Coverage Report

Created: 2023-09-25 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
1.04M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
48
{
145
48
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
48
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
48
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
48
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
48
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
48
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
48
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
48
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
48
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
48
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
110
{
162
110
    memset(out, 0, 66);
163
110
    (*((limb *) & out[0])) = in[0];
164
110
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
110
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
110
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
110
    (*((limb_aX *) & out[29])) = in[4];
168
110
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
110
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
110
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
110
    (*((limb_aX *) & out[58])) = in[8];
172
110
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
48
{
177
48
    felem_bytearray b_out;
178
48
    int num_bytes;
179
180
48
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
48
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
48
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
48
    bin66_to_felem(out, b_out);
190
48
    return 1;
191
48
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
110
{
196
110
    felem_bytearray b_out;
197
110
    felem_to_bin66(b_out, in);
198
110
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
110
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
32.9k
{
221
32.9k
    out[0] = in[0];
222
32.9k
    out[1] = in[1];
223
32.9k
    out[2] = in[2];
224
32.9k
    out[3] = in[3];
225
32.9k
    out[4] = in[4];
226
32.9k
    out[5] = in[5];
227
32.9k
    out[6] = in[6];
228
32.9k
    out[7] = in[7];
229
32.9k
    out[8] = in[8];
230
32.9k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
8.07k
{
235
8.07k
    out[0] += in[0];
236
8.07k
    out[1] += in[1];
237
8.07k
    out[2] += in[2];
238
8.07k
    out[3] += in[3];
239
8.07k
    out[4] += in[4];
240
8.07k
    out[5] += in[5];
241
8.07k
    out[6] += in[6];
242
8.07k
    out[7] += in[7];
243
8.07k
    out[8] += in[8];
244
8.07k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
80.8k
{
249
80.8k
    out[0] = in[0] * scalar;
250
80.8k
    out[1] = in[1] * scalar;
251
80.8k
    out[2] = in[2] * scalar;
252
80.8k
    out[3] = in[3] * scalar;
253
80.8k
    out[4] = in[4] * scalar;
254
80.8k
    out[5] = in[5] * scalar;
255
80.8k
    out[6] = in[6] * scalar;
256
80.8k
    out[7] = in[7] * scalar;
257
80.8k
    out[8] = in[8] * scalar;
258
80.8k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
13.9k
{
263
13.9k
    out[0] *= scalar;
264
13.9k
    out[1] *= scalar;
265
13.9k
    out[2] *= scalar;
266
13.9k
    out[3] *= scalar;
267
13.9k
    out[4] *= scalar;
268
13.9k
    out[5] *= scalar;
269
13.9k
    out[6] *= scalar;
270
13.9k
    out[7] *= scalar;
271
13.9k
    out[8] *= scalar;
272
13.9k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
4.66k
{
277
4.66k
    out[0] *= scalar;
278
4.66k
    out[1] *= scalar;
279
4.66k
    out[2] *= scalar;
280
4.66k
    out[3] *= scalar;
281
4.66k
    out[4] *= scalar;
282
4.66k
    out[5] *= scalar;
283
4.66k
    out[6] *= scalar;
284
4.66k
    out[7] *= scalar;
285
4.66k
    out[8] *= scalar;
286
4.66k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
210
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
210
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
210
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
210
    out[0] = two62m3 - in[0];
302
210
    out[1] = two62m2 - in[1];
303
210
    out[2] = two62m2 - in[2];
304
210
    out[3] = two62m2 - in[3];
305
210
    out[4] = two62m2 - in[4];
306
210
    out[5] = two62m2 - in[5];
307
210
    out[6] = two62m2 - in[6];
308
210
    out[7] = two62m2 - in[7];
309
210
    out[8] = two62m2 - in[8];
310
210
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
7.27k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
7.27k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
7.27k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
7.27k
    out[0] += two62m3 - in[0];
328
7.27k
    out[1] += two62m2 - in[1];
329
7.27k
    out[2] += two62m2 - in[2];
330
7.27k
    out[3] += two62m2 - in[3];
331
7.27k
    out[4] += two62m2 - in[4];
332
7.27k
    out[5] += two62m2 - in[5];
333
7.27k
    out[6] += two62m2 - in[6];
334
7.27k
    out[7] += two62m2 - in[7];
335
7.27k
    out[8] += two62m2 - in[8];
336
7.27k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
13.8k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
13.8k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
13.8k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
13.8k
    out[0] += two63m6 - in[0];
359
13.8k
    out[1] += two63m5 - in[1];
360
13.8k
    out[2] += two63m5 - in[2];
361
13.8k
    out[3] += two63m5 - in[3];
362
13.8k
    out[4] += two63m5 - in[4];
363
13.8k
    out[5] += two63m5 - in[5];
364
13.8k
    out[6] += two63m5 - in[6];
365
13.8k
    out[7] += two63m5 - in[7];
366
13.8k
    out[8] += two63m5 - in[8];
367
13.8k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
4.66k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
4.66k
    static const uint128_t two127m70 =
382
4.66k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
4.66k
    static const uint128_t two127m69 =
384
4.66k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
4.66k
    out[0] += (two127m70 - in[0]);
387
4.66k
    out[1] += (two127m69 - in[1]);
388
4.66k
    out[2] += (two127m69 - in[2]);
389
4.66k
    out[3] += (two127m69 - in[3]);
390
4.66k
    out[4] += (two127m69 - in[4]);
391
4.66k
    out[5] += (two127m69 - in[5]);
392
4.66k
    out[6] += (two127m69 - in[6]);
393
4.66k
    out[7] += (two127m69 - in[7]);
394
4.66k
    out[8] += (two127m69 - in[8]);
395
4.66k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
26.9k
{
406
26.9k
    felem inx2, inx4;
407
26.9k
    felem_scalar(inx2, in, 2);
408
26.9k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
26.9k
    out[0] = ((uint128_t) in[0]) * in[0];
422
26.9k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
26.9k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
26.9k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
26.9k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
26.9k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
26.9k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
26.9k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
26.9k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
26.9k
             ((uint128_t) in[1]) * inx2[5] +
431
26.9k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
26.9k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
26.9k
             ((uint128_t) in[1]) * inx2[6] +
434
26.9k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
26.9k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
26.9k
             ((uint128_t) in[1]) * inx2[7] +
437
26.9k
             ((uint128_t) in[2]) * inx2[6] +
438
26.9k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
26.9k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
26.9k
              ((uint128_t) in[2]) * inx4[7] +
452
26.9k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
26.9k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
26.9k
              ((uint128_t) in[3]) * inx4[7] +
457
26.9k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
26.9k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
26.9k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
26.9k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
26.9k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
26.9k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
26.9k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
26.9k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
26.9k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
26.9k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
25.0k
{
490
25.0k
    felem in2x2;
491
25.0k
    felem_scalar(in2x2, in2, 2);
492
493
25.0k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
25.0k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
25.0k
             ((uint128_t) in1[1]) * in2[0];
497
498
25.0k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
25.0k
             ((uint128_t) in1[1]) * in2[1] +
500
25.0k
             ((uint128_t) in1[2]) * in2[0];
501
502
25.0k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
25.0k
             ((uint128_t) in1[1]) * in2[2] +
504
25.0k
             ((uint128_t) in1[2]) * in2[1] +
505
25.0k
             ((uint128_t) in1[3]) * in2[0];
506
507
25.0k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
25.0k
             ((uint128_t) in1[1]) * in2[3] +
509
25.0k
             ((uint128_t) in1[2]) * in2[2] +
510
25.0k
             ((uint128_t) in1[3]) * in2[1] +
511
25.0k
             ((uint128_t) in1[4]) * in2[0];
512
513
25.0k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
25.0k
             ((uint128_t) in1[1]) * in2[4] +
515
25.0k
             ((uint128_t) in1[2]) * in2[3] +
516
25.0k
             ((uint128_t) in1[3]) * in2[2] +
517
25.0k
             ((uint128_t) in1[4]) * in2[1] +
518
25.0k
             ((uint128_t) in1[5]) * in2[0];
519
520
25.0k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
25.0k
             ((uint128_t) in1[1]) * in2[5] +
522
25.0k
             ((uint128_t) in1[2]) * in2[4] +
523
25.0k
             ((uint128_t) in1[3]) * in2[3] +
524
25.0k
             ((uint128_t) in1[4]) * in2[2] +
525
25.0k
             ((uint128_t) in1[5]) * in2[1] +
526
25.0k
             ((uint128_t) in1[6]) * in2[0];
527
528
25.0k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
25.0k
             ((uint128_t) in1[1]) * in2[6] +
530
25.0k
             ((uint128_t) in1[2]) * in2[5] +
531
25.0k
             ((uint128_t) in1[3]) * in2[4] +
532
25.0k
             ((uint128_t) in1[4]) * in2[3] +
533
25.0k
             ((uint128_t) in1[5]) * in2[2] +
534
25.0k
             ((uint128_t) in1[6]) * in2[1] +
535
25.0k
             ((uint128_t) in1[7]) * in2[0];
536
537
25.0k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
25.0k
             ((uint128_t) in1[1]) * in2[7] +
539
25.0k
             ((uint128_t) in1[2]) * in2[6] +
540
25.0k
             ((uint128_t) in1[3]) * in2[5] +
541
25.0k
             ((uint128_t) in1[4]) * in2[4] +
542
25.0k
             ((uint128_t) in1[5]) * in2[3] +
543
25.0k
             ((uint128_t) in1[6]) * in2[2] +
544
25.0k
             ((uint128_t) in1[7]) * in2[1] +
545
25.0k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
25.0k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
25.0k
              ((uint128_t) in1[2]) * in2x2[7] +
551
25.0k
              ((uint128_t) in1[3]) * in2x2[6] +
552
25.0k
              ((uint128_t) in1[4]) * in2x2[5] +
553
25.0k
              ((uint128_t) in1[5]) * in2x2[4] +
554
25.0k
              ((uint128_t) in1[6]) * in2x2[3] +
555
25.0k
              ((uint128_t) in1[7]) * in2x2[2] +
556
25.0k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
25.0k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
25.0k
              ((uint128_t) in1[3]) * in2x2[7] +
560
25.0k
              ((uint128_t) in1[4]) * in2x2[6] +
561
25.0k
              ((uint128_t) in1[5]) * in2x2[5] +
562
25.0k
              ((uint128_t) in1[6]) * in2x2[4] +
563
25.0k
              ((uint128_t) in1[7]) * in2x2[3] +
564
25.0k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
25.0k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
25.0k
              ((uint128_t) in1[4]) * in2x2[7] +
568
25.0k
              ((uint128_t) in1[5]) * in2x2[6] +
569
25.0k
              ((uint128_t) in1[6]) * in2x2[5] +
570
25.0k
              ((uint128_t) in1[7]) * in2x2[4] +
571
25.0k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
25.0k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
25.0k
              ((uint128_t) in1[5]) * in2x2[7] +
575
25.0k
              ((uint128_t) in1[6]) * in2x2[6] +
576
25.0k
              ((uint128_t) in1[7]) * in2x2[5] +
577
25.0k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
25.0k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
25.0k
              ((uint128_t) in1[6]) * in2x2[7] +
581
25.0k
              ((uint128_t) in1[7]) * in2x2[6] +
582
25.0k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
25.0k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
25.0k
              ((uint128_t) in1[7]) * in2x2[7] +
586
25.0k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
25.0k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
25.0k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
25.0k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
25.0k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
47.4k
{
605
47.4k
    u64 overflow1, overflow2;
606
607
47.4k
    out[0] = ((limb) in[0]) & bottom58bits;
608
47.4k
    out[1] = ((limb) in[1]) & bottom58bits;
609
47.4k
    out[2] = ((limb) in[2]) & bottom58bits;
610
47.4k
    out[3] = ((limb) in[3]) & bottom58bits;
611
47.4k
    out[4] = ((limb) in[4]) & bottom58bits;
612
47.4k
    out[5] = ((limb) in[5]) & bottom58bits;
613
47.4k
    out[6] = ((limb) in[6]) & bottom58bits;
614
47.4k
    out[7] = ((limb) in[7]) & bottom58bits;
615
47.4k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
47.4k
    out[1] += ((limb) in[0]) >> 58;
620
47.4k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
47.4k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
47.4k
    out[2] += ((limb) in[1]) >> 58;
628
47.4k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
47.4k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
47.4k
    out[3] += ((limb) in[2]) >> 58;
632
47.4k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
47.4k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
47.4k
    out[4] += ((limb) in[3]) >> 58;
636
47.4k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
47.4k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
47.4k
    out[5] += ((limb) in[4]) >> 58;
640
47.4k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
47.4k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
47.4k
    out[6] += ((limb) in[5]) >> 58;
644
47.4k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
47.4k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
47.4k
    out[7] += ((limb) in[6]) >> 58;
648
47.4k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
47.4k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
47.4k
    out[8] += ((limb) in[7]) >> 58;
652
47.4k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
47.4k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
47.4k
    overflow1 += ((limb) in[8]) >> 58;
660
47.4k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
47.4k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
47.4k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
47.4k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
47.4k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
47.4k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
47.4k
    out[1] += out[0] >> 58;
670
47.4k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
47.4k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
26.9k
# define felem_square felem_square_ref
726
25.0k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
14
{
753
14
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
14
    largefelem tmp;
755
14
    unsigned i;
756
757
14
    felem_square(tmp, in);
758
14
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
14
    felem_mul(tmp, in, ftmp);
760
14
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
14
    felem_assign(ftmp2, ftmp);
762
14
    felem_square(tmp, ftmp);
763
14
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
14
    felem_mul(tmp, in, ftmp);
765
14
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
14
    felem_square(tmp, ftmp);
767
14
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
14
    felem_square(tmp, ftmp2);
770
14
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
14
    felem_square(tmp, ftmp3);
772
14
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
14
    felem_mul(tmp, ftmp3, ftmp2);
774
14
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
14
    felem_assign(ftmp2, ftmp3);
777
14
    felem_square(tmp, ftmp3);
778
14
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
14
    felem_square(tmp, ftmp3);
780
14
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
14
    felem_square(tmp, ftmp3);
782
14
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
14
    felem_square(tmp, ftmp3);
784
14
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
14
    felem_assign(ftmp4, ftmp3);
786
14
    felem_mul(tmp, ftmp3, ftmp);
787
14
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
14
    felem_square(tmp, ftmp4);
789
14
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
14
    felem_mul(tmp, ftmp3, ftmp2);
791
14
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
14
    felem_assign(ftmp2, ftmp3);
793
794
126
    for (i = 0; i < 8; i++) {
795
112
        felem_square(tmp, ftmp3);
796
112
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
112
    }
798
14
    felem_mul(tmp, ftmp3, ftmp2);
799
14
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
14
    felem_assign(ftmp2, ftmp3);
801
802
238
    for (i = 0; i < 16; i++) {
803
224
        felem_square(tmp, ftmp3);
804
224
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
224
    }
806
14
    felem_mul(tmp, ftmp3, ftmp2);
807
14
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
14
    felem_assign(ftmp2, ftmp3);
809
810
462
    for (i = 0; i < 32; i++) {
811
448
        felem_square(tmp, ftmp3);
812
448
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
448
    }
814
14
    felem_mul(tmp, ftmp3, ftmp2);
815
14
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
14
    felem_assign(ftmp2, ftmp3);
817
818
910
    for (i = 0; i < 64; i++) {
819
896
        felem_square(tmp, ftmp3);
820
896
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
896
    }
822
14
    felem_mul(tmp, ftmp3, ftmp2);
823
14
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
14
    felem_assign(ftmp2, ftmp3);
825
826
1.80k
    for (i = 0; i < 128; i++) {
827
1.79k
        felem_square(tmp, ftmp3);
828
1.79k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
1.79k
    }
830
14
    felem_mul(tmp, ftmp3, ftmp2);
831
14
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
14
    felem_assign(ftmp2, ftmp3);
833
834
3.59k
    for (i = 0; i < 256; i++) {
835
3.58k
        felem_square(tmp, ftmp3);
836
3.58k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
3.58k
    }
838
14
    felem_mul(tmp, ftmp3, ftmp2);
839
14
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
140
    for (i = 0; i < 9; i++) {
842
126
        felem_square(tmp, ftmp3);
843
126
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
126
    }
845
14
    felem_mul(tmp, ftmp3, ftmp4);
846
14
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
14
    felem_mul(tmp, ftmp3, in);
848
14
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
14
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
8.17k
{
866
8.17k
    felem ftmp;
867
8.17k
    limb is_zero, is_p;
868
8.17k
    felem_assign(ftmp, in);
869
870
8.17k
    ftmp[0] += ftmp[8] >> 57;
871
8.17k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
8.17k
    ftmp[1] += ftmp[0] >> 58;
874
8.17k
    ftmp[0] &= bottom58bits;
875
8.17k
    ftmp[2] += ftmp[1] >> 58;
876
8.17k
    ftmp[1] &= bottom58bits;
877
8.17k
    ftmp[3] += ftmp[2] >> 58;
878
8.17k
    ftmp[2] &= bottom58bits;
879
8.17k
    ftmp[4] += ftmp[3] >> 58;
880
8.17k
    ftmp[3] &= bottom58bits;
881
8.17k
    ftmp[5] += ftmp[4] >> 58;
882
8.17k
    ftmp[4] &= bottom58bits;
883
8.17k
    ftmp[6] += ftmp[5] >> 58;
884
8.17k
    ftmp[5] &= bottom58bits;
885
8.17k
    ftmp[7] += ftmp[6] >> 58;
886
8.17k
    ftmp[6] &= bottom58bits;
887
8.17k
    ftmp[8] += ftmp[7] >> 58;
888
8.17k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
8.17k
    is_zero = 0;
898
8.17k
    is_zero |= ftmp[0];
899
8.17k
    is_zero |= ftmp[1];
900
8.17k
    is_zero |= ftmp[2];
901
8.17k
    is_zero |= ftmp[3];
902
8.17k
    is_zero |= ftmp[4];
903
8.17k
    is_zero |= ftmp[5];
904
8.17k
    is_zero |= ftmp[6];
905
8.17k
    is_zero |= ftmp[7];
906
8.17k
    is_zero |= ftmp[8];
907
908
8.17k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
8.17k
    is_zero = 0 - (is_zero >> 63);
914
915
8.17k
    is_p = ftmp[0] ^ kPrime[0];
916
8.17k
    is_p |= ftmp[1] ^ kPrime[1];
917
8.17k
    is_p |= ftmp[2] ^ kPrime[2];
918
8.17k
    is_p |= ftmp[3] ^ kPrime[3];
919
8.17k
    is_p |= ftmp[4] ^ kPrime[4];
920
8.17k
    is_p |= ftmp[5] ^ kPrime[5];
921
8.17k
    is_p |= ftmp[6] ^ kPrime[6];
922
8.17k
    is_p |= ftmp[7] ^ kPrime[7];
923
8.17k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
8.17k
    is_p--;
926
8.17k
    is_p = 0 - (is_p >> 63);
927
928
8.17k
    is_zero |= is_p;
929
8.17k
    return is_zero;
930
8.17k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
70
{
944
70
    limb is_p, is_greater, sign;
945
70
    static const limb two58 = ((limb) 1) << 58;
946
947
70
    felem_assign(out, in);
948
949
70
    out[0] += out[8] >> 57;
950
70
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
70
    out[1] += out[0] >> 58;
953
70
    out[0] &= bottom58bits;
954
70
    out[2] += out[1] >> 58;
955
70
    out[1] &= bottom58bits;
956
70
    out[3] += out[2] >> 58;
957
70
    out[2] &= bottom58bits;
958
70
    out[4] += out[3] >> 58;
959
70
    out[3] &= bottom58bits;
960
70
    out[5] += out[4] >> 58;
961
70
    out[4] &= bottom58bits;
962
70
    out[6] += out[5] >> 58;
963
70
    out[5] &= bottom58bits;
964
70
    out[7] += out[6] >> 58;
965
70
    out[6] &= bottom58bits;
966
70
    out[8] += out[7] >> 58;
967
70
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
70
    is_p = out[0] ^ kPrime[0];
981
70
    is_p |= out[1] ^ kPrime[1];
982
70
    is_p |= out[2] ^ kPrime[2];
983
70
    is_p |= out[3] ^ kPrime[3];
984
70
    is_p |= out[4] ^ kPrime[4];
985
70
    is_p |= out[5] ^ kPrime[5];
986
70
    is_p |= out[6] ^ kPrime[6];
987
70
    is_p |= out[7] ^ kPrime[7];
988
70
    is_p |= out[8] ^ kPrime[8];
989
990
70
    is_p--;
991
70
    is_p &= is_p << 32;
992
70
    is_p &= is_p << 16;
993
70
    is_p &= is_p << 8;
994
70
    is_p &= is_p << 4;
995
70
    is_p &= is_p << 2;
996
70
    is_p &= is_p << 1;
997
70
    is_p = 0 - (is_p >> 63);
998
70
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
70
    out[0] &= is_p;
1003
70
    out[1] &= is_p;
1004
70
    out[2] &= is_p;
1005
70
    out[3] &= is_p;
1006
70
    out[4] &= is_p;
1007
70
    out[5] &= is_p;
1008
70
    out[6] &= is_p;
1009
70
    out[7] &= is_p;
1010
70
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
70
    is_greater = out[8] >> 57;
1017
70
    is_greater |= is_greater << 32;
1018
70
    is_greater |= is_greater << 16;
1019
70
    is_greater |= is_greater << 8;
1020
70
    is_greater |= is_greater << 4;
1021
70
    is_greater |= is_greater << 2;
1022
70
    is_greater |= is_greater << 1;
1023
70
    is_greater = 0 - (is_greater >> 63);
1024
1025
70
    out[0] -= kPrime[0] & is_greater;
1026
70
    out[1] -= kPrime[1] & is_greater;
1027
70
    out[2] -= kPrime[2] & is_greater;
1028
70
    out[3] -= kPrime[3] & is_greater;
1029
70
    out[4] -= kPrime[4] & is_greater;
1030
70
    out[5] -= kPrime[5] & is_greater;
1031
70
    out[6] -= kPrime[6] & is_greater;
1032
70
    out[7] -= kPrime[7] & is_greater;
1033
70
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
70
    sign = -(out[0] >> 63);
1037
70
    out[0] += (two58 & sign);
1038
70
    out[1] -= (1 & sign);
1039
70
    sign = -(out[1] >> 63);
1040
70
    out[1] += (two58 & sign);
1041
70
    out[2] -= (1 & sign);
1042
70
    sign = -(out[2] >> 63);
1043
70
    out[2] += (two58 & sign);
1044
70
    out[3] -= (1 & sign);
1045
70
    sign = -(out[3] >> 63);
1046
70
    out[3] += (two58 & sign);
1047
70
    out[4] -= (1 & sign);
1048
70
    sign = -(out[4] >> 63);
1049
70
    out[4] += (two58 & sign);
1050
70
    out[5] -= (1 & sign);
1051
70
    sign = -(out[0] >> 63);
1052
70
    out[5] += (two58 & sign);
1053
70
    out[6] -= (1 & sign);
1054
70
    sign = -(out[6] >> 63);
1055
70
    out[6] += (two58 & sign);
1056
70
    out[7] -= (1 & sign);
1057
70
    sign = -(out[7] >> 63);
1058
70
    out[7] += (two58 & sign);
1059
70
    out[8] -= (1 & sign);
1060
70
    sign = -(out[5] >> 63);
1061
70
    out[5] += (two58 & sign);
1062
70
    out[6] -= (1 & sign);
1063
70
    sign = -(out[6] >> 63);
1064
70
    out[6] += (two58 & sign);
1065
70
    out[7] -= (1 & sign);
1066
70
    sign = -(out[7] >> 63);
1067
70
    out[7] += (two58 & sign);
1068
70
    out[8] -= (1 & sign);
1069
70
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
2.61k
{
1091
2.61k
    largefelem tmp, tmp2;
1092
2.61k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
2.61k
    felem_assign(ftmp, x_in);
1095
2.61k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
2.61k
    felem_square(tmp, z_in);
1099
2.61k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
2.61k
    felem_square(tmp, y_in);
1103
2.61k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
2.61k
    felem_mul(tmp, x_in, gamma);
1107
2.61k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
2.61k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
2.61k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
2.61k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
2.61k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
2.61k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
2.61k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
2.61k
    felem_assign(ftmp, beta);
1132
2.61k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
2.61k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
2.61k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
2.61k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
2.61k
    felem_assign(ftmp, y_in);
1142
2.61k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
2.61k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
2.61k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
2.61k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
2.61k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
2.61k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
2.61k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
2.61k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
2.61k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
2.61k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
2.61k
    felem_reduce(y_out, tmp);
1183
2.61k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
12.4k
{
1188
12.4k
    unsigned i;
1189
124k
    for (i = 0; i < NLIMBS; ++i) {
1190
112k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
112k
        out[i] ^= tmp;
1192
112k
    }
1193
12.4k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
2.04k
{
1211
2.04k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
2.04k
    largefelem tmp, tmp2;
1213
2.04k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
2.04k
    limb points_equal;
1215
1216
2.04k
    z1_is_zero = felem_is_zero(z1);
1217
2.04k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
2.04k
    felem_square(tmp, z1);
1221
2.04k
    felem_reduce(ftmp, tmp);
1222
1223
2.04k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
222
        felem_square(tmp, z2);
1226
222
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
222
        felem_mul(tmp, x1, ftmp2);
1230
222
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
222
        felem_assign(ftmp5, z1);
1234
222
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
222
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
222
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
222
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
222
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
222
        felem_mul(tmp, ftmp2, z2);
1248
222
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
222
        felem_mul(tmp, y1, ftmp2);
1252
222
        felem_reduce(ftmp6, tmp);
1253
1.82k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
1.82k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
1.82k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
1.82k
        felem_assign(ftmp6, y1);
1266
1.82k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
2.04k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
2.04k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
2.04k
    felem_reduce(ftmp4, tmp);
1276
1277
2.04k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
2.04k
    felem_mul(tmp, ftmp5, ftmp4);
1281
2.04k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
2.04k
    felem_mul(tmp, ftmp, z1);
1285
2.04k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
2.04k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
2.04k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
2.04k
    felem_reduce(ftmp5, tmp);
1295
2.04k
    y_equal = felem_is_zero(ftmp5);
1296
2.04k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
2.04k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
2.04k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
2.04k
    felem_assign(ftmp, ftmp4);
1339
2.04k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
2.04k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
2.04k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
2.04k
    felem_mul(tmp, ftmp4, ftmp);
1347
2.04k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
2.04k
    felem_mul(tmp, ftmp3, ftmp);
1351
2.04k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
2.04k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
2.04k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
2.04k
    felem_assign(ftmp3, ftmp4);
1359
2.04k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
2.04k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
2.04k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
2.04k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
2.04k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
2.04k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
2.04k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
2.04k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
2.04k
    felem_reduce(y_out, tmp);
1383
1384
2.04k
    copy_conditional(x_out, x2, z1_is_zero);
1385
2.04k
    copy_conditional(x_out, x1, z2_is_zero);
1386
2.04k
    copy_conditional(y_out, y2, z1_is_zero);
1387
2.04k
    copy_conditional(y_out, y1, z2_is_zero);
1388
2.04k
    copy_conditional(z_out, z2, z1_is_zero);
1389
2.04k
    copy_conditional(z_out, z1, z2_is_zero);
1390
2.04k
    felem_assign(x3, x_out);
1391
2.04k
    felem_assign(y3, y_out);
1392
2.04k
    felem_assign(z3, z_out);
1393
2.04k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
2.04k
{
1549
2.04k
    unsigned i, j;
1550
2.04k
    limb *outlimbs = &out[0][0];
1551
1552
2.04k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
34.9k
    for (i = 0; i < size; i++) {
1555
32.9k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
32.9k
        limb mask = i ^ idx;
1557
32.9k
        mask |= mask >> 4;
1558
32.9k
        mask |= mask >> 2;
1559
32.9k
        mask |= mask >> 1;
1560
32.9k
        mask &= 1;
1561
32.9k
        mask--;
1562
921k
        for (j = 0; j < NLIMBS * 3; j++)
1563
888k
            outlimbs[j] |= inlimbs[j] & mask;
1564
32.9k
    }
1565
2.04k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
8.55k
{
1570
8.55k
    if (i < 0)
1571
2
        return 0;
1572
8.55k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
8.55k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
14
{
1588
14
    int i, skip;
1589
14
    unsigned num, gen_mul = (g_scalar != NULL);
1590
14
    felem nq[3], tmp[4];
1591
14
    limb bits;
1592
14
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
14
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
14
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
2.62k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
2.61k
        if (!skip)
1607
2.60k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
2.61k
        if (gen_mul && (i <= 130)) {
1611
1.83k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
1.83k
            if (i < 130) {
1613
1.82k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
1.82k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
1.82k
                bits |= get_bit(g_scalar, i);
1616
1.82k
            }
1617
            /* select the point to add, in constant time */
1618
1.83k
            select_point(bits, 16, g_pre_comp, tmp);
1619
1.83k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
1.82k
                point_add(nq[0], nq[1], nq[2],
1622
1.82k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
1.82k
            } else {
1624
12
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
12
                skip = 0;
1626
12
            }
1627
1.83k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
2.61k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
420
            for (num = 0; num < num_points; ++num) {
1633
210
                bits = get_bit(scalars[num], i + 4) << 5;
1634
210
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
210
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
210
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
210
                bits |= get_bit(scalars[num], i) << 1;
1638
210
                bits |= get_bit(scalars[num], i - 1);
1639
210
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
210
                select_point(digit, 17, pre_comp[num], tmp);
1645
210
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
210
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
210
                if (!skip) {
1650
208
                    point_add(nq[0], nq[1], nq[2],
1651
208
                              nq[0], nq[1], nq[2],
1652
208
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
208
                } else {
1654
2
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
2
                    skip = 0;
1656
2
                }
1657
210
            }
1658
210
        }
1659
2.61k
    }
1660
14
    felem_assign(x_out, nq[0]);
1661
14
    felem_assign(y_out, nq[1]);
1662
14
    felem_assign(z_out, nq[2]);
1663
14
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
47
{
1674
47
    static const EC_METHOD ret = {
1675
47
        EC_FLAGS_DEFAULT_OCT,
1676
47
        NID_X9_62_prime_field,
1677
47
        ossl_ec_GFp_nistp521_group_init,
1678
47
        ossl_ec_GFp_simple_group_finish,
1679
47
        ossl_ec_GFp_simple_group_clear_finish,
1680
47
        ossl_ec_GFp_nist_group_copy,
1681
47
        ossl_ec_GFp_nistp521_group_set_curve,
1682
47
        ossl_ec_GFp_simple_group_get_curve,
1683
47
        ossl_ec_GFp_simple_group_get_degree,
1684
47
        ossl_ec_group_simple_order_bits,
1685
47
        ossl_ec_GFp_simple_group_check_discriminant,
1686
47
        ossl_ec_GFp_simple_point_init,
1687
47
        ossl_ec_GFp_simple_point_finish,
1688
47
        ossl_ec_GFp_simple_point_clear_finish,
1689
47
        ossl_ec_GFp_simple_point_copy,
1690
47
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
47
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
47
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
47
        0 /* point_set_compressed_coordinates */ ,
1694
47
        0 /* point2oct */ ,
1695
47
        0 /* oct2point */ ,
1696
47
        ossl_ec_GFp_simple_add,
1697
47
        ossl_ec_GFp_simple_dbl,
1698
47
        ossl_ec_GFp_simple_invert,
1699
47
        ossl_ec_GFp_simple_is_at_infinity,
1700
47
        ossl_ec_GFp_simple_is_on_curve,
1701
47
        ossl_ec_GFp_simple_cmp,
1702
47
        ossl_ec_GFp_simple_make_affine,
1703
47
        ossl_ec_GFp_simple_points_make_affine,
1704
47
        ossl_ec_GFp_nistp521_points_mul,
1705
47
        ossl_ec_GFp_nistp521_precompute_mult,
1706
47
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
47
        ossl_ec_GFp_nist_field_mul,
1708
47
        ossl_ec_GFp_nist_field_sqr,
1709
47
        0 /* field_div */ ,
1710
47
        ossl_ec_GFp_simple_field_inv,
1711
47
        0 /* field_encode */ ,
1712
47
        0 /* field_decode */ ,
1713
47
        0,                      /* field_set_to_one */
1714
47
        ossl_ec_key_simple_priv2oct,
1715
47
        ossl_ec_key_simple_oct2priv,
1716
47
        0, /* set private */
1717
47
        ossl_ec_key_simple_generate_key,
1718
47
        ossl_ec_key_simple_check_key,
1719
47
        ossl_ec_key_simple_generate_public_key,
1720
47
        0, /* keycopy */
1721
47
        0, /* keyfinish */
1722
47
        ossl_ecdh_simple_compute_key,
1723
47
        ossl_ecdsa_simple_sign_setup,
1724
47
        ossl_ecdsa_simple_sign_sig,
1725
47
        ossl_ecdsa_simple_verify_sig,
1726
47
        0, /* field_inverse_mod_ord */
1727
47
        0, /* blind_coordinates */
1728
47
        0, /* ladder_pre */
1729
47
        0, /* ladder_step */
1730
47
        0  /* ladder_post */
1731
47
    };
1732
1733
47
    return &ret;
1734
47
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
94
{
1793
94
    int ret;
1794
94
    ret = ossl_ec_GFp_simple_group_init(group);
1795
94
    group->a_is_minus3 = 1;
1796
94
    return ret;
1797
94
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
47
{
1803
47
    int ret = 0;
1804
47
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
47
#ifndef FIPS_MODULE
1806
47
    BN_CTX *new_ctx = NULL;
1807
1808
47
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
47
#endif
1811
47
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
47
    BN_CTX_start(ctx);
1815
47
    curve_p = BN_CTX_get(ctx);
1816
47
    curve_a = BN_CTX_get(ctx);
1817
47
    curve_b = BN_CTX_get(ctx);
1818
47
    if (curve_b == NULL)
1819
0
        goto err;
1820
47
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
47
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
47
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
47
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
47
    group->field_mod_func = BN_nist_mod_521;
1828
47
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
47
 err:
1830
47
    BN_CTX_end(ctx);
1831
47
#ifndef FIPS_MODULE
1832
47
    BN_CTX_free(new_ctx);
1833
47
#endif
1834
47
    return ret;
1835
47
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
14
{
1846
14
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
14
    largefelem tmp;
1848
1849
14
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
14
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
14
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
14
    felem_inv(z2, z1);
1857
14
    felem_square(tmp, z2);
1858
14
    felem_reduce(z1, tmp);
1859
14
    felem_mul(tmp, x_in, z1);
1860
14
    felem_reduce(x_in, tmp);
1861
14
    felem_contract(x_out, x_in);
1862
14
    if (x != NULL) {
1863
14
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
14
    }
1868
14
    felem_mul(tmp, z1, z2);
1869
14
    felem_reduce(z1, tmp);
1870
14
    felem_mul(tmp, y_in, z1);
1871
14
    felem_reduce(y_in, tmp);
1872
14
    felem_contract(y_out, y_in);
1873
14
    if (y != NULL) {
1874
12
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
12
    }
1879
14
    return 1;
1880
14
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
14
{
1921
14
    int ret = 0;
1922
14
    int j;
1923
14
    int mixed = 0;
1924
14
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
14
    felem_bytearray g_secret;
1926
14
    felem_bytearray *secrets = NULL;
1927
14
    felem (*pre_comp)[17][3] = NULL;
1928
14
    felem *tmp_felems = NULL;
1929
14
    unsigned i;
1930
14
    int num_bytes;
1931
14
    int have_pre_comp = 0;
1932
14
    size_t num_points = num;
1933
14
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
14
    NISTP521_PRE_COMP *pre = NULL;
1935
14
    felem(*g_pre_comp)[3] = NULL;
1936
14
    EC_POINT *generator = NULL;
1937
14
    const EC_POINT *p = NULL;
1938
14
    const BIGNUM *p_scalar = NULL;
1939
1940
14
    BN_CTX_start(ctx);
1941
14
    x = BN_CTX_get(ctx);
1942
14
    y = BN_CTX_get(ctx);
1943
14
    z = BN_CTX_get(ctx);
1944
14
    tmp_scalar = BN_CTX_get(ctx);
1945
14
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
14
    if (scalar != NULL) {
1949
14
        pre = group->pre_comp.nistp521;
1950
14
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
14
        else
1954
            /* try to use the standard precomputation */
1955
14
            g_pre_comp = (felem(*)[3]) gmul;
1956
14
        generator = EC_POINT_new(group);
1957
14
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
14
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
14
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
14
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
14
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
14
                                                                generator,
1968
14
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
14
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
14
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
14
    }
1980
1981
14
    if (num_points > 0) {
1982
2
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
2
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
2
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
2
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
2
        if ((secrets == NULL) || (pre_comp == NULL)
1995
2
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
4
        for (i = 0; i < num_points; ++i) {
2005
2
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
2
            } else {
2013
                /* the i^th point */
2014
2
                p = points[i];
2015
2
                p_scalar = scalars[i];
2016
2
            }
2017
2
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
2
                if ((BN_num_bits(p_scalar) > 521)
2020
2
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
2
                } else {
2032
2
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
2
                                               secrets[i], sizeof(secrets[i]));
2034
2
                }
2035
2
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
2
                if ((!BN_to_felem(x_out, p->X)) ||
2041
2
                    (!BN_to_felem(y_out, p->Y)) ||
2042
2
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
2
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
2
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
2
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
32
                for (j = 2; j <= 16; ++j) {
2048
30
                    if (j & 1) {
2049
14
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
14
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
14
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
14
                                  pre_comp[i][j - 1][0],
2053
14
                                  pre_comp[i][j - 1][1],
2054
14
                                  pre_comp[i][j - 1][2]);
2055
16
                    } else {
2056
16
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
16
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
16
                                     pre_comp[i][j / 2][1],
2059
16
                                     pre_comp[i][j / 2][2]);
2060
16
                    }
2061
30
                }
2062
2
            }
2063
2
        }
2064
2
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
2
    }
2067
2068
    /* the scalar for the generator */
2069
14
    if ((scalar != NULL) && (have_pre_comp)) {
2070
14
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
14
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
14
        } else {
2083
14
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
14
        }
2085
        /* do the multiplication with generator precomputation */
2086
14
        batch_mul(x_out, y_out, z_out,
2087
14
                  (const felem_bytearray(*))secrets, num_points,
2088
14
                  g_secret,
2089
14
                  mixed, (const felem(*)[17][3])pre_comp,
2090
14
                  (const felem(*)[3])g_pre_comp);
2091
14
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
14
    felem_contract(x_in, x_out);
2099
14
    felem_contract(y_in, y_out);
2100
14
    felem_contract(z_in, z_out);
2101
14
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
14
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
14
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
14
                                                             ctx);
2108
2109
14
 err:
2110
14
    BN_CTX_end(ctx);
2111
14
    EC_POINT_free(generator);
2112
14
    OPENSSL_free(secrets);
2113
14
    OPENSSL_free(pre_comp);
2114
14
    OPENSSL_free(tmp_felems);
2115
14
    return ret;
2116
14
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}