two partial | 
| 414 |  |      * reductions. | 
| 415 |  |      */ | 
| 416 | 0 |     tmp[0] += b; | 
| 417 | 0 |     tmp[1] -= (((limb) b) << 32); | 
| 418 |  |  | 
| 419 |  |     /* | 
| 420 |  |      * In order to make space in tmp[3] for the carry from 2 -> 3, we | 
| 421 |  |      * conditionally subtract kPrime if tmp[3] is large enough. | 
| 422 |  |      */ | 
| 423 | 0 |     high = (u64)(tmp[3] >> 64); | 
| 424 |  |     /* As tmp[3] < 2^65, high is either 1 or 0 */ | 
| 425 | 0 |     high = 0 - high; | 
| 426 |  |     /*- | 
| 427 |  |      * high is: | 
| 428 |  |      *   all ones   if the high word of tmp[3] is 1 | 
| 429 |  |      *   all zeros  if the high word of tmp[3] if 0 | 
| 430 |  |      */ | 
| 431 | 0 |     low = (u64)tmp[3]; | 
| 432 | 0 |     mask = 0 - (low >> 63); | 
| 433 |  |     /*- | 
| 434 |  |      * mask is: | 
| 435 |  |      *   all ones   if the MSB of low is 1 | 
| 436 |  |      *   all zeros  if the MSB of low if 0 | 
| 437 |  |      */ | 
| 438 | 0 |     low &= bottom63bits; | 
| 439 | 0 |     low -= kPrime3Test; | 
| 440 |  |     /* if low was greater than kPrime3Test then the MSB is zero */ | 
| 441 | 0 |     low = ~low; | 
| 442 | 0 |     low = 0 - (low >> 63); | 
| 443 |  |     /*- | 
| 444 |  |      * low is: | 
| 445 |  |      *   all ones   if low was > kPrime3Test | 
| 446 |  |      *   all zeros  if low was <= kPrime3Test | 
| 447 |  |      */ | 
| 448 | 0 |     mask = (mask & low) | high; | 
| 449 | 0 |     tmp[0] -= mask & kPrime[0]; | 
| 450 | 0 |     tmp[1] -= mask & kPrime[1]; | 
| 451 |  |     /* kPrime[2] is zero, so omitted */ | 
| 452 | 0 |     tmp[3] -= mask & kPrime[3]; | 
| 453 |  |     /* tmp[3] < 2**64 - 2**32 + 1 */ | 
| 454 |  | 
 | 
| 455 | 0 |     tmp[1] += ((u64)(tmp[0] >> 64)); | 
| 456 | 0 |     tmp[0] = (u64)tmp[0]; | 
| 457 | 0 |     tmp[2] += ((u64)(tmp[1] >> 64)); | 
| 458 | 0 |     tmp[1] = (u64)tmp[1]; | 
| 459 | 0 |     tmp[3] += ((u64)(tmp[2] >> 64)); | 
| 460 | 0 |     tmp[2] = (u64)tmp[2]; | 
| 461 |  |     /* tmp[i] < 2^64 */ | 
| 462 |  | 
 | 
| 463 | 0 |     out[0] = tmp[0]; | 
| 464 | 0 |     out[1] = tmp[1]; | 
| 465 | 0 |     out[2] = tmp[2]; | 
| 466 | 0 |     out[3] = tmp[3]; | 
| 467 | 0 | } | 
| 468 |  |  | 
| 469 |  | /* smallfelem_expand converts a smallfelem to an felem */ | 
| 470 |  | static void smallfelem_expand(felem out, const smallfelem in) | 
| 471 | 0 | { | 
| 472 | 0 |     out[0] = in[0]; | 
| 473 | 0 |     out[1] = in[1]; | 
| 474 | 0 |     out[2] = in[2]; | 
| 475 | 0 |     out[3] = in[3]; | 
| 476 | 0 | } | 
| 477 |  |  | 
| 478 |  | /*- | 
| 479 |  |  * smallfelem_square sets |out| = |small|^2 | 
| 480 |  |  * On entry: | 
| 481 |  |  *   small[i] < 2^64 | 
| 482 |  |  * On exit: | 
| 483 |  |  *   out[i] < 7 * 2^64 < 2^67 | 
| 484 |  |  */ | 
| 485 |  | static void smallfelem_square(longfelem out, const smallfelem small) | 
| 486 | 0 | { | 
| 487 | 0 |     limb a; | 
| 488 | 0 |     u64 high, low; | 
| 489 |  | 
 | 
| 490 | 0 |     a = ((uint128_t) small[0]) * small[0]; | 
| 491 | 0 |     low = a; | 
| 492 | 0 |     high = a >> 64; | 
| 493 | 0 |     out[0] = low; | 
| 494 | 0 |     out[1] = high; | 
| 495 |  | 
 | 
| 496 | 0 |     a = ((uint128_t) small[0]) * small[1]; | 
| 497 | 0 |     low = a; | 
| 498 | 0 |     high = a >> 64; | 
| 499 | 0 |     out[1] += low; | 
| 500 | 0 |     out[1] += low; | 
| 501 | 0 |     out[2] = high; | 
| 502 |  | 
 | 
| 503 | 0 |     a = ((uint128_t) small[0]) * small[2]; | 
| 504 | 0 |     low = a; | 
| 505 | 0 |     high = a >> 64; | 
| 506 | 0 |     out[2] += low; | 
| 507 | 0 |     out[2] *= 2; | 
| 508 | 0 |     out[3] = high; | 
| 509 |  | 
 | 
| 510 | 0 |     a = ((uint128_t) small[0]) * small[3]; | 
| 511 | 0 |     low = a; | 
| 512 | 0 |     high = a >> 64; | 
| 513 | 0 |     out[3] += low; | 
| 514 | 0 |     out[4] = high; | 
| 515 |  | 
 | 
| 516 | 0 |     a = ((uint128_t) small[1]) * small[2]; | 
| 517 | 0 |     low = a; | 
| 518 | 0 |     high = a >> 64; | 
| 519 | 0 |     out[3] += low; | 
| 520 | 0 |     out[3] *= 2; | 
| 521 | 0 |     out[4] += high; | 
| 522 |  | 
 | 
| 523 | 0 |     a = ((uint128_t) small[1]) * small[1]; | 
| 524 | 0 |     low = a; | 
| 525 | 0 |     high = a >> 64; | 
| 526 | 0 |     out[2] += low; | 
| 527 | 0 |     out[3] += high; | 
| 528 |  | 
 | 
| 529 | 0 |     a = ((uint128_t) small[1]) * small[3]; | 
| 530 | 0 |     low = a; | 
| 531 | 0 |     high = a >> 64; | 
| 532 | 0 |     out[4] += low; | 
| 533 | 0 |     out[4] *= 2; | 
| 534 | 0 |     out[5] = high; | 
| 535 |  | 
 | 
| 536 | 0 |     a = ((uint128_t) small[2]) * small[3]; | 
| 537 | 0 |     low = a; | 
| 538 | 0 |     high = a >> 64; | 
| 539 | 0 |     out[5] += low; | 
| 540 | 0 |     out[5] *= 2; | 
| 541 | 0 |     out[6] = high; | 
| 542 | 0 |     out[6] += high; | 
| 543 |  | 
 | 
| 544 | 0 |     a = ((uint128_t) small[2]) * small[2]; | 
| 545 | 0 |     low = a; | 
| 546 | 0 |     high = a >> 64; | 
| 547 | 0 |     out[4] += low; | 
| 548 | 0 |     out[5] += high; | 
| 549 |  | 
 | 
| 550 | 0 |     a = ((uint128_t) small[3]) * small[3]; | 
| 551 | 0 |     low = a; | 
| 552 | 0 |     high = a >> 64; | 
| 553 | 0 |     out[6] += low; | 
| 554 | 0 |     out[7] = high; | 
| 555 | 0 | } | 
| 556 |  |  | 
| 557 |  | /*- | 
| 558 |  |  * felem_square sets |out| = |in|^2 | 
| 559 |  |  * On entry: | 
| 560 |  |  *   in[i] < 2^109 | 
| 561 |  |  * On exit: | 
| 562 |  |  *   out[i] < 7 * 2^64 < 2^67 | 
| 563 |  |  */ | 
| 564 |  | static void felem_square(longfelem out, const felem in) | 
| 565 | 0 | { | 
| 566 | 0 |     u64 small[4]; | 
| 567 | 0 |     felem_shrink(small, in); | 
| 568 | 0 |     smallfelem_square(out, small); | 
| 569 | 0 | } | 
| 570 |  |  | 
| 571 |  | /*- | 
| 572 |  |  * smallfelem_mul sets |out| = |small1| * |small2| | 
| 573 |  |  * On entry: | 
| 574 |  |  *   small1[i] < 2^64 | 
| 575 |  |  *   small2[i] < 2^64 | 
| 576 |  |  * On exit: | 
| 577 |  |  *   out[i] < 7 * 2^64 < 2^67 | 
| 578 |  |  */ | 
| 579 |  | static void smallfelem_mul(longfelem out, const smallfelem small1, | 
| 580 |  |                            const smallfelem small2) | 
| 581 | 0 | { | 
| 582 | 0 |     limb a; | 
| 583 | 0 |     u64 high, low; | 
| 584 |  | 
 | 
| 585 | 0 |     a = ((uint128_t) small1[0]) * small2[0]; | 
| 586 | 0 |     low = a; | 
| 587 | 0 |     high = a >> 64; | 
| 588 | 0 |     out[0] = low; | 
| 589 | 0 |     out[1] = high; | 
| 590 |  | 
 | 
| 591 | 0 |     a = ((uint128_t) small1[0]) * small2[1]; | 
| 592 | 0 |     low = a; | 
| 593 | 0 |     high = a >> 64; | 
| 594 | 0 |     out[1] += low; | 
| 595 | 0 |     out[2] = high; | 
| 596 |  | 
 | 
| 597 | 0 |     a = ((uint128_t) small1[1]) * small2[0]; | 
| 598 | 0 |     low = a; | 
| 599 | 0 |     high = a >> 64; | 
| 600 | 0 |     out[1] += low; | 
| 601 | 0 |     out[2] += high; | 
| 602 |  | 
 | 
| 603 | 0 |     a = ((uint128_t) small1[0]) * small2[2]; | 
| 604 | 0 |     low = a; | 
| 605 | 0 |     high = a >> 64; | 
| 606 | 0 |     out[2] += low; | 
| 607 | 0 |     out[3] = high; | 
| 608 |  | 
 | 
| 609 | 0 |     a = ((uint128_t) small1[1]) * small2[1]; | 
| 610 | 0 |     low = a; | 
| 611 | 0 |     high = a >> 64; | 
| 612 | 0 |     out[2] += low; | 
| 613 | 0 |     out[3] += high; | 
| 614 |  | 
 | 
| 615 | 0 |     a = ((uint128_t) small1[2]) * small2[0]; | 
| 616 | 0 |     low = a; | 
| 617 | 0 |     high = a >> 64; | 
| 618 | 0 |     out[2] += low; | 
| 619 | 0 |     out[3] += high; | 
| 620 |  | 
 | 
| 621 | 0 |     a = ((uint128_t) small1[0]) * small2[3]; | 
| 622 | 0 |     low = a; | 
| 623 | 0 |     high = a >> 64; | 
| 624 | 0 |     out[3] += low; | 
| 625 | 0 |     out[4] = high; | 
| 626 |  | 
 | 
| 627 | 0 |     a = ((uint128_t) small1[1]) * small2[2]; | 
| 628 | 0 |     low = a; | 
| 629 | 0 |     high = a >> 64; | 
| 630 | 0 |     out[3] += low; | 
| 631 | 0 |     out[4] += high; | 
| 632 |  | 
 | 
| 633 | 0 |     a = ((uint128_t) small1[2]) * small2[1]; | 
| 634 | 0 |     low = a; | 
| 635 | 0 |     high = a >> 64; | 
| 636 | 0 |     out[3] += low; | 
| 637 | 0 |     out[4] += high; | 
| 638 |  | 
 | 
| 639 | 0 |     a = ((uint128_t) small1[3]) * small2[0]; | 
| 640 | 0 |     low = a; | 
| 641 | 0 |     high = a >> 64; | 
| 642 | 0 |     out[3] += low; | 
| 643 | 0 |     out[4] += high; | 
| 644 |  | 
 | 
| 645 | 0 |     a = ((uint128_t) small1[1]) * small2[3]; | 
| 646 | 0 |     low = a; | 
| 647 | 0 |     high = a >> 64; | 
| 648 | 0 |     out[4] += low; | 
| 649 | 0 |     out[5] = high; | 
| 650 |  | 
 | 
| 651 | 0 |     a = ((uint128_t) small1[2]) * small2[2]; | 
| 652 | 0 |     low = a; | 
| 653 | 0 |     high = a >> 64; | 
| 654 | 0 |     out[4] += low; | 
| 655 | 0 |     out[5] += high; | 
| 656 |  | 
 | 
| 657 | 0 |     a = ((uint128_t) small1[3]) * small2[1]; | 
| 658 | 0 |     low = a; | 
| 659 | 0 |     high = a >> 64; | 
| 660 | 0 |     out[4] += low; | 
| 661 | 0 |     out[5] += high; | 
| 662 |  | 
 | 
| 663 | 0 |     a = ((uint128_t) small1[2]) * small2[3]; | 
| 664 | 0 |     low = a; | 
| 665 | 0 |     high = a >> 64; | 
| 666 | 0 |     out[5] += low; | 
| 667 | 0 |     out[6] = high; | 
| 668 |  | 
 | 
| 669 | 0 |     a = ((uint128_t) small1[3]) * small2[2]; | 
| 670 | 0 |     low = a; | 
| 671 | 0 |     high = a >> 64; | 
| 672 | 0 |     out[5] += low; | 
| 673 | 0 |     out[6] += high; | 
| 674 |  | 
 | 
| 675 | 0 |     a = ((uint128_t) small1[3]) * small2[3]; | 
| 676 | 0 |     low = a; | 
| 677 | 0 |     high = a >> 64; | 
| 678 | 0 |     out[6] += low; | 
| 679 | 0 |     out[7] = high; | 
| 680 | 0 | } | 
| 681 |  |  | 
| 682 |  | /*- | 
| 683 |  |  * felem_mul sets |out| = |in1| * |in2| | 
| 684 |  |  * On entry: | 
| 685 |  |  *   in1[i] < 2^109 | 
| 686 |  |  *   in2[i] < 2^109 | 
| 687 |  |  * On exit: | 
| 688 |  |  *   out[i] < 7 * 2^64 < 2^67 | 
| 689 |  |  */ | 
| 690 |  | static void felem_mul(longfelem out, const felem in1, const felem in2) | 
| 691 | 0 | { | 
| 692 | 0 |     smallfelem small1, small2; | 
| 693 | 0 |     felem_shrink(small1, in1); | 
| 694 | 0 |     felem_shrink(small2, in2); | 
| 695 | 0 |     smallfelem_mul(out, small1, small2); | 
| 696 | 0 | } | 
| 697 |  |  | 
| 698 |  | /*- | 
| 699 |  |  * felem_small_mul sets |out| = |small1| * |in2| | 
| 700 |  |  * On entry: | 
| 701 |  |  *   small1[i] < 2^64 | 
| 702 |  |  *   in2[i] < 2^109 | 
| 703 |  |  * On exit: | 
| 704 |  |  *   out[i] < 7 * 2^64 < 2^67 | 
| 705 |  |  */ | 
| 706 |  | static void felem_small_mul(longfelem out, const smallfelem small1, | 
| 707 |  |                             const felem in2) | 
| 708 | 0 | { | 
| 709 | 0 |     smallfelem small2; | 
| 710 | 0 |     felem_shrink(small2, in2); | 
| 711 | 0 |     smallfelem_mul(out, small1, small2); | 
| 712 | 0 | } | 
| 713 |  |  | 
| 714 |  | # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) | 
| 715 |  | # define two100 (((limb)1) << 100) | 
| 716 |  | # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) | 
| 717 |  | /* zero100 is 0 mod p */ | 
| 718 |  | static const felem zero100 = | 
| 719 |  |     { two100m36m4, two100, two100m36p4, two100m36p4 }; | 
| 720 |  |  | 
| 721 |  | /*- | 
| 722 |  |  * Internal function for the different flavours of felem_reduce. | 
| 723 |  |  * felem_reduce_ reduces the higher coefficients in[4]-in[7]. | 
| 724 |  |  * On entry: | 
| 725 |  |  *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] | 
| 726 |  |  *   out[1] >= in[7] + 2^32*in[4] | 
| 727 |  |  *   out[2] >= in[5] + 2^32*in[5] | 
| 728 |  |  *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] | 
| 729 |  |  * On exit: | 
| 730 |  |  *   out[0] <= out[0] + in[4] + 2^32*in[5] | 
| 731 |  |  *   out[1] <= out[1] + in[5] + 2^33*in[6] | 
| 732 |  |  *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] | 
| 733 |  |  *   out[3] <= out[3] + 2^32*in[4] + 3*in[7] | 
| 734 |  |  */ | 
| 735 |  | static void felem_reduce_(felem out, const longfelem in) | 
| 736 | 0 | { | 
| 737 | 0 |     int128_t c; | 
| 738 |  |     /* combine common terms from below */ | 
| 739 | 0 |     c = in[4] + (in[5] << 32); | 
| 740 | 0 |     out[0] += c; | 
| 741 | 0 |     out[3] -= c; | 
| 742 |  | 
 | 
| 743 | 0 |     c = in[5] - in[7]; | 
| 744 | 0 |     out[1] += c; | 
| 745 | 0 |     out[2] -= c; | 
| 746 |  |  | 
| 747 |  |     /* the remaining terms */ | 
| 748 |  |     /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ | 
| 749 | 0 |     out[1] -= (in[4] << 32); | 
| 750 | 0 |     out[3] += (in[4] << 32); | 
| 751 |  |  | 
| 752 |  |     /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ | 
| 753 | 0 |     out[2] -= (in[5] << 32); | 
| 754 |  |  | 
| 755 |  |     /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ | 
| 756 | 0 |     out[0] -= in[6]; | 
| 757 | 0 |     out[0] -= (in[6] << 32); | 
| 758 | 0 |     out[1] += (in[6] << 33); | 
| 759 | 0 |     out[2] += (in[6] * 2); | 
| 760 | 0 |     out[3] -= (in[6] << 32); | 
| 761 |  |  | 
| 762 |  |     /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ | 
| 763 | 0 |     out[0] -= in[7]; | 
| 764 | 0 |     out[0] -= (in[7] << 32); | 
| 765 | 0 |     out[2] += (in[7] << 33); | 
| 766 | 0 |     out[3] += (in[7] * 3); | 
| 767 | 0 | } | 
| 768 |  |  | 
| 769 |  | /*- | 
| 770 |  |  * felem_reduce converts a longfelem into an felem. | 
| 771 |  |  * To be called directly after felem_square or felem_mul. | 
| 772 |  |  * On entry: | 
| 773 |  |  *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 | 
| 774 |  |  *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 | 
| 775 |  |  * On exit: | 
| 776 |  |  *   out[i] < 2^101 | 
| 777 |  |  */ | 
| 778 |  | static void felem_reduce(felem out, const longfelem in) | 
| 779 | 0 | { | 
| 780 | 0 |     out[0] = zero100[0] + in[0]; | 
| 781 | 0 |     out[1] = zero100[1] + in[1]; | 
| 782 | 0 |     out[2] = zero100[2] + in[2]; | 
| 783 | 0 |     out[3] = zero100[3] + in[3]; | 
| 784 |  | 
 | 
| 785 | 0 |     felem_reduce_(out, in); | 
| 786 |  |  | 
| 787 |  |     /*- | 
| 788 |  |      * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 | 
| 789 |  |      * out[1] > 2^100 - 2^64 - 7*2^96 > 0 | 
| 790 |  |      * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 | 
| 791 |  |      * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 | 
| 792 |  |      * | 
| 793 |  |      * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 | 
| 794 |  |      * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 | 
| 795 |  |      * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 | 
| 796 |  |      * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 | 
| 797 |  |      */ | 
| 798 | 0 | } | 
| 799 |  |  | 
| 800 |  | /*- | 
| 801 |  |  * felem_reduce_zero105 converts a larger longfelem into an felem. | 
| 802 |  |  * On entry: | 
| 803 |  |  *   in[0] < 2^71 | 
| 804 |  |  * On exit: | 
| 805 |  |  *   out[i] < 2^106 | 
| 806 |  |  */ | 
| 807 |  | static void felem_reduce_zero105(felem out, const longfelem in) | 
| 808 | 0 | { | 
| 809 | 0 |     out[0] = zero105[0] + in[0]; | 
| 810 | 0 |     out[1] = zero105[1] + in[1]; | 
| 811 | 0 |     out[2] = zero105[2] + in[2]; | 
| 812 | 0 |     out[3] = zero105[3] + in[3]; | 
| 813 |  | 
 | 
| 814 | 0 |     felem_reduce_(out, in); | 
| 815 |  |  | 
| 816 |  |     /*- | 
| 817 |  |      * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 | 
| 818 |  |      * out[1] > 2^105 - 2^71 - 2^103 > 0 | 
| 819 |  |      * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 | 
| 820 |  |      * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 | 
| 821 |  |      * | 
| 822 |  |      * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 | 
| 823 |  |      * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 | 
| 824 |  |      * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 | 
| 825 |  |      * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 | 
| 826 |  |      */ | 
| 827 | 0 | } | 
| 828 |  |  | 
| 829 |  | /* | 
| 830 |  |  * subtract_u64 sets *result = *result - v and *carry to one if the | 
| 831 |  |  * subtraction underflowed. | 
| 832 |  |  */ | 
| 833 |  | static void subtract_u64(u64 *result, u64 *carry, u64 v) | 
| 834 | 0 | { | 
| 835 | 0 |     uint128_t r = *result; | 
| 836 | 0 |     r -= v; | 
| 837 | 0 |     *carry = (r >> 64) & 1; | 
| 838 | 0 |     *result = (u64)r; | 
| 839 | 0 | } | 
| 840 |  |  | 
| 841 |  | /* | 
| 842 |  |  * felem_contract converts |in| to its unique, minimal representation. On | 
| 843 |  |  * entry: in[i] < 2^109 | 
| 844 |  |  */ | 
| 845 |  | static void felem_contract(smallfelem out, const felem in) | 
| 846 | 0 | { | 
| 847 | 0 |     unsigned i; | 
| 848 | 0 |     u64 all_equal_so_far = 0, result = 0, carry; | 
| 849 |  | 
 | 
| 850 | 0 |     felem_shrink(out, in); | 
| 851 |  |     /* small is minimal except that the value might be > p */ | 
| 852 |  | 
 | 
| 853 | 0 |     all_equal_so_far--; | 
| 854 |  |     /* | 
| 855 |  |      * We are doing a constant time test if out >= kPrime. We need to compare | 
| 856 |  |      * each u64, from most-significant to least significant. For each one, if | 
| 857 |  |      * all words so far have been equal (m is all ones) then a non-equal | 
| 858 |  |      * result is the answer. Otherwise we continue. | 
| 859 |  |      */ | 
| 860 | 0 |     for (i = 3; i < 4; i--) { | 
| 861 | 0 |         u64 equal; | 
| 862 | 0 |         uint128_t a = ((uint128_t) kPrime[i]) - out[i]; | 
| 863 |  |         /* | 
| 864 |  |          * if out[i] > kPrime[i] then a will underflow and the high 64-bits | 
| 865 |  |          * will all be set. | 
| 866 |  |          */ | 
| 867 | 0 |         result |= all_equal_so_far & ((u64)(a >> 64)); | 
| 868 |  |  | 
| 869 |  |         /* | 
| 870 |  |          * if kPrime[i] == out[i] then |equal| will be all zeros and the | 
| 871 |  |          * decrement will make it all ones. | 
| 872 |  |          */ | 
| 873 | 0 |         equal = kPrime[i] ^ out[i]; | 
| 874 | 0 |         equal--; | 
| 875 | 0 |         equal &= equal << 32; | 
| 876 | 0 |         equal &= equal << 16; | 
| 877 | 0 |         equal &= equal << 8; | 
| 878 | 0 |         equal &= equal << 4; | 
| 879 | 0 |         equal &= equal << 2; | 
| 880 | 0 |         equal &= equal << 1; | 
| 881 | 0 |         equal = 0 - (equal >> 63); | 
| 882 |  | 
 | 
| 883 | 0 |         all_equal_so_far &= equal; | 
| 884 | 0 |     } | 
| 885 |  |  | 
| 886 |  |     /* | 
| 887 |  |      * if all_equal_so_far is still all ones then the two values are equal | 
| 888 |  |      * and so out >= kPrime is true. | 
| 889 |  |      */ | 
| 890 | 0 |     result |= all_equal_so_far; | 
| 891 |  |  | 
| 892 |  |     /* if out >= kPrime then we subtract kPrime. */ | 
| 893 | 0 |     subtract_u64(&out[0], &carry, result & kPrime[0]); | 
| 894 | 0 |     subtract_u64(&out[1], &carry, carry); | 
| 895 | 0 |     subtract_u64(&out[2], &carry, carry); | 
| 896 | 0 |     subtract_u64(&out[3], &carry, carry); | 
| 897 |  | 
 | 
| 898 | 0 |     subtract_u64(&out[1], &carry, result & kPrime[1]); | 
| 899 | 0 |     subtract_u64(&out[2], &carry, carry); | 
| 900 | 0 |     subtract_u64(&out[3], &carry, carry); | 
| 901 |  | 
 | 
| 902 | 0 |     subtract_u64(&out[2], &carry, result & kPrime[2]); | 
| 903 | 0 |     subtract_u64(&out[3], &carry, carry); | 
| 904 |  | 
 | 
| 905 | 0 |     subtract_u64(&out[3], &carry, result & kPrime[3]); | 
| 906 | 0 | } | 
| 907 |  |  | 
| 908 |  | static void smallfelem_square_contract(smallfelem out, const smallfelem in) | 
| 909 | 0 | { | 
| 910 | 0 |     longfelem longtmp; | 
| 911 | 0 |     felem tmp; | 
| 912 |  | 
 | 
| 913 | 0 |     smallfelem_square(longtmp, in); | 
| 914 | 0 |     felem_reduce(tmp, longtmp); | 
| 915 | 0 |     felem_contract(out, tmp); | 
| 916 | 0 | } | 
| 917 |  |  | 
| 918 |  | static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, | 
| 919 |  |                                     const smallfelem in2) | 
| 920 | 0 | { | 
| 921 | 0 |     longfelem longtmp; | 
| 922 | 0 |     felem tmp; | 
| 923 |  | 
 | 
| 924 | 0 |     smallfelem_mul(longtmp, in1, in2); | 
| 925 | 0 |     felem_reduce(tmp, longtmp); | 
| 926 | 0 |     felem_contract(out, tmp); | 
| 927 | 0 | } | 
| 928 |  |  | 
| 929 |  | /*- | 
| 930 |  |  * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | 
| 931 |  |  * otherwise. | 
| 932 |  |  * On entry: | 
| 933 |  |  *   small[i] < 2^64 | 
| 934 |  |  */ | 
| 935 |  | static limb smallfelem_is_zero(const smallfelem small) | 
| 936 | 0 | { | 
| 937 | 0 |     limb result; | 
| 938 | 0 |     u64 is_p; | 
| 939 |  | 
 | 
| 940 | 0 |     u64 is_zero = small[0] | small[1] | small[2] | small[3]; | 
| 941 | 0 |     is_zero--; | 
| 942 | 0 |     is_zero &= is_zero << 32; | 
| 943 | 0 |     is_zero &= is_zero << 16; | 
| 944 | 0 |     is_zero &= is_zero << 8; | 
| 945 | 0 |     is_zero &= is_zero << 4; | 
| 946 | 0 |     is_zero &= is_zero << 2; | 
| 947 | 0 |     is_zero &= is_zero << 1; | 
| 948 | 0 |     is_zero = 0 - (is_zero >> 63); | 
| 949 |  | 
 | 
| 950 | 0 |     is_p = (small[0] ^ kPrime[0]) | | 
| 951 | 0 |         (small[1] ^ kPrime[1]) | | 
| 952 | 0 |         (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); | 
| 953 | 0 |     is_p--; | 
| 954 | 0 |     is_p &= is_p << 32; | 
| 955 | 0 |     is_p &= is_p << 16; | 
| 956 | 0 |     is_p &= is_p << 8; | 
| 957 | 0 |     is_p &= is_p << 4; | 
| 958 | 0 |     is_p &= is_p << 2; | 
| 959 | 0 |     is_p &= is_p << 1; | 
| 960 | 0 |     is_p = 0 - (is_p >> 63); | 
| 961 |  | 
 | 
| 962 | 0 |     is_zero |= is_p; | 
| 963 |  | 
 | 
| 964 | 0 |     result = is_zero; | 
| 965 | 0 |     result |= ((limb) is_zero) << 64; | 
| 966 | 0 |     return result; | 
| 967 | 0 | } | 
| 968 |  |  | 
| 969 |  | static int smallfelem_is_zero_int(const void *small) | 
| 970 | 0 | { | 
| 971 | 0 |     return (int)(smallfelem_is_zero(small) & ((limb) 1)); | 
| 972 | 0 | } | 
| 973 |  |  | 
| 974 |  | /*- | 
| 975 |  |  * felem_inv calculates |out| = |in|^{-1} | 
| 976 |  |  * | 
| 977 |  |  * Based on Fermat's Little Theorem: | 
| 978 |  |  *   a^p = a (mod p) | 
| 979 |  |  *   a^{p-1} = 1 (mod p) | 
| 980 |  |  *   a^{p-2} = a^{-1} (mod p) | 
| 981 |  |  */ | 
| 982 |  | static void felem_inv(felem out, const felem in) | 
| 983 | 0 | { | 
| 984 | 0 |     felem ftmp, ftmp2; | 
| 985 |  |     /* each e_I will hold |in|^{2^I - 1} */ | 
| 986 | 0 |     felem e2, e4, e8, e16, e32, e64; | 
| 987 | 0 |     longfelem tmp; | 
| 988 | 0 |     unsigned i; | 
| 989 |  | 
 | 
| 990 | 0 |     felem_square(tmp, in); | 
| 991 | 0 |     felem_reduce(ftmp, tmp);    /* 2^1 */ | 
| 992 | 0 |     felem_mul(tmp, in, ftmp); | 
| 993 | 0 |     felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */ | 
| 994 | 0 |     felem_assign(e2, ftmp); | 
| 995 | 0 |     felem_square(tmp, ftmp); | 
| 996 | 0 |     felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */ | 
| 997 | 0 |     felem_square(tmp, ftmp); | 
| 998 | 0 |     felem_reduce(ftmp, tmp);    /* 2^4 - 2^2 */ | 
| 999 | 0 |     felem_mul(tmp, ftmp, e2); | 
| 1000 | 0 |     felem_reduce(ftmp, tmp);    /* 2^4 - 2^0 */ | 
| 1001 | 0 |     felem_assign(e4, ftmp); | 
| 1002 | 0 |     felem_square(tmp, ftmp); | 
| 1003 | 0 |     felem_reduce(ftmp, tmp);    /* 2^5 - 2^1 */ | 
| 1004 | 0 |     felem_square(tmp, ftmp); | 
| 1005 | 0 |     felem_reduce(ftmp, tmp);    /* 2^6 - 2^2 */ | 
| 1006 | 0 |     felem_square(tmp, ftmp); | 
| 1007 | 0 |     felem_reduce(ftmp, tmp);    /* 2^7 - 2^3 */ | 
| 1008 | 0 |     felem_square(tmp, ftmp); | 
| 1009 | 0 |     felem_reduce(ftmp, tmp);    /* 2^8 - 2^4 */ | 
| 1010 | 0 |     felem_mul(tmp, ftmp, e4); | 
| 1011 | 0 |     felem_reduce(ftmp, tmp);    /* 2^8 - 2^0 */ | 
| 1012 | 0 |     felem_assign(e8, ftmp); | 
| 1013 | 0 |     for (i = 0; i < 8; i++) { | 
| 1014 | 0 |         felem_square(tmp, ftmp); | 
| 1015 | 0 |         felem_reduce(ftmp, tmp); | 
| 1016 | 0 |     }                           /* 2^16 - 2^8 */ | 
| 1017 | 0 |     felem_mul(tmp, ftmp, e8); | 
| 1018 | 0 |     felem_reduce(ftmp, tmp);    /* 2^16 - 2^0 */ | 
| 1019 | 0 |     felem_assign(e16, ftmp); | 
| 1020 | 0 |     for (i = 0; i < 16; i++) { | 
| 1021 | 0 |         felem_square(tmp, ftmp); | 
| 1022 | 0 |         felem_reduce(ftmp, tmp); | 
| 1023 | 0 |     }                           /* 2^32 - 2^16 */ | 
| 1024 | 0 |     felem_mul(tmp, ftmp, e16); | 
| 1025 | 0 |     felem_reduce(ftmp, tmp);    /* 2^32 - 2^0 */ | 
| 1026 | 0 |     felem_assign(e32, ftmp); | 
| 1027 | 0 |     for (i = 0; i < 32; i++) { | 
| 1028 | 0 |         felem_square(tmp, ftmp); | 
| 1029 | 0 |         felem_reduce(ftmp, tmp); | 
| 1030 | 0 |     }                           /* 2^64 - 2^32 */ | 
| 1031 | 0 |     felem_assign(e64, ftmp); | 
| 1032 | 0 |     felem_mul(tmp, ftmp, in); | 
| 1033 | 0 |     felem_reduce(ftmp, tmp);    /* 2^64 - 2^32 + 2^0 */ | 
| 1034 | 0 |     for (i = 0; i < 192; i++) { | 
| 1035 | 0 |         felem_square(tmp, ftmp); | 
| 1036 | 0 |         felem_reduce(ftmp, tmp); | 
| 1037 | 0 |     }                           /* 2^256 - 2^224 + 2^192 */ | 
| 1038 |  | 
 | 
| 1039 | 0 |     felem_mul(tmp, e64, e32); | 
| 1040 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^64 - 2^0 */ | 
| 1041 | 0 |     for (i = 0; i < 16; i++) { | 
| 1042 | 0 |         felem_square(tmp, ftmp2); | 
| 1043 | 0 |         felem_reduce(ftmp2, tmp); | 
| 1044 | 0 |     }                           /* 2^80 - 2^16 */ | 
| 1045 | 0 |     felem_mul(tmp, ftmp2, e16); | 
| 1046 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^80 - 2^0 */ | 
| 1047 | 0 |     for (i = 0; i < 8; i++) { | 
| 1048 | 0 |         felem_square(tmp, ftmp2); | 
| 1049 | 0 |         felem_reduce(ftmp2, tmp); | 
| 1050 | 0 |     }                           /* 2^88 - 2^8 */ | 
| 1051 | 0 |     felem_mul(tmp, ftmp2, e8); | 
| 1052 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^88 - 2^0 */ | 
| 1053 | 0 |     for (i = 0; i < 4; i++) { | 
| 1054 | 0 |         felem_square(tmp, ftmp2); | 
| 1055 | 0 |         felem_reduce(ftmp2, tmp); | 
| 1056 | 0 |     }                           /* 2^92 - 2^4 */ | 
| 1057 | 0 |     felem_mul(tmp, ftmp2, e4); | 
| 1058 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^92 - 2^0 */ | 
| 1059 | 0 |     felem_square(tmp, ftmp2); | 
| 1060 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^93 - 2^1 */ | 
| 1061 | 0 |     felem_square(tmp, ftmp2); | 
| 1062 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^94 - 2^2 */ | 
| 1063 | 0 |     felem_mul(tmp, ftmp2, e2); | 
| 1064 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^94 - 2^0 */ | 
| 1065 | 0 |     felem_square(tmp, ftmp2); | 
| 1066 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^95 - 2^1 */ | 
| 1067 | 0 |     felem_square(tmp, ftmp2); | 
| 1068 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^96 - 2^2 */ | 
| 1069 | 0 |     felem_mul(tmp, ftmp2, in); | 
| 1070 | 0 |     felem_reduce(ftmp2, tmp);   /* 2^96 - 3 */ | 
| 1071 |  | 
 | 
| 1072 | 0 |     felem_mul(tmp, ftmp2, ftmp); | 
| 1073 | 0 |     felem_reduce(out, tmp);     /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | 
| 1074 | 0 | } | 
| 1075 |  |  | 
| 1076 |  | static void smallfelem_inv_contract(smallfelem out, const smallfelem in) | 
| 1077 | 0 | { | 
| 1078 | 0 |     felem tmp; | 
| 1079 |  | 
 | 
| 1080 | 0 |     smallfelem_expand(tmp, in); | 
| 1081 | 0 |     felem_inv(tmp, tmp); | 
| 1082 | 0 |     felem_contract(out, tmp); | 
| 1083 | 0 | } | 
| 1084 |  |  | 
| 1085 |  | /*- | 
| 1086 |  |  * Group operations | 
| 1087 |  |  * ---------------- | 
| 1088 |  |  * | 
| 1089 |  |  * Building on top of the field operations we have the operations on the | 
| 1090 |  |  * elliptic curve group itself. Points on the curve are represented in Jacobian | 
| 1091 |  |  * coordinates | 
| 1092 |  |  */ | 
| 1093 |  |  | 
| 1094 |  | /*- | 
| 1095 |  |  * point_double calculates 2*(x_in, y_in, z_in) | 
| 1096 |  |  * | 
| 1097 |  |  * The method is taken from: | 
| 1098 |  |  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | 
| 1099 |  |  * | 
| 1100 |  |  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | 
| 1101 |  |  * while x_out == y_in is not (maybe this works, but it's not tested). | 
| 1102 |  |  */ | 
| 1103 |  | static void | 
| 1104 |  | point_double(felem x_out, felem y_out, felem z_out, | 
| 1105 |  |              const felem x_in, const felem y_in, const felem z_in) | 
| 1106 | 0 | { | 
| 1107 | 0 |     longfelem tmp, tmp2; | 
| 1108 | 0 |     felem delta, gamma, beta, alpha, ftmp, ftmp2; | 
| 1109 | 0 |     smallfelem small1, small2; | 
| 1110 |  | 
 | 
| 1111 | 0 |     felem_assign(ftmp, x_in); | 
| 1112 |  |     /* ftmp[i] < 2^106 */ | 
| 1113 | 0 |     felem_assign(ftmp2, x_in); | 
| 1114 |  |     /* ftmp2[i] < 2^106 */ | 
| 1115 |  |  | 
| 1116 |  |     /* delta = z^2 */ | 
| 1117 | 0 |     felem_square(tmp, z_in); | 
| 1118 | 0 |     felem_reduce(delta, tmp); | 
| 1119 |  |     /* delta[i] < 2^101 */ | 
| 1120 |  |  | 
| 1121 |  |     /* gamma = y^2 */ | 
| 1122 | 0 |     felem_square(tmp, y_in); | 
| 1123 | 0 |     felem_reduce(gamma, tmp); | 
| 1124 |  |     /* gamma[i] < 2^101 */ | 
| 1125 | 0 |     felem_shrink(small1, gamma); | 
| 1126 |  |  | 
| 1127 |  |     /* beta = x*gamma */ | 
| 1128 | 0 |     felem_small_mul(tmp, small1, x_in); | 
| 1129 | 0 |     felem_reduce(beta, tmp); | 
| 1130 |  |     /* beta[i] < 2^101 */ | 
| 1131 |  |  | 
| 1132 |  |     /* alpha = 3*(x-delta)*(x+delta) */ | 
| 1133 | 0 |     felem_diff(ftmp, delta); | 
| 1134 |  |     /* ftmp[i] < 2^105 + 2^106 < 2^107 */ | 
| 1135 | 0 |     felem_sum(ftmp2, delta); | 
| 1136 |  |     /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ | 
| 1137 | 0 |     felem_scalar(ftmp2, 3); | 
| 1138 |  |     /* ftmp2[i] < 3 * 2^107 < 2^109 */ | 
| 1139 | 0 |     felem_mul(tmp, ftmp, ftmp2); | 
| 1140 | 0 |     felem_reduce(alpha, tmp); | 
| 1141 |  |     /* alpha[i] < 2^101 */ | 
| 1142 | 0 |     felem_shrink(small2, alpha); | 
| 1143 |  |  | 
| 1144 |  |     /* x' = alpha^2 - 8*beta */ | 
| 1145 | 0 |     smallfelem_square(tmp, small2); | 
| 1146 | 0 |     felem_reduce(x_out, tmp); | 
| 1147 | 0 |     felem_assign(ftmp, beta); | 
| 1148 | 0 |     felem_scalar(ftmp, 8); | 
| 1149 |  |     /* ftmp[i] < 8 * 2^101 = 2^104 */ | 
| 1150 | 0 |     felem_diff(x_out, ftmp); | 
| 1151 |  |     /* x_out[i] < 2^105 + 2^101 < 2^106 */ | 
| 1152 |  |  | 
| 1153 |  |     /* z' = (y + z)^2 - gamma - delta */ | 
| 1154 | 0 |     felem_sum(delta, gamma); | 
| 1155 |  |     /* delta[i] < 2^101 + 2^101 = 2^102 */ | 
| 1156 | 0 |     felem_assign(ftmp, y_in); | 
| 1157 | 0 |     felem_sum(ftmp, z_in); | 
| 1158 |  |     /* ftmp[i] < 2^106 + 2^106 = 2^107 */ | 
| 1159 | 0 |     felem_square(tmp, ftmp); | 
| 1160 | 0 |     felem_reduce(z_out, tmp); | 
| 1161 | 0 |     felem_diff(z_out, delta); | 
| 1162 |  |     /* z_out[i] < 2^105 + 2^101 < 2^106 */ | 
| 1163 |  |  | 
| 1164 |  |     /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | 
| 1165 | 0 |     felem_scalar(beta, 4); | 
| 1166 |  |     /* beta[i] < 4 * 2^101 = 2^103 */ | 
| 1167 | 0 |     felem_diff_zero107(beta, x_out); | 
| 1168 |  |     /* beta[i] < 2^107 + 2^103 < 2^108 */ | 
| 1169 | 0 |     felem_small_mul(tmp, small2, beta); | 
| 1170 |  |     /* tmp[i] < 7 * 2^64 < 2^67 */ | 
| 1171 | 0 |     smallfelem_square(tmp2, small1); | 
| 1172 |  |     /* tmp2[i] < 7 * 2^64 */ | 
| 1173 | 0 |     longfelem_scalar(tmp2, 8); | 
| 1174 |  |     /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ | 
| 1175 | 0 |     longfelem_diff(tmp, tmp2); | 
| 1176 |  |     /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | 
| 1177 | 0 |     felem_reduce_zero105(y_out, tmp); | 
| 1178 |  |     /* y_out[i] < 2^106 */ | 
| 1179 | 0 | } | 
| 1180 |  |  | 
| 1181 |  | /* | 
| 1182 |  |  * point_double_small is the same as point_double, except that it operates on | 
| 1183 |  |  * smallfelems | 
| 1184 |  |  */ | 
| 1185 |  | static void | 
| 1186 |  | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, | 
| 1187 |  |                    const smallfelem x_in, const smallfelem y_in, | 
| 1188 |  |                    const smallfelem z_in) | 
| 1189 | 0 | { | 
| 1190 | 0 |     felem felem_x_out, felem_y_out, felem_z_out; | 
| 1191 | 0 |     felem felem_x_in, felem_y_in, felem_z_in; | 
| 1192 |  | 
 | 
| 1193 | 0 |     smallfelem_expand(felem_x_in, x_in); | 
| 1194 | 0 |     smallfelem_expand(felem_y_in, y_in); | 
| 1195 | 0 |     smallfelem_expand(felem_z_in, z_in); | 
| 1196 | 0 |     point_double(felem_x_out, felem_y_out, felem_z_out, | 
| 1197 | 0 |                  felem_x_in, felem_y_in, felem_z_in); | 
| 1198 | 0 |     felem_shrink(x_out, felem_x_out); | 
| 1199 | 0 |     felem_shrink(y_out, felem_y_out); | 
| 1200 | 0 |     felem_shrink(z_out, felem_z_out); | 
| 1201 | 0 | } | 
| 1202 |  |  | 
| 1203 |  | /* copy_conditional copies in to out iff mask is all ones. */ | 
| 1204 |  | static void copy_conditional(felem out, const felem in, limb mask) | 
| 1205 | 0 | { | 
| 1206 | 0 |     unsigned i; | 
| 1207 | 0 |     for (i = 0; i < NLIMBS; ++i) { | 
| 1208 | 0 |         const limb tmp = mask & (in[i] ^ out[i]); | 
| 1209 | 0 |         out[i] ^= tmp; | 
| 1210 | 0 |     } | 
| 1211 | 0 | } | 
| 1212 |  |  | 
| 1213 |  | /* copy_small_conditional copies in to out iff mask is all ones. */ | 
| 1214 |  | static void copy_small_conditional(felem out, const smallfelem in, limb mask) | 
| 1215 | 0 | { | 
| 1216 | 0 |     unsigned i; | 
| 1217 | 0 |     const u64 mask64 = mask; | 
| 1218 | 0 |     for (i = 0; i < NLIMBS; ++i) { | 
| 1219 | 0 |         out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); | 
| 1220 | 0 |     } | 
| 1221 | 0 | } | 
| 1222 |  |  | 
| 1223 |  | /*- | 
| 1224 |  |  * point_add calculates (x1, y1, z1) + (x2, y2, z2) | 
| 1225 |  |  * | 
| 1226 |  |  * The method is taken from: | 
| 1227 |  |  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | 
| 1228 |  |  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | 
| 1229 |  |  * | 
| 1230 |  |  * This function includes a branch for checking whether the two input points | 
| 1231 |  |  * are equal, (while not equal to the point at infinity). This case never | 
| 1232 |  |  * happens during single point multiplication, so there is no timing leak for | 
| 1233 |  |  * ECDH or ECDSA signing. | 
| 1234 |  |  */ | 
| 1235 |  | static void point_add(felem x3, felem y3, felem z3, | 
| 1236 |  |                       const felem x1, const felem y1, const felem z1, | 
| 1237 |  |                       const int mixed, const smallfelem x2, | 
| 1238 |  |                       const smallfelem y2, const smallfelem z2) | 
| 1239 | 0 | { | 
| 1240 | 0 |     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | 
| 1241 | 0 |     longfelem tmp, tmp2; | 
| 1242 | 0 |     smallfelem small1, small2, small3, small4, small5; | 
| 1243 | 0 |     limb x_equal, y_equal, z1_is_zero, z2_is_zero; | 
| 1244 | 0 |     limb points_equal; | 
| 1245 |  | 
 | 
| 1246 | 0 |     felem_shrink(small3, z1); | 
| 1247 |  | 
 | 
| 1248 | 0 |     z1_is_zero = smallfelem_is_zero(small3); | 
| 1249 | 0 |     z2_is_zero = smallfelem_is_zero(z2); | 
| 1250 |  |  | 
| 1251 |  |     /* ftmp = z1z1 = z1**2 */ | 
| 1252 | 0 |     smallfelem_square(tmp, small3); | 
| 1253 | 0 |     felem_reduce(ftmp, tmp); | 
| 1254 |  |     /* ftmp[i] < 2^101 */ | 
| 1255 | 0 |     felem_shrink(small1, ftmp); | 
| 1256 |  | 
 | 
| 1257 | 0 |     if (!mixed) { | 
| 1258 |  |         /* ftmp2 = z2z2 = z2**2 */ | 
| 1259 | 0 |         smallfelem_square(tmp, z2); | 
| 1260 | 0 |         felem_reduce(ftmp2, tmp); | 
| 1261 |  |         /* ftmp2[i] < 2^101 */ | 
| 1262 | 0 |         felem_shrink(small2, ftmp2); | 
| 1263 |  | 
 | 
| 1264 | 0 |         felem_shrink(small5, x1); | 
| 1265 |  |  | 
| 1266 |  |         /* u1 = ftmp3 = x1*z2z2 */ | 
| 1267 | 0 |         smallfelem_mul(tmp, small5, small2); | 
| 1268 | 0 |         felem_reduce(ftmp3, tmp); | 
| 1269 |  |         /* ftmp3[i] < 2^101 */ | 
| 1270 |  |  | 
| 1271 |  |         /* ftmp5 = z1 + z2 */ | 
| 1272 | 0 |         felem_assign(ftmp5, z1); | 
| 1273 | 0 |         felem_small_sum(ftmp5, z2); | 
| 1274 |  |         /* ftmp5[i] < 2^107 */ | 
| 1275 |  |  | 
| 1276 |  |         /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ | 
| 1277 | 0 |         felem_square(tmp, ftmp5); | 
| 1278 | 0 |         felem_reduce(ftmp5, tmp); | 
| 1279 |  |         /* ftmp2 = z2z2 + z1z1 */ | 
| 1280 | 0 |         felem_sum(ftmp2, ftmp); | 
| 1281 |  |         /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ | 
| 1282 | 0 |         felem_diff(ftmp5, ftmp2); | 
| 1283 |  |         /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ | 
| 1284 |  |  | 
| 1285 |  |         /* ftmp2 = z2 * z2z2 */ | 
| 1286 | 0 |         smallfelem_mul(tmp, small2, z2); | 
| 1287 | 0 |         felem_reduce(ftmp2, tmp); | 
| 1288 |  |  | 
| 1289 |  |         /* s1 = ftmp2 = y1 * z2**3 */ | 
| 1290 | 0 |         felem_mul(tmp, y1, ftmp2); | 
| 1291 | 0 |         felem_reduce(ftmp6, tmp); | 
| 1292 |  |         /* ftmp6[i] < 2^101 */ | 
| 1293 | 0 |     } else { | 
| 1294 |  |         /* | 
| 1295 |  |          * We'll assume z2 = 1 (special case z2 = 0 is handled later) | 
| 1296 |  |          */ | 
| 1297 |  |  | 
| 1298 |  |         /* u1 = ftmp3 = x1*z2z2 */ | 
| 1299 | 0 |         felem_assign(ftmp3, x1); | 
| 1300 |  |         /* ftmp3[i] < 2^106 */ | 
| 1301 |  |  | 
| 1302 |  |         /* ftmp5 = 2z1z2 */ | 
| 1303 | 0 |         felem_assign(ftmp5, z1); | 
| 1304 | 0 |         felem_scalar(ftmp5, 2); | 
| 1305 |  |         /* ftmp5[i] < 2*2^106 = 2^107 */ | 
| 1306 |  |  | 
| 1307 |  |         /* s1 = ftmp2 = y1 * z2**3 */ | 
| 1308 | 0 |         felem_assign(ftmp6, y1); | 
| 1309 |  |         /* ftmp6[i] < 2^106 */ | 
| 1310 | 0 |     } | 
| 1311 |  |  | 
| 1312 |  |     /* u2 = x2*z1z1 */ | 
| 1313 | 0 |     smallfelem_mul(tmp, x2, small1); | 
| 1314 | 0 |     felem_reduce(ftmp4, tmp); | 
| 1315 |  |  | 
| 1316 |  |     /* h = ftmp4 = u2 - u1 */ | 
| 1317 | 0 |     felem_diff_zero107(ftmp4, ftmp3); | 
| 1318 |  |     /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ | 
| 1319 | 0 |     felem_shrink(small4, ftmp4); | 
| 1320 |  | 
 | 
| 1321 | 0 |     x_equal = smallfelem_is_zero(small4); | 
| 1322 |  |  | 
| 1323 |  |     /* z_out = ftmp5 * h */ | 
| 1324 | 0 |     felem_small_mul(tmp, small4, ftmp5); | 
| 1325 | 0 |     felem_reduce(z_out, tmp); | 
| 1326 |  |     /* z_out[i] < 2^101 */ | 
| 1327 |  |  | 
| 1328 |  |     /* ftmp = z1 * z1z1 */ | 
| 1329 | 0 |     smallfelem_mul(tmp, small1, small3); | 
| 1330 | 0 |     felem_reduce(ftmp, tmp); | 
| 1331 |  |  | 
| 1332 |  |     /* s2 = tmp = y2 * z1**3 */ | 
| 1333 | 0 |     felem_small_mul(tmp, y2, ftmp); | 
| 1334 | 0 |     felem_reduce(ftmp5, tmp); | 
| 1335 |  |  | 
| 1336 |  |     /* r = ftmp5 = (s2 - s1)*2 */ | 
| 1337 | 0 |     felem_diff_zero107(ftmp5, ftmp6); | 
| 1338 |  |     /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ | 
| 1339 | 0 |     felem_scalar(ftmp5, 2); | 
| 1340 |  |     /* ftmp5[i] < 2^109 */ | 
| 1341 | 0 |     felem_shrink(small1, ftmp5); | 
| 1342 | 0 |     y_equal = smallfelem_is_zero(small1); | 
| 1343 |  |  | 
| 1344 |  |     /* | 
| 1345 |  |      * The formulae are incorrect if the points are equal, in affine coordinates | 
| 1346 |  |      * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this | 
| 1347 |  |      * happens. | 
| 1348 |  |      * | 
| 1349 |  |      * We use bitwise operations to avoid potential side-channels introduced by | 
| 1350 |  |      * the short-circuiting behaviour of boolean operators. | 
| 1351 |  |      * | 
| 1352 |  |      * The special case of either point being the point at infinity (z1 and/or | 
| 1353 |  |      * z2 are zero), is handled separately later on in this function, so we | 
| 1354 |  |      * avoid jumping to point_double here in those special cases. | 
| 1355 |  |      */ | 
| 1356 | 0 |     points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); | 
| 1357 |  | 
 | 
| 1358 | 0 |     if (points_equal) { | 
| 1359 |  |         /* | 
| 1360 |  |          * This is obviously not constant-time but, as mentioned before, this | 
| 1361 |  |          * case never happens during single point multiplication, so there is no | 
| 1362 |  |          * timing leak for ECDH or ECDSA signing. | 
| 1363 |  |          */ | 
| 1364 | 0 |         point_double(x3, y3, z3, x1, y1, z1); | 
| 1365 | 0 |         return; | 
| 1366 | 0 |     } | 
| 1367 |  |  | 
| 1368 |  |     /* I = ftmp = (2h)**2 */ | 
| 1369 | 0 |     felem_assign(ftmp, ftmp4); | 
| 1370 | 0 |     felem_scalar(ftmp, 2); | 
| 1371 |  |     /* ftmp[i] < 2*2^108 = 2^109 */ | 
| 1372 | 0 |     felem_square(tmp, ftmp); | 
| 1373 | 0 |     felem_reduce(ftmp, tmp); | 
| 1374 |  |  | 
| 1375 |  |     /* J = ftmp2 = h * I */ | 
| 1376 | 0 |     felem_mul(tmp, ftmp4, ftmp); | 
| 1377 | 0 |     felem_reduce(ftmp2, tmp); | 
| 1378 |  |  | 
| 1379 |  |     /* V = ftmp4 = U1 * I */ | 
| 1380 | 0 |     felem_mul(tmp, ftmp3, ftmp); | 
| 1381 | 0 |     felem_reduce(ftmp4, tmp); | 
| 1382 |  |  | 
| 1383 |  |     /* x_out = r**2 - J - 2V */ | 
| 1384 | 0 |     smallfelem_square(tmp, small1); | 
| 1385 | 0 |     felem_reduce(x_out, tmp); | 
| 1386 | 0 |     felem_assign(ftmp3, ftmp4); | 
| 1387 | 0 |     felem_scalar(ftmp4, 2); | 
| 1388 | 0 |     felem_sum(ftmp4, ftmp2); | 
| 1389 |  |     /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ | 
| 1390 | 0 |     felem_diff(x_out, ftmp4); | 
| 1391 |  |     /* x_out[i] < 2^105 + 2^101 */ | 
| 1392 |  |  | 
| 1393 |  |     /* y_out = r(V-x_out) - 2 * s1 * J */ | 
| 1394 | 0 |     felem_diff_zero107(ftmp3, x_out); | 
| 1395 |  |     /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ | 
| 1396 | 0 |     felem_small_mul(tmp, small1, ftmp3); | 
| 1397 | 0 |     felem_mul(tmp2, ftmp6, ftmp2); | 
| 1398 | 0 |     longfelem_scalar(tmp2, 2); | 
| 1399 |  |     /* tmp2[i] < 2*2^67 = 2^68 */ | 
| 1400 | 0 |     longfelem_diff(tmp, tmp2); | 
| 1401 |  |     /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | 
| 1402 | 0 |     felem_reduce_zero105(y_out, tmp); | 
| 1403 |  |     /* y_out[i] < 2^106 */ | 
| 1404 |  | 
 | 
| 1405 | 0 |     copy_small_conditional(x_out, x2, z1_is_zero); | 
| 1406 | 0 |     copy_conditional(x_out, x1, z2_is_zero); | 
| 1407 | 0 |     copy_small_conditional(y_out, y2, z1_is_zero); | 
| 1408 | 0 |     copy_conditional(y_out, y1, z2_is_zero); | 
| 1409 | 0 |     copy_small_conditional(z_out, z2, z1_is_zero); | 
| 1410 | 0 |     copy_conditional(z_out, z1, z2_is_zero); | 
| 1411 | 0 |     felem_assign(x3, x_out); | 
| 1412 | 0 |     felem_assign(y3, y_out); | 
| 1413 | 0 |     felem_assign(z3, z_out); | 
| 1414 | 0 | } | 
| 1415 |  |  | 
| 1416 |  | /* | 
| 1417 |  |  * point_add_small is the same as point_add, except that it operates on | 
| 1418 |  |  * smallfelems | 
| 1419 |  |  */ | 
| 1420 |  | static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, | 
| 1421 |  |                             smallfelem x1, smallfelem y1, smallfelem z1, | 
| 1422 |  |                             smallfelem x2, smallfelem y2, smallfelem z2) | 
| 1423 | 0 | { | 
| 1424 | 0 |     felem felem_x3, felem_y3, felem_z3; | 
| 1425 | 0 |     felem felem_x1, felem_y1, felem_z1; | 
| 1426 | 0 |     smallfelem_expand(felem_x1, x1); | 
| 1427 | 0 |     smallfelem_expand(felem_y1, y1); | 
| 1428 | 0 |     smallfelem_expand(felem_z1, z1); | 
| 1429 | 0 |     point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, | 
| 1430 | 0 |               x2, y2, z2); | 
| 1431 | 0 |     felem_shrink(x3, felem_x3); | 
| 1432 | 0 |     felem_shrink(y3, felem_y3); | 
| 1433 | 0 |     felem_shrink(z3, felem_z3); | 
| 1434 | 0 | } | 
| 1435 |  |  | 
| 1436 |  | /*- | 
| 1437 |  |  * Base point pre computation | 
| 1438 |  |  * -------------------------- | 
| 1439 |  |  * | 
| 1440 |  |  * Two different sorts of precomputed tables are used in the following code. | 
| 1441 |  |  * Each contain various points on the curve, where each point is three field | 
| 1442 |  |  * elements (x, y, z). | 
| 1443 |  |  * | 
| 1444 |  |  * For the base point table, z is usually 1 (0 for the point at infinity). | 
| 1445 |  |  * This table has 2 * 16 elements, starting with the following: | 
| 1446 |  |  * index | bits    | point | 
| 1447 |  |  * ------+---------+------------------------------ | 
| 1448 |  |  *     0 | 0 0 0 0 | 0G | 
| 1449 |  |  *     1 | 0 0 0 1 | 1G | 
| 1450 |  |  *     2 | 0 0 1 0 | 2^64G | 
| 1451 |  |  *     3 | 0 0 1 1 | (2^64 + 1)G | 
| 1452 |  |  *     4 | 0 1 0 0 | 2^128G | 
| 1453 |  |  *     5 | 0 1 0 1 | (2^128 + 1)G | 
| 1454 |  |  *     6 | 0 1 1 0 | (2^128 + 2^64)G | 
| 1455 |  |  *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | 
| 1456 |  |  *     8 | 1 0 0 0 | 2^192G | 
| 1457 |  |  *     9 | 1 0 0 1 | (2^192 + 1)G | 
| 1458 |  |  *    10 | 1 0 1 0 | (2^192 + 2^64)G | 
| 1459 |  |  *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | 
| 1460 |  |  *    12 | 1 1 0 0 | (2^192 + 2^128)G | 
| 1461 |  |  *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | 
| 1462 |  |  *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | 
| 1463 |  |  *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | 
| 1464 |  |  * followed by a copy of this with each element multiplied by 2^32. | 
| 1465 |  |  * | 
| 1466 |  |  * The reason for this is so that we can clock bits into four different | 
| 1467 |  |  * locations when doing simple scalar multiplies against the base point, | 
| 1468 |  |  * and then another four locations using the second 16 elements. | 
| 1469 |  |  * | 
| 1470 |  |  * Tables for other points have table[i] = iG for i in 0 .. 16. */ | 
| 1471 |  |  | 
| 1472 |  | /* gmul is the table of precomputed base points */ | 
| 1473 |  | static const smallfelem gmul[2][16][3] = { | 
| 1474 |  |     {{{0, 0, 0, 0}, | 
| 1475 |  |       {0, 0, 0, 0}, | 
| 1476 |  |       {0, 0, 0, 0}}, | 
| 1477 |  |      {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, | 
| 1478 |  |        0x6b17d1f2e12c4247}, | 
| 1479 |  |       {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, | 
| 1480 |  |        0x4fe342e2fe1a7f9b}, | 
| 1481 |  |       {1, 0, 0, 0}}, | 
| 1482 |  |      {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, | 
| 1483 |  |        0x0fa822bc2811aaa5}, | 
| 1484 |  |       {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, | 
| 1485 |  |        0xbff44ae8f5dba80d}, | 
| 1486 |  |       {1, 0, 0, 0}}, | 
| 1487 |  |      {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, | 
| 1488 |  |        0x300a4bbc89d6726f}, | 
| 1489 |  |       {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, | 
| 1490 |  |        0x72aac7e0d09b4644}, | 
| 1491 |  |       {1, 0, 0, 0}}, | 
| 1492 |  |      {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, | 
| 1493 |  |        0x447d739beedb5e67}, | 
| 1494 |  |       {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, | 
| 1495 |  |        0x2d4825ab834131ee}, | 
| 1496 |  |       {1, 0, 0, 0}}, | 
| 1497 |  |      {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, | 
| 1498 |  |        0xef9519328a9c72ff}, | 
| 1499 |  |       {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, | 
| 1500 |  |        0x611e9fc37dbb2c9b}, | 
| 1501 |  |       {1, 0, 0, 0}}, | 
| 1502 |  |      {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, | 
| 1503 |  |        0x550663797b51f5d8}, | 
| 1504 |  |       {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, | 
| 1505 |  |        0x157164848aecb851}, | 
| 1506 |  |       {1, 0, 0, 0}}, | 
| 1507 |  |      {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, | 
| 1508 |  |        0xeb5d7745b21141ea}, | 
| 1509 |  |       {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, | 
| 1510 |  |        0xeafd72ebdbecc17b}, | 
| 1511 |  |       {1, 0, 0, 0}}, | 
| 1512 |  |      {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, | 
| 1513 |  |        0xa6d39677a7849276}, | 
| 1514 |  |       {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, | 
| 1515 |  |        0x674f84749b0b8816}, | 
| 1516 |  |       {1, 0, 0, 0}}, | 
| 1517 |  |      {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, | 
| 1518 |  |        0x4e769e7672c9ddad}, | 
| 1519 |  |       {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, | 
| 1520 |  |        0x42b99082de830663}, | 
| 1521 |  |       {1, 0, 0, 0}}, | 
| 1522 |  |      {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, | 
| 1523 |  |        0x78878ef61c6ce04d}, | 
| 1524 |  |       {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, | 
| 1525 |  |        0xb6cb3f5d7b72c321}, | 
| 1526 |  |       {1, 0, 0, 0}}, | 
| 1527 |  |      {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, | 
| 1528 |  |        0x0c88bc4d716b1287}, | 
| 1529 |  |       {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, | 
| 1530 |  |        0xdd5ddea3f3901dc6}, | 
| 1531 |  |       {1, 0, 0, 0}}, | 
| 1532 |  |      {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, | 
| 1533 |  |        0x68f344af6b317466}, | 
| 1534 |  |       {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, | 
| 1535 |  |        0x31b9c405f8540a20}, | 
| 1536 |  |       {1, 0, 0, 0}}, | 
| 1537 |  |      {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, | 
| 1538 |  |        0x4052bf4b6f461db9}, | 
| 1539 |  |       {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, | 
| 1540 |  |        0xfecf4d5190b0fc61}, | 
| 1541 |  |       {1, 0, 0, 0}}, | 
| 1542 |  |      {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, | 
| 1543 |  |        0x1eddbae2c802e41a}, | 
| 1544 |  |       {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, | 
| 1545 |  |        0x43104d86560ebcfc}, | 
| 1546 |  |       {1, 0, 0, 0}}, | 
| 1547 |  |      {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, | 
| 1548 |  |        0xb48e26b484f7a21c}, | 
| 1549 |  |       {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, | 
| 1550 |  |        0xfac015404d4d3dab}, | 
| 1551 |  |       {1, 0, 0, 0}}}, | 
| 1552 |  |     {{{0, 0, 0, 0}, | 
| 1553 |  |       {0, 0, 0, 0}, | 
| 1554 |  |       {0, 0, 0, 0}}, | 
| 1555 |  |      {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, | 
| 1556 |  |        0x7fe36b40af22af89}, | 
| 1557 |  |       {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, | 
| 1558 |  |        0xe697d45825b63624}, | 
| 1559 |  |       {1, 0, 0, 0}}, | 
| 1560 |  |      {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, | 
| 1561 |  |        0x4a5b506612a677a6}, | 
| 1562 |  |       {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, | 
| 1563 |  |        0xeb13461ceac089f1}, | 
| 1564 |  |       {1, 0, 0, 0}}, | 
| 1565 |  |      {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, | 
| 1566 |  |        0x0781b8291c6a220a}, | 
| 1567 |  |       {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, | 
| 1568 |  |        0x690cde8df0151593}, | 
| 1569 |  |       {1, 0, 0, 0}}, | 
| 1570 |  |      {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, | 
| 1571 |  |        0x8a535f566ec73617}, | 
| 1572 |  |       {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, | 
| 1573 |  |        0x0455c08468b08bd7}, | 
| 1574 |  |       {1, 0, 0, 0}}, | 
| 1575 |  |      {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, | 
| 1576 |  |        0x06bada7ab77f8276}, | 
| 1577 |  |       {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, | 
| 1578 |  |        0x5b476dfd0e6cb18a}, | 
| 1579 |  |       {1, 0, 0, 0}}, | 
| 1580 |  |      {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, | 
| 1581 |  |        0x3e29864e8a2ec908}, | 
| 1582 |  |       {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, | 
| 1583 |  |        0x239b90ea3dc31e7e}, | 
| 1584 |  |       {1, 0, 0, 0}}, | 
| 1585 |  |      {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, | 
| 1586 |  |        0x820f4dd949f72ff7}, | 
| 1587 |  |       {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, | 
| 1588 |  |        0x140406ec783a05ec}, | 
| 1589 |  |       {1, 0, 0, 0}}, | 
| 1590 |  |      {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, | 
| 1591 |  |        0x68f6b8542783dfee}, | 
| 1592 |  |       {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, | 
| 1593 |  |        0xcbe1feba92e40ce6}, | 
| 1594 |  |       {1, 0, 0, 0}}, | 
| 1595 |  |      {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, | 
| 1596 |  |        0xd0b2f94d2f420109}, | 
| 1597 |  |       {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, | 
| 1598 |  |        0x971459828b0719e5}, | 
| 1599 |  |       {1, 0, 0, 0}}, | 
| 1600 |  |      {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, | 
| 1601 |  |        0x961610004a866aba}, | 
| 1602 |  |       {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, | 
| 1603 |  |        0x7acb9fadcee75e44}, | 
| 1604 |  |       {1, 0, 0, 0}}, | 
| 1605 |  |      {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, | 
| 1606 |  |        0x24eb9acca333bf5b}, | 
| 1607 |  |       {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, | 
| 1608 |  |        0x69f891c5acd079cc}, | 
| 1609 |  |       {1, 0, 0, 0}}, | 
| 1610 |  |      {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, | 
| 1611 |  |        0xe51f547c5972a107}, | 
| 1612 |  |       {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, | 
| 1613 |  |        0x1c309a2b25bb1387}, | 
| 1614 |  |       {1, 0, 0, 0}}, | 
| 1615 |  |      {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, | 
| 1616 |  |        0x20b87b8aa2c4e503}, | 
| 1617 |  |       {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, | 
| 1618 |  |        0xf5c6fa49919776be}, | 
| 1619 |  |       {1, 0, 0, 0}}, | 
| 1620 |  |      {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, | 
| 1621 |  |        0x1ed7d1b9332010b9}, | 
| 1622 |  |       {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, | 
| 1623 |  |        0x3a2b03f03217257a}, | 
| 1624 |  |       {1, 0, 0, 0}}, | 
| 1625 |  |      {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, | 
| 1626 |  |        0x15fee545c78dd9f6}, | 
| 1627 |  |       {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, | 
| 1628 |  |        0x4ab5b6b2b8753f81}, | 
| 1629 |  |       {1, 0, 0, 0}}} | 
| 1630 |  | }; | 
| 1631 |  |  | 
| 1632 |  | /* | 
| 1633 |  |  * select_point selects the |idx|th point from a precomputation table and | 
| 1634 |  |  * copies it to out. | 
| 1635 |  |  */ | 
| 1636 |  | static void select_point(const u64 idx, unsigned int size, | 
| 1637 |  |                          const smallfelem pre_comp[16][3], smallfelem out[3]) | 
| 1638 | 0 | { | 
| 1639 | 0 |     unsigned i, j; | 
| 1640 | 0 |     u64 *outlimbs = &out[0][0]; | 
| 1641 |  | 
 | 
| 1642 | 0 |     memset(out, 0, sizeof(*out) * 3); | 
| 1643 |  | 
 | 
| 1644 | 0 |     for (i = 0; i < size; i++) { | 
| 1645 | 0 |         const u64 *inlimbs = (u64 *)&pre_comp[i][0][0]; | 
| 1646 | 0 |         u64 mask = i ^ idx; | 
| 1647 | 0 |         mask |= mask >> 4; | 
| 1648 | 0 |         mask |= mask >> 2; | 
| 1649 | 0 |         mask |= mask >> 1; | 
| 1650 | 0 |         mask &= 1; | 
| 1651 | 0 |         mask--; | 
| 1652 | 0 |         for (j = 0; j < NLIMBS * 3; j++) | 
| 1653 | 0 |             outlimbs[j] |= inlimbs[j] & mask; | 
| 1654 | 0 |     } | 
| 1655 | 0 | } | 
| 1656 |  |  | 
| 1657 |  | /* get_bit returns the |i|th bit in |in| */ | 
| 1658 |  | static char get_bit(const felem_bytearray in, int i) | 
| 1659 | 0 | { | 
| 1660 | 0 |     if ((i < 0) || (i >= 256)) | 
| 1661 | 0 |         return 0; | 
| 1662 | 0 |     return (in[i >> 3] >> (i & 7)) & 1; | 
| 1663 | 0 | } | 
| 1664 |  |  | 
| 1665 |  | /* | 
| 1666 |  |  * Interleaved point multiplication using precomputed point multiples: The | 
| 1667 |  |  * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars | 
| 1668 |  |  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the | 
| 1669 |  |  * generator, using certain (large) precomputed multiples in g_pre_comp. | 
| 1670 |  |  * Output point (X, Y, Z) is stored in x_out, y_out, z_out | 
| 1671 |  |  */ | 
| 1672 |  | static void batch_mul(felem x_out, felem y_out, felem z_out, | 
| 1673 |  |                       const felem_bytearray scalars[], | 
| 1674 |  |                       const unsigned num_points, const u8 *g_scalar, | 
| 1675 |  |                       const int mixed, const smallfelem pre_comp[][17][3], | 
| 1676 |  |                       const smallfelem g_pre_comp[2][16][3]) | 
| 1677 | 0 | { | 
| 1678 | 0 |     int i, skip; | 
| 1679 | 0 |     unsigned num, gen_mul = (g_scalar != NULL); | 
| 1680 | 0 |     felem nq[3], ftmp; | 
| 1681 | 0 |     smallfelem tmp[3]; | 
| 1682 | 0 |     u64 bits; | 
| 1683 | 0 |     u8 sign, digit; | 
| 1684 |  |  | 
| 1685 |  |     /* set nq to the point at infinity */ | 
| 1686 | 0 |     memset(nq, 0, sizeof(nq)); | 
| 1687 |  |  | 
| 1688 |  |     /* | 
| 1689 |  |      * Loop over all scalars msb-to-lsb, interleaving additions of multiples | 
| 1690 |  |      * of the generator (two in each of the last 32 rounds) and additions of | 
| 1691 |  |      * other points multiples (every 5th round). | 
| 1692 |  |      */ | 
| 1693 | 0 |     skip = 1;                   /* save two point operations in the first | 
| 1694 |  |                                  * round */ | 
| 1695 | 0 |     for (i = (num_points ? 255 : 31); i >= 0; --i) { | 
| 1696 |  |         /* double */ | 
| 1697 | 0 |         if (!skip) | 
| 1698 | 0 |             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | 
| 1699 |  |  | 
| 1700 |  |         /* add multiples of the generator */ | 
| 1701 | 0 |         if (gen_mul && (i <= 31)) { | 
| 1702 |  |             /* first, look 32 bits upwards */ | 
| 1703 | 0 |             bits = get_bit(g_scalar, i + 224) << 3; | 
| 1704 | 0 |             bits |= get_bit(g_scalar, i + 160) << 2; | 
| 1705 | 0 |             bits |= get_bit(g_scalar, i + 96) << 1; | 
| 1706 | 0 |             bits |= get_bit(g_scalar, i + 32); | 
| 1707 |  |             /* select the point to add, in constant time */ | 
| 1708 | 0 |             select_point(bits, 16, g_pre_comp[1], tmp); | 
| 1709 |  | 
 | 
| 1710 | 0 |             if (!skip) { | 
| 1711 |  |                 /* Arg 1 below is for "mixed" */ | 
| 1712 | 0 |                 point_add(nq[0], nq[1], nq[2], | 
| 1713 | 0 |                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); | 
| 1714 | 0 |             } else { | 
| 1715 | 0 |                 smallfelem_expand(nq[0], tmp[0]); | 
| 1716 | 0 |                 smallfelem_expand(nq[1], tmp[1]); | 
| 1717 | 0 |                 smallfelem_expand(nq[2], tmp[2]); | 
| 1718 | 0 |                 skip = 0; | 
| 1719 | 0 |             } | 
| 1720 |  |  | 
| 1721 |  |             /* second, look at the current position */ | 
| 1722 | 0 |             bits = get_bit(g_scalar, i + 192) << 3; | 
| 1723 | 0 |             bits |= get_bit(g_scalar, i + 128) << 2; | 
| 1724 | 0 |             bits |= get_bit(g_scalar, i + 64) << 1; | 
| 1725 | 0 |             bits |= get_bit(g_scalar, i); | 
| 1726 |  |             /* select the point to add, in constant time */ | 
| 1727 | 0 |             select_point(bits, 16, g_pre_comp[0], tmp); | 
| 1728 |  |             /* Arg 1 below is for "mixed" */ | 
| 1729 | 0 |             point_add(nq[0], nq[1], nq[2], | 
| 1730 | 0 |                       nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); | 
| 1731 | 0 |         } | 
| 1732 |  |  | 
| 1733 |  |         /* do other additions every 5 doublings */ | 
| 1734 | 0 |         if (num_points && (i % 5 == 0)) { | 
| 1735 |  |             /* loop over all scalars */ | 
| 1736 | 0 |             for (num = 0; num < num_points; ++num) { | 
| 1737 | 0 |                 bits = get_bit(scalars[num], i + 4) << 5; | 
| 1738 | 0 |                 bits |= get_bit(scalars[num], i + 3) << 4; | 
| 1739 | 0 |                 bits |= get_bit(scalars[num], i + 2) << 3; | 
| 1740 | 0 |                 bits |= get_bit(scalars[num], i + 1) << 2; | 
| 1741 | 0 |                 bits |= get_bit(scalars[num], i) << 1; | 
| 1742 | 0 |                 bits |= get_bit(scalars[num], i - 1); | 
| 1743 | 0 |                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | 
| 1744 |  |  | 
| 1745 |  |                 /* | 
| 1746 |  |                  * select the point to add or subtract, in constant time | 
| 1747 |  |                  */ | 
| 1748 | 0 |                 select_point(digit, 17, pre_comp[num], tmp); | 
| 1749 | 0 |                 smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative | 
| 1750 |  |                                                * point */ | 
| 1751 | 0 |                 copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); | 
| 1752 | 0 |                 felem_contract(tmp[1], ftmp); | 
| 1753 |  | 
 | 
| 1754 | 0 |                 if (!skip) { | 
| 1755 | 0 |                     point_add(nq[0], nq[1], nq[2], | 
| 1756 | 0 |                               nq[0], nq[1], nq[2], | 
| 1757 | 0 |                               mixed, tmp[0], tmp[1], tmp[2]); | 
| 1758 | 0 |                 } else { | 
| 1759 | 0 |                     smallfelem_expand(nq[0], tmp[0]); | 
| 1760 | 0 |                     smallfelem_expand(nq[1], tmp[1]); | 
| 1761 | 0 |                     smallfelem_expand(nq[2], tmp[2]); | 
| 1762 | 0 |                     skip = 0; | 
| 1763 | 0 |                 } | 
| 1764 | 0 |             } | 
| 1765 | 0 |         } | 
| 1766 | 0 |     } | 
| 1767 | 0 |     felem_assign(x_out, nq[0]); | 
| 1768 | 0 |     felem_assign(y_out, nq[1]); | 
| 1769 | 0 |     felem_assign(z_out, nq[2]); | 
| 1770 | 0 | } | 
| 1771 |  |  | 
| 1772 |  | /* Precomputation for the group generator. */ | 
| 1773 |  | struct nistp256_pre_comp_st { | 
| 1774 |  |     smallfelem g_pre_comp[2][16][3]; | 
| 1775 |  |     CRYPTO_REF_COUNT references; | 
| 1776 |  |     CRYPTO_RWLOCK *lock; | 
| 1777 |  | }; | 
| 1778 |  |  | 
| 1779 |  | const EC_METHOD *EC_GFp_nistp256_method(void) | 
| 1780 | 0 | { | 
| 1781 | 0 |     static const EC_METHOD ret = { | 
| 1782 | 0 |         EC_FLAGS_DEFAULT_OCT, | 
| 1783 | 0 |         NID_X9_62_prime_field, | 
| 1784 | 0 |         ec_GFp_nistp256_group_init, | 
| 1785 | 0 |         ec_GFp_simple_group_finish, | 
| 1786 | 0 |         ec_GFp_simple_group_clear_finish, | 
| 1787 | 0 |         ec_GFp_nist_group_copy, | 
| 1788 | 0 |         ec_GFp_nistp256_group_set_curve, | 
| 1789 | 0 |         ec_GFp_simple_group_get_curve, | 
| 1790 | 0 |         ec_GFp_simple_group_get_degree, | 
| 1791 | 0 |         ec_group_simple_order_bits, | 
| 1792 | 0 |         ec_GFp_simple_group_check_discriminant, | 
| 1793 | 0 |         ec_GFp_simple_point_init, | 
| 1794 | 0 |         ec_GFp_simple_point_finish, | 
| 1795 | 0 |         ec_GFp_simple_point_clear_finish, | 
| 1796 | 0 |         ec_GFp_simple_point_copy, | 
| 1797 | 0 |         ec_GFp_simple_point_set_to_infinity, | 
| 1798 | 0 |         ec_GFp_simple_set_Jprojective_coordinates_GFp, | 
| 1799 | 0 |         ec_GFp_simple_get_Jprojective_coordinates_GFp, | 
| 1800 | 0 |         ec_GFp_simple_point_set_affine_coordinates, | 
| 1801 | 0 |         ec_GFp_nistp256_point_get_affine_coordinates, | 
| 1802 | 0 |         0 /* point_set_compressed_coordinates */ , | 
| 1803 | 0 |         0 /* point2oct */ , | 
| 1804 | 0 |         0 /* oct2point */ , | 
| 1805 | 0 |         ec_GFp_simple_add, | 
| 1806 | 0 |         ec_GFp_simple_dbl, | 
| 1807 | 0 |         ec_GFp_simple_invert, | 
| 1808 | 0 |         ec_GFp_simple_is_at_infinity, | 
| 1809 | 0 |         ec_GFp_simple_is_on_curve, | 
| 1810 | 0 |         ec_GFp_simple_cmp, | 
| 1811 | 0 |         ec_GFp_simple_make_affine, | 
| 1812 | 0 |         ec_GFp_simple_points_make_affine, | 
| 1813 | 0 |         ec_GFp_nistp256_points_mul, | 
| 1814 | 0 |         ec_GFp_nistp256_precompute_mult, | 
| 1815 | 0 |         ec_GFp_nistp256_have_precompute_mult, | 
| 1816 | 0 |         ec_GFp_nist_field_mul, | 
| 1817 | 0 |         ec_GFp_nist_field_sqr, | 
| 1818 | 0 |         0 /* field_div */ , | 
| 1819 | 0 |         ec_GFp_simple_field_inv, | 
| 1820 | 0 |         0 /* field_encode */ , | 
| 1821 | 0 |         0 /* field_decode */ , | 
| 1822 | 0 |         0,                      /* field_set_to_one */ | 
| 1823 | 0 |         ec_key_simple_priv2oct, | 
| 1824 | 0 |         ec_key_simple_oct2priv, | 
| 1825 | 0 |         0, /* set private */ | 
| 1826 | 0 |         ec_key_simple_generate_key, | 
| 1827 | 0 |         ec_key_simple_check_key, | 
| 1828 | 0 |         ec_key_simple_generate_public_key, | 
| 1829 | 0 |         0, /* keycopy */ | 
| 1830 | 0 |         0, /* keyfinish */ | 
| 1831 | 0 |         ecdh_simple_compute_key, | 
| 1832 | 0 |         0, /* field_inverse_mod_ord */ | 
| 1833 | 0 |         0, /* blind_coordinates */ | 
| 1834 | 0 |         0, /* ladder_pre */ | 
| 1835 | 0 |         0, /* ladder_step */ | 
| 1836 | 0 |         0  /* ladder_post */ | 
| 1837 | 0 |     }; | 
| 1838 |  | 
 | 
| 1839 | 0 |     return &ret; | 
| 1840 | 0 | } | 
| 1841 |  |  | 
| 1842 |  | /******************************************************************************/ | 
| 1843 |  | /* | 
| 1844 |  |  * FUNCTIONS TO MANAGE PRECOMPUTATION | 
| 1845 |  |  */ | 
| 1846 |  |  | 
| 1847 |  | static NISTP256_PRE_COMP *nistp256_pre_comp_new(void) | 
| 1848 | 0 | { | 
| 1849 | 0 |     NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); | 
| 1850 |  | 
 | 
| 1851 | 0 |     if (ret == NULL) { | 
| 1852 | 0 |         ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
| 1853 | 0 |         return ret; | 
| 1854 | 0 |     } | 
| 1855 |  |  | 
| 1856 | 0 |     ret->references = 1; | 
| 1857 |  | 
 | 
| 1858 | 0 |     ret->lock = CRYPTO_THREAD_lock_new(); | 
| 1859 | 0 |     if (ret->lock == NULL) { | 
| 1860 | 0 |         ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
| 1861 | 0 |         OPENSSL_free(ret); | 
| 1862 | 0 |         return NULL; | 
| 1863 | 0 |     } | 
| 1864 | 0 |     return ret; | 
| 1865 | 0 | } | 
| 1866 |  |  | 
| 1867 |  | NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p) | 
| 1868 | 0 | { | 
| 1869 | 0 |     int i; | 
| 1870 | 0 |     if (p != NULL) | 
| 1871 | 0 |         CRYPTO_UP_REF(&p->references, &i, p->lock); | 
| 1872 | 0 |     return p; | 
| 1873 | 0 | } | 
| 1874 |  |  | 
| 1875 |  | void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre) | 
| 1876 | 0 | { | 
| 1877 | 0 |     int i; | 
| 1878 |  | 
 | 
| 1879 | 0 |     if (pre == NULL) | 
| 1880 | 0 |         return; | 
| 1881 |  |  | 
| 1882 | 0 |     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); | 
| 1883 | 0 |     REF_PRINT_COUNT("EC_nistp256", x); | 
| 1884 | 0 |     if (i > 0) | 
| 1885 | 0 |         return; | 
| 1886 | 0 |     REF_ASSERT_ISNT(i < 0); | 
| 1887 |  | 
 | 
| 1888 | 0 |     CRYPTO_THREAD_lock_free(pre->lock); | 
| 1889 | 0 |     OPENSSL_free(pre); | 
| 1890 | 0 | } | 
| 1891 |  |  | 
| 1892 |  | /******************************************************************************/ | 
| 1893 |  | /* | 
| 1894 |  |  * OPENSSL EC_METHOD FUNCTIONS | 
| 1895 |  |  */ | 
| 1896 |  |  | 
| 1897 |  | int ec_GFp_nistp256_group_init(EC_GROUP *group) | 
| 1898 | 0 | { | 
| 1899 | 0 |     int ret; | 
| 1900 | 0 |     ret = ec_GFp_simple_group_init(group); | 
| 1901 | 0 |     group->a_is_minus3 = 1; | 
| 1902 | 0 |     return ret; | 
| 1903 | 0 | } | 
| 1904 |  |  | 
| 1905 |  | int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
| 1906 |  |                                     const BIGNUM *a, const BIGNUM *b, | 
| 1907 |  |                                     BN_CTX *ctx) | 
| 1908 | 0 | { | 
| 1909 | 0 |     int ret = 0; | 
| 1910 | 0 |     BN_CTX *new_ctx = NULL; | 
| 1911 | 0 |     BIGNUM *curve_p, *curve_a, *curve_b; | 
| 1912 |  | 
 | 
| 1913 | 0 |     if (ctx == NULL) | 
| 1914 | 0 |         if ((ctx = new_ctx = BN_CTX_new()) == NULL) | 
| 1915 | 0 |             return 0; | 
| 1916 | 0 |     BN_CTX_start(ctx); | 
| 1917 | 0 |     curve_p = BN_CTX_get(ctx); | 
| 1918 | 0 |     curve_a = BN_CTX_get(ctx); | 
| 1919 | 0 |     curve_b = BN_CTX_get(ctx); | 
| 1920 | 0 |     if (curve_b == NULL) | 
| 1921 | 0 |         goto err; | 
| 1922 | 0 |     BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); | 
| 1923 | 0 |     BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); | 
| 1924 | 0 |     BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); | 
| 1925 | 0 |     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { | 
| 1926 | 0 |         ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, | 
| 1927 | 0 |               EC_R_WRONG_CURVE_PARAMETERS); | 
| 1928 | 0 |         goto err; | 
| 1929 | 0 |     } | 
| 1930 | 0 |     group->field_mod_func = BN_nist_mod_256; | 
| 1931 | 0 |     ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | 
| 1932 | 0 |  err: | 
| 1933 | 0 |     BN_CTX_end(ctx); | 
| 1934 | 0 |     BN_CTX_free(new_ctx); | 
| 1935 | 0 |     return ret; | 
| 1936 | 0 | } | 
| 1937 |  |  | 
| 1938 |  | /* | 
| 1939 |  |  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = | 
| 1940 |  |  * (X/Z^2, Y/Z^3) | 
| 1941 |  |  */ | 
| 1942 |  | int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, | 
| 1943 |  |                                                  const EC_POINT *point, | 
| 1944 |  |                                                  BIGNUM *x, BIGNUM *y, | 
| 1945 |  |                                                  BN_CTX *ctx) | 
| 1946 | 0 | { | 
| 1947 | 0 |     felem z1, z2, x_in, y_in; | 
| 1948 | 0 |     smallfelem x_out, y_out; | 
| 1949 | 0 |     longfelem tmp; | 
| 1950 |  | 
 | 
| 1951 | 0 |     if (EC_POINT_is_at_infinity(group, point)) { | 
| 1952 | 0 |         ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | 
| 1953 | 0 |               EC_R_POINT_AT_INFINITY); | 
| 1954 | 0 |         return 0; | 
| 1955 | 0 |     } | 
| 1956 | 0 |     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || | 
| 1957 | 0 |         (!BN_to_felem(z1, point->Z))) | 
| 1958 | 0 |         return 0; | 
| 1959 | 0 |     felem_inv(z2, z1); | 
| 1960 | 0 |     felem_square(tmp, z2); | 
| 1961 | 0 |     felem_reduce(z1, tmp); | 
| 1962 | 0 |     felem_mul(tmp, x_in, z1); | 
| 1963 | 0 |     felem_reduce(x_in, tmp); | 
| 1964 | 0 |     felem_contract(x_out, x_in); | 
| 1965 | 0 |     if (x != NULL) { | 
| 1966 | 0 |         if (!smallfelem_to_BN(x, x_out)) { | 
| 1967 | 0 |             ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | 
| 1968 | 0 |                   ERR_R_BN_LIB); | 
| 1969 | 0 |             return 0; | 
| 1970 | 0 |         } | 
| 1971 | 0 |     } | 
| 1972 | 0 |     felem_mul(tmp, z1, z2); | 
| 1973 | 0 |     felem_reduce(z1, tmp); | 
| 1974 | 0 |     felem_mul(tmp, y_in, z1); | 
| 1975 | 0 |     felem_reduce(y_in, tmp); | 
| 1976 | 0 |     felem_contract(y_out, y_in); | 
| 1977 | 0 |     if (y != NULL) { | 
| 1978 | 0 |         if (!smallfelem_to_BN(y, y_out)) { | 
| 1979 | 0 |             ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | 
| 1980 | 0 |                   ERR_R_BN_LIB); | 
| 1981 | 0 |             return 0; | 
| 1982 | 0 |         } | 
| 1983 | 0 |     } | 
| 1984 | 0 |     return 1; | 
| 1985 | 0 | } | 
| 1986 |  |  | 
| 1987 |  | /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */ | 
| 1988 |  | static void make_points_affine(size_t num, smallfelem points[][3], | 
| 1989 |  |                                smallfelem tmp_smallfelems[]) | 
| 1990 | 0 | { | 
| 1991 |  |     /* | 
| 1992 |  |      * Runs in constant time, unless an input is the point at infinity (which | 
| 1993 |  |      * normally shouldn't happen). | 
| 1994 |  |      */ | 
| 1995 | 0 |     ec_GFp_nistp_points_make_affine_internal(num, | 
| 1996 | 0 |                                              points, | 
| 1997 | 0 |                                              sizeof(smallfelem), | 
| 1998 | 0 |                                              tmp_smallfelems, | 
| 1999 | 0 |                                              (void (*)(void *))smallfelem_one, | 
| 2000 | 0 |                                              smallfelem_is_zero_int, | 
| 2001 | 0 |                                              (void (*)(void *, const void *)) | 
| 2002 | 0 |                                              smallfelem_assign, | 
| 2003 | 0 |                                              (void (*)(void *, const void *)) | 
| 2004 | 0 |                                              smallfelem_square_contract, | 
| 2005 | 0 |                                              (void (*) | 
| 2006 | 0 |                                               (void *, const void *, | 
| 2007 | 0 |                                                const void *)) | 
| 2008 | 0 |                                              smallfelem_mul_contract, | 
| 2009 | 0 |                                              (void (*)(void *, const void *)) | 
| 2010 | 0 |                                              smallfelem_inv_contract, | 
| 2011 |  |                                              /* nothing to contract */ | 
| 2012 | 0 |                                              (void (*)(void *, const void *)) | 
| 2013 | 0 |                                              smallfelem_assign); | 
| 2014 | 0 | } | 
| 2015 |  |  | 
| 2016 |  | /* | 
| 2017 |  |  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL | 
| 2018 |  |  * values Result is stored in r (r can equal one of the inputs). | 
| 2019 |  |  */ | 
| 2020 |  | int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, | 
| 2021 |  |                                const BIGNUM *scalar, size_t num, | 
| 2022 |  |                                const EC_POINT *points[], | 
| 2023 |  |                                const BIGNUM *scalars[], BN_CTX *ctx) | 
| 2024 | 0 | { | 
| 2025 | 0 |     int ret = 0; | 
| 2026 | 0 |     int j; | 
| 2027 | 0 |     int mixed = 0; | 
| 2028 | 0 |     BIGNUM *x, *y, *z, *tmp_scalar; | 
| 2029 | 0 |     felem_bytearray g_secret; | 
| 2030 | 0 |     felem_bytearray *secrets = NULL; | 
| 2031 | 0 |     smallfelem (*pre_comp)[17][3] = NULL; | 
| 2032 | 0 |     smallfelem *tmp_smallfelems = NULL; | 
| 2033 | 0 |     unsigned i; | 
| 2034 | 0 |     int num_bytes; | 
| 2035 | 0 |     int have_pre_comp = 0; | 
| 2036 | 0 |     size_t num_points = num; | 
| 2037 | 0 |     smallfelem x_in, y_in, z_in; | 
| 2038 | 0 |     felem x_out, y_out, z_out; | 
| 2039 | 0 |     NISTP256_PRE_COMP *pre = NULL; | 
| 2040 | 0 |     const smallfelem(*g_pre_comp)[16][3] = NULL; | 
| 2041 | 0 |     EC_POINT *generator = NULL; | 
| 2042 | 0 |     const EC_POINT *p = NULL; | 
| 2043 | 0 |     const BIGNUM *p_scalar = NULL; | 
| 2044 |  | 
 | 
| 2045 | 0 |     BN_CTX_start(ctx); | 
| 2046 | 0 |     x = BN_CTX_get(ctx); | 
| 2047 | 0 |     y = BN_CTX_get(ctx); | 
| 2048 | 0 |     z = BN_CTX_get(ctx); | 
| 2049 | 0 |     tmp_scalar = BN_CTX_get(ctx); | 
| 2050 | 0 |     if (tmp_scalar == NULL) | 
| 2051 | 0 |         goto err; | 
| 2052 |  |  | 
| 2053 | 0 |     if (scalar != NULL) { | 
| 2054 | 0 |         pre = group->pre_comp.nistp256; | 
| 2055 | 0 |         if (pre) | 
| 2056 |  |             /* we have precomputation, try to use it */ | 
| 2057 | 0 |             g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp; | 
| 2058 | 0 |         else | 
| 2059 |  |             /* try to use the standard precomputation */ | 
| 2060 | 0 |             g_pre_comp = &gmul[0]; | 
| 2061 | 0 |         generator = EC_POINT_new(group); | 
| 2062 | 0 |         if (generator == NULL) | 
| 2063 | 0 |             goto err; | 
| 2064 |  |         /* get the generator from precomputation */ | 
| 2065 | 0 |         if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || | 
| 2066 | 0 |             !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || | 
| 2067 | 0 |             !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { | 
| 2068 | 0 |             ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | 
| 2069 | 0 |             goto err; | 
| 2070 | 0 |         } | 
| 2071 | 0 |         if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | 
| 2072 | 0 |                                                       generator, x, y, z, | 
| 2073 | 0 |                                                       ctx)) | 
| 2074 | 0 |             goto err; | 
| 2075 | 0 |         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | 
| 2076 |  |             /* precomputation matches generator */ | 
| 2077 | 0 |             have_pre_comp = 1; | 
| 2078 | 0 |         else | 
| 2079 |  |             /* | 
| 2080 |  |              * we don't have valid precomputation: treat the generator as a | 
| 2081 |  |              * random point | 
| 2082 |  |              */ | 
| 2083 | 0 |             num_points++; | 
| 2084 | 0 |     } | 
| 2085 | 0 |     if (num_points > 0) { | 
| 2086 | 0 |         if (num_points >= 3) { | 
| 2087 |  |             /* | 
| 2088 |  |              * unless we precompute multiples for just one or two points, | 
| 2089 |  |              * converting those into affine form is time well spent | 
| 2090 |  |              */ | 
| 2091 | 0 |             mixed = 1; | 
| 2092 | 0 |         } | 
| 2093 | 0 |         secrets = OPENSSL_malloc(sizeof(*secrets) * num_points); | 
| 2094 | 0 |         pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points); | 
| 2095 | 0 |         if (mixed) | 
| 2096 | 0 |             tmp_smallfelems = | 
| 2097 | 0 |               OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1)); | 
| 2098 | 0 |         if ((secrets == NULL) || (pre_comp == NULL) | 
| 2099 | 0 |             || (mixed && (tmp_smallfelems == NULL))) { | 
| 2100 | 0 |             ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | 
| 2101 | 0 |             goto err; | 
| 2102 | 0 |         } | 
| 2103 |  |  | 
| 2104 |  |         /* | 
| 2105 |  |          * we treat NULL scalars as 0, and NULL points as points at infinity, | 
| 2106 |  |          * i.e., they contribute nothing to the linear combination | 
| 2107 |  |          */ | 
| 2108 | 0 |         memset(secrets, 0, sizeof(*secrets) * num_points); | 
| 2109 | 0 |         memset(pre_comp, 0, sizeof(*pre_comp) * num_points); | 
| 2110 | 0 |         for (i = 0; i < num_points; ++i) { | 
| 2111 | 0 |             if (i == num) { | 
| 2112 |  |                 /* | 
| 2113 |  |                  * we didn't have a valid precomputation, so we pick the | 
| 2114 |  |                  * generator | 
| 2115 |  |                  */ | 
| 2116 | 0 |                 p = EC_GROUP_get0_generator(group); | 
| 2117 | 0 |                 p_scalar = scalar; | 
| 2118 | 0 |             } else { | 
| 2119 |  |                 /* the i^th point */ | 
| 2120 | 0 |                 p = points[i]; | 
| 2121 | 0 |                 p_scalar = scalars[i]; | 
| 2122 | 0 |             } | 
| 2123 | 0 |             if ((p_scalar != NULL) && (p != NULL)) { | 
| 2124 |  |                 /* reduce scalar to 0 <= scalar < 2^256 */ | 
| 2125 | 0 |                 if ((BN_num_bits(p_scalar) > 256) | 
| 2126 | 0 |                     || (BN_is_negative(p_scalar))) { | 
| 2127 |  |                     /* | 
| 2128 |  |                      * this is an unusual input, and we don't guarantee | 
| 2129 |  |                      * constant-timeness | 
| 2130 |  |                      */ | 
| 2131 | 0 |                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { | 
| 2132 | 0 |                         ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | 
| 2133 | 0 |                         goto err; | 
| 2134 | 0 |                     } | 
| 2135 | 0 |                     num_bytes = BN_bn2lebinpad(tmp_scalar, | 
| 2136 | 0 |                                                secrets[i], sizeof(secrets[i])); | 
| 2137 | 0 |                 } else { | 
| 2138 | 0 |                     num_bytes = BN_bn2lebinpad(p_scalar, | 
| 2139 | 0 |                                                secrets[i], sizeof(secrets[i])); | 
| 2140 | 0 |                 } | 
| 2141 | 0 |                 if (num_bytes < 0) { | 
| 2142 | 0 |                     ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | 
| 2143 | 0 |                     goto err; | 
| 2144 | 0 |                 } | 
| 2145 |  |                 /* precompute multiples */ | 
| 2146 | 0 |                 if ((!BN_to_felem(x_out, p->X)) || | 
| 2147 | 0 |                     (!BN_to_felem(y_out, p->Y)) || | 
| 2148 | 0 |                     (!BN_to_felem(z_out, p->Z))) | 
| 2149 | 0 |                     goto err; | 
| 2150 | 0 |                 felem_shrink(pre_comp[i][1][0], x_out); | 
| 2151 | 0 |                 felem_shrink(pre_comp[i][1][1], y_out); | 
| 2152 | 0 |                 felem_shrink(pre_comp[i][1][2], z_out); | 
| 2153 | 0 |                 for (j = 2; j <= 16; ++j) { | 
| 2154 | 0 |                     if (j & 1) { | 
| 2155 | 0 |                         point_add_small(pre_comp[i][j][0], pre_comp[i][j][1], | 
| 2156 | 0 |                                         pre_comp[i][j][2], pre_comp[i][1][0], | 
| 2157 | 0 |                                         pre_comp[i][1][1], pre_comp[i][1][2], | 
| 2158 | 0 |                                         pre_comp[i][j - 1][0], | 
| 2159 | 0 |                                         pre_comp[i][j - 1][1], | 
| 2160 | 0 |                                         pre_comp[i][j - 1][2]); | 
| 2161 | 0 |                     } else { | 
| 2162 | 0 |                         point_double_small(pre_comp[i][j][0], | 
| 2163 | 0 |                                            pre_comp[i][j][1], | 
| 2164 | 0 |                                            pre_comp[i][j][2], | 
| 2165 | 0 |                                            pre_comp[i][j / 2][0], | 
| 2166 | 0 |                                            pre_comp[i][j / 2][1], | 
| 2167 | 0 |                                            pre_comp[i][j / 2][2]); | 
| 2168 | 0 |                     } | 
| 2169 | 0 |                 } | 
| 2170 | 0 |             } | 
| 2171 | 0 |         } | 
| 2172 | 0 |         if (mixed) | 
| 2173 | 0 |             make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); | 
| 2174 | 0 |     } | 
| 2175 |  |  | 
| 2176 |  |     /* the scalar for the generator */ | 
| 2177 | 0 |     if ((scalar != NULL) && (have_pre_comp)) { | 
| 2178 | 0 |         memset(g_secret, 0, sizeof(g_secret)); | 
| 2179 |  |         /* reduce scalar to 0 <= scalar < 2^256 */ | 
| 2180 | 0 |         if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { | 
| 2181 |  |             /* | 
| 2182 |  |              * this is an unusual input, and we don't guarantee | 
| 2183 |  |              * constant-timeness | 
| 2184 |  |              */ | 
| 2185 | 0 |             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
| 2186 | 0 |                 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | 
| 2187 | 0 |                 goto err; | 
| 2188 | 0 |             } | 
| 2189 | 0 |             num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); | 
| 2190 | 0 |         } else { | 
| 2191 | 0 |             num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); | 
| 2192 | 0 |         } | 
| 2193 |  |         /* do the multiplication with generator precomputation */ | 
| 2194 | 0 |         batch_mul(x_out, y_out, z_out, | 
| 2195 | 0 |                   (const felem_bytearray(*))secrets, num_points, | 
| 2196 | 0 |                   g_secret, | 
| 2197 | 0 |                   mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp); | 
| 2198 | 0 |     } else { | 
| 2199 |  |         /* do the multiplication without generator precomputation */ | 
| 2200 | 0 |         batch_mul(x_out, y_out, z_out, | 
| 2201 | 0 |                   (const felem_bytearray(*))secrets, num_points, | 
| 2202 | 0 |                   NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL); | 
| 2203 | 0 |     } | 
| 2204 |  |     /* reduce the output to its unique minimal representation */ | 
| 2205 | 0 |     felem_contract(x_in, x_out); | 
| 2206 | 0 |     felem_contract(y_in, y_out); | 
| 2207 | 0 |     felem_contract(z_in, z_out); | 
| 2208 | 0 |     if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || | 
| 2209 | 0 |         (!smallfelem_to_BN(z, z_in))) { | 
| 2210 | 0 |         ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | 
| 2211 | 0 |         goto err; | 
| 2212 | 0 |     } | 
| 2213 | 0 |     ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | 
| 2214 |  | 
 | 
| 2215 | 0 |  err: | 
| 2216 | 0 |     BN_CTX_end(ctx); | 
| 2217 | 0 |     EC_POINT_free(generator); | 
| 2218 | 0 |     OPENSSL_free(secrets); | 
| 2219 | 0 |     OPENSSL_free(pre_comp); | 
| 2220 | 0 |     OPENSSL_free(tmp_smallfelems); | 
| 2221 | 0 |     return ret; | 
| 2222 | 0 | } | 
| 2223 |  |  | 
| 2224 |  | int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 
| 2225 | 0 | { | 
| 2226 | 0 |     int ret = 0; | 
| 2227 | 0 |     NISTP256_PRE_COMP *pre = NULL; | 
| 2228 | 0 |     int i, j; | 
| 2229 | 0 |     BN_CTX *new_ctx = NULL; | 
| 2230 | 0 |     BIGNUM *x, *y; | 
| 2231 | 0 |     EC_POINT *generator = NULL; | 
| 2232 | 0 |     smallfelem tmp_smallfelems[32]; | 
| 2233 | 0 |     felem x_tmp, y_tmp, z_tmp; | 
| 2234 |  |  | 
| 2235 |  |     /* throw away old precomputation */ | 
| 2236 | 0 |     EC_pre_comp_free(group); | 
| 2237 | 0 |     if (ctx == NULL) | 
| 2238 | 0 |         if ((ctx = new_ctx = BN_CTX_new()) == NULL) | 
| 2239 | 0 |             return 0; | 
| 2240 | 0 |     BN_CTX_start(ctx); | 
| 2241 | 0 |     x = BN_CTX_get(ctx); | 
| 2242 | 0 |     y = BN_CTX_get(ctx); | 
| 2243 | 0 |     if (y == NULL) | 
| 2244 | 0 |         goto err; | 
| 2245 |  |     /* get the generator */ | 
| 2246 | 0 |     if (group->generator == NULL) | 
| 2247 | 0 |         goto err; | 
| 2248 | 0 |     generator = EC_POINT_new(group); | 
| 2249 | 0 |     if (generator == NULL) | 
| 2250 | 0 |         goto err; | 
| 2251 | 0 |     BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); | 
| 2252 | 0 |     BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); | 
| 2253 | 0 |     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) | 
| 2254 | 0 |         goto err; | 
| 2255 | 0 |     if ((pre = nistp256_pre_comp_new()) == NULL) | 
| 2256 | 0 |         goto err; | 
| 2257 |  |     /* | 
| 2258 |  |      * if the generator is the standard one, use built-in precomputation | 
| 2259 |  |      */ | 
| 2260 | 0 |     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | 
| 2261 | 0 |         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | 
| 2262 | 0 |         goto done; | 
| 2263 | 0 |     } | 
| 2264 | 0 |     if ((!BN_to_felem(x_tmp, group->generator->X)) || | 
| 2265 | 0 |         (!BN_to_felem(y_tmp, group->generator->Y)) || | 
| 2266 | 0 |         (!BN_to_felem(z_tmp, group->generator->Z))) | 
| 2267 | 0 |         goto err; | 
| 2268 | 0 |     felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); | 
| 2269 | 0 |     felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); | 
| 2270 | 0 |     felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); | 
| 2271 |  |     /* | 
| 2272 |  |      * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G, | 
| 2273 |  |      * 2^160*G, 2^224*G for the second one | 
| 2274 |  |      */ | 
| 2275 | 0 |     for (i = 1; i <= 8; i <<= 1) { | 
| 2276 | 0 |         point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], | 
| 2277 | 0 |                            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], | 
| 2278 | 0 |                            pre->g_pre_comp[0][i][1], | 
| 2279 | 0 |                            pre->g_pre_comp[0][i][2]); | 
| 2280 | 0 |         for (j = 0; j < 31; ++j) { | 
| 2281 | 0 |             point_double_small(pre->g_pre_comp[1][i][0], | 
| 2282 | 0 |                                pre->g_pre_comp[1][i][1], | 
| 2283 | 0 |                                pre->g_pre_comp[1][i][2], | 
| 2284 | 0 |                                pre->g_pre_comp[1][i][0], | 
| 2285 | 0 |                                pre->g_pre_comp[1][i][1], | 
| 2286 | 0 |                                pre->g_pre_comp[1][i][2]); | 
| 2287 | 0 |         } | 
| 2288 | 0 |         if (i == 8) | 
| 2289 | 0 |             break; | 
| 2290 | 0 |         point_double_small(pre->g_pre_comp[0][2 * i][0], | 
| 2291 | 0 |                            pre->g_pre_comp[0][2 * i][1], | 
| 2292 | 0 |                            pre->g_pre_comp[0][2 * i][2], | 
| 2293 | 0 |                            pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], | 
| 2294 | 0 |                            pre->g_pre_comp[1][i][2]); | 
| 2295 | 0 |         for (j = 0; j < 31; ++j) { | 
| 2296 | 0 |             point_double_small(pre->g_pre_comp[0][2 * i][0], | 
| 2297 | 0 |                                pre->g_pre_comp[0][2 * i][1], | 
| 2298 | 0 |                                pre->g_pre_comp[0][2 * i][2], | 
| 2299 | 0 |                                pre->g_pre_comp[0][2 * i][0], | 
| 2300 | 0 |                                pre->g_pre_comp[0][2 * i][1], | 
| 2301 | 0 |                                pre->g_pre_comp[0][2 * i][2]); | 
| 2302 | 0 |         } | 
| 2303 | 0 |     } | 
| 2304 | 0 |     for (i = 0; i < 2; i++) { | 
| 2305 |  |         /* g_pre_comp[i][0] is the point at infinity */ | 
| 2306 | 0 |         memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | 
| 2307 |  |         /* the remaining multiples */ | 
| 2308 |  |         /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ | 
| 2309 | 0 |         point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | 
| 2310 | 0 |                         pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | 
| 2311 | 0 |                         pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | 
| 2312 | 0 |                         pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 2313 | 0 |                         pre->g_pre_comp[i][2][2]); | 
| 2314 |  |         /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ | 
| 2315 | 0 |         point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | 
| 2316 | 0 |                         pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | 
| 2317 | 0 |                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | 
| 2318 | 0 |                         pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 2319 | 0 |                         pre->g_pre_comp[i][2][2]); | 
| 2320 |  |         /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ | 
| 2321 | 0 |         point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | 
| 2322 | 0 |                         pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | 
| 2323 | 0 |                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | 
| 2324 | 0 |                         pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | 
| 2325 | 0 |                         pre->g_pre_comp[i][4][2]); | 
| 2326 |  |         /* | 
| 2327 |  |          * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G | 
| 2328 |  |          */ | 
| 2329 | 0 |         point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | 
| 2330 | 0 |                         pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | 
| 2331 | 0 |                         pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | 
| 2332 | 0 |                         pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | 
| 2333 | 0 |                         pre->g_pre_comp[i][2][2]); | 
| 2334 | 0 |         for (j = 1; j < 8; ++j) { | 
| 2335 |  |             /* odd multiples: add G resp. 2^32*G */ | 
| 2336 | 0 |             point_add_small(pre->g_pre_comp[i][2 * j + 1][0], | 
| 2337 | 0 |                             pre->g_pre_comp[i][2 * j + 1][1], | 
| 2338 | 0 |                             pre->g_pre_comp[i][2 * j + 1][2], | 
| 2339 | 0 |                             pre->g_pre_comp[i][2 * j][0], | 
| 2340 | 0 |                             pre->g_pre_comp[i][2 * j][1], | 
| 2341 | 0 |                             pre->g_pre_comp[i][2 * j][2], | 
| 2342 | 0 |                             pre->g_pre_comp[i][1][0], | 
| 2343 | 0 |                             pre->g_pre_comp[i][1][1], | 
| 2344 | 0 |                             pre->g_pre_comp[i][1][2]); | 
| 2345 | 0 |         } | 
| 2346 | 0 |     } | 
| 2347 | 0 |     make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); | 
| 2348 |  | 
 | 
| 2349 | 0 |  done: | 
| 2350 | 0 |     SETPRECOMP(group, nistp256, pre); | 
| 2351 | 0 |     pre = NULL; | 
| 2352 | 0 |     ret = 1; | 
| 2353 |  | 
 | 
| 2354 | 0 |  err: | 
| 2355 | 0 |     BN_CTX_end(ctx); | 
| 2356 | 0 |     EC_POINT_free(generator); | 
| 2357 | 0 |     BN_CTX_free(new_ctx); | 
| 2358 | 0 |     EC_nistp256_pre_comp_free(pre); | 
| 2359 | 0 |     return ret; | 
| 2360 | 0 | } | 
| 2361 |  |  | 
| 2362 |  | int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) | 
| 2363 | 0 | { | 
| 2364 | 0 |     return HAVEPRECOMP(group, nistp256); | 
| 2365 | 0 | } | 
| 2366 |  | #endif |