Coverage Report

Created: 2023-09-25 06:41

/src/openssl111/include/crypto/md32_common.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
# error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
# error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
# error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
# error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
# error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
# error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
# error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
# error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
0
#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),          \
101
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
102
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
103
0
                         l|=(((unsigned long)(*((c)++)))    )           )
104
545k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),      \
105
545k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
106
545k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
107
545k
                         *((c)++)=(unsigned char)(((l)    )&0xff),      \
108
545k
                         l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),          \
113
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
114
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
115
0
                         l|=(((unsigned long)(*((c)++)))<<24)           )
116
211k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),      \
117
211k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
118
211k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
119
211k
                         *((c)++)=(unsigned char)(((l)>>24)&0xff),      \
120
211k
                         l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
147k
{
130
147k
    const unsigned char *data = data_;
131
147k
    unsigned char *p;
132
147k
    HASH_LONG l;
133
147k
    size_t n;
134
135
147k
    if (len == 0)
136
1
        return 1;
137
138
147k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
147k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
147k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
147k
    c->Nl = l;
144
145
147k
    n = c->num;
146
147k
    if (n != 0) {
147
41.3k
        p = (unsigned char *)c->data;
148
149
41.3k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
28.2k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
28.2k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
28.2k
            n = HASH_CBLOCK - n;
153
28.2k
            data += n;
154
28.2k
            len -= n;
155
28.2k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
28.2k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
28.2k
        } else {
164
13.0k
            memcpy(p + n, data, len);
165
13.0k
            c->num += (unsigned int)len;
166
13.0k
            return 1;
167
13.0k
        }
168
41.3k
    }
169
170
134k
    n = len / HASH_CBLOCK;
171
134k
    if (n > 0) {
172
30.2k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
30.2k
        n *= HASH_CBLOCK;
174
30.2k
        data += n;
175
30.2k
        len -= n;
176
30.2k
    }
177
178
134k
    if (len != 0) {
179
115k
        p = (unsigned char *)c->data;
180
115k
        c->num = (unsigned int)len;
181
115k
        memcpy(p, data, len);
182
115k
    }
183
134k
    return 1;
184
147k
}
MD5_Update
Line
Count
Source
129
46.9k
{
130
46.9k
    const unsigned char *data = data_;
131
46.9k
    unsigned char *p;
132
46.9k
    HASH_LONG l;
133
46.9k
    size_t n;
134
135
46.9k
    if (len == 0)
136
1
        return 1;
137
138
46.9k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
46.9k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
46.9k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
46.9k
    c->Nl = l;
144
145
46.9k
    n = c->num;
146
46.9k
    if (n != 0) {
147
12.8k
        p = (unsigned char *)c->data;
148
149
12.8k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
11.1k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
11.1k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
11.1k
            n = HASH_CBLOCK - n;
153
11.1k
            data += n;
154
11.1k
            len -= n;
155
11.1k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
11.1k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
11.1k
        } else {
164
1.68k
            memcpy(p + n, data, len);
165
1.68k
            c->num += (unsigned int)len;
166
1.68k
            return 1;
167
1.68k
        }
168
12.8k
    }
169
170
45.2k
    n = len / HASH_CBLOCK;
171
45.2k
    if (n > 0) {
172
6.94k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
6.94k
        n *= HASH_CBLOCK;
174
6.94k
        data += n;
175
6.94k
        len -= n;
176
6.94k
    }
177
178
45.2k
    if (len != 0) {
179
40.5k
        p = (unsigned char *)c->data;
180
40.5k
        c->num = (unsigned int)len;
181
40.5k
        memcpy(p, data, len);
182
40.5k
    }
183
45.2k
    return 1;
184
46.9k
}
SHA1_Update
Line
Count
Source
129
63.3k
{
130
63.3k
    const unsigned char *data = data_;
131
63.3k
    unsigned char *p;
132
63.3k
    HASH_LONG l;
133
63.3k
    size_t n;
134
135
63.3k
    if (len == 0)
136
0
        return 1;
137
138
63.3k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
63.3k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
63.3k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
63.3k
    c->Nl = l;
144
145
63.3k
    n = c->num;
146
63.3k
    if (n != 0) {
147
21.0k
        p = (unsigned char *)c->data;
148
149
21.0k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
11.1k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
11.1k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
11.1k
            n = HASH_CBLOCK - n;
153
11.1k
            data += n;
154
11.1k
            len -= n;
155
11.1k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
11.1k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
11.1k
        } else {
164
9.89k
            memcpy(p + n, data, len);
165
9.89k
            c->num += (unsigned int)len;
166
9.89k
            return 1;
167
9.89k
        }
168
21.0k
    }
169
170
53.4k
    n = len / HASH_CBLOCK;
171
53.4k
    if (n > 0) {
172
13.3k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
13.3k
        n *= HASH_CBLOCK;
174
13.3k
        data += n;
175
13.3k
        len -= n;
176
13.3k
    }
177
178
53.4k
    if (len != 0) {
179
45.6k
        p = (unsigned char *)c->data;
180
45.6k
        c->num = (unsigned int)len;
181
45.6k
        memcpy(p, data, len);
182
45.6k
    }
183
53.4k
    return 1;
184
63.3k
}
SHA256_Update
Line
Count
Source
129
37.3k
{
130
37.3k
    const unsigned char *data = data_;
131
37.3k
    unsigned char *p;
132
37.3k
    HASH_LONG l;
133
37.3k
    size_t n;
134
135
37.3k
    if (len == 0)
136
0
        return 1;
137
138
37.3k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
37.3k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
37.3k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
37.3k
    c->Nl = l;
144
145
37.3k
    n = c->num;
146
37.3k
    if (n != 0) {
147
7.37k
        p = (unsigned char *)c->data;
148
149
7.37k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
5.91k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
5.91k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
5.91k
            n = HASH_CBLOCK - n;
153
5.91k
            data += n;
154
5.91k
            len -= n;
155
5.91k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
5.91k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
5.91k
        } else {
164
1.45k
            memcpy(p + n, data, len);
165
1.45k
            c->num += (unsigned int)len;
166
1.45k
            return 1;
167
1.45k
        }
168
7.37k
    }
169
170
35.9k
    n = len / HASH_CBLOCK;
171
35.9k
    if (n > 0) {
172
9.99k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
9.99k
        n *= HASH_CBLOCK;
174
9.99k
        data += n;
175
9.99k
        len -= n;
176
9.99k
    }
177
178
35.9k
    if (len != 0) {
179
29.4k
        p = (unsigned char *)c->data;
180
29.4k
        c->num = (unsigned int)len;
181
29.4k
        memcpy(p, data, len);
182
29.4k
    }
183
35.9k
    return 1;
184
37.3k
}
Unexecuted instantiation: sm3_update
Unexecuted instantiation: MD4_Update
Unexecuted instantiation: RIPEMD160_Update
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
10.8k
{
188
10.8k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
10.8k
}
Unexecuted instantiation: MD5_Transform
SHA1_Transform
Line
Count
Source
187
9.82k
{
188
9.82k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
9.82k
}
SHA256_Transform
Line
Count
Source
187
982
{
188
982
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
982
}
Unexecuted instantiation: sm3_transform
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: RIPEMD160_Transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
101k
{
193
101k
    unsigned char *p = (unsigned char *)c->data;
194
101k
    size_t n = c->num;
195
196
101k
    p[n] = 0x80;                /* there is always room for one */
197
101k
    n++;
198
199
101k
    if (n > (HASH_CBLOCK - 8)) {
200
1.83k
        memset(p + n, 0, HASH_CBLOCK - n);
201
1.83k
        n = 0;
202
1.83k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
1.83k
    }
204
101k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
101k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
66.3k
    (void)HOST_l2c(c->Nh, p);
209
66.3k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
35.2k
    (void)HOST_l2c(c->Nl, p);
212
35.2k
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
101k
    p -= HASH_CBLOCK;
215
101k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
101k
    c->num = 0;
217
101k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
101k
    HASH_MAKE_STRING(c, md);
223
26.9k
#endif
224
225
26.9k
    return 1;
226
101k
}
MD5_Final
Line
Count
Source
192
35.2k
{
193
35.2k
    unsigned char *p = (unsigned char *)c->data;
194
35.2k
    size_t n = c->num;
195
196
35.2k
    p[n] = 0x80;                /* there is always room for one */
197
35.2k
    n++;
198
199
35.2k
    if (n > (HASH_CBLOCK - 8)) {
200
564
        memset(p + n, 0, HASH_CBLOCK - n);
201
564
        n = 0;
202
564
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
564
    }
204
35.2k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
35.2k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
35.2k
    (void)HOST_l2c(c->Nl, p);
212
35.2k
    (void)HOST_l2c(c->Nh, p);
213
35.2k
#endif
214
35.2k
    p -= HASH_CBLOCK;
215
35.2k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
35.2k
    c->num = 0;
217
35.2k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
35.2k
    HASH_MAKE_STRING(c, md);
223
35.2k
#endif
224
225
35.2k
    return 1;
226
35.2k
}
SHA1_Final
Line
Count
Source
192
39.4k
{
193
39.4k
    unsigned char *p = (unsigned char *)c->data;
194
39.4k
    size_t n = c->num;
195
196
39.4k
    p[n] = 0x80;                /* there is always room for one */
197
39.4k
    n++;
198
199
39.4k
    if (n > (HASH_CBLOCK - 8)) {
200
991
        memset(p + n, 0, HASH_CBLOCK - n);
201
991
        n = 0;
202
991
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
991
    }
204
39.4k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
39.4k
    p += HASH_CBLOCK - 8;
207
39.4k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
39.4k
    (void)HOST_l2c(c->Nh, p);
209
39.4k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
39.4k
    p -= HASH_CBLOCK;
215
39.4k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
39.4k
    c->num = 0;
217
39.4k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
39.4k
    HASH_MAKE_STRING(c, md);
223
39.4k
#endif
224
225
39.4k
    return 1;
226
39.4k
}
SHA256_Final
Line
Count
Source
192
26.9k
{
193
26.9k
    unsigned char *p = (unsigned char *)c->data;
194
26.9k
    size_t n = c->num;
195
196
26.9k
    p[n] = 0x80;                /* there is always room for one */
197
26.9k
    n++;
198
199
26.9k
    if (n > (HASH_CBLOCK - 8)) {
200
275
        memset(p + n, 0, HASH_CBLOCK - n);
201
275
        n = 0;
202
275
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
275
    }
204
26.9k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
26.9k
    p += HASH_CBLOCK - 8;
207
26.9k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
26.9k
    (void)HOST_l2c(c->Nh, p);
209
26.9k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
26.9k
    p -= HASH_CBLOCK;
215
26.9k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
26.9k
    c->num = 0;
217
26.9k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
26.9k
    HASH_MAKE_STRING(c, md);
223
26.9k
#endif
224
225
26.9k
    return 1;
226
26.9k
}
Unexecuted instantiation: sm3_final
Unexecuted instantiation: MD4_Final
Unexecuted instantiation: RIPEMD160_Final
227
228
#ifndef MD32_REG_T
229
# if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#  define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
# else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#  define MD32_REG_T int
255
# endif
256
#endif