Coverage Report

Created: 2023-09-25 06:41

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
1.25M
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
57
{
144
57
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
57
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
57
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
57
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
57
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
57
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
57
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
57
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
57
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
57
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
81
{
161
81
    memset(out, 0, 66);
162
81
    (*((limb *) & out[0])) = in[0];
163
81
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
81
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
81
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
81
    (*((limb_aX *) & out[29])) = in[4];
167
81
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
81
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
81
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
81
    (*((limb_aX *) & out[58])) = in[8];
171
81
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
57
{
176
57
    felem_bytearray b_out;
177
57
    int num_bytes;
178
179
57
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
57
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
57
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
57
    bin66_to_felem(out, b_out);
189
57
    return 1;
190
57
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
81
{
195
81
    felem_bytearray b_out;
196
81
    felem_to_bin66(b_out, in);
197
81
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
81
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
46.5k
{
220
46.5k
    out[0] = in[0];
221
46.5k
    out[1] = in[1];
222
46.5k
    out[2] = in[2];
223
46.5k
    out[3] = in[3];
224
46.5k
    out[4] = in[4];
225
46.5k
    out[5] = in[5];
226
46.5k
    out[6] = in[6];
227
46.5k
    out[7] = in[7];
228
46.5k
    out[8] = in[8];
229
46.5k
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
16.4k
{
234
16.4k
    out[0] += in[0];
235
16.4k
    out[1] += in[1];
236
16.4k
    out[2] += in[2];
237
16.4k
    out[3] += in[3];
238
16.4k
    out[4] += in[4];
239
16.4k
    out[5] += in[5];
240
16.4k
    out[6] += in[6];
241
16.4k
    out[7] += in[7];
242
16.4k
    out[8] += in[8];
243
16.4k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
120k
{
248
120k
    out[0] = in[0] * scalar;
249
120k
    out[1] = in[1] * scalar;
250
120k
    out[2] = in[2] * scalar;
251
120k
    out[3] = in[3] * scalar;
252
120k
    out[4] = in[4] * scalar;
253
120k
    out[5] = in[5] * scalar;
254
120k
    out[6] = in[6] * scalar;
255
120k
    out[7] = in[7] * scalar;
256
120k
    out[8] = in[8] * scalar;
257
120k
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
22.7k
{
262
22.7k
    out[0] *= scalar;
263
22.7k
    out[1] *= scalar;
264
22.7k
    out[2] *= scalar;
265
22.7k
    out[3] *= scalar;
266
22.7k
    out[4] *= scalar;
267
22.7k
    out[5] *= scalar;
268
22.7k
    out[6] *= scalar;
269
22.7k
    out[7] *= scalar;
270
22.7k
    out[8] *= scalar;
271
22.7k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
7.57k
{
276
7.57k
    out[0] *= scalar;
277
7.57k
    out[1] *= scalar;
278
7.57k
    out[2] *= scalar;
279
7.57k
    out[3] *= scalar;
280
7.57k
    out[4] *= scalar;
281
7.57k
    out[5] *= scalar;
282
7.57k
    out[6] *= scalar;
283
7.57k
    out[7] *= scalar;
284
7.57k
    out[8] *= scalar;
285
7.57k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
945
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
945
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
945
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
945
    out[0] = two62m3 - in[0];
301
945
    out[1] = two62m2 - in[1];
302
945
    out[2] = two62m2 - in[2];
303
945
    out[3] = two62m2 - in[3];
304
945
    out[4] = two62m2 - in[4];
305
945
    out[5] = two62m2 - in[5];
306
945
    out[6] = two62m2 - in[6];
307
945
    out[7] = two62m2 - in[7];
308
945
    out[8] = two62m2 - in[8];
309
945
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
12.7k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
12.7k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
12.7k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
12.7k
    out[0] += two62m3 - in[0];
327
12.7k
    out[1] += two62m2 - in[1];
328
12.7k
    out[2] += two62m2 - in[2];
329
12.7k
    out[3] += two62m2 - in[3];
330
12.7k
    out[4] += two62m2 - in[4];
331
12.7k
    out[5] += two62m2 - in[5];
332
12.7k
    out[6] += two62m2 - in[6];
333
12.7k
    out[7] += two62m2 - in[7];
334
12.7k
    out[8] += two62m2 - in[8];
335
12.7k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
22.0k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
22.0k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
22.0k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
22.0k
    out[0] += two63m6 - in[0];
358
22.0k
    out[1] += two63m5 - in[1];
359
22.0k
    out[2] += two63m5 - in[2];
360
22.0k
    out[3] += two63m5 - in[3];
361
22.0k
    out[4] += two63m5 - in[4];
362
22.0k
    out[5] += two63m5 - in[5];
363
22.0k
    out[6] += two63m5 - in[6];
364
22.0k
    out[7] += two63m5 - in[7];
365
22.0k
    out[8] += two63m5 - in[8];
366
22.0k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
7.57k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
7.57k
    static const uint128_t two127m70 =
381
7.57k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
7.57k
    static const uint128_t two127m69 =
383
7.57k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
7.57k
    out[0] += (two127m70 - in[0]);
386
7.57k
    out[1] += (two127m69 - in[1]);
387
7.57k
    out[2] += (two127m69 - in[2]);
388
7.57k
    out[3] += (two127m69 - in[3]);
389
7.57k
    out[4] += (two127m69 - in[4]);
390
7.57k
    out[5] += (two127m69 - in[5]);
391
7.57k
    out[6] += (two127m69 - in[6]);
392
7.57k
    out[7] += (two127m69 - in[7]);
393
7.57k
    out[8] += (two127m69 - in[8]);
394
7.57k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
40.2k
{
405
40.2k
    felem inx2, inx4;
406
40.2k
    felem_scalar(inx2, in, 2);
407
40.2k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
40.2k
    out[0] = ((uint128_t) in[0]) * in[0];
421
40.2k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
40.2k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
40.2k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
40.2k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
40.2k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
40.2k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
40.2k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
40.2k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
40.2k
             ((uint128_t) in[1]) * inx2[5] +
430
40.2k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
40.2k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
40.2k
             ((uint128_t) in[1]) * inx2[6] +
433
40.2k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
40.2k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
40.2k
             ((uint128_t) in[1]) * inx2[7] +
436
40.2k
             ((uint128_t) in[2]) * inx2[6] +
437
40.2k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
40.2k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
40.2k
              ((uint128_t) in[2]) * inx4[7] +
451
40.2k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
40.2k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
40.2k
              ((uint128_t) in[3]) * inx4[7] +
456
40.2k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
40.2k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
40.2k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
40.2k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
40.2k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
40.2k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
40.2k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
40.2k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
40.2k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
40.2k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
38.0k
{
489
38.0k
    felem in2x2;
490
38.0k
    felem_scalar(in2x2, in2, 2);
491
492
38.0k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
38.0k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
38.0k
             ((uint128_t) in1[1]) * in2[0];
496
497
38.0k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
38.0k
             ((uint128_t) in1[1]) * in2[1] +
499
38.0k
             ((uint128_t) in1[2]) * in2[0];
500
501
38.0k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
38.0k
             ((uint128_t) in1[1]) * in2[2] +
503
38.0k
             ((uint128_t) in1[2]) * in2[1] +
504
38.0k
             ((uint128_t) in1[3]) * in2[0];
505
506
38.0k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
38.0k
             ((uint128_t) in1[1]) * in2[3] +
508
38.0k
             ((uint128_t) in1[2]) * in2[2] +
509
38.0k
             ((uint128_t) in1[3]) * in2[1] +
510
38.0k
             ((uint128_t) in1[4]) * in2[0];
511
512
38.0k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
38.0k
             ((uint128_t) in1[1]) * in2[4] +
514
38.0k
             ((uint128_t) in1[2]) * in2[3] +
515
38.0k
             ((uint128_t) in1[3]) * in2[2] +
516
38.0k
             ((uint128_t) in1[4]) * in2[1] +
517
38.0k
             ((uint128_t) in1[5]) * in2[0];
518
519
38.0k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
38.0k
             ((uint128_t) in1[1]) * in2[5] +
521
38.0k
             ((uint128_t) in1[2]) * in2[4] +
522
38.0k
             ((uint128_t) in1[3]) * in2[3] +
523
38.0k
             ((uint128_t) in1[4]) * in2[2] +
524
38.0k
             ((uint128_t) in1[5]) * in2[1] +
525
38.0k
             ((uint128_t) in1[6]) * in2[0];
526
527
38.0k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
38.0k
             ((uint128_t) in1[1]) * in2[6] +
529
38.0k
             ((uint128_t) in1[2]) * in2[5] +
530
38.0k
             ((uint128_t) in1[3]) * in2[4] +
531
38.0k
             ((uint128_t) in1[4]) * in2[3] +
532
38.0k
             ((uint128_t) in1[5]) * in2[2] +
533
38.0k
             ((uint128_t) in1[6]) * in2[1] +
534
38.0k
             ((uint128_t) in1[7]) * in2[0];
535
536
38.0k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
38.0k
             ((uint128_t) in1[1]) * in2[7] +
538
38.0k
             ((uint128_t) in1[2]) * in2[6] +
539
38.0k
             ((uint128_t) in1[3]) * in2[5] +
540
38.0k
             ((uint128_t) in1[4]) * in2[4] +
541
38.0k
             ((uint128_t) in1[5]) * in2[3] +
542
38.0k
             ((uint128_t) in1[6]) * in2[2] +
543
38.0k
             ((uint128_t) in1[7]) * in2[1] +
544
38.0k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
38.0k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
38.0k
              ((uint128_t) in1[2]) * in2x2[7] +
550
38.0k
              ((uint128_t) in1[3]) * in2x2[6] +
551
38.0k
              ((uint128_t) in1[4]) * in2x2[5] +
552
38.0k
              ((uint128_t) in1[5]) * in2x2[4] +
553
38.0k
              ((uint128_t) in1[6]) * in2x2[3] +
554
38.0k
              ((uint128_t) in1[7]) * in2x2[2] +
555
38.0k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
38.0k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
38.0k
              ((uint128_t) in1[3]) * in2x2[7] +
559
38.0k
              ((uint128_t) in1[4]) * in2x2[6] +
560
38.0k
              ((uint128_t) in1[5]) * in2x2[5] +
561
38.0k
              ((uint128_t) in1[6]) * in2x2[4] +
562
38.0k
              ((uint128_t) in1[7]) * in2x2[3] +
563
38.0k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
38.0k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
38.0k
              ((uint128_t) in1[4]) * in2x2[7] +
567
38.0k
              ((uint128_t) in1[5]) * in2x2[6] +
568
38.0k
              ((uint128_t) in1[6]) * in2x2[5] +
569
38.0k
              ((uint128_t) in1[7]) * in2x2[4] +
570
38.0k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
38.0k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
38.0k
              ((uint128_t) in1[5]) * in2x2[7] +
574
38.0k
              ((uint128_t) in1[6]) * in2x2[6] +
575
38.0k
              ((uint128_t) in1[7]) * in2x2[5] +
576
38.0k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
38.0k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
38.0k
              ((uint128_t) in1[6]) * in2x2[7] +
580
38.0k
              ((uint128_t) in1[7]) * in2x2[6] +
581
38.0k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
38.0k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
38.0k
              ((uint128_t) in1[7]) * in2x2[7] +
585
38.0k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
38.0k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
38.0k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
38.0k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
38.0k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
70.7k
{
604
70.7k
    u64 overflow1, overflow2;
605
606
70.7k
    out[0] = ((limb) in[0]) & bottom58bits;
607
70.7k
    out[1] = ((limb) in[1]) & bottom58bits;
608
70.7k
    out[2] = ((limb) in[2]) & bottom58bits;
609
70.7k
    out[3] = ((limb) in[3]) & bottom58bits;
610
70.7k
    out[4] = ((limb) in[4]) & bottom58bits;
611
70.7k
    out[5] = ((limb) in[5]) & bottom58bits;
612
70.7k
    out[6] = ((limb) in[6]) & bottom58bits;
613
70.7k
    out[7] = ((limb) in[7]) & bottom58bits;
614
70.7k
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
70.7k
    out[1] += ((limb) in[0]) >> 58;
619
70.7k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
70.7k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
70.7k
    out[2] += ((limb) in[1]) >> 58;
627
70.7k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
70.7k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
70.7k
    out[3] += ((limb) in[2]) >> 58;
631
70.7k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
70.7k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
70.7k
    out[4] += ((limb) in[3]) >> 58;
635
70.7k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
70.7k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
70.7k
    out[5] += ((limb) in[4]) >> 58;
639
70.7k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
70.7k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
70.7k
    out[6] += ((limb) in[5]) >> 58;
643
70.7k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
70.7k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
70.7k
    out[7] += ((limb) in[6]) >> 58;
647
70.7k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
70.7k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
70.7k
    out[8] += ((limb) in[7]) >> 58;
651
70.7k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
70.7k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
70.7k
    overflow1 += ((limb) in[8]) >> 58;
659
70.7k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
70.7k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
70.7k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
70.7k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
70.7k
    out[0] += overflow1;        /* out[0] < 2^60 */
666
70.7k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
70.7k
    out[1] += out[0] >> 58;
669
70.7k
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
70.7k
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
10
{
701
10
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
10
    largefelem tmp;
703
10
    unsigned i;
704
705
10
    felem_square(tmp, in);
706
10
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
10
    felem_mul(tmp, in, ftmp);
708
10
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
10
    felem_assign(ftmp2, ftmp);
710
10
    felem_square(tmp, ftmp);
711
10
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
10
    felem_mul(tmp, in, ftmp);
713
10
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
10
    felem_square(tmp, ftmp);
715
10
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
10
    felem_square(tmp, ftmp2);
718
10
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
10
    felem_square(tmp, ftmp3);
720
10
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
10
    felem_mul(tmp, ftmp3, ftmp2);
722
10
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
10
    felem_assign(ftmp2, ftmp3);
725
10
    felem_square(tmp, ftmp3);
726
10
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
10
    felem_square(tmp, ftmp3);
728
10
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
10
    felem_square(tmp, ftmp3);
730
10
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
10
    felem_square(tmp, ftmp3);
732
10
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
10
    felem_assign(ftmp4, ftmp3);
734
10
    felem_mul(tmp, ftmp3, ftmp);
735
10
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
10
    felem_square(tmp, ftmp4);
737
10
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
10
    felem_mul(tmp, ftmp3, ftmp2);
739
10
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
10
    felem_assign(ftmp2, ftmp3);
741
742
90
    for (i = 0; i < 8; i++) {
743
80
        felem_square(tmp, ftmp3);
744
80
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
80
    }
746
10
    felem_mul(tmp, ftmp3, ftmp2);
747
10
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
10
    felem_assign(ftmp2, ftmp3);
749
750
170
    for (i = 0; i < 16; i++) {
751
160
        felem_square(tmp, ftmp3);
752
160
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
160
    }
754
10
    felem_mul(tmp, ftmp3, ftmp2);
755
10
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
10
    felem_assign(ftmp2, ftmp3);
757
758
330
    for (i = 0; i < 32; i++) {
759
320
        felem_square(tmp, ftmp3);
760
320
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
320
    }
762
10
    felem_mul(tmp, ftmp3, ftmp2);
763
10
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
10
    felem_assign(ftmp2, ftmp3);
765
766
650
    for (i = 0; i < 64; i++) {
767
640
        felem_square(tmp, ftmp3);
768
640
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
640
    }
770
10
    felem_mul(tmp, ftmp3, ftmp2);
771
10
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
10
    felem_assign(ftmp2, ftmp3);
773
774
1.29k
    for (i = 0; i < 128; i++) {
775
1.28k
        felem_square(tmp, ftmp3);
776
1.28k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
1.28k
    }
778
10
    felem_mul(tmp, ftmp3, ftmp2);
779
10
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
10
    felem_assign(ftmp2, ftmp3);
781
782
2.57k
    for (i = 0; i < 256; i++) {
783
2.56k
        felem_square(tmp, ftmp3);
784
2.56k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
2.56k
    }
786
10
    felem_mul(tmp, ftmp3, ftmp2);
787
10
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
100
    for (i = 0; i < 9; i++) {
790
90
        felem_square(tmp, ftmp3);
791
90
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
90
    }
793
10
    felem_mul(tmp, ftmp3, ftmp4);
794
10
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
10
    felem_mul(tmp, ftmp3, in);
796
10
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
10
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
9.74k
{
814
9.74k
    felem ftmp;
815
9.74k
    limb is_zero, is_p;
816
9.74k
    felem_assign(ftmp, in);
817
818
9.74k
    ftmp[0] += ftmp[8] >> 57;
819
9.74k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
9.74k
    ftmp[1] += ftmp[0] >> 58;
822
9.74k
    ftmp[0] &= bottom58bits;
823
9.74k
    ftmp[2] += ftmp[1] >> 58;
824
9.74k
    ftmp[1] &= bottom58bits;
825
9.74k
    ftmp[3] += ftmp[2] >> 58;
826
9.74k
    ftmp[2] &= bottom58bits;
827
9.74k
    ftmp[4] += ftmp[3] >> 58;
828
9.74k
    ftmp[3] &= bottom58bits;
829
9.74k
    ftmp[5] += ftmp[4] >> 58;
830
9.74k
    ftmp[4] &= bottom58bits;
831
9.74k
    ftmp[6] += ftmp[5] >> 58;
832
9.74k
    ftmp[5] &= bottom58bits;
833
9.74k
    ftmp[7] += ftmp[6] >> 58;
834
9.74k
    ftmp[6] &= bottom58bits;
835
9.74k
    ftmp[8] += ftmp[7] >> 58;
836
9.74k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
9.74k
    is_zero = 0;
846
9.74k
    is_zero |= ftmp[0];
847
9.74k
    is_zero |= ftmp[1];
848
9.74k
    is_zero |= ftmp[2];
849
9.74k
    is_zero |= ftmp[3];
850
9.74k
    is_zero |= ftmp[4];
851
9.74k
    is_zero |= ftmp[5];
852
9.74k
    is_zero |= ftmp[6];
853
9.74k
    is_zero |= ftmp[7];
854
9.74k
    is_zero |= ftmp[8];
855
856
9.74k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
9.74k
    is_zero = 0 - (is_zero >> 63);
862
863
9.74k
    is_p = ftmp[0] ^ kPrime[0];
864
9.74k
    is_p |= ftmp[1] ^ kPrime[1];
865
9.74k
    is_p |= ftmp[2] ^ kPrime[2];
866
9.74k
    is_p |= ftmp[3] ^ kPrime[3];
867
9.74k
    is_p |= ftmp[4] ^ kPrime[4];
868
9.74k
    is_p |= ftmp[5] ^ kPrime[5];
869
9.74k
    is_p |= ftmp[6] ^ kPrime[6];
870
9.74k
    is_p |= ftmp[7] ^ kPrime[7];
871
9.74k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
9.74k
    is_p--;
874
9.74k
    is_p = 0 - (is_p >> 63);
875
876
9.74k
    is_zero |= is_p;
877
9.74k
    return is_zero;
878
9.74k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
56
{
892
56
    limb is_p, is_greater, sign;
893
56
    static const limb two58 = ((limb) 1) << 58;
894
895
56
    felem_assign(out, in);
896
897
56
    out[0] += out[8] >> 57;
898
56
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
56
    out[1] += out[0] >> 58;
901
56
    out[0] &= bottom58bits;
902
56
    out[2] += out[1] >> 58;
903
56
    out[1] &= bottom58bits;
904
56
    out[3] += out[2] >> 58;
905
56
    out[2] &= bottom58bits;
906
56
    out[4] += out[3] >> 58;
907
56
    out[3] &= bottom58bits;
908
56
    out[5] += out[4] >> 58;
909
56
    out[4] &= bottom58bits;
910
56
    out[6] += out[5] >> 58;
911
56
    out[5] &= bottom58bits;
912
56
    out[7] += out[6] >> 58;
913
56
    out[6] &= bottom58bits;
914
56
    out[8] += out[7] >> 58;
915
56
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
56
    is_p = out[0] ^ kPrime[0];
929
56
    is_p |= out[1] ^ kPrime[1];
930
56
    is_p |= out[2] ^ kPrime[2];
931
56
    is_p |= out[3] ^ kPrime[3];
932
56
    is_p |= out[4] ^ kPrime[4];
933
56
    is_p |= out[5] ^ kPrime[5];
934
56
    is_p |= out[6] ^ kPrime[6];
935
56
    is_p |= out[7] ^ kPrime[7];
936
56
    is_p |= out[8] ^ kPrime[8];
937
938
56
    is_p--;
939
56
    is_p &= is_p << 32;
940
56
    is_p &= is_p << 16;
941
56
    is_p &= is_p << 8;
942
56
    is_p &= is_p << 4;
943
56
    is_p &= is_p << 2;
944
56
    is_p &= is_p << 1;
945
56
    is_p = 0 - (is_p >> 63);
946
56
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
56
    out[0] &= is_p;
951
56
    out[1] &= is_p;
952
56
    out[2] &= is_p;
953
56
    out[3] &= is_p;
954
56
    out[4] &= is_p;
955
56
    out[5] &= is_p;
956
56
    out[6] &= is_p;
957
56
    out[7] &= is_p;
958
56
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
56
    is_greater = out[8] >> 57;
965
56
    is_greater |= is_greater << 32;
966
56
    is_greater |= is_greater << 16;
967
56
    is_greater |= is_greater << 8;
968
56
    is_greater |= is_greater << 4;
969
56
    is_greater |= is_greater << 2;
970
56
    is_greater |= is_greater << 1;
971
56
    is_greater = 0 - (is_greater >> 63);
972
973
56
    out[0] -= kPrime[0] & is_greater;
974
56
    out[1] -= kPrime[1] & is_greater;
975
56
    out[2] -= kPrime[2] & is_greater;
976
56
    out[3] -= kPrime[3] & is_greater;
977
56
    out[4] -= kPrime[4] & is_greater;
978
56
    out[5] -= kPrime[5] & is_greater;
979
56
    out[6] -= kPrime[6] & is_greater;
980
56
    out[7] -= kPrime[7] & is_greater;
981
56
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
56
    sign = -(out[0] >> 63);
985
56
    out[0] += (two58 & sign);
986
56
    out[1] -= (1 & sign);
987
56
    sign = -(out[1] >> 63);
988
56
    out[1] += (two58 & sign);
989
56
    out[2] -= (1 & sign);
990
56
    sign = -(out[2] >> 63);
991
56
    out[2] += (two58 & sign);
992
56
    out[3] -= (1 & sign);
993
56
    sign = -(out[3] >> 63);
994
56
    out[3] += (two58 & sign);
995
56
    out[4] -= (1 & sign);
996
56
    sign = -(out[4] >> 63);
997
56
    out[4] += (two58 & sign);
998
56
    out[5] -= (1 & sign);
999
56
    sign = -(out[0] >> 63);
1000
56
    out[5] += (two58 & sign);
1001
56
    out[6] -= (1 & sign);
1002
56
    sign = -(out[6] >> 63);
1003
56
    out[6] += (two58 & sign);
1004
56
    out[7] -= (1 & sign);
1005
56
    sign = -(out[7] >> 63);
1006
56
    out[7] += (two58 & sign);
1007
56
    out[8] -= (1 & sign);
1008
56
    sign = -(out[5] >> 63);
1009
56
    out[5] += (two58 & sign);
1010
56
    out[6] -= (1 & sign);
1011
56
    sign = -(out[6] >> 63);
1012
56
    out[6] += (two58 & sign);
1013
56
    out[7] -= (1 & sign);
1014
56
    sign = -(out[7] >> 63);
1015
56
    out[7] += (two58 & sign);
1016
56
    out[8] -= (1 & sign);
1017
56
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
5.14k
{
1039
5.14k
    largefelem tmp, tmp2;
1040
5.14k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
5.14k
    felem_assign(ftmp, x_in);
1043
5.14k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
5.14k
    felem_square(tmp, z_in);
1047
5.14k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
5.14k
    felem_square(tmp, y_in);
1051
5.14k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
5.14k
    felem_mul(tmp, x_in, gamma);
1055
5.14k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
5.14k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
5.14k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
5.14k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
5.14k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
5.14k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
5.14k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
5.14k
    felem_assign(ftmp, beta);
1080
5.14k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
5.14k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
5.14k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
5.14k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
5.14k
    felem_assign(ftmp, y_in);
1090
5.14k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
5.14k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
5.14k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
5.14k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
5.14k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
5.14k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
5.14k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
5.14k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
5.14k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
5.14k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
5.14k
    felem_reduce(y_out, tmp);
1131
5.14k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
15.5k
{
1136
15.5k
    unsigned i;
1137
155k
    for (i = 0; i < NLIMBS; ++i) {
1138
140k
        const limb tmp = mask & (in[i] ^ out[i]);
1139
140k
        out[i] ^= tmp;
1140
140k
    }
1141
15.5k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
2.43k
{
1159
2.43k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
2.43k
    largefelem tmp, tmp2;
1161
2.43k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
2.43k
    limb points_equal;
1163
1164
2.43k
    z1_is_zero = felem_is_zero(z1);
1165
2.43k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
2.43k
    felem_square(tmp, z1);
1169
2.43k
    felem_reduce(ftmp, tmp);
1170
1171
2.43k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
999
        felem_square(tmp, z2);
1174
999
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
999
        felem_mul(tmp, x1, ftmp2);
1178
999
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
999
        felem_assign(ftmp5, z1);
1182
999
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
999
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
999
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
999
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
999
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
999
        felem_mul(tmp, ftmp2, z2);
1196
999
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
999
        felem_mul(tmp, y1, ftmp2);
1200
999
        felem_reduce(ftmp6, tmp);
1201
1.43k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
1.43k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
1.43k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
1.43k
        felem_assign(ftmp6, y1);
1214
1.43k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
2.43k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
2.43k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
2.43k
    felem_reduce(ftmp4, tmp);
1224
1225
2.43k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
2.43k
    felem_mul(tmp, ftmp5, ftmp4);
1229
2.43k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
2.43k
    felem_mul(tmp, ftmp, z1);
1233
2.43k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
2.43k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
2.43k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
2.43k
    felem_reduce(ftmp5, tmp);
1243
2.43k
    y_equal = felem_is_zero(ftmp5);
1244
2.43k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
2.43k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
2.43k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
2.43k
    felem_assign(ftmp, ftmp4);
1287
2.43k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
2.43k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
2.43k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
2.43k
    felem_mul(tmp, ftmp4, ftmp);
1295
2.43k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
2.43k
    felem_mul(tmp, ftmp3, ftmp);
1299
2.43k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
2.43k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
2.43k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
2.43k
    felem_assign(ftmp3, ftmp4);
1307
2.43k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
2.43k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
2.43k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
2.43k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
2.43k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
2.43k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
2.43k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
2.43k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
2.43k
    felem_reduce(y_out, tmp);
1331
1332
2.43k
    copy_conditional(x_out, x2, z1_is_zero);
1333
2.43k
    copy_conditional(x_out, x1, z2_is_zero);
1334
2.43k
    copy_conditional(y_out, y2, z1_is_zero);
1335
2.43k
    copy_conditional(y_out, y1, z2_is_zero);
1336
2.43k
    copy_conditional(z_out, z2, z1_is_zero);
1337
2.43k
    copy_conditional(z_out, z1, z2_is_zero);
1338
2.43k
    felem_assign(x3, x_out);
1339
2.43k
    felem_assign(y3, y_out);
1340
2.43k
    felem_assign(z3, z_out);
1341
2.43k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
2.38k
{
1497
2.38k
    unsigned i, j;
1498
2.38k
    limb *outlimbs = &out[0][0];
1499
1500
2.38k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
41.5k
    for (i = 0; i < size; i++) {
1503
39.1k
        const limb *inlimbs = &pre_comp[i][0][0];
1504
39.1k
        limb mask = i ^ idx;
1505
39.1k
        mask |= mask >> 4;
1506
39.1k
        mask |= mask >> 2;
1507
39.1k
        mask |= mask >> 1;
1508
39.1k
        mask &= 1;
1509
39.1k
        mask--;
1510
1.09M
        for (j = 0; j < NLIMBS * 3; j++)
1511
1.05M
            outlimbs[j] |= inlimbs[j] & mask;
1512
39.1k
    }
1513
2.38k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
11.4k
{
1518
11.4k
    if (i < 0)
1519
9
        return 0;
1520
11.3k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
11.4k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
12
{
1536
12
    int i, skip;
1537
12
    unsigned num, gen_mul = (g_scalar != NULL);
1538
12
    felem nq[3], tmp[4];
1539
12
    limb bits;
1540
12
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
12
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
12
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
5.09k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
5.08k
        if (!skip)
1555
5.07k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
5.08k
        if (gen_mul && (i <= 130)) {
1559
1.44k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
1.44k
            if (i < 130) {
1561
1.43k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
1.43k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
1.43k
                bits |= get_bit(g_scalar, i);
1564
1.43k
            }
1565
            /* select the point to add, in constant time */
1566
1.44k
            select_point(bits, 16, g_pre_comp, tmp);
1567
1.44k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
1.43k
                point_add(nq[0], nq[1], nq[2],
1570
1.43k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
1.43k
            } else {
1572
3
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
3
                skip = 0;
1574
3
            }
1575
1.44k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
5.08k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
1.89k
            for (num = 0; num < num_points; ++num) {
1581
945
                bits = get_bit(scalars[num], i + 4) << 5;
1582
945
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
945
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
945
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
945
                bits |= get_bit(scalars[num], i) << 1;
1586
945
                bits |= get_bit(scalars[num], i - 1);
1587
945
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
945
                select_point(digit, 17, pre_comp[num], tmp);
1593
945
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
945
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
945
                if (!skip) {
1598
936
                    point_add(nq[0], nq[1], nq[2],
1599
936
                              nq[0], nq[1], nq[2],
1600
936
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
936
                } else {
1602
9
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
9
                    skip = 0;
1604
9
                }
1605
945
            }
1606
945
        }
1607
5.08k
    }
1608
12
    felem_assign(x_out, nq[0]);
1609
12
    felem_assign(y_out, nq[1]);
1610
12
    felem_assign(z_out, nq[2]);
1611
12
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
136
{
1622
136
    static const EC_METHOD ret = {
1623
136
        EC_FLAGS_DEFAULT_OCT,
1624
136
        NID_X9_62_prime_field,
1625
136
        ec_GFp_nistp521_group_init,
1626
136
        ec_GFp_simple_group_finish,
1627
136
        ec_GFp_simple_group_clear_finish,
1628
136
        ec_GFp_nist_group_copy,
1629
136
        ec_GFp_nistp521_group_set_curve,
1630
136
        ec_GFp_simple_group_get_curve,
1631
136
        ec_GFp_simple_group_get_degree,
1632
136
        ec_group_simple_order_bits,
1633
136
        ec_GFp_simple_group_check_discriminant,
1634
136
        ec_GFp_simple_point_init,
1635
136
        ec_GFp_simple_point_finish,
1636
136
        ec_GFp_simple_point_clear_finish,
1637
136
        ec_GFp_simple_point_copy,
1638
136
        ec_GFp_simple_point_set_to_infinity,
1639
136
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
136
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
136
        ec_GFp_simple_point_set_affine_coordinates,
1642
136
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
136
        0 /* point_set_compressed_coordinates */ ,
1644
136
        0 /* point2oct */ ,
1645
136
        0 /* oct2point */ ,
1646
136
        ec_GFp_simple_add,
1647
136
        ec_GFp_simple_dbl,
1648
136
        ec_GFp_simple_invert,
1649
136
        ec_GFp_simple_is_at_infinity,
1650
136
        ec_GFp_simple_is_on_curve,
1651
136
        ec_GFp_simple_cmp,
1652
136
        ec_GFp_simple_make_affine,
1653
136
        ec_GFp_simple_points_make_affine,
1654
136
        ec_GFp_nistp521_points_mul,
1655
136
        ec_GFp_nistp521_precompute_mult,
1656
136
        ec_GFp_nistp521_have_precompute_mult,
1657
136
        ec_GFp_nist_field_mul,
1658
136
        ec_GFp_nist_field_sqr,
1659
136
        0 /* field_div */ ,
1660
136
        ec_GFp_simple_field_inv,
1661
136
        0 /* field_encode */ ,
1662
136
        0 /* field_decode */ ,
1663
136
        0,                      /* field_set_to_one */
1664
136
        ec_key_simple_priv2oct,
1665
136
        ec_key_simple_oct2priv,
1666
136
        0, /* set private */
1667
136
        ec_key_simple_generate_key,
1668
136
        ec_key_simple_check_key,
1669
136
        ec_key_simple_generate_public_key,
1670
136
        0, /* keycopy */
1671
136
        0, /* keyfinish */
1672
136
        ecdh_simple_compute_key,
1673
136
        0, /* field_inverse_mod_ord */
1674
136
        0, /* blind_coordinates */
1675
136
        0, /* ladder_pre */
1676
136
        0, /* ladder_step */
1677
136
        0  /* ladder_post */
1678
136
    };
1679
1680
136
    return &ret;
1681
136
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
274
{
1740
274
    int ret;
1741
274
    ret = ec_GFp_simple_group_init(group);
1742
274
    group->a_is_minus3 = 1;
1743
274
    return ret;
1744
274
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
136
{
1750
136
    int ret = 0;
1751
136
    BN_CTX *new_ctx = NULL;
1752
136
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
136
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
136
    BN_CTX_start(ctx);
1758
136
    curve_p = BN_CTX_get(ctx);
1759
136
    curve_a = BN_CTX_get(ctx);
1760
136
    curve_b = BN_CTX_get(ctx);
1761
136
    if (curve_b == NULL)
1762
0
        goto err;
1763
136
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
136
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
136
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
136
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
136
    group->field_mod_func = BN_nist_mod_521;
1772
136
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
136
 err:
1774
136
    BN_CTX_end(ctx);
1775
136
    BN_CTX_free(new_ctx);
1776
136
    return ret;
1777
136
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
10
{
1788
10
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
10
    largefelem tmp;
1790
1791
10
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
10
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
10
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
10
    felem_inv(z2, z1);
1800
10
    felem_square(tmp, z2);
1801
10
    felem_reduce(z1, tmp);
1802
10
    felem_mul(tmp, x_in, z1);
1803
10
    felem_reduce(x_in, tmp);
1804
10
    felem_contract(x_out, x_in);
1805
10
    if (x != NULL) {
1806
10
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
10
    }
1812
10
    felem_mul(tmp, z1, z2);
1813
10
    felem_reduce(z1, tmp);
1814
10
    felem_mul(tmp, y_in, z1);
1815
10
    felem_reduce(y_in, tmp);
1816
10
    felem_contract(y_out, y_in);
1817
10
    if (y != NULL) {
1818
2
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
2
    }
1824
10
    return 1;
1825
10
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
12
{
1866
12
    int ret = 0;
1867
12
    int j;
1868
12
    int mixed = 0;
1869
12
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
12
    felem_bytearray g_secret;
1871
12
    felem_bytearray *secrets = NULL;
1872
12
    felem (*pre_comp)[17][3] = NULL;
1873
12
    felem *tmp_felems = NULL;
1874
12
    unsigned i;
1875
12
    int num_bytes;
1876
12
    int have_pre_comp = 0;
1877
12
    size_t num_points = num;
1878
12
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
12
    NISTP521_PRE_COMP *pre = NULL;
1880
12
    felem(*g_pre_comp)[3] = NULL;
1881
12
    EC_POINT *generator = NULL;
1882
12
    const EC_POINT *p = NULL;
1883
12
    const BIGNUM *p_scalar = NULL;
1884
1885
12
    BN_CTX_start(ctx);
1886
12
    x = BN_CTX_get(ctx);
1887
12
    y = BN_CTX_get(ctx);
1888
12
    z = BN_CTX_get(ctx);
1889
12
    tmp_scalar = BN_CTX_get(ctx);
1890
12
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
12
    if (scalar != NULL) {
1894
11
        pre = group->pre_comp.nistp521;
1895
11
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
11
        else
1899
            /* try to use the standard precomputation */
1900
11
            g_pre_comp = (felem(*)[3]) gmul;
1901
11
        generator = EC_POINT_new(group);
1902
11
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
11
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
11
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
11
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
11
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
11
                                                      generator, x, y, z,
1913
11
                                                      ctx))
1914
0
            goto err;
1915
11
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
11
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
11
    }
1925
1926
12
    if (num_points > 0) {
1927
9
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
9
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
9
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
9
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
9
        if ((secrets == NULL) || (pre_comp == NULL)
1940
9
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
18
        for (i = 0; i < num_points; ++i) {
1950
9
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
9
            } else {
1958
                /* the i^th point */
1959
9
                p = points[i];
1960
9
                p_scalar = scalars[i];
1961
9
            }
1962
9
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
9
                if ((BN_num_bits(p_scalar) > 521)
1965
9
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
9
                } else {
1977
9
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
9
                                               secrets[i], sizeof(secrets[i]));
1979
9
                }
1980
9
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
9
                if ((!BN_to_felem(x_out, p->X)) ||
1986
9
                    (!BN_to_felem(y_out, p->Y)) ||
1987
9
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
9
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
9
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
9
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
144
                for (j = 2; j <= 16; ++j) {
1993
135
                    if (j & 1) {
1994
63
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
63
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
63
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
63
                                  pre_comp[i][j - 1][0],
1998
63
                                  pre_comp[i][j - 1][1],
1999
63
                                  pre_comp[i][j - 1][2]);
2000
72
                    } else {
2001
72
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
72
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
72
                                     pre_comp[i][j / 2][1],
2004
72
                                     pre_comp[i][j / 2][2]);
2005
72
                    }
2006
135
                }
2007
9
            }
2008
9
        }
2009
9
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
9
    }
2012
2013
    /* the scalar for the generator */
2014
12
    if ((scalar != NULL) && (have_pre_comp)) {
2015
11
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
11
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
11
        } else {
2028
11
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
11
        }
2030
        /* do the multiplication with generator precomputation */
2031
11
        batch_mul(x_out, y_out, z_out,
2032
11
                  (const felem_bytearray(*))secrets, num_points,
2033
11
                  g_secret,
2034
11
                  mixed, (const felem(*)[17][3])pre_comp,
2035
11
                  (const felem(*)[3])g_pre_comp);
2036
11
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
1
        batch_mul(x_out, y_out, z_out,
2039
1
                  (const felem_bytearray(*))secrets, num_points,
2040
1
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
1
    }
2042
    /* reduce the output to its unique minimal representation */
2043
12
    felem_contract(x_in, x_out);
2044
12
    felem_contract(y_in, y_out);
2045
12
    felem_contract(z_in, z_out);
2046
12
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
12
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
12
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
12
 err:
2054
12
    BN_CTX_end(ctx);
2055
12
    EC_POINT_free(generator);
2056
12
    OPENSSL_free(secrets);
2057
12
    OPENSSL_free(pre_comp);
2058
12
    OPENSSL_free(tmp_felems);
2059
12
    return ret;
2060
12
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif