/src/openssl111/crypto/kdf/scrypt.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the OpenSSL license (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | #include <stdlib.h> | 
| 11 |  | #include <string.h> | 
| 12 |  | #include <openssl/hmac.h> | 
| 13 |  | #include <openssl/kdf.h> | 
| 14 |  | #include <openssl/evp.h> | 
| 15 |  | #include "internal/cryptlib.h" | 
| 16 |  | #include "crypto/evp.h" | 
| 17 |  |  | 
| 18 |  | #ifndef OPENSSL_NO_SCRYPT | 
| 19 |  |  | 
| 20 |  | static int atou64(const char *nptr, uint64_t *result); | 
| 21 |  |  | 
| 22 |  | typedef struct { | 
| 23 |  |     unsigned char *pass; | 
| 24 |  |     size_t pass_len; | 
| 25 |  |     unsigned char *salt; | 
| 26 |  |     size_t salt_len; | 
| 27 |  |     uint64_t N, r, p; | 
| 28 |  |     uint64_t maxmem_bytes; | 
| 29 |  | } SCRYPT_PKEY_CTX; | 
| 30 |  |  | 
| 31 |  | /* Custom uint64_t parser since we do not have strtoull */ | 
| 32 |  | static int atou64(const char *nptr, uint64_t *result) | 
| 33 | 0 | { | 
| 34 | 0 |     uint64_t value = 0; | 
| 35 |  | 
 | 
| 36 | 0 |     while (*nptr) { | 
| 37 | 0 |         unsigned int digit; | 
| 38 | 0 |         uint64_t new_value; | 
| 39 |  | 
 | 
| 40 | 0 |         if ((*nptr < '0') || (*nptr > '9')) { | 
| 41 | 0 |             return 0; | 
| 42 | 0 |         } | 
| 43 | 0 |         digit = (unsigned int)(*nptr - '0'); | 
| 44 | 0 |         new_value = (value * 10) + digit; | 
| 45 | 0 |         if ((new_value < digit) || ((new_value - digit) / 10 != value)) { | 
| 46 |  |             /* Overflow */ | 
| 47 | 0 |             return 0; | 
| 48 | 0 |         } | 
| 49 | 0 |         value = new_value; | 
| 50 | 0 |         nptr++; | 
| 51 | 0 |     } | 
| 52 | 0 |     *result = value; | 
| 53 | 0 |     return 1; | 
| 54 | 0 | } | 
| 55 |  |  | 
| 56 |  | static int pkey_scrypt_init(EVP_PKEY_CTX *ctx) | 
| 57 | 0 | { | 
| 58 | 0 |     SCRYPT_PKEY_CTX *kctx; | 
| 59 |  | 
 | 
| 60 | 0 |     kctx = OPENSSL_zalloc(sizeof(*kctx)); | 
| 61 | 0 |     if (kctx == NULL) { | 
| 62 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE); | 
| 63 | 0 |         return 0; | 
| 64 | 0 |     } | 
| 65 |  |  | 
| 66 |  |     /* Default values are the most conservative recommendation given in the | 
| 67 |  |      * original paper of C. Percival. Derivation uses roughly 1 GiB of memory | 
| 68 |  |      * for this parameter choice (approx. 128 * r * (N + p) bytes). | 
| 69 |  |      */ | 
| 70 | 0 |     kctx->N = 1 << 20; | 
| 71 | 0 |     kctx->r = 8; | 
| 72 | 0 |     kctx->p = 1; | 
| 73 | 0 |     kctx->maxmem_bytes = 1025 * 1024 * 1024; | 
| 74 |  | 
 | 
| 75 | 0 |     ctx->data = kctx; | 
| 76 |  | 
 | 
| 77 | 0 |     return 1; | 
| 78 | 0 | } | 
| 79 |  |  | 
| 80 |  | static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx) | 
| 81 | 0 | { | 
| 82 | 0 |     SCRYPT_PKEY_CTX *kctx = ctx->data; | 
| 83 |  | 
 | 
| 84 | 0 |     OPENSSL_clear_free(kctx->salt, kctx->salt_len); | 
| 85 | 0 |     OPENSSL_clear_free(kctx->pass, kctx->pass_len); | 
| 86 | 0 |     OPENSSL_free(kctx); | 
| 87 | 0 | } | 
| 88 |  |  | 
| 89 |  | static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen, | 
| 90 |  |                                   const unsigned char *new_buffer, | 
| 91 |  |                                   const int new_buflen) | 
| 92 | 0 | { | 
| 93 | 0 |     if (new_buffer == NULL) | 
| 94 | 0 |         return 1; | 
| 95 |  |  | 
| 96 | 0 |     if (new_buflen < 0) | 
| 97 | 0 |         return 0; | 
| 98 |  |  | 
| 99 | 0 |     if (*buffer != NULL) | 
| 100 | 0 |         OPENSSL_clear_free(*buffer, *buflen); | 
| 101 |  | 
 | 
| 102 | 0 |     if (new_buflen > 0) { | 
| 103 | 0 |         *buffer = OPENSSL_memdup(new_buffer, new_buflen); | 
| 104 | 0 |     } else { | 
| 105 | 0 |         *buffer = OPENSSL_malloc(1); | 
| 106 | 0 |     } | 
| 107 | 0 |     if (*buffer == NULL) { | 
| 108 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); | 
| 109 | 0 |         return 0; | 
| 110 | 0 |     } | 
| 111 |  |  | 
| 112 | 0 |     *buflen = new_buflen; | 
| 113 | 0 |     return 1; | 
| 114 | 0 | } | 
| 115 |  |  | 
| 116 |  | static int is_power_of_two(uint64_t value) | 
| 117 | 0 | { | 
| 118 | 0 |     return (value != 0) && ((value & (value - 1)) == 0); | 
| 119 | 0 | } | 
| 120 |  |  | 
| 121 |  | static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) | 
| 122 | 0 | { | 
| 123 | 0 |     SCRYPT_PKEY_CTX *kctx = ctx->data; | 
| 124 | 0 |     uint64_t u64_value; | 
| 125 |  | 
 | 
| 126 | 0 |     switch (type) { | 
| 127 | 0 |     case EVP_PKEY_CTRL_PASS: | 
| 128 | 0 |         return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1); | 
| 129 |  |  | 
| 130 | 0 |     case EVP_PKEY_CTRL_SCRYPT_SALT: | 
| 131 | 0 |         return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1); | 
| 132 |  |  | 
| 133 | 0 |     case EVP_PKEY_CTRL_SCRYPT_N: | 
| 134 | 0 |         u64_value = *((uint64_t *)p2); | 
| 135 | 0 |         if ((u64_value <= 1) || !is_power_of_two(u64_value)) | 
| 136 | 0 |             return 0; | 
| 137 | 0 |         kctx->N = u64_value; | 
| 138 | 0 |         return 1; | 
| 139 |  |  | 
| 140 | 0 |     case EVP_PKEY_CTRL_SCRYPT_R: | 
| 141 | 0 |         u64_value = *((uint64_t *)p2); | 
| 142 | 0 |         if (u64_value < 1) | 
| 143 | 0 |             return 0; | 
| 144 | 0 |         kctx->r = u64_value; | 
| 145 | 0 |         return 1; | 
| 146 |  |  | 
| 147 | 0 |     case EVP_PKEY_CTRL_SCRYPT_P: | 
| 148 | 0 |         u64_value = *((uint64_t *)p2); | 
| 149 | 0 |         if (u64_value < 1) | 
| 150 | 0 |             return 0; | 
| 151 | 0 |         kctx->p = u64_value; | 
| 152 | 0 |         return 1; | 
| 153 |  |  | 
| 154 | 0 |     case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES: | 
| 155 | 0 |         u64_value = *((uint64_t *)p2); | 
| 156 | 0 |         if (u64_value < 1) | 
| 157 | 0 |             return 0; | 
| 158 | 0 |         kctx->maxmem_bytes = u64_value; | 
| 159 | 0 |         return 1; | 
| 160 |  |  | 
| 161 | 0 |     default: | 
| 162 | 0 |         return -2; | 
| 163 |  | 
 | 
| 164 | 0 |     } | 
| 165 | 0 | } | 
| 166 |  |  | 
| 167 |  | static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type, | 
| 168 |  |                                    const char *value) | 
| 169 | 0 | { | 
| 170 | 0 |     uint64_t int_value; | 
| 171 |  | 
 | 
| 172 | 0 |     if (!atou64(value, &int_value)) { | 
| 173 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); | 
| 174 | 0 |         return 0; | 
| 175 | 0 |     } | 
| 176 | 0 |     return pkey_scrypt_ctrl(ctx, type, 0, &int_value); | 
| 177 | 0 | } | 
| 178 |  |  | 
| 179 |  | static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, | 
| 180 |  |                                 const char *value) | 
| 181 | 0 | { | 
| 182 | 0 |     if (value == NULL) { | 
| 183 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); | 
| 184 | 0 |         return 0; | 
| 185 | 0 |     } | 
| 186 |  |  | 
| 187 | 0 |     if (strcmp(type, "pass") == 0) | 
| 188 | 0 |         return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); | 
| 189 |  |  | 
| 190 | 0 |     if (strcmp(type, "hexpass") == 0) | 
| 191 | 0 |         return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); | 
| 192 |  |  | 
| 193 | 0 |     if (strcmp(type, "salt") == 0) | 
| 194 | 0 |         return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); | 
| 195 |  |  | 
| 196 | 0 |     if (strcmp(type, "hexsalt") == 0) | 
| 197 | 0 |         return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); | 
| 198 |  |  | 
| 199 | 0 |     if (strcmp(type, "N") == 0) | 
| 200 | 0 |         return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value); | 
| 201 |  |  | 
| 202 | 0 |     if (strcmp(type, "r") == 0) | 
| 203 | 0 |         return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value); | 
| 204 |  |  | 
| 205 | 0 |     if (strcmp(type, "p") == 0) | 
| 206 | 0 |         return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value); | 
| 207 |  |  | 
| 208 | 0 |     if (strcmp(type, "maxmem_bytes") == 0) | 
| 209 | 0 |         return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, | 
| 210 | 0 |                                        value); | 
| 211 |  |  | 
| 212 | 0 |     KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); | 
| 213 | 0 |     return -2; | 
| 214 | 0 | } | 
| 215 |  |  | 
| 216 |  | static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key, | 
| 217 |  |                               size_t *keylen) | 
| 218 | 0 | { | 
| 219 | 0 |     SCRYPT_PKEY_CTX *kctx = ctx->data; | 
| 220 |  | 
 | 
| 221 | 0 |     if (kctx->pass == NULL) { | 
| 222 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS); | 
| 223 | 0 |         return 0; | 
| 224 | 0 |     } | 
| 225 |  |  | 
| 226 | 0 |     if (kctx->salt == NULL) { | 
| 227 | 0 |         KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT); | 
| 228 | 0 |         return 0; | 
| 229 | 0 |     } | 
| 230 |  |  | 
| 231 | 0 |     return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt, | 
| 232 | 0 |                           kctx->salt_len, kctx->N, kctx->r, kctx->p, | 
| 233 | 0 |                           kctx->maxmem_bytes, key, *keylen); | 
| 234 | 0 | } | 
| 235 |  |  | 
| 236 |  | const EVP_PKEY_METHOD scrypt_pkey_meth = { | 
| 237 |  |     EVP_PKEY_SCRYPT, | 
| 238 |  |     0, | 
| 239 |  |     pkey_scrypt_init, | 
| 240 |  |     0, | 
| 241 |  |     pkey_scrypt_cleanup, | 
| 242 |  |  | 
| 243 |  |     0, 0, | 
| 244 |  |     0, 0, | 
| 245 |  |  | 
| 246 |  |     0, | 
| 247 |  |     0, | 
| 248 |  |  | 
| 249 |  |     0, | 
| 250 |  |     0, | 
| 251 |  |  | 
| 252 |  |     0, 0, | 
| 253 |  |  | 
| 254 |  |     0, 0, 0, 0, | 
| 255 |  |  | 
| 256 |  |     0, 0, | 
| 257 |  |  | 
| 258 |  |     0, 0, | 
| 259 |  |  | 
| 260 |  |     0, | 
| 261 |  |     pkey_scrypt_derive, | 
| 262 |  |     pkey_scrypt_ctrl, | 
| 263 |  |     pkey_scrypt_ctrl_str | 
| 264 |  | }; | 
| 265 |  |  | 
| 266 |  | #endif |