Coverage Report

Created: 2023-09-25 06:41

/src/openssl30/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "internal/cryptlib.h"
27
#include "ssl_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_enc,
35
    tls1_mac,
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_enc,
52
    tls1_mac,
53
    tls1_setup_key_block,
54
    tls1_generate_master_secret,
55
    tls1_change_cipher_state,
56
    tls1_final_finish_mac,
57
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59
    tls1_alert_code,
60
    tls1_export_keying_material,
61
    SSL_ENC_FLAG_EXPLICIT_IV,
62
    ssl3_set_handshake_header,
63
    tls_close_construct_packet,
64
    ssl3_handshake_write
65
};
66
67
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68
    tls1_enc,
69
    tls1_mac,
70
    tls1_setup_key_block,
71
    tls1_generate_master_secret,
72
    tls1_change_cipher_state,
73
    tls1_final_finish_mac,
74
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76
    tls1_alert_code,
77
    tls1_export_keying_material,
78
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80
    ssl3_set_handshake_header,
81
    tls_close_construct_packet,
82
    ssl3_handshake_write
83
};
84
85
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86
    tls13_enc,
87
    tls1_mac,
88
    tls13_setup_key_block,
89
    tls13_generate_master_secret,
90
    tls13_change_cipher_state,
91
    tls13_final_finish_mac,
92
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94
    tls13_alert_code,
95
    tls13_export_keying_material,
96
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97
    ssl3_set_handshake_header,
98
    tls_close_construct_packet,
99
    ssl3_handshake_write
100
};
101
102
long tls1_default_timeout(void)
103
6.93k
{
104
    /*
105
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106
     * http, the cache would over fill
107
     */
108
6.93k
    return (60 * 60 * 2);
109
6.93k
}
110
111
int tls1_new(SSL *s)
112
6.93k
{
113
6.93k
    if (!ssl3_new(s))
114
0
        return 0;
115
6.93k
    if (!s->method->ssl_clear(s))
116
0
        return 0;
117
118
6.93k
    return 1;
119
6.93k
}
120
121
void tls1_free(SSL *s)
122
5.66k
{
123
5.66k
    OPENSSL_free(s->ext.session_ticket);
124
5.66k
    ssl3_free(s);
125
5.66k
}
126
127
int tls1_clear(SSL *s)
128
27.7k
{
129
27.7k
    if (!ssl3_clear(s))
130
0
        return 0;
131
132
27.7k
    if (s->method->version == TLS_ANY_VERSION)
133
27.7k
        s->version = TLS_MAX_VERSION_INTERNAL;
134
0
    else
135
0
        s->version = s->method->version;
136
137
27.7k
    return 1;
138
27.7k
}
139
140
/* Legacy NID to group_id mapping. Only works for groups we know about */
141
static struct {
142
    int nid;
143
    uint16_t group_id;
144
} nid_to_group[] = {
145
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
146
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
147
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
148
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
149
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
150
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
151
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
152
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
153
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
154
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
155
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
156
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
157
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
158
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
159
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
160
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
161
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
162
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
163
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
164
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
165
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
166
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
167
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
168
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
169
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
170
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
171
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
172
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
173
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
174
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
175
    {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
176
    {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
177
    {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
178
    {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
179
    {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
180
    {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
181
    {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
182
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
183
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
184
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
185
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
186
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
187
};
188
189
static const unsigned char ecformats_default[] = {
190
    TLSEXT_ECPOINTFORMAT_uncompressed,
191
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193
};
194
195
/* The default curves */
196
static const uint16_t supported_groups_default[] = {
197
    29,                      /* X25519 (29) */
198
    23,                      /* secp256r1 (23) */
199
    30,                      /* X448 (30) */
200
    25,                      /* secp521r1 (25) */
201
    24,                      /* secp384r1 (24) */
202
    34,                      /* GC256A (34) */
203
    35,                      /* GC256B (35) */
204
    36,                      /* GC256C (36) */
205
    37,                      /* GC256D (37) */
206
    38,                      /* GC512A (38) */
207
    39,                      /* GC512B (39) */
208
    40,                      /* GC512C (40) */
209
    0x100,                   /* ffdhe2048 (0x100) */
210
    0x101,                   /* ffdhe3072 (0x101) */
211
    0x102,                   /* ffdhe4096 (0x102) */
212
    0x103,                   /* ffdhe6144 (0x103) */
213
    0x104,                   /* ffdhe8192 (0x104) */
214
};
215
216
static const uint16_t suiteb_curves[] = {
217
    TLSEXT_curve_P_256,
218
    TLSEXT_curve_P_384
219
};
220
221
struct provider_group_data_st {
222
    SSL_CTX *ctx;
223
    OSSL_PROVIDER *provider;
224
};
225
226
69.3k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
227
static OSSL_CALLBACK add_provider_groups;
228
static int add_provider_groups(const OSSL_PARAM params[], void *data)
229
346k
{
230
346k
    struct provider_group_data_st *pgd = data;
231
346k
    SSL_CTX *ctx = pgd->ctx;
232
346k
    OSSL_PROVIDER *provider = pgd->provider;
233
346k
    const OSSL_PARAM *p;
234
346k
    TLS_GROUP_INFO *ginf = NULL;
235
346k
    EVP_KEYMGMT *keymgmt;
236
346k
    unsigned int gid;
237
346k
    unsigned int is_kem = 0;
238
346k
    int ret = 0;
239
240
346k
    if (ctx->group_list_max_len == ctx->group_list_len) {
241
34.6k
        TLS_GROUP_INFO *tmp = NULL;
242
243
34.6k
        if (ctx->group_list_max_len == 0)
244
6.93k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245
34.6k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246
27.7k
        else
247
27.7k
            tmp = OPENSSL_realloc(ctx->group_list,
248
34.6k
                                  (ctx->group_list_max_len
249
34.6k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250
34.6k
                                  * sizeof(TLS_GROUP_INFO));
251
34.6k
        if (tmp == NULL) {
252
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253
0
            return 0;
254
0
        }
255
34.6k
        ctx->group_list = tmp;
256
34.6k
        memset(tmp + ctx->group_list_max_len,
257
34.6k
               0,
258
34.6k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259
34.6k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260
34.6k
    }
261
262
346k
    ginf = &ctx->group_list[ctx->group_list_len];
263
264
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265
346k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267
0
        goto err;
268
0
    }
269
346k
    ginf->tlsname = OPENSSL_strdup(p->data);
270
346k
    if (ginf->tlsname == NULL) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272
0
        goto err;
273
0
    }
274
275
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276
346k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278
0
        goto err;
279
0
    }
280
346k
    ginf->realname = OPENSSL_strdup(p->data);
281
346k
    if (ginf->realname == NULL) {
282
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283
0
        goto err;
284
0
    }
285
286
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287
346k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289
0
        goto err;
290
0
    }
291
346k
    ginf->group_id = (uint16_t)gid;
292
293
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294
346k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296
0
        goto err;
297
0
    }
298
346k
    ginf->algorithm = OPENSSL_strdup(p->data);
299
346k
    if (ginf->algorithm == NULL) {
300
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301
0
        goto err;
302
0
    }
303
304
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305
346k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307
0
        goto err;
308
0
    }
309
310
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311
346k
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313
0
        goto err;
314
0
    }
315
346k
    ginf->is_kem = 1 & is_kem;
316
317
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318
346k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320
0
        goto err;
321
0
    }
322
323
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324
346k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326
0
        goto err;
327
0
    }
328
329
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330
346k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332
0
        goto err;
333
0
    }
334
335
346k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336
346k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338
0
        goto err;
339
0
    }
340
    /*
341
     * Now check that the algorithm is actually usable for our property query
342
     * string. Regardless of the result we still return success because we have
343
     * successfully processed this group, even though we may decide not to use
344
     * it.
345
     */
346
346k
    ret = 1;
347
346k
    ERR_set_mark();
348
346k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
349
346k
    if (keymgmt != NULL) {
350
        /*
351
         * We have successfully fetched the algorithm - however if the provider
352
         * doesn't match this one then we ignore it.
353
         *
354
         * Note: We're cheating a little here. Technically if the same algorithm
355
         * is available from more than one provider then it is undefined which
356
         * implementation you will get back. Theoretically this could be
357
         * different every time...we assume here that you'll always get the
358
         * same one back if you repeat the exact same fetch. Is this a reasonable
359
         * assumption to make (in which case perhaps we should document this
360
         * behaviour)?
361
         */
362
346k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
363
            /* We have a match - so we will use this group */
364
346k
            ctx->group_list_len++;
365
346k
            ginf = NULL;
366
346k
        }
367
346k
        EVP_KEYMGMT_free(keymgmt);
368
346k
    }
369
346k
    ERR_pop_to_mark();
370
346k
 err:
371
346k
    if (ginf != NULL) {
372
0
        OPENSSL_free(ginf->tlsname);
373
0
        OPENSSL_free(ginf->realname);
374
0
        OPENSSL_free(ginf->algorithm);
375
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
376
0
    }
377
346k
    return ret;
378
346k
}
379
380
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
381
13.8k
{
382
13.8k
    struct provider_group_data_st pgd;
383
384
13.8k
    pgd.ctx = vctx;
385
13.8k
    pgd.provider = provider;
386
13.8k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
387
13.8k
                                          add_provider_groups, &pgd);
388
13.8k
}
389
390
int ssl_load_groups(SSL_CTX *ctx)
391
6.93k
{
392
6.93k
    size_t i, j, num_deflt_grps = 0;
393
6.93k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
394
395
6.93k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
396
0
        return 0;
397
398
124k
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
399
5.52M
        for (j = 0; j < ctx->group_list_len; j++) {
400
5.48M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
401
69.3k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
402
69.3k
                break;
403
69.3k
            }
404
5.48M
        }
405
117k
    }
406
407
6.93k
    if (num_deflt_grps == 0)
408
0
        return 1;
409
410
6.93k
    ctx->ext.supported_groups_default
411
6.93k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
412
413
6.93k
    if (ctx->ext.supported_groups_default == NULL) {
414
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
415
0
        return 0;
416
0
    }
417
418
6.93k
    memcpy(ctx->ext.supported_groups_default,
419
6.93k
           tmp_supp_groups,
420
6.93k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
421
6.93k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
422
423
6.93k
    return 1;
424
6.93k
}
425
426
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
427
0
{
428
0
    size_t i;
429
430
0
    for (i = 0; i < ctx->group_list_len; i++) {
431
0
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
432
0
                || strcmp(ctx->group_list[i].realname, name) == 0)
433
0
            return ctx->group_list[i].group_id;
434
0
    }
435
436
0
    return 0;
437
0
}
438
439
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
440
192k
{
441
192k
    size_t i;
442
443
8.47M
    for (i = 0; i < ctx->group_list_len; i++) {
444
8.47M
        if (ctx->group_list[i].group_id == group_id)
445
192k
            return &ctx->group_list[i];
446
8.47M
    }
447
448
0
    return NULL;
449
192k
}
450
451
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
452
92.8k
{
453
92.8k
    size_t i;
454
455
92.8k
    if (group_id == 0)
456
0
        return NID_undef;
457
458
    /*
459
     * Return well known Group NIDs - for backwards compatibility. This won't
460
     * work for groups we don't know about.
461
     */
462
2.98M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
463
2.98M
    {
464
2.98M
        if (nid_to_group[i].group_id == group_id)
465
92.8k
            return nid_to_group[i].nid;
466
2.98M
    }
467
0
    if (!include_unknown)
468
0
        return NID_undef;
469
0
    return TLSEXT_nid_unknown | (int)group_id;
470
0
}
471
472
uint16_t tls1_nid2group_id(int nid)
473
143
{
474
143
    size_t i;
475
476
    /*
477
     * Return well known Group ids - for backwards compatibility. This won't
478
     * work for groups we don't know about.
479
     */
480
3.41k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
481
3.41k
    {
482
3.41k
        if (nid_to_group[i].nid == nid)
483
143
            return nid_to_group[i].group_id;
484
3.41k
    }
485
486
0
    return 0;
487
143
}
488
489
/*
490
 * Set *pgroups to the supported groups list and *pgroupslen to
491
 * the number of groups supported.
492
 */
493
void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
494
                               size_t *pgroupslen)
495
29.9k
{
496
    /* For Suite B mode only include P-256, P-384 */
497
29.9k
    switch (tls1_suiteb(s)) {
498
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
499
0
        *pgroups = suiteb_curves;
500
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
501
0
        break;
502
503
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
504
0
        *pgroups = suiteb_curves;
505
0
        *pgroupslen = 1;
506
0
        break;
507
508
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
509
0
        *pgroups = suiteb_curves + 1;
510
0
        *pgroupslen = 1;
511
0
        break;
512
513
29.9k
    default:
514
29.9k
        if (s->ext.supportedgroups == NULL) {
515
29.9k
            *pgroups = s->ctx->ext.supported_groups_default;
516
29.9k
            *pgroupslen = s->ctx->ext.supported_groups_default_len;
517
29.9k
        } else {
518
0
            *pgroups = s->ext.supportedgroups;
519
0
            *pgroupslen = s->ext.supportedgroups_len;
520
0
        }
521
29.9k
        break;
522
29.9k
    }
523
29.9k
}
524
525
int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
526
                    int isec, int *okfortls13)
527
91.0k
{
528
91.0k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
529
91.0k
    int ret;
530
531
91.0k
    if (okfortls13 != NULL)
532
70.0k
        *okfortls13 = 0;
533
534
91.0k
    if (ginfo == NULL)
535
0
        return 0;
536
537
91.0k
    if (SSL_IS_DTLS(s)) {
538
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
539
0
            return 0;
540
0
        if (ginfo->maxdtls == 0)
541
0
            ret = 1;
542
0
        else
543
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
544
0
        if (ginfo->mindtls > 0)
545
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
546
91.0k
    } else {
547
91.0k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
548
0
            return 0;
549
91.0k
        if (ginfo->maxtls == 0)
550
91.0k
            ret = 1;
551
0
        else
552
0
            ret = (minversion <= ginfo->maxtls);
553
91.0k
        if (ginfo->mintls > 0)
554
91.0k
            ret &= (maxversion >= ginfo->mintls);
555
91.0k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
556
70.0k
            *okfortls13 = (ginfo->maxtls == 0)
557
70.0k
                          || (ginfo->maxtls >= TLS1_3_VERSION);
558
91.0k
    }
559
91.0k
    ret &= !isec
560
91.0k
           || strcmp(ginfo->algorithm, "EC") == 0
561
91.0k
           || strcmp(ginfo->algorithm, "X25519") == 0
562
91.0k
           || strcmp(ginfo->algorithm, "X448") == 0;
563
564
91.0k
    return ret;
565
91.0k
}
566
567
/* See if group is allowed by security callback */
568
int tls_group_allowed(SSL *s, uint16_t group, int op)
569
92.8k
{
570
92.8k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
571
92.8k
    unsigned char gtmp[2];
572
573
92.8k
    if (ginfo == NULL)
574
0
        return 0;
575
576
92.8k
    gtmp[0] = group >> 8;
577
92.8k
    gtmp[1] = group & 0xff;
578
92.8k
    return ssl_security(s, op, ginfo->secbits,
579
92.8k
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
580
92.8k
}
581
582
/* Return 1 if "id" is in "list" */
583
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
584
1.80k
{
585
1.80k
    size_t i;
586
4.82k
    for (i = 0; i < listlen; i++)
587
4.81k
        if (list[i] == id)
588
1.79k
            return 1;
589
13
    return 0;
590
1.80k
}
591
592
/*-
593
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
594
 * if there is no match.
595
 * For nmatch == -1, return number of matches
596
 * For nmatch == -2, return the id of the group to use for
597
 * a tmp key, or 0 if there is no match.
598
 */
599
uint16_t tls1_shared_group(SSL *s, int nmatch)
600
0
{
601
0
    const uint16_t *pref, *supp;
602
0
    size_t num_pref, num_supp, i;
603
0
    int k;
604
0
    SSL_CTX *ctx = s->ctx;
605
606
    /* Can't do anything on client side */
607
0
    if (s->server == 0)
608
0
        return 0;
609
0
    if (nmatch == -2) {
610
0
        if (tls1_suiteb(s)) {
611
            /*
612
             * For Suite B ciphersuite determines curve: we already know
613
             * these are acceptable due to previous checks.
614
             */
615
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
616
617
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
618
0
                return TLSEXT_curve_P_256;
619
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
620
0
                return TLSEXT_curve_P_384;
621
            /* Should never happen */
622
0
            return 0;
623
0
        }
624
        /* If not Suite B just return first preference shared curve */
625
0
        nmatch = 0;
626
0
    }
627
    /*
628
     * If server preference set, our groups are the preference order
629
     * otherwise peer decides.
630
     */
631
0
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
632
0
        tls1_get_supported_groups(s, &pref, &num_pref);
633
0
        tls1_get_peer_groups(s, &supp, &num_supp);
634
0
    } else {
635
0
        tls1_get_peer_groups(s, &pref, &num_pref);
636
0
        tls1_get_supported_groups(s, &supp, &num_supp);
637
0
    }
638
639
0
    for (k = 0, i = 0; i < num_pref; i++) {
640
0
        uint16_t id = pref[i];
641
0
        const TLS_GROUP_INFO *inf;
642
643
0
        if (!tls1_in_list(id, supp, num_supp)
644
0
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
645
0
            continue;
646
0
        inf = tls1_group_id_lookup(ctx, id);
647
0
        if (!ossl_assert(inf != NULL))
648
0
            return 0;
649
0
        if (SSL_IS_DTLS(s)) {
650
0
            if (inf->maxdtls == -1)
651
0
                continue;
652
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
653
0
                    || (inf->maxdtls != 0
654
0
                        && DTLS_VERSION_GT(s->version, inf->maxdtls)))
655
0
                continue;
656
0
        } else {
657
0
            if (inf->maxtls == -1)
658
0
                continue;
659
0
            if ((inf->mintls != 0 && s->version < inf->mintls)
660
0
                    || (inf->maxtls != 0 && s->version > inf->maxtls))
661
0
                continue;
662
0
        }
663
664
0
        if (nmatch == k)
665
0
            return id;
666
0
         k++;
667
0
    }
668
0
    if (nmatch == -1)
669
0
        return k;
670
    /* Out of range (nmatch > k). */
671
0
    return 0;
672
0
}
673
674
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
675
                    int *groups, size_t ngroups)
676
0
{
677
0
    uint16_t *glist;
678
0
    size_t i;
679
    /*
680
     * Bitmap of groups included to detect duplicates: two variables are added
681
     * to detect duplicates as some values are more than 32.
682
     */
683
0
    unsigned long *dup_list = NULL;
684
0
    unsigned long dup_list_egrp = 0;
685
0
    unsigned long dup_list_dhgrp = 0;
686
687
0
    if (ngroups == 0) {
688
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
689
0
        return 0;
690
0
    }
691
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
692
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
693
0
        return 0;
694
0
    }
695
0
    for (i = 0; i < ngroups; i++) {
696
0
        unsigned long idmask;
697
0
        uint16_t id;
698
0
        id = tls1_nid2group_id(groups[i]);
699
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
700
0
            goto err;
701
0
        idmask = 1L << (id & 0x00FF);
702
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
703
0
        if (!id || ((*dup_list) & idmask))
704
0
            goto err;
705
0
        *dup_list |= idmask;
706
0
        glist[i] = id;
707
0
    }
708
0
    OPENSSL_free(*pext);
709
0
    *pext = glist;
710
0
    *pextlen = ngroups;
711
0
    return 1;
712
0
err:
713
0
    OPENSSL_free(glist);
714
0
    return 0;
715
0
}
716
717
0
# define GROUPLIST_INCREMENT   40
718
# define GROUP_NAME_BUFFER_LENGTH 64
719
typedef struct {
720
    SSL_CTX *ctx;
721
    size_t gidcnt;
722
    size_t gidmax;
723
    uint16_t *gid_arr;
724
} gid_cb_st;
725
726
static int gid_cb(const char *elem, int len, void *arg)
727
0
{
728
0
    gid_cb_st *garg = arg;
729
0
    size_t i;
730
0
    uint16_t gid = 0;
731
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
732
733
0
    if (elem == NULL)
734
0
        return 0;
735
0
    if (garg->gidcnt == garg->gidmax) {
736
0
        uint16_t *tmp =
737
0
            OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
738
0
        if (tmp == NULL)
739
0
            return 0;
740
0
        garg->gidmax += GROUPLIST_INCREMENT;
741
0
        garg->gid_arr = tmp;
742
0
    }
743
0
    if (len > (int)(sizeof(etmp) - 1))
744
0
        return 0;
745
0
    memcpy(etmp, elem, len);
746
0
    etmp[len] = 0;
747
748
0
    gid = tls1_group_name2id(garg->ctx, etmp);
749
0
    if (gid == 0) {
750
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
751
0
                       "group '%s' cannot be set", etmp);
752
0
        return 0;
753
0
    }
754
0
    for (i = 0; i < garg->gidcnt; i++)
755
0
        if (garg->gid_arr[i] == gid)
756
0
            return 0;
757
0
    garg->gid_arr[garg->gidcnt++] = gid;
758
0
    return 1;
759
0
}
760
761
/* Set groups based on a colon separated list */
762
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
763
                         const char *str)
764
0
{
765
0
    gid_cb_st gcb;
766
0
    uint16_t *tmparr;
767
0
    int ret = 0;
768
769
0
    gcb.gidcnt = 0;
770
0
    gcb.gidmax = GROUPLIST_INCREMENT;
771
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
772
0
    if (gcb.gid_arr == NULL)
773
0
        return 0;
774
0
    gcb.ctx = ctx;
775
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
776
0
        goto end;
777
0
    if (pext == NULL) {
778
0
        ret = 1;
779
0
        goto end;
780
0
    }
781
782
    /*
783
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
784
     * the result
785
     */
786
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
787
0
    if (tmparr == NULL)
788
0
        goto end;
789
0
    OPENSSL_free(*pext);
790
0
    *pext = tmparr;
791
0
    *pextlen = gcb.gidcnt;
792
0
    ret = 1;
793
0
 end:
794
0
    OPENSSL_free(gcb.gid_arr);
795
0
    return ret;
796
0
}
797
798
/* Check a group id matches preferences */
799
int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
800
1.80k
    {
801
1.80k
    const uint16_t *groups;
802
1.80k
    size_t groups_len;
803
804
1.80k
    if (group_id == 0)
805
1
        return 0;
806
807
    /* Check for Suite B compliance */
808
1.80k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
809
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
810
811
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
812
0
            if (group_id != TLSEXT_curve_P_256)
813
0
                return 0;
814
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
815
0
            if (group_id != TLSEXT_curve_P_384)
816
0
                return 0;
817
0
        } else {
818
            /* Should never happen */
819
0
            return 0;
820
0
        }
821
0
    }
822
823
1.80k
    if (check_own_groups) {
824
        /* Check group is one of our preferences */
825
1.80k
        tls1_get_supported_groups(s, &groups, &groups_len);
826
1.80k
        if (!tls1_in_list(group_id, groups, groups_len))
827
13
            return 0;
828
1.80k
    }
829
830
1.79k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
831
0
        return 0;
832
833
    /* For clients, nothing more to check */
834
1.79k
    if (!s->server)
835
1.79k
        return 1;
836
837
    /* Check group is one of peers preferences */
838
0
    tls1_get_peer_groups(s, &groups, &groups_len);
839
840
    /*
841
     * RFC 4492 does not require the supported elliptic curves extension
842
     * so if it is not sent we can just choose any curve.
843
     * It is invalid to send an empty list in the supported groups
844
     * extension, so groups_len == 0 always means no extension.
845
     */
846
0
    if (groups_len == 0)
847
0
            return 1;
848
0
    return tls1_in_list(group_id, groups, groups_len);
849
0
}
850
851
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
852
                         size_t *num_formats)
853
7.00k
{
854
    /*
855
     * If we have a custom point format list use it otherwise use default
856
     */
857
7.00k
    if (s->ext.ecpointformats) {
858
0
        *pformats = s->ext.ecpointformats;
859
0
        *num_formats = s->ext.ecpointformats_len;
860
7.00k
    } else {
861
7.00k
        *pformats = ecformats_default;
862
        /* For Suite B we don't support char2 fields */
863
7.00k
        if (tls1_suiteb(s))
864
0
            *num_formats = sizeof(ecformats_default) - 1;
865
7.00k
        else
866
7.00k
            *num_formats = sizeof(ecformats_default);
867
7.00k
    }
868
7.00k
}
869
870
/* Check a key is compatible with compression extension */
871
static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
872
149
{
873
149
    unsigned char comp_id;
874
149
    size_t i;
875
149
    int point_conv;
876
877
    /* If not an EC key nothing to check */
878
149
    if (!EVP_PKEY_is_a(pkey, "EC"))
879
0
        return 1;
880
881
882
    /* Get required compression id */
883
149
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
884
149
    if (point_conv == 0)
885
0
        return 0;
886
149
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
887
142
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
888
142
    } else if (SSL_IS_TLS13(s)) {
889
        /*
890
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
891
         * this check.
892
         */
893
0
        return 1;
894
7
    } else {
895
7
        int field_type = EVP_PKEY_get_field_type(pkey);
896
897
7
        if (field_type == NID_X9_62_prime_field)
898
6
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
899
1
        else if (field_type == NID_X9_62_characteristic_two_field)
900
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
901
1
        else
902
1
            return 0;
903
7
    }
904
    /*
905
     * If point formats extension present check it, otherwise everything is
906
     * supported (see RFC4492).
907
     */
908
148
    if (s->ext.peer_ecpointformats == NULL)
909
90
        return 1;
910
911
77
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
912
72
        if (s->ext.peer_ecpointformats[i] == comp_id)
913
53
            return 1;
914
72
    }
915
5
    return 0;
916
58
}
917
918
/* Return group id of a key */
919
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
920
143
{
921
143
    int curve_nid = ssl_get_EC_curve_nid(pkey);
922
923
143
    if (curve_nid == NID_undef)
924
0
        return 0;
925
143
    return tls1_nid2group_id(curve_nid);
926
143
}
927
928
/*
929
 * Check cert parameters compatible with extensions: currently just checks EC
930
 * certificates have compatible curves and compression.
931
 */
932
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
933
0
{
934
0
    uint16_t group_id;
935
0
    EVP_PKEY *pkey;
936
0
    pkey = X509_get0_pubkey(x);
937
0
    if (pkey == NULL)
938
0
        return 0;
939
    /* If not EC nothing to do */
940
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
941
0
        return 1;
942
    /* Check compression */
943
0
    if (!tls1_check_pkey_comp(s, pkey))
944
0
        return 0;
945
0
    group_id = tls1_get_group_id(pkey);
946
    /*
947
     * For a server we allow the certificate to not be in our list of supported
948
     * groups.
949
     */
950
0
    if (!tls1_check_group_id(s, group_id, !s->server))
951
0
        return 0;
952
    /*
953
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
954
     * SHA384+P-384.
955
     */
956
0
    if (check_ee_md && tls1_suiteb(s)) {
957
0
        int check_md;
958
0
        size_t i;
959
960
        /* Check to see we have necessary signing algorithm */
961
0
        if (group_id == TLSEXT_curve_P_256)
962
0
            check_md = NID_ecdsa_with_SHA256;
963
0
        else if (group_id == TLSEXT_curve_P_384)
964
0
            check_md = NID_ecdsa_with_SHA384;
965
0
        else
966
0
            return 0;           /* Should never happen */
967
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
968
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
969
0
                return 1;;
970
0
        }
971
0
        return 0;
972
0
    }
973
0
    return 1;
974
0
}
975
976
/*
977
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
978
 * @s: SSL connection
979
 * @cid: Cipher ID we're considering using
980
 *
981
 * Checks that the kECDHE cipher suite we're considering using
982
 * is compatible with the client extensions.
983
 *
984
 * Returns 0 when the cipher can't be used or 1 when it can.
985
 */
986
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
987
0
{
988
    /* If not Suite B just need a shared group */
989
0
    if (!tls1_suiteb(s))
990
0
        return tls1_shared_group(s, 0) != 0;
991
    /*
992
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
993
     * curves permitted.
994
     */
995
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
996
0
        return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
997
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
998
0
        return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
999
1000
0
    return 0;
1001
0
}
1002
1003
/* Default sigalg schemes */
1004
static const uint16_t tls12_sigalgs[] = {
1005
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1006
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1007
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1008
    TLSEXT_SIGALG_ed25519,
1009
    TLSEXT_SIGALG_ed448,
1010
1011
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1012
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1013
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1014
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1015
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1016
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1017
1018
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1019
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1020
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1021
1022
    TLSEXT_SIGALG_ecdsa_sha224,
1023
    TLSEXT_SIGALG_ecdsa_sha1,
1024
1025
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1026
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1027
1028
    TLSEXT_SIGALG_dsa_sha224,
1029
    TLSEXT_SIGALG_dsa_sha1,
1030
1031
    TLSEXT_SIGALG_dsa_sha256,
1032
    TLSEXT_SIGALG_dsa_sha384,
1033
    TLSEXT_SIGALG_dsa_sha512,
1034
1035
#ifndef OPENSSL_NO_GOST
1036
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1037
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1038
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1039
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1040
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1041
#endif
1042
};
1043
1044
1045
static const uint16_t suiteb_sigalgs[] = {
1046
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1047
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1048
};
1049
1050
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1051
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1052
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1053
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1054
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1055
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1056
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1057
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1058
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1059
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1060
    {"ed25519", TLSEXT_SIGALG_ed25519,
1061
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1062
     NID_undef, NID_undef, 1},
1063
    {"ed448", TLSEXT_SIGALG_ed448,
1064
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1065
     NID_undef, NID_undef, 1},
1066
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1067
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1068
     NID_ecdsa_with_SHA224, NID_undef, 1},
1069
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1070
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1071
     NID_ecdsa_with_SHA1, NID_undef, 1},
1072
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1073
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1074
     NID_undef, NID_undef, 1},
1075
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1076
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1077
     NID_undef, NID_undef, 1},
1078
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1079
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1080
     NID_undef, NID_undef, 1},
1081
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1082
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1083
     NID_undef, NID_undef, 1},
1084
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1085
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1086
     NID_undef, NID_undef, 1},
1087
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1088
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1089
     NID_undef, NID_undef, 1},
1090
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1091
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1092
     NID_sha256WithRSAEncryption, NID_undef, 1},
1093
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1094
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1095
     NID_sha384WithRSAEncryption, NID_undef, 1},
1096
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1097
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1098
     NID_sha512WithRSAEncryption, NID_undef, 1},
1099
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1100
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1101
     NID_sha224WithRSAEncryption, NID_undef, 1},
1102
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1103
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1104
     NID_sha1WithRSAEncryption, NID_undef, 1},
1105
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1106
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1107
     NID_dsa_with_SHA256, NID_undef, 1},
1108
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1109
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1110
     NID_undef, NID_undef, 1},
1111
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1112
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1113
     NID_undef, NID_undef, 1},
1114
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1115
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1116
     NID_undef, NID_undef, 1},
1117
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1118
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1119
     NID_dsaWithSHA1, NID_undef, 1},
1120
#ifndef OPENSSL_NO_GOST
1121
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1122
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1123
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1124
     NID_undef, NID_undef, 1},
1125
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1126
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1127
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1128
     NID_undef, NID_undef, 1},
1129
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1130
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1131
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1132
     NID_undef, NID_undef, 1},
1133
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1134
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1135
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1136
     NID_undef, NID_undef, 1},
1137
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1138
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1139
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1140
     NID_undef, NID_undef, 1}
1141
#endif
1142
};
1143
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1144
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1145
    "rsa_pkcs1_md5_sha1", 0,
1146
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1147
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1148
     NID_undef, NID_undef, 1
1149
};
1150
1151
/*
1152
 * Default signature algorithm values used if signature algorithms not present.
1153
 * From RFC5246. Note: order must match certificate index order.
1154
 */
1155
static const uint16_t tls_default_sigalg[] = {
1156
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1157
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1158
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1159
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1160
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1161
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1162
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1163
    0, /* SSL_PKEY_ED25519 */
1164
    0, /* SSL_PKEY_ED448 */
1165
};
1166
1167
int ssl_setup_sig_algs(SSL_CTX *ctx)
1168
6.93k
{
1169
6.93k
    size_t i;
1170
6.93k
    const SIGALG_LOOKUP *lu;
1171
6.93k
    SIGALG_LOOKUP *cache
1172
6.93k
        = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1173
6.93k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1174
6.93k
    int ret = 0;
1175
1176
6.93k
    if (cache == NULL || tmpkey == NULL)
1177
0
        goto err;
1178
1179
6.93k
    ERR_set_mark();
1180
6.93k
    for (i = 0, lu = sigalg_lookup_tbl;
1181
201k
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1182
194k
        EVP_PKEY_CTX *pctx;
1183
1184
194k
        cache[i] = *lu;
1185
1186
        /*
1187
         * Check hash is available.
1188
         * This test is not perfect. A provider could have support
1189
         * for a signature scheme, but not a particular hash. However the hash
1190
         * could be available from some other loaded provider. In that case it
1191
         * could be that the signature is available, and the hash is available
1192
         * independently - but not as a combination. We ignore this for now.
1193
         */
1194
194k
        if (lu->hash != NID_undef
1195
194k
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1196
34.6k
            cache[i].enabled = 0;
1197
34.6k
            continue;
1198
34.6k
        }
1199
1200
159k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1201
0
            cache[i].enabled = 0;
1202
0
            continue;
1203
0
        }
1204
159k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1205
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1206
159k
        if (pctx == NULL)
1207
0
            cache[i].enabled = 0;
1208
159k
        EVP_PKEY_CTX_free(pctx);
1209
159k
    }
1210
6.93k
    ERR_pop_to_mark();
1211
6.93k
    ctx->sigalg_lookup_cache = cache;
1212
6.93k
    cache = NULL;
1213
1214
6.93k
    ret = 1;
1215
6.93k
 err:
1216
6.93k
    OPENSSL_free(cache);
1217
6.93k
    EVP_PKEY_free(tmpkey);
1218
6.93k
    return ret;
1219
6.93k
}
1220
1221
/* Lookup TLS signature algorithm */
1222
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1223
808k
{
1224
808k
    size_t i;
1225
808k
    const SIGALG_LOOKUP *lu;
1226
1227
808k
    for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1228
         /* cache should have the same number of elements as sigalg_lookup_tbl */
1229
11.9M
         i < OSSL_NELEM(sigalg_lookup_tbl);
1230
11.9M
         lu++, i++) {
1231
11.9M
        if (lu->sigalg == sigalg) {
1232
794k
            if (!lu->enabled)
1233
141k
                return NULL;
1234
652k
            return lu;
1235
794k
        }
1236
11.9M
    }
1237
14.3k
    return NULL;
1238
808k
}
1239
/* Lookup hash: return 0 if invalid or not enabled */
1240
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1241
234k
{
1242
234k
    const EVP_MD *md;
1243
234k
    if (lu == NULL)
1244
0
        return 0;
1245
    /* lu->hash == NID_undef means no associated digest */
1246
234k
    if (lu->hash == NID_undef) {
1247
14.4k
        md = NULL;
1248
219k
    } else {
1249
219k
        md = ssl_md(ctx, lu->hash_idx);
1250
219k
        if (md == NULL)
1251
0
            return 0;
1252
219k
    }
1253
234k
    if (pmd)
1254
233k
        *pmd = md;
1255
234k
    return 1;
1256
234k
}
1257
1258
/*
1259
 * Check if key is large enough to generate RSA-PSS signature.
1260
 *
1261
 * The key must greater than or equal to 2 * hash length + 2.
1262
 * SHA512 has a hash length of 64 bytes, which is incompatible
1263
 * with a 128 byte (1024 bit) key.
1264
 */
1265
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1266
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1267
                                      const SIGALG_LOOKUP *lu)
1268
0
{
1269
0
    const EVP_MD *md;
1270
1271
0
    if (pkey == NULL)
1272
0
        return 0;
1273
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1274
0
        return 0;
1275
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1276
0
        return 0;
1277
0
    return 1;
1278
0
}
1279
1280
/*
1281
 * Returns a signature algorithm when the peer did not send a list of supported
1282
 * signature algorithms. The signature algorithm is fixed for the certificate
1283
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1284
 * certificate type from |s| will be used.
1285
 * Returns the signature algorithm to use, or NULL on error.
1286
 */
1287
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1288
316
{
1289
316
    if (idx == -1) {
1290
0
        if (s->server) {
1291
0
            size_t i;
1292
1293
            /* Work out index corresponding to ciphersuite */
1294
0
            for (i = 0; i < SSL_PKEY_NUM; i++) {
1295
0
                const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1296
1297
0
                if (clu == NULL)
1298
0
                    continue;
1299
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1300
0
                    idx = i;
1301
0
                    break;
1302
0
                }
1303
0
            }
1304
1305
            /*
1306
             * Some GOST ciphersuites allow more than one signature algorithms
1307
             * */
1308
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1309
0
                int real_idx;
1310
1311
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1312
0
                     real_idx--) {
1313
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1314
0
                        idx = real_idx;
1315
0
                        break;
1316
0
                    }
1317
0
                }
1318
0
            }
1319
            /*
1320
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1321
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1322
             */
1323
0
            else if (idx == SSL_PKEY_GOST12_256) {
1324
0
                int real_idx;
1325
1326
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1327
0
                     real_idx--) {
1328
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1329
0
                         idx = real_idx;
1330
0
                         break;
1331
0
                     }
1332
0
                }
1333
0
            }
1334
0
        } else {
1335
0
            idx = s->cert->key - s->cert->pkeys;
1336
0
        }
1337
0
    }
1338
316
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1339
0
        return NULL;
1340
316
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1341
275
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1342
1343
275
        if (lu == NULL)
1344
2
            return NULL;
1345
273
        if (!tls1_lookup_md(s->ctx, lu, NULL))
1346
0
            return NULL;
1347
273
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1348
0
            return NULL;
1349
273
        return lu;
1350
273
    }
1351
41
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1352
0
        return NULL;
1353
41
    return &legacy_rsa_sigalg;
1354
41
}
1355
/* Set peer sigalg based key type */
1356
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1357
316
{
1358
316
    size_t idx;
1359
316
    const SIGALG_LOOKUP *lu;
1360
1361
316
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1362
0
        return 0;
1363
316
    lu = tls1_get_legacy_sigalg(s, idx);
1364
316
    if (lu == NULL)
1365
2
        return 0;
1366
314
    s->s3.tmp.peer_sigalg = lu;
1367
314
    return 1;
1368
316
}
1369
1370
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1371
28.5k
{
1372
    /*
1373
     * If Suite B mode use Suite B sigalgs only, ignore any other
1374
     * preferences.
1375
     */
1376
28.5k
    switch (tls1_suiteb(s)) {
1377
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1378
0
        *psigs = suiteb_sigalgs;
1379
0
        return OSSL_NELEM(suiteb_sigalgs);
1380
1381
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1382
0
        *psigs = suiteb_sigalgs;
1383
0
        return 1;
1384
1385
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1386
0
        *psigs = suiteb_sigalgs + 1;
1387
0
        return 1;
1388
28.5k
    }
1389
    /*
1390
     *  We use client_sigalgs (if not NULL) if we're a server
1391
     *  and sending a certificate request or if we're a client and
1392
     *  determining which shared algorithm to use.
1393
     */
1394
28.5k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1395
0
        *psigs = s->cert->client_sigalgs;
1396
0
        return s->cert->client_sigalgslen;
1397
28.5k
    } else if (s->cert->conf_sigalgs) {
1398
0
        *psigs = s->cert->conf_sigalgs;
1399
0
        return s->cert->conf_sigalgslen;
1400
28.5k
    } else {
1401
28.5k
        *psigs = tls12_sigalgs;
1402
28.5k
        return OSSL_NELEM(tls12_sigalgs);
1403
28.5k
    }
1404
28.5k
}
1405
1406
/*
1407
 * Called by servers only. Checks that we have a sig alg that supports the
1408
 * specified EC curve.
1409
 */
1410
int tls_check_sigalg_curve(const SSL *s, int curve)
1411
0
{
1412
0
   const uint16_t *sigs;
1413
0
   size_t siglen, i;
1414
1415
0
    if (s->cert->conf_sigalgs) {
1416
0
        sigs = s->cert->conf_sigalgs;
1417
0
        siglen = s->cert->conf_sigalgslen;
1418
0
    } else {
1419
0
        sigs = tls12_sigalgs;
1420
0
        siglen = OSSL_NELEM(tls12_sigalgs);
1421
0
    }
1422
1423
0
    for (i = 0; i < siglen; i++) {
1424
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1425
1426
0
        if (lu == NULL)
1427
0
            continue;
1428
0
        if (lu->sig == EVP_PKEY_EC
1429
0
                && lu->curve != NID_undef
1430
0
                && curve == lu->curve)
1431
0
            return 1;
1432
0
    }
1433
1434
0
    return 0;
1435
0
}
1436
1437
/*
1438
 * Return the number of security bits for the signature algorithm, or 0 on
1439
 * error.
1440
 */
1441
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1442
232k
{
1443
232k
    const EVP_MD *md = NULL;
1444
232k
    int secbits = 0;
1445
1446
232k
    if (!tls1_lookup_md(ctx, lu, &md))
1447
0
        return 0;
1448
232k
    if (md != NULL)
1449
218k
    {
1450
218k
        int md_type = EVP_MD_get_type(md);
1451
1452
        /* Security bits: half digest bits */
1453
218k
        secbits = EVP_MD_get_size(md) * 4;
1454
        /*
1455
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1456
         * they're no longer accepted at security level 1. The real values don't
1457
         * really matter as long as they're lower than 80, which is our
1458
         * security level 1.
1459
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1460
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1461
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1462
         * puts a chosen-prefix attack for MD5 at 2^39.
1463
         */
1464
218k
        if (md_type == NID_sha1)
1465
25.8k
            secbits = 64;
1466
192k
        else if (md_type == NID_md5_sha1)
1467
41
            secbits = 67;
1468
192k
        else if (md_type == NID_md5)
1469
0
            secbits = 39;
1470
218k
    } else {
1471
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1472
14.4k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1473
7.08k
            secbits = 128;
1474
7.40k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1475
7.40k
            secbits = 224;
1476
14.4k
    }
1477
232k
    return secbits;
1478
232k
}
1479
1480
/*
1481
 * Check signature algorithm is consistent with sent supported signature
1482
 * algorithms and if so set relevant digest and signature scheme in
1483
 * s.
1484
 */
1485
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1486
512
{
1487
512
    const uint16_t *sent_sigs;
1488
512
    const EVP_MD *md = NULL;
1489
512
    char sigalgstr[2];
1490
512
    size_t sent_sigslen, i, cidx;
1491
512
    int pkeyid = -1;
1492
512
    const SIGALG_LOOKUP *lu;
1493
512
    int secbits = 0;
1494
1495
512
    pkeyid = EVP_PKEY_get_id(pkey);
1496
    /* Should never happen */
1497
512
    if (pkeyid == -1)
1498
0
        return -1;
1499
512
    if (SSL_IS_TLS13(s)) {
1500
        /* Disallow DSA for TLS 1.3 */
1501
0
        if (pkeyid == EVP_PKEY_DSA) {
1502
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1503
0
            return 0;
1504
0
        }
1505
        /* Only allow PSS for TLS 1.3 */
1506
0
        if (pkeyid == EVP_PKEY_RSA)
1507
0
            pkeyid = EVP_PKEY_RSA_PSS;
1508
0
    }
1509
512
    lu = tls1_lookup_sigalg(s, sig);
1510
    /*
1511
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1512
     * is consistent with signature: RSA keys can be used for RSA-PSS
1513
     */
1514
512
    if (lu == NULL
1515
512
        || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1516
512
        || (pkeyid != lu->sig
1517
496
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1518
23
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1519
23
        return 0;
1520
23
    }
1521
    /* Check the sigalg is consistent with the key OID */
1522
489
    if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1523
489
            || lu->sig_idx != (int)cidx) {
1524
1
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1525
1
        return 0;
1526
1
    }
1527
1528
488
    if (pkeyid == EVP_PKEY_EC) {
1529
1530
        /* Check point compression is permitted */
1531
149
        if (!tls1_check_pkey_comp(s, pkey)) {
1532
6
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1533
6
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1534
6
            return 0;
1535
6
        }
1536
1537
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1538
143
        if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1539
0
            int curve = ssl_get_EC_curve_nid(pkey);
1540
1541
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1542
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1543
0
                return 0;
1544
0
            }
1545
0
        }
1546
143
        if (!SSL_IS_TLS13(s)) {
1547
            /* Check curve matches extensions */
1548
143
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1549
1
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1550
1
                return 0;
1551
1
            }
1552
142
            if (tls1_suiteb(s)) {
1553
                /* Check sigalg matches a permissible Suite B value */
1554
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1555
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1556
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1557
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1558
0
                    return 0;
1559
0
                }
1560
0
            }
1561
142
        }
1562
339
    } else if (tls1_suiteb(s)) {
1563
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1564
0
        return 0;
1565
0
    }
1566
1567
    /* Check signature matches a type we sent */
1568
481
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1569
6.48k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1570
6.48k
        if (sig == *sent_sigs)
1571
481
            break;
1572
6.48k
    }
1573
    /* Allow fallback to SHA1 if not strict mode */
1574
481
    if (i == sent_sigslen && (lu->hash != NID_sha1
1575
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1576
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1577
0
        return 0;
1578
0
    }
1579
481
    if (!tls1_lookup_md(s->ctx, lu, &md)) {
1580
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1581
0
        return 0;
1582
0
    }
1583
    /*
1584
     * Make sure security callback allows algorithm. For historical
1585
     * reasons we have to pass the sigalg as a two byte char array.
1586
     */
1587
481
    sigalgstr[0] = (sig >> 8) & 0xff;
1588
481
    sigalgstr[1] = sig & 0xff;
1589
481
    secbits = sigalg_security_bits(s->ctx, lu);
1590
481
    if (secbits == 0 ||
1591
481
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1592
481
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1593
481
                      (void *)sigalgstr)) {
1594
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1595
0
        return 0;
1596
0
    }
1597
    /* Store the sigalg the peer uses */
1598
481
    s->s3.tmp.peer_sigalg = lu;
1599
481
    return 1;
1600
481
}
1601
1602
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1603
0
{
1604
0
    if (s->s3.tmp.peer_sigalg == NULL)
1605
0
        return 0;
1606
0
    *pnid = s->s3.tmp.peer_sigalg->sig;
1607
0
    return 1;
1608
0
}
1609
1610
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1611
0
{
1612
0
    if (s->s3.tmp.sigalg == NULL)
1613
0
        return 0;
1614
0
    *pnid = s->s3.tmp.sigalg->sig;
1615
0
    return 1;
1616
0
}
1617
1618
/*
1619
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1620
 * supported, doesn't appear in supported signature algorithms, isn't supported
1621
 * by the enabled protocol versions or by the security level.
1622
 *
1623
 * This function should only be used for checking which ciphers are supported
1624
 * by the client.
1625
 *
1626
 * Call ssl_cipher_disabled() to check that it's enabled or not.
1627
 */
1628
int ssl_set_client_disabled(SSL *s)
1629
21.0k
{
1630
21.0k
    s->s3.tmp.mask_a = 0;
1631
21.0k
    s->s3.tmp.mask_k = 0;
1632
21.0k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1633
21.0k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1634
21.0k
                                &s->s3.tmp.max_ver, NULL) != 0)
1635
0
        return 0;
1636
21.0k
#ifndef OPENSSL_NO_PSK
1637
    /* with PSK there must be client callback set */
1638
21.0k
    if (!s->psk_client_callback) {
1639
21.0k
        s->s3.tmp.mask_a |= SSL_aPSK;
1640
21.0k
        s->s3.tmp.mask_k |= SSL_PSK;
1641
21.0k
    }
1642
21.0k
#endif                          /* OPENSSL_NO_PSK */
1643
21.0k
#ifndef OPENSSL_NO_SRP
1644
21.0k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1645
21.0k
        s->s3.tmp.mask_a |= SSL_aSRP;
1646
21.0k
        s->s3.tmp.mask_k |= SSL_kSRP;
1647
21.0k
    }
1648
21.0k
#endif
1649
21.0k
    return 1;
1650
21.0k
}
1651
1652
/*
1653
 * ssl_cipher_disabled - check that a cipher is disabled or not
1654
 * @s: SSL connection that you want to use the cipher on
1655
 * @c: cipher to check
1656
 * @op: Security check that you want to do
1657
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1658
 *
1659
 * Returns 1 when it's disabled, 0 when enabled.
1660
 */
1661
int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1662
3.62M
{
1663
3.62M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
1664
3.62M
        || c->algorithm_auth & s->s3.tmp.mask_a)
1665
1.53M
        return 1;
1666
2.08M
    if (s->s3.tmp.max_ver == 0)
1667
0
        return 1;
1668
2.08M
    if (!SSL_IS_DTLS(s)) {
1669
2.08M
        int min_tls = c->min_tls;
1670
1671
        /*
1672
         * For historical reasons we will allow ECHDE to be selected by a server
1673
         * in SSLv3 if we are a client
1674
         */
1675
2.08M
        if (min_tls == TLS1_VERSION && ecdhe
1676
2.08M
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1677
1.72k
            min_tls = SSL3_VERSION;
1678
1679
2.08M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1680
11
            return 1;
1681
2.08M
    }
1682
2.08M
    if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1683
0
                           || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1684
0
        return 1;
1685
1686
2.08M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1687
2.08M
}
1688
1689
int tls_use_ticket(SSL *s)
1690
8.67k
{
1691
8.67k
    if ((s->options & SSL_OP_NO_TICKET))
1692
0
        return 0;
1693
8.67k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1694
8.67k
}
1695
1696
int tls1_set_server_sigalgs(SSL *s)
1697
0
{
1698
0
    size_t i;
1699
1700
    /* Clear any shared signature algorithms */
1701
0
    OPENSSL_free(s->shared_sigalgs);
1702
0
    s->shared_sigalgs = NULL;
1703
0
    s->shared_sigalgslen = 0;
1704
    /* Clear certificate validity flags */
1705
0
    for (i = 0; i < SSL_PKEY_NUM; i++)
1706
0
        s->s3.tmp.valid_flags[i] = 0;
1707
    /*
1708
     * If peer sent no signature algorithms check to see if we support
1709
     * the default algorithm for each certificate type
1710
     */
1711
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
1712
0
            && s->s3.tmp.peer_sigalgs == NULL) {
1713
0
        const uint16_t *sent_sigs;
1714
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1715
1716
0
        for (i = 0; i < SSL_PKEY_NUM; i++) {
1717
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1718
0
            size_t j;
1719
1720
0
            if (lu == NULL)
1721
0
                continue;
1722
            /* Check default matches a type we sent */
1723
0
            for (j = 0; j < sent_sigslen; j++) {
1724
0
                if (lu->sigalg == sent_sigs[j]) {
1725
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1726
0
                        break;
1727
0
                }
1728
0
            }
1729
0
        }
1730
0
        return 1;
1731
0
    }
1732
1733
0
    if (!tls1_process_sigalgs(s)) {
1734
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1735
0
        return 0;
1736
0
    }
1737
0
    if (s->shared_sigalgs != NULL)
1738
0
        return 1;
1739
1740
    /* Fatal error if no shared signature algorithms */
1741
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1742
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1743
0
    return 0;
1744
0
}
1745
1746
/*-
1747
 * Gets the ticket information supplied by the client if any.
1748
 *
1749
 *   hello: The parsed ClientHello data
1750
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
1751
 *       point to the resulting session.
1752
 */
1753
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1754
                                             SSL_SESSION **ret)
1755
0
{
1756
0
    size_t size;
1757
0
    RAW_EXTENSION *ticketext;
1758
1759
0
    *ret = NULL;
1760
0
    s->ext.ticket_expected = 0;
1761
1762
    /*
1763
     * If tickets disabled or not supported by the protocol version
1764
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1765
     * resumption.
1766
     */
1767
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1768
0
        return SSL_TICKET_NONE;
1769
1770
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1771
0
    if (!ticketext->present)
1772
0
        return SSL_TICKET_NONE;
1773
1774
0
    size = PACKET_remaining(&ticketext->data);
1775
1776
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1777
0
                              hello->session_id, hello->session_id_len, ret);
1778
0
}
1779
1780
/*-
1781
 * tls_decrypt_ticket attempts to decrypt a session ticket.
1782
 *
1783
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1784
 * expecting a pre-shared key ciphersuite, in which case we have no use for
1785
 * session tickets and one will never be decrypted, nor will
1786
 * s->ext.ticket_expected be set to 1.
1787
 *
1788
 * Side effects:
1789
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1790
 *   a new session ticket to the client because the client indicated support
1791
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1792
 *   a session ticket or we couldn't use the one it gave us, or if
1793
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1794
 *   Otherwise, s->ext.ticket_expected is set to 0.
1795
 *
1796
 *   etick: points to the body of the session ticket extension.
1797
 *   eticklen: the length of the session tickets extension.
1798
 *   sess_id: points at the session ID.
1799
 *   sesslen: the length of the session ID.
1800
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
1801
 *       point to the resulting session.
1802
 */
1803
SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1804
                                     size_t eticklen, const unsigned char *sess_id,
1805
                                     size_t sesslen, SSL_SESSION **psess)
1806
0
{
1807
0
    SSL_SESSION *sess = NULL;
1808
0
    unsigned char *sdec;
1809
0
    const unsigned char *p;
1810
0
    int slen, ivlen, renew_ticket = 0, declen;
1811
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1812
0
    size_t mlen;
1813
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1814
0
    SSL_HMAC *hctx = NULL;
1815
0
    EVP_CIPHER_CTX *ctx = NULL;
1816
0
    SSL_CTX *tctx = s->session_ctx;
1817
1818
0
    if (eticklen == 0) {
1819
        /*
1820
         * The client will accept a ticket but doesn't currently have
1821
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1822
         */
1823
0
        ret = SSL_TICKET_EMPTY;
1824
0
        goto end;
1825
0
    }
1826
0
    if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1827
        /*
1828
         * Indicate that the ticket couldn't be decrypted rather than
1829
         * generating the session from ticket now, trigger
1830
         * abbreviated handshake based on external mechanism to
1831
         * calculate the master secret later.
1832
         */
1833
0
        ret = SSL_TICKET_NO_DECRYPT;
1834
0
        goto end;
1835
0
    }
1836
1837
    /* Need at least keyname + iv */
1838
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1839
0
        ret = SSL_TICKET_NO_DECRYPT;
1840
0
        goto end;
1841
0
    }
1842
1843
    /* Initialize session ticket encryption and HMAC contexts */
1844
0
    hctx = ssl_hmac_new(tctx);
1845
0
    if (hctx == NULL) {
1846
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1847
0
        goto end;
1848
0
    }
1849
0
    ctx = EVP_CIPHER_CTX_new();
1850
0
    if (ctx == NULL) {
1851
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1852
0
        goto end;
1853
0
    }
1854
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1855
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1856
#else
1857
    if (tctx->ext.ticket_key_evp_cb != NULL)
1858
#endif
1859
0
    {
1860
0
        unsigned char *nctick = (unsigned char *)etick;
1861
0
        int rv = 0;
1862
1863
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
1864
0
            rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1865
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
1866
0
                                             ctx,
1867
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
1868
0
                                             0);
1869
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1870
0
        else if (tctx->ext.ticket_key_cb != NULL)
1871
            /* if 0 is returned, write an empty ticket */
1872
0
            rv = tctx->ext.ticket_key_cb(s, nctick,
1873
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
1874
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1875
0
#endif
1876
0
        if (rv < 0) {
1877
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1878
0
            goto end;
1879
0
        }
1880
0
        if (rv == 0) {
1881
0
            ret = SSL_TICKET_NO_DECRYPT;
1882
0
            goto end;
1883
0
        }
1884
0
        if (rv == 2)
1885
0
            renew_ticket = 1;
1886
0
    } else {
1887
0
        EVP_CIPHER *aes256cbc = NULL;
1888
1889
        /* Check key name matches */
1890
0
        if (memcmp(etick, tctx->ext.tick_key_name,
1891
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
1892
0
            ret = SSL_TICKET_NO_DECRYPT;
1893
0
            goto end;
1894
0
        }
1895
1896
0
        aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1897
0
                                     s->ctx->propq);
1898
0
        if (aes256cbc == NULL
1899
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1900
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
1901
0
                             "SHA256") <= 0
1902
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1903
0
                                  tctx->ext.secure->tick_aes_key,
1904
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1905
0
            EVP_CIPHER_free(aes256cbc);
1906
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1907
0
            goto end;
1908
0
        }
1909
0
        EVP_CIPHER_free(aes256cbc);
1910
0
        if (SSL_IS_TLS13(s))
1911
0
            renew_ticket = 1;
1912
0
    }
1913
    /*
1914
     * Attempt to process session ticket, first conduct sanity and integrity
1915
     * checks on ticket.
1916
     */
1917
0
    mlen = ssl_hmac_size(hctx);
1918
0
    if (mlen == 0) {
1919
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1920
0
        goto end;
1921
0
    }
1922
1923
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1924
0
    if (ivlen < 0) {
1925
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1926
0
        goto end;
1927
0
    }
1928
1929
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1930
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1931
0
        ret = SSL_TICKET_NO_DECRYPT;
1932
0
        goto end;
1933
0
    }
1934
0
    eticklen -= mlen;
1935
    /* Check HMAC of encrypted ticket */
1936
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1937
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1938
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1939
0
        goto end;
1940
0
    }
1941
1942
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1943
0
        ret = SSL_TICKET_NO_DECRYPT;
1944
0
        goto end;
1945
0
    }
1946
    /* Attempt to decrypt session data */
1947
    /* Move p after IV to start of encrypted ticket, update length */
1948
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1949
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1950
0
    sdec = OPENSSL_malloc(eticklen);
1951
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1952
0
                                          (int)eticklen) <= 0) {
1953
0
        OPENSSL_free(sdec);
1954
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1955
0
        goto end;
1956
0
    }
1957
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1958
0
        OPENSSL_free(sdec);
1959
0
        ret = SSL_TICKET_NO_DECRYPT;
1960
0
        goto end;
1961
0
    }
1962
0
    slen += declen;
1963
0
    p = sdec;
1964
1965
0
    sess = d2i_SSL_SESSION(NULL, &p, slen);
1966
0
    slen -= p - sdec;
1967
0
    OPENSSL_free(sdec);
1968
0
    if (sess) {
1969
        /* Some additional consistency checks */
1970
0
        if (slen != 0) {
1971
0
            SSL_SESSION_free(sess);
1972
0
            sess = NULL;
1973
0
            ret = SSL_TICKET_NO_DECRYPT;
1974
0
            goto end;
1975
0
        }
1976
        /*
1977
         * The session ID, if non-empty, is used by some clients to detect
1978
         * that the ticket has been accepted. So we copy it to the session
1979
         * structure. If it is empty set length to zero as required by
1980
         * standard.
1981
         */
1982
0
        if (sesslen) {
1983
0
            memcpy(sess->session_id, sess_id, sesslen);
1984
0
            sess->session_id_length = sesslen;
1985
0
        }
1986
0
        if (renew_ticket)
1987
0
            ret = SSL_TICKET_SUCCESS_RENEW;
1988
0
        else
1989
0
            ret = SSL_TICKET_SUCCESS;
1990
0
        goto end;
1991
0
    }
1992
0
    ERR_clear_error();
1993
    /*
1994
     * For session parse failure, indicate that we need to send a new ticket.
1995
     */
1996
0
    ret = SSL_TICKET_NO_DECRYPT;
1997
1998
0
 end:
1999
0
    EVP_CIPHER_CTX_free(ctx);
2000
0
    ssl_hmac_free(hctx);
2001
2002
    /*
2003
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2004
     * detected above. The callback is responsible for checking |ret| before it
2005
     * performs any action
2006
     */
2007
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
2008
0
            && (ret == SSL_TICKET_EMPTY
2009
0
                || ret == SSL_TICKET_NO_DECRYPT
2010
0
                || ret == SSL_TICKET_SUCCESS
2011
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2012
0
        size_t keyname_len = eticklen;
2013
0
        int retcb;
2014
2015
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2016
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2017
0
        retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2018
0
                                                  ret,
2019
0
                                                  s->session_ctx->ticket_cb_data);
2020
0
        switch (retcb) {
2021
0
        case SSL_TICKET_RETURN_ABORT:
2022
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2023
0
            break;
2024
2025
0
        case SSL_TICKET_RETURN_IGNORE:
2026
0
            ret = SSL_TICKET_NONE;
2027
0
            SSL_SESSION_free(sess);
2028
0
            sess = NULL;
2029
0
            break;
2030
2031
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2032
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2033
0
                ret = SSL_TICKET_NO_DECRYPT;
2034
            /* else the value of |ret| will already do the right thing */
2035
0
            SSL_SESSION_free(sess);
2036
0
            sess = NULL;
2037
0
            break;
2038
2039
0
        case SSL_TICKET_RETURN_USE:
2040
0
        case SSL_TICKET_RETURN_USE_RENEW:
2041
0
            if (ret != SSL_TICKET_SUCCESS
2042
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2043
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2044
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2045
0
                ret = SSL_TICKET_SUCCESS;
2046
0
            else
2047
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2048
0
            break;
2049
2050
0
        default:
2051
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2052
0
        }
2053
0
    }
2054
2055
0
    if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2056
0
        switch (ret) {
2057
0
        case SSL_TICKET_NO_DECRYPT:
2058
0
        case SSL_TICKET_SUCCESS_RENEW:
2059
0
        case SSL_TICKET_EMPTY:
2060
0
            s->ext.ticket_expected = 1;
2061
0
        }
2062
0
    }
2063
2064
0
    *psess = sess;
2065
2066
0
    return ret;
2067
0
}
2068
2069
/* Check to see if a signature algorithm is allowed */
2070
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2071
232k
{
2072
232k
    unsigned char sigalgstr[2];
2073
232k
    int secbits;
2074
2075
232k
    if (lu == NULL || !lu->enabled)
2076
0
        return 0;
2077
    /* DSA is not allowed in TLS 1.3 */
2078
232k
    if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2079
0
        return 0;
2080
    /*
2081
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2082
     * spec
2083
     */
2084
232k
    if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2085
232k
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2086
0
            || lu->hash_idx == SSL_MD_MD5_IDX
2087
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2088
0
        return 0;
2089
2090
    /* See if public key algorithm allowed */
2091
232k
    if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2092
0
        return 0;
2093
2094
232k
    if (lu->sig == NID_id_GostR3410_2012_256
2095
232k
            || lu->sig == NID_id_GostR3410_2012_512
2096
232k
            || lu->sig == NID_id_GostR3410_2001) {
2097
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2098
0
        if (s->server && SSL_IS_TLS13(s))
2099
0
            return 0;
2100
0
        if (!s->server
2101
0
                && s->method->version == TLS_ANY_VERSION
2102
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2103
0
            int i, num;
2104
0
            STACK_OF(SSL_CIPHER) *sk;
2105
2106
            /*
2107
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2108
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2109
             * ciphersuites enabled.
2110
             */
2111
2112
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2113
0
                return 0;
2114
2115
0
            sk = SSL_get_ciphers(s);
2116
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2117
0
            for (i = 0; i < num; i++) {
2118
0
                const SSL_CIPHER *c;
2119
2120
0
                c = sk_SSL_CIPHER_value(sk, i);
2121
                /* Skip disabled ciphers */
2122
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2123
0
                    continue;
2124
2125
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2126
0
                    break;
2127
0
            }
2128
0
            if (i == num)
2129
0
                return 0;
2130
0
        }
2131
0
    }
2132
2133
    /* Finally see if security callback allows it */
2134
232k
    secbits = sigalg_security_bits(s->ctx, lu);
2135
232k
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2136
232k
    sigalgstr[1] = lu->sigalg & 0xff;
2137
232k
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2138
232k
}
2139
2140
/*
2141
 * Get a mask of disabled public key algorithms based on supported signature
2142
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2143
 * disabled.
2144
 */
2145
2146
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2147
21.0k
{
2148
21.0k
    const uint16_t *sigalgs;
2149
21.0k
    size_t i, sigalgslen;
2150
21.0k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2151
    /*
2152
     * Go through all signature algorithms seeing if we support any
2153
     * in disabled_mask.
2154
     */
2155
21.0k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2156
609k
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2157
588k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2158
588k
        const SSL_CERT_LOOKUP *clu;
2159
2160
588k
        if (lu == NULL)
2161
105k
            continue;
2162
2163
483k
        clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2164
483k
        if (clu == NULL)
2165
0
                continue;
2166
2167
        /* If algorithm is disabled see if we can enable it */
2168
483k
        if ((clu->amask & disabled_mask) != 0
2169
483k
                && tls12_sigalg_allowed(s, op, lu))
2170
63.0k
            disabled_mask &= ~clu->amask;
2171
483k
    }
2172
21.0k
    *pmask_a |= disabled_mask;
2173
21.0k
}
2174
2175
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2176
                       const uint16_t *psig, size_t psiglen)
2177
7.00k
{
2178
7.00k
    size_t i;
2179
7.00k
    int rv = 0;
2180
2181
203k
    for (i = 0; i < psiglen; i++, psig++) {
2182
196k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2183
2184
196k
        if (lu == NULL
2185
196k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2186
35.0k
            continue;
2187
161k
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2188
0
            return 0;
2189
        /*
2190
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2191
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2192
         */
2193
161k
        if (rv == 0 && (!SSL_IS_TLS13(s)
2194
7.00k
            || (lu->sig != EVP_PKEY_RSA
2195
0
                && lu->hash != NID_sha1
2196
0
                && lu->hash != NID_sha224)))
2197
7.00k
            rv = 1;
2198
161k
    }
2199
7.00k
    if (rv == 0)
2200
7.00k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2201
7.00k
    return rv;
2202
7.00k
}
2203
2204
/* Given preference and allowed sigalgs set shared sigalgs */
2205
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2206
                                   const uint16_t *pref, size_t preflen,
2207
                                   const uint16_t *allow, size_t allowlen)
2208
143
{
2209
143
    const uint16_t *ptmp, *atmp;
2210
143
    size_t i, j, nmatch = 0;
2211
23.6k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2212
23.5k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2213
2214
        /* Skip disabled hashes or signature algorithms */
2215
23.5k
        if (lu == NULL
2216
23.5k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2217
15.9k
            continue;
2218
119k
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2219
119k
            if (*ptmp == *atmp) {
2220
7.58k
                nmatch++;
2221
7.58k
                if (shsig)
2222
3.79k
                    *shsig++ = lu;
2223
7.58k
                break;
2224
7.58k
            }
2225
119k
        }
2226
7.58k
    }
2227
143
    return nmatch;
2228
143
}
2229
2230
/* Set shared signature algorithms for SSL structures */
2231
static int tls1_set_shared_sigalgs(SSL *s)
2232
77
{
2233
77
    const uint16_t *pref, *allow, *conf;
2234
77
    size_t preflen, allowlen, conflen;
2235
77
    size_t nmatch;
2236
77
    const SIGALG_LOOKUP **salgs = NULL;
2237
77
    CERT *c = s->cert;
2238
77
    unsigned int is_suiteb = tls1_suiteb(s);
2239
2240
77
    OPENSSL_free(s->shared_sigalgs);
2241
77
    s->shared_sigalgs = NULL;
2242
77
    s->shared_sigalgslen = 0;
2243
    /* If client use client signature algorithms if not NULL */
2244
77
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2245
0
        conf = c->client_sigalgs;
2246
0
        conflen = c->client_sigalgslen;
2247
77
    } else if (c->conf_sigalgs && !is_suiteb) {
2248
0
        conf = c->conf_sigalgs;
2249
0
        conflen = c->conf_sigalgslen;
2250
0
    } else
2251
77
        conflen = tls12_get_psigalgs(s, 0, &conf);
2252
77
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2253
0
        pref = conf;
2254
0
        preflen = conflen;
2255
0
        allow = s->s3.tmp.peer_sigalgs;
2256
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2257
77
    } else {
2258
77
        allow = conf;
2259
77
        allowlen = conflen;
2260
77
        pref = s->s3.tmp.peer_sigalgs;
2261
77
        preflen = s->s3.tmp.peer_sigalgslen;
2262
77
    }
2263
77
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2264
77
    if (nmatch) {
2265
66
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2266
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2267
0
            return 0;
2268
0
        }
2269
66
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2270
66
    } else {
2271
11
        salgs = NULL;
2272
11
    }
2273
77
    s->shared_sigalgs = salgs;
2274
77
    s->shared_sigalgslen = nmatch;
2275
77
    return 1;
2276
77
}
2277
2278
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2279
79
{
2280
79
    unsigned int stmp;
2281
79
    size_t size, i;
2282
79
    uint16_t *buf;
2283
2284
79
    size = PACKET_remaining(pkt);
2285
2286
    /* Invalid data length */
2287
79
    if (size == 0 || (size & 1) != 0)
2288
2
        return 0;
2289
2290
77
    size >>= 1;
2291
2292
77
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  {
2293
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2294
0
        return 0;
2295
0
    }
2296
12.6k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2297
12.5k
        buf[i] = stmp;
2298
2299
77
    if (i != size) {
2300
0
        OPENSSL_free(buf);
2301
0
        return 0;
2302
0
    }
2303
2304
77
    OPENSSL_free(*pdest);
2305
77
    *pdest = buf;
2306
77
    *pdestlen = size;
2307
2308
77
    return 1;
2309
77
}
2310
2311
int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2312
79
{
2313
    /* Extension ignored for inappropriate versions */
2314
79
    if (!SSL_USE_SIGALGS(s))
2315
0
        return 1;
2316
    /* Should never happen */
2317
79
    if (s->cert == NULL)
2318
0
        return 0;
2319
2320
79
    if (cert)
2321
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2322
0
                             &s->s3.tmp.peer_cert_sigalgslen);
2323
79
    else
2324
79
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2325
79
                             &s->s3.tmp.peer_sigalgslen);
2326
2327
79
}
2328
2329
/* Set preferred digest for each key type */
2330
2331
int tls1_process_sigalgs(SSL *s)
2332
77
{
2333
77
    size_t i;
2334
77
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2335
2336
77
    if (!tls1_set_shared_sigalgs(s))
2337
0
        return 0;
2338
2339
770
    for (i = 0; i < SSL_PKEY_NUM; i++)
2340
693
        pvalid[i] = 0;
2341
2342
3.86k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2343
3.79k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2344
3.79k
        int idx = sigptr->sig_idx;
2345
2346
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2347
3.79k
        if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2348
0
            continue;
2349
        /* If not disabled indicate we can explicitly sign */
2350
3.79k
        if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2351
135
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2352
3.79k
    }
2353
77
    return 1;
2354
77
}
2355
2356
int SSL_get_sigalgs(SSL *s, int idx,
2357
                    int *psign, int *phash, int *psignhash,
2358
                    unsigned char *rsig, unsigned char *rhash)
2359
0
{
2360
0
    uint16_t *psig = s->s3.tmp.peer_sigalgs;
2361
0
    size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2362
0
    if (psig == NULL || numsigalgs > INT_MAX)
2363
0
        return 0;
2364
0
    if (idx >= 0) {
2365
0
        const SIGALG_LOOKUP *lu;
2366
2367
0
        if (idx >= (int)numsigalgs)
2368
0
            return 0;
2369
0
        psig += idx;
2370
0
        if (rhash != NULL)
2371
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2372
0
        if (rsig != NULL)
2373
0
            *rsig = (unsigned char)(*psig & 0xff);
2374
0
        lu = tls1_lookup_sigalg(s, *psig);
2375
0
        if (psign != NULL)
2376
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2377
0
        if (phash != NULL)
2378
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2379
0
        if (psignhash != NULL)
2380
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2381
0
    }
2382
0
    return (int)numsigalgs;
2383
0
}
2384
2385
int SSL_get_shared_sigalgs(SSL *s, int idx,
2386
                           int *psign, int *phash, int *psignhash,
2387
                           unsigned char *rsig, unsigned char *rhash)
2388
0
{
2389
0
    const SIGALG_LOOKUP *shsigalgs;
2390
0
    if (s->shared_sigalgs == NULL
2391
0
        || idx < 0
2392
0
        || idx >= (int)s->shared_sigalgslen
2393
0
        || s->shared_sigalgslen > INT_MAX)
2394
0
        return 0;
2395
0
    shsigalgs = s->shared_sigalgs[idx];
2396
0
    if (phash != NULL)
2397
0
        *phash = shsigalgs->hash;
2398
0
    if (psign != NULL)
2399
0
        *psign = shsigalgs->sig;
2400
0
    if (psignhash != NULL)
2401
0
        *psignhash = shsigalgs->sigandhash;
2402
0
    if (rsig != NULL)
2403
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2404
0
    if (rhash != NULL)
2405
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2406
0
    return (int)s->shared_sigalgslen;
2407
0
}
2408
2409
/* Maximum possible number of unique entries in sigalgs array */
2410
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2411
2412
typedef struct {
2413
    size_t sigalgcnt;
2414
    /* TLSEXT_SIGALG_XXX values */
2415
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2416
} sig_cb_st;
2417
2418
static void get_sigorhash(int *psig, int *phash, const char *str)
2419
0
{
2420
0
    if (strcmp(str, "RSA") == 0) {
2421
0
        *psig = EVP_PKEY_RSA;
2422
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2423
0
        *psig = EVP_PKEY_RSA_PSS;
2424
0
    } else if (strcmp(str, "DSA") == 0) {
2425
0
        *psig = EVP_PKEY_DSA;
2426
0
    } else if (strcmp(str, "ECDSA") == 0) {
2427
0
        *psig = EVP_PKEY_EC;
2428
0
    } else {
2429
0
        *phash = OBJ_sn2nid(str);
2430
0
        if (*phash == NID_undef)
2431
0
            *phash = OBJ_ln2nid(str);
2432
0
    }
2433
0
}
2434
/* Maximum length of a signature algorithm string component */
2435
#define TLS_MAX_SIGSTRING_LEN   40
2436
2437
static int sig_cb(const char *elem, int len, void *arg)
2438
0
{
2439
0
    sig_cb_st *sarg = arg;
2440
0
    size_t i;
2441
0
    const SIGALG_LOOKUP *s;
2442
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2443
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2444
0
    if (elem == NULL)
2445
0
        return 0;
2446
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2447
0
        return 0;
2448
0
    if (len > (int)(sizeof(etmp) - 1))
2449
0
        return 0;
2450
0
    memcpy(etmp, elem, len);
2451
0
    etmp[len] = 0;
2452
0
    p = strchr(etmp, '+');
2453
    /*
2454
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2455
     * if there's no '+' in the provided name, look for the new-style combined
2456
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2457
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2458
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2459
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2460
     * in the table.
2461
     */
2462
0
    if (p == NULL) {
2463
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2464
0
             i++, s++) {
2465
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2466
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2467
0
                break;
2468
0
            }
2469
0
        }
2470
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2471
0
            return 0;
2472
0
    } else {
2473
0
        *p = 0;
2474
0
        p++;
2475
0
        if (*p == 0)
2476
0
            return 0;
2477
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2478
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2479
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2480
0
            return 0;
2481
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2482
0
             i++, s++) {
2483
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2484
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2485
0
                break;
2486
0
            }
2487
0
        }
2488
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2489
0
            return 0;
2490
0
    }
2491
2492
    /* Reject duplicates */
2493
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2494
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2495
0
            sarg->sigalgcnt--;
2496
0
            return 0;
2497
0
        }
2498
0
    }
2499
0
    return 1;
2500
0
}
2501
2502
/*
2503
 * Set supported signature algorithms based on a colon separated list of the
2504
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2505
 */
2506
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2507
0
{
2508
0
    sig_cb_st sig;
2509
0
    sig.sigalgcnt = 0;
2510
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2511
0
        return 0;
2512
0
    if (c == NULL)
2513
0
        return 1;
2514
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2515
0
}
2516
2517
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2518
                     int client)
2519
0
{
2520
0
    uint16_t *sigalgs;
2521
2522
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2523
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2524
0
        return 0;
2525
0
    }
2526
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2527
2528
0
    if (client) {
2529
0
        OPENSSL_free(c->client_sigalgs);
2530
0
        c->client_sigalgs = sigalgs;
2531
0
        c->client_sigalgslen = salglen;
2532
0
    } else {
2533
0
        OPENSSL_free(c->conf_sigalgs);
2534
0
        c->conf_sigalgs = sigalgs;
2535
0
        c->conf_sigalgslen = salglen;
2536
0
    }
2537
2538
0
    return 1;
2539
0
}
2540
2541
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2542
0
{
2543
0
    uint16_t *sigalgs, *sptr;
2544
0
    size_t i;
2545
2546
0
    if (salglen & 1)
2547
0
        return 0;
2548
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2549
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2550
0
        return 0;
2551
0
    }
2552
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2553
0
        size_t j;
2554
0
        const SIGALG_LOOKUP *curr;
2555
0
        int md_id = *psig_nids++;
2556
0
        int sig_id = *psig_nids++;
2557
2558
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2559
0
             j++, curr++) {
2560
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2561
0
                *sptr++ = curr->sigalg;
2562
0
                break;
2563
0
            }
2564
0
        }
2565
2566
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
2567
0
            goto err;
2568
0
    }
2569
2570
0
    if (client) {
2571
0
        OPENSSL_free(c->client_sigalgs);
2572
0
        c->client_sigalgs = sigalgs;
2573
0
        c->client_sigalgslen = salglen / 2;
2574
0
    } else {
2575
0
        OPENSSL_free(c->conf_sigalgs);
2576
0
        c->conf_sigalgs = sigalgs;
2577
0
        c->conf_sigalgslen = salglen / 2;
2578
0
    }
2579
2580
0
    return 1;
2581
2582
0
 err:
2583
0
    OPENSSL_free(sigalgs);
2584
0
    return 0;
2585
0
}
2586
2587
static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2588
0
{
2589
0
    int sig_nid, use_pc_sigalgs = 0;
2590
0
    size_t i;
2591
0
    const SIGALG_LOOKUP *sigalg;
2592
0
    size_t sigalgslen;
2593
0
    if (default_nid == -1)
2594
0
        return 1;
2595
0
    sig_nid = X509_get_signature_nid(x);
2596
0
    if (default_nid)
2597
0
        return sig_nid == default_nid ? 1 : 0;
2598
2599
0
    if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2600
        /*
2601
         * If we're in TLSv1.3 then we only get here if we're checking the
2602
         * chain. If the peer has specified peer_cert_sigalgs then we use them
2603
         * otherwise we default to normal sigalgs.
2604
         */
2605
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2606
0
        use_pc_sigalgs = 1;
2607
0
    } else {
2608
0
        sigalgslen = s->shared_sigalgslen;
2609
0
    }
2610
0
    for (i = 0; i < sigalgslen; i++) {
2611
0
        sigalg = use_pc_sigalgs
2612
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2613
0
                 : s->shared_sigalgs[i];
2614
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2615
0
            return 1;
2616
0
    }
2617
0
    return 0;
2618
0
}
2619
2620
/* Check to see if a certificate issuer name matches list of CA names */
2621
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2622
0
{
2623
0
    const X509_NAME *nm;
2624
0
    int i;
2625
0
    nm = X509_get_issuer_name(x);
2626
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
2627
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2628
0
            return 1;
2629
0
    }
2630
0
    return 0;
2631
0
}
2632
2633
/*
2634
 * Check certificate chain is consistent with TLS extensions and is usable by
2635
 * server. This servers two purposes: it allows users to check chains before
2636
 * passing them to the server and it allows the server to check chains before
2637
 * attempting to use them.
2638
 */
2639
2640
/* Flags which need to be set for a certificate when strict mode not set */
2641
2642
#define CERT_PKEY_VALID_FLAGS \
2643
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2644
/* Strict mode flags */
2645
#define CERT_PKEY_STRICT_FLAGS \
2646
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2647
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2648
2649
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2650
                     int idx)
2651
0
{
2652
0
    int i;
2653
0
    int rv = 0;
2654
0
    int check_flags = 0, strict_mode;
2655
0
    CERT_PKEY *cpk = NULL;
2656
0
    CERT *c = s->cert;
2657
0
    uint32_t *pvalid;
2658
0
    unsigned int suiteb_flags = tls1_suiteb(s);
2659
    /* idx == -1 means checking server chains */
2660
0
    if (idx != -1) {
2661
        /* idx == -2 means checking client certificate chains */
2662
0
        if (idx == -2) {
2663
0
            cpk = c->key;
2664
0
            idx = (int)(cpk - c->pkeys);
2665
0
        } else
2666
0
            cpk = c->pkeys + idx;
2667
0
        pvalid = s->s3.tmp.valid_flags + idx;
2668
0
        x = cpk->x509;
2669
0
        pk = cpk->privatekey;
2670
0
        chain = cpk->chain;
2671
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2672
        /* If no cert or key, forget it */
2673
0
        if (!x || !pk)
2674
0
            goto end;
2675
0
    } else {
2676
0
        size_t certidx;
2677
2678
0
        if (!x || !pk)
2679
0
            return 0;
2680
2681
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2682
0
            return 0;
2683
0
        idx = certidx;
2684
0
        pvalid = s->s3.tmp.valid_flags + idx;
2685
2686
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2687
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
2688
0
        else
2689
0
            check_flags = CERT_PKEY_VALID_FLAGS;
2690
0
        strict_mode = 1;
2691
0
    }
2692
2693
0
    if (suiteb_flags) {
2694
0
        int ok;
2695
0
        if (check_flags)
2696
0
            check_flags |= CERT_PKEY_SUITEB;
2697
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2698
0
        if (ok == X509_V_OK)
2699
0
            rv |= CERT_PKEY_SUITEB;
2700
0
        else if (!check_flags)
2701
0
            goto end;
2702
0
    }
2703
2704
    /*
2705
     * Check all signature algorithms are consistent with signature
2706
     * algorithms extension if TLS 1.2 or later and strict mode.
2707
     */
2708
0
    if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2709
0
        int default_nid;
2710
0
        int rsign = 0;
2711
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
2712
0
                || s->s3.tmp.peer_sigalgs != NULL) {
2713
0
            default_nid = 0;
2714
        /* If no sigalgs extension use defaults from RFC5246 */
2715
0
        } else {
2716
0
            switch (idx) {
2717
0
            case SSL_PKEY_RSA:
2718
0
                rsign = EVP_PKEY_RSA;
2719
0
                default_nid = NID_sha1WithRSAEncryption;
2720
0
                break;
2721
2722
0
            case SSL_PKEY_DSA_SIGN:
2723
0
                rsign = EVP_PKEY_DSA;
2724
0
                default_nid = NID_dsaWithSHA1;
2725
0
                break;
2726
2727
0
            case SSL_PKEY_ECC:
2728
0
                rsign = EVP_PKEY_EC;
2729
0
                default_nid = NID_ecdsa_with_SHA1;
2730
0
                break;
2731
2732
0
            case SSL_PKEY_GOST01:
2733
0
                rsign = NID_id_GostR3410_2001;
2734
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2735
0
                break;
2736
2737
0
            case SSL_PKEY_GOST12_256:
2738
0
                rsign = NID_id_GostR3410_2012_256;
2739
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2740
0
                break;
2741
2742
0
            case SSL_PKEY_GOST12_512:
2743
0
                rsign = NID_id_GostR3410_2012_512;
2744
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2745
0
                break;
2746
2747
0
            default:
2748
0
                default_nid = -1;
2749
0
                break;
2750
0
            }
2751
0
        }
2752
        /*
2753
         * If peer sent no signature algorithms extension and we have set
2754
         * preferred signature algorithms check we support sha1.
2755
         */
2756
0
        if (default_nid > 0 && c->conf_sigalgs) {
2757
0
            size_t j;
2758
0
            const uint16_t *p = c->conf_sigalgs;
2759
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2760
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2761
2762
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2763
0
                    break;
2764
0
            }
2765
0
            if (j == c->conf_sigalgslen) {
2766
0
                if (check_flags)
2767
0
                    goto skip_sigs;
2768
0
                else
2769
0
                    goto end;
2770
0
            }
2771
0
        }
2772
        /* Check signature algorithm of each cert in chain */
2773
0
        if (SSL_IS_TLS13(s)) {
2774
            /*
2775
             * We only get here if the application has called SSL_check_chain(),
2776
             * so check_flags is always set.
2777
             */
2778
0
            if (find_sig_alg(s, x, pk) != NULL)
2779
0
                rv |= CERT_PKEY_EE_SIGNATURE;
2780
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2781
0
            if (!check_flags)
2782
0
                goto end;
2783
0
        } else
2784
0
            rv |= CERT_PKEY_EE_SIGNATURE;
2785
0
        rv |= CERT_PKEY_CA_SIGNATURE;
2786
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2787
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2788
0
                if (check_flags) {
2789
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
2790
0
                    break;
2791
0
                } else
2792
0
                    goto end;
2793
0
            }
2794
0
        }
2795
0
    }
2796
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2797
0
    else if (check_flags)
2798
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2799
0
 skip_sigs:
2800
    /* Check cert parameters are consistent */
2801
0
    if (tls1_check_cert_param(s, x, 1))
2802
0
        rv |= CERT_PKEY_EE_PARAM;
2803
0
    else if (!check_flags)
2804
0
        goto end;
2805
0
    if (!s->server)
2806
0
        rv |= CERT_PKEY_CA_PARAM;
2807
    /* In strict mode check rest of chain too */
2808
0
    else if (strict_mode) {
2809
0
        rv |= CERT_PKEY_CA_PARAM;
2810
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2811
0
            X509 *ca = sk_X509_value(chain, i);
2812
0
            if (!tls1_check_cert_param(s, ca, 0)) {
2813
0
                if (check_flags) {
2814
0
                    rv &= ~CERT_PKEY_CA_PARAM;
2815
0
                    break;
2816
0
                } else
2817
0
                    goto end;
2818
0
            }
2819
0
        }
2820
0
    }
2821
0
    if (!s->server && strict_mode) {
2822
0
        STACK_OF(X509_NAME) *ca_dn;
2823
0
        int check_type = 0;
2824
2825
0
        if (EVP_PKEY_is_a(pk, "RSA"))
2826
0
            check_type = TLS_CT_RSA_SIGN;
2827
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
2828
0
            check_type = TLS_CT_DSS_SIGN;
2829
0
        else if (EVP_PKEY_is_a(pk, "EC"))
2830
0
            check_type = TLS_CT_ECDSA_SIGN;
2831
2832
0
        if (check_type) {
2833
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
2834
0
            size_t j;
2835
2836
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2837
0
                if (*ctypes == check_type) {
2838
0
                    rv |= CERT_PKEY_CERT_TYPE;
2839
0
                    break;
2840
0
                }
2841
0
            }
2842
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2843
0
                goto end;
2844
0
        } else {
2845
0
            rv |= CERT_PKEY_CERT_TYPE;
2846
0
        }
2847
2848
0
        ca_dn = s->s3.tmp.peer_ca_names;
2849
2850
0
        if (ca_dn == NULL
2851
0
            || sk_X509_NAME_num(ca_dn) == 0
2852
0
            || ssl_check_ca_name(ca_dn, x))
2853
0
            rv |= CERT_PKEY_ISSUER_NAME;
2854
0
        else
2855
0
            for (i = 0; i < sk_X509_num(chain); i++) {
2856
0
                X509 *xtmp = sk_X509_value(chain, i);
2857
2858
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
2859
0
                    rv |= CERT_PKEY_ISSUER_NAME;
2860
0
                    break;
2861
0
                }
2862
0
            }
2863
2864
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2865
0
            goto end;
2866
0
    } else
2867
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2868
2869
0
    if (!check_flags || (rv & check_flags) == check_flags)
2870
0
        rv |= CERT_PKEY_VALID;
2871
2872
0
 end:
2873
2874
0
    if (TLS1_get_version(s) >= TLS1_2_VERSION)
2875
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2876
0
    else
2877
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2878
2879
    /*
2880
     * When checking a CERT_PKEY structure all flags are irrelevant if the
2881
     * chain is invalid.
2882
     */
2883
0
    if (!check_flags) {
2884
0
        if (rv & CERT_PKEY_VALID) {
2885
0
            *pvalid = rv;
2886
0
        } else {
2887
            /* Preserve sign and explicit sign flag, clear rest */
2888
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2889
0
            return 0;
2890
0
        }
2891
0
    }
2892
0
    return rv;
2893
0
}
2894
2895
/* Set validity of certificates in an SSL structure */
2896
void tls1_set_cert_validity(SSL *s)
2897
0
{
2898
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2899
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2900
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2901
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2902
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2903
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2904
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2905
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2906
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2907
0
}
2908
2909
/* User level utility function to check a chain is suitable */
2910
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2911
0
{
2912
0
    return tls1_check_chain(s, x, pk, chain, -1);
2913
0
}
2914
2915
EVP_PKEY *ssl_get_auto_dh(SSL *s)
2916
0
{
2917
0
    EVP_PKEY *dhp = NULL;
2918
0
    BIGNUM *p;
2919
0
    int dh_secbits = 80, sec_level_bits;
2920
0
    EVP_PKEY_CTX *pctx = NULL;
2921
0
    OSSL_PARAM_BLD *tmpl = NULL;
2922
0
    OSSL_PARAM *params = NULL;
2923
2924
0
    if (s->cert->dh_tmp_auto != 2) {
2925
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2926
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
2927
0
                dh_secbits = 128;
2928
0
            else
2929
0
                dh_secbits = 80;
2930
0
        } else {
2931
0
            if (s->s3.tmp.cert == NULL)
2932
0
                return NULL;
2933
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2934
0
        }
2935
0
    }
2936
2937
    /* Do not pick a prime that is too weak for the current security level */
2938
0
    sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2939
0
    if (dh_secbits < sec_level_bits)
2940
0
        dh_secbits = sec_level_bits;
2941
2942
0
    if (dh_secbits >= 192)
2943
0
        p = BN_get_rfc3526_prime_8192(NULL);
2944
0
    else if (dh_secbits >= 152)
2945
0
        p = BN_get_rfc3526_prime_4096(NULL);
2946
0
    else if (dh_secbits >= 128)
2947
0
        p = BN_get_rfc3526_prime_3072(NULL);
2948
0
    else if (dh_secbits >= 112)
2949
0
        p = BN_get_rfc3526_prime_2048(NULL);
2950
0
    else
2951
0
        p = BN_get_rfc2409_prime_1024(NULL);
2952
0
    if (p == NULL)
2953
0
        goto err;
2954
2955
0
    pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2956
0
    if (pctx == NULL
2957
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
2958
0
        goto err;
2959
2960
0
    tmpl = OSSL_PARAM_BLD_new();
2961
0
    if (tmpl == NULL
2962
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2963
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2964
0
        goto err;
2965
2966
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
2967
0
    if (params == NULL
2968
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2969
0
        goto err;
2970
2971
0
err:
2972
0
    OSSL_PARAM_free(params);
2973
0
    OSSL_PARAM_BLD_free(tmpl);
2974
0
    EVP_PKEY_CTX_free(pctx);
2975
0
    BN_free(p);
2976
0
    return dhp;
2977
0
}
2978
2979
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2980
0
{
2981
0
    int secbits = -1;
2982
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
2983
0
    if (pkey) {
2984
        /*
2985
         * If no parameters this will return -1 and fail using the default
2986
         * security callback for any non-zero security level. This will
2987
         * reject keys which omit parameters but this only affects DSA and
2988
         * omission of parameters is never (?) done in practice.
2989
         */
2990
0
        secbits = EVP_PKEY_get_security_bits(pkey);
2991
0
    }
2992
0
    if (s)
2993
0
        return ssl_security(s, op, secbits, 0, x);
2994
0
    else
2995
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
2996
0
}
2997
2998
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2999
0
{
3000
    /* Lookup signature algorithm digest */
3001
0
    int secbits, nid, pknid;
3002
    /* Don't check signature if self signed */
3003
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3004
0
        return 1;
3005
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3006
0
        secbits = -1;
3007
    /* If digest NID not defined use signature NID */
3008
0
    if (nid == NID_undef)
3009
0
        nid = pknid;
3010
0
    if (s)
3011
0
        return ssl_security(s, op, secbits, nid, x);
3012
0
    else
3013
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3014
0
}
3015
3016
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
3017
0
{
3018
0
    if (vfy)
3019
0
        vfy = SSL_SECOP_PEER;
3020
0
    if (is_ee) {
3021
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3022
0
            return SSL_R_EE_KEY_TOO_SMALL;
3023
0
    } else {
3024
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3025
0
            return SSL_R_CA_KEY_TOO_SMALL;
3026
0
    }
3027
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3028
0
        return SSL_R_CA_MD_TOO_WEAK;
3029
0
    return 1;
3030
0
}
3031
3032
/*
3033
 * Check security of a chain, if |sk| includes the end entity certificate then
3034
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3035
 * one to the peer. Return values: 1 if ok otherwise error code to use
3036
 */
3037
3038
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3039
0
{
3040
0
    int rv, start_idx, i;
3041
0
    if (x == NULL) {
3042
0
        x = sk_X509_value(sk, 0);
3043
0
        if (x == NULL)
3044
0
            return ERR_R_INTERNAL_ERROR;
3045
0
        start_idx = 1;
3046
0
    } else
3047
0
        start_idx = 0;
3048
3049
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3050
0
    if (rv != 1)
3051
0
        return rv;
3052
3053
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3054
0
        x = sk_X509_value(sk, i);
3055
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3056
0
        if (rv != 1)
3057
0
            return rv;
3058
0
    }
3059
0
    return 1;
3060
0
}
3061
3062
/*
3063
 * For TLS 1.2 servers check if we have a certificate which can be used
3064
 * with the signature algorithm "lu" and return index of certificate.
3065
 */
3066
3067
static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3068
0
{
3069
0
    int sig_idx = lu->sig_idx;
3070
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3071
3072
    /* If not recognised or not supported by cipher mask it is not suitable */
3073
0
    if (clu == NULL
3074
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3075
0
            || (clu->nid == EVP_PKEY_RSA_PSS
3076
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3077
0
        return -1;
3078
3079
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3080
0
}
3081
3082
/*
3083
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3084
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3085
 * the key.
3086
 * Returns true if the cert is usable and false otherwise.
3087
 */
3088
static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3089
                             EVP_PKEY *pkey)
3090
0
{
3091
0
    const SIGALG_LOOKUP *lu;
3092
0
    int mdnid, pknid, supported;
3093
0
    size_t i;
3094
0
    const char *mdname = NULL;
3095
3096
    /*
3097
     * If the given EVP_PKEY cannot support signing with this digest,
3098
     * the answer is simply 'no'.
3099
     */
3100
0
    if (sig->hash != NID_undef)
3101
0
        mdname = OBJ_nid2sn(sig->hash);
3102
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3103
0
                                                    mdname,
3104
0
                                                    s->ctx->propq);
3105
0
    if (supported <= 0)
3106
0
        return 0;
3107
3108
    /*
3109
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3110
     * on the sigalg with which the certificate was signed (by its issuer).
3111
     */
3112
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3113
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3114
0
            return 0;
3115
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3116
0
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3117
0
            if (lu == NULL)
3118
0
                continue;
3119
3120
            /*
3121
             * This does not differentiate between the
3122
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3123
             * have a chain here that lets us look at the key OID in the
3124
             * signing certificate.
3125
             */
3126
0
            if (mdnid == lu->hash && pknid == lu->sig)
3127
0
                return 1;
3128
0
        }
3129
0
        return 0;
3130
0
    }
3131
3132
    /*
3133
     * Without signat_algorithms_cert, any certificate for which we have
3134
     * a viable public key is permitted.
3135
     */
3136
0
    return 1;
3137
0
}
3138
3139
/*
3140
 * Returns true if |s| has a usable certificate configured for use
3141
 * with signature scheme |sig|.
3142
 * "Usable" includes a check for presence as well as applying
3143
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3144
 * Returns false if no usable certificate is found.
3145
 */
3146
static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3147
0
{
3148
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3149
0
    if (idx == -1)
3150
0
        idx = sig->sig_idx;
3151
0
    if (!ssl_has_cert(s, idx))
3152
0
        return 0;
3153
3154
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3155
0
                             s->cert->pkeys[idx].privatekey);
3156
0
}
3157
3158
/*
3159
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3160
 * specified signature scheme |sig|, or false otherwise.
3161
 */
3162
static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3163
                          EVP_PKEY *pkey)
3164
0
{
3165
0
    size_t idx;
3166
3167
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3168
0
        return 0;
3169
3170
    /* Check the key is consistent with the sig alg */
3171
0
    if ((int)idx != sig->sig_idx)
3172
0
        return 0;
3173
3174
0
    return check_cert_usable(s, sig, x, pkey);
3175
0
}
3176
3177
/*
3178
 * Find a signature scheme that works with the supplied certificate |x| and key
3179
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3180
 * available certs/keys to find one that works.
3181
 */
3182
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3183
0
{
3184
0
    const SIGALG_LOOKUP *lu = NULL;
3185
0
    size_t i;
3186
0
    int curve = -1;
3187
0
    EVP_PKEY *tmppkey;
3188
3189
    /* Look for a shared sigalgs matching possible certificates */
3190
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3191
0
        lu = s->shared_sigalgs[i];
3192
3193
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3194
0
        if (lu->hash == NID_sha1
3195
0
            || lu->hash == NID_sha224
3196
0
            || lu->sig == EVP_PKEY_DSA
3197
0
            || lu->sig == EVP_PKEY_RSA)
3198
0
            continue;
3199
        /* Check that we have a cert, and signature_algorithms_cert */
3200
0
        if (!tls1_lookup_md(s->ctx, lu, NULL))
3201
0
            continue;
3202
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3203
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3204
0
            continue;
3205
3206
0
        tmppkey = (pkey != NULL) ? pkey
3207
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3208
3209
0
        if (lu->sig == EVP_PKEY_EC) {
3210
0
            if (curve == -1)
3211
0
                curve = ssl_get_EC_curve_nid(tmppkey);
3212
0
            if (lu->curve != NID_undef && curve != lu->curve)
3213
0
                continue;
3214
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3215
            /* validate that key is large enough for the signature algorithm */
3216
0
            if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3217
0
                continue;
3218
0
        }
3219
0
        break;
3220
0
    }
3221
3222
0
    if (i == s->shared_sigalgslen)
3223
0
        return NULL;
3224
3225
0
    return lu;
3226
0
}
3227
3228
/*
3229
 * Choose an appropriate signature algorithm based on available certificates
3230
 * Sets chosen certificate and signature algorithm.
3231
 *
3232
 * For servers if we fail to find a required certificate it is a fatal error,
3233
 * an appropriate error code is set and a TLS alert is sent.
3234
 *
3235
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3236
 * a fatal error: we will either try another certificate or not present one
3237
 * to the server. In this case no error is set.
3238
 */
3239
int tls_choose_sigalg(SSL *s, int fatalerrs)
3240
13
{
3241
13
    const SIGALG_LOOKUP *lu = NULL;
3242
13
    int sig_idx = -1;
3243
3244
13
    s->s3.tmp.cert = NULL;
3245
13
    s->s3.tmp.sigalg = NULL;
3246
3247
13
    if (SSL_IS_TLS13(s)) {
3248
0
        lu = find_sig_alg(s, NULL, NULL);
3249
0
        if (lu == NULL) {
3250
0
            if (!fatalerrs)
3251
0
                return 1;
3252
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3253
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3254
0
            return 0;
3255
0
        }
3256
13
    } else {
3257
        /* If ciphersuite doesn't require a cert nothing to do */
3258
13
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3259
4
            return 1;
3260
9
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3261
9
                return 1;
3262
3263
0
        if (SSL_USE_SIGALGS(s)) {
3264
0
            size_t i;
3265
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
3266
0
                int curve = -1;
3267
3268
                /* For Suite B need to match signature algorithm to curve */
3269
0
                if (tls1_suiteb(s))
3270
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3271
0
                                                 .privatekey);
3272
3273
                /*
3274
                 * Find highest preference signature algorithm matching
3275
                 * cert type
3276
                 */
3277
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
3278
0
                    lu = s->shared_sigalgs[i];
3279
3280
0
                    if (s->server) {
3281
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3282
0
                            continue;
3283
0
                    } else {
3284
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3285
3286
0
                        sig_idx = lu->sig_idx;
3287
0
                        if (cc_idx != sig_idx)
3288
0
                            continue;
3289
0
                    }
3290
                    /* Check that we have a cert, and sig_algs_cert */
3291
0
                    if (!has_usable_cert(s, lu, sig_idx))
3292
0
                        continue;
3293
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3294
                        /* validate that key is large enough for the signature algorithm */
3295
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3296
3297
0
                        if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3298
0
                            continue;
3299
0
                    }
3300
0
                    if (curve == -1 || lu->curve == curve)
3301
0
                        break;
3302
0
                }
3303
0
#ifndef OPENSSL_NO_GOST
3304
                /*
3305
                 * Some Windows-based implementations do not send GOST algorithms indication
3306
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3307
                 * we have to assume GOST support.
3308
                 */
3309
0
                if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3310
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3311
0
                    if (!fatalerrs)
3312
0
                      return 1;
3313
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3314
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3315
0
                    return 0;
3316
0
                  } else {
3317
0
                    i = 0;
3318
0
                    sig_idx = lu->sig_idx;
3319
0
                  }
3320
0
                }
3321
0
#endif
3322
0
                if (i == s->shared_sigalgslen) {
3323
0
                    if (!fatalerrs)
3324
0
                        return 1;
3325
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3326
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3327
0
                    return 0;
3328
0
                }
3329
0
            } else {
3330
                /*
3331
                 * If we have no sigalg use defaults
3332
                 */
3333
0
                const uint16_t *sent_sigs;
3334
0
                size_t sent_sigslen;
3335
3336
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3337
0
                    if (!fatalerrs)
3338
0
                        return 1;
3339
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3340
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3341
0
                    return 0;
3342
0
                }
3343
3344
                /* Check signature matches a type we sent */
3345
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3346
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3347
0
                    if (lu->sigalg == *sent_sigs
3348
0
                            && has_usable_cert(s, lu, lu->sig_idx))
3349
0
                        break;
3350
0
                }
3351
0
                if (i == sent_sigslen) {
3352
0
                    if (!fatalerrs)
3353
0
                        return 1;
3354
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3355
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3356
0
                    return 0;
3357
0
                }
3358
0
            }
3359
0
        } else {
3360
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3361
0
                if (!fatalerrs)
3362
0
                    return 1;
3363
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3364
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3365
0
                return 0;
3366
0
            }
3367
0
        }
3368
0
    }
3369
0
    if (sig_idx == -1)
3370
0
        sig_idx = lu->sig_idx;
3371
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3372
0
    s->cert->key = s->s3.tmp.cert;
3373
0
    s->s3.tmp.sigalg = lu;
3374
0
    return 1;
3375
13
}
3376
3377
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3378
0
{
3379
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3380
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3381
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3382
0
        return 0;
3383
0
    }
3384
3385
0
    ctx->ext.max_fragment_len_mode = mode;
3386
0
    return 1;
3387
0
}
3388
3389
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3390
0
{
3391
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3392
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3393
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3394
0
        return 0;
3395
0
    }
3396
3397
0
    ssl->ext.max_fragment_len_mode = mode;
3398
0
    return 1;
3399
0
}
3400
3401
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3402
0
{
3403
0
    return session->ext.max_fragment_len_mode;
3404
0
}
3405
3406
/*
3407
 * Helper functions for HMAC access with legacy support included.
3408
 */
3409
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3410
0
{
3411
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3412
0
    EVP_MAC *mac = NULL;
3413
3414
0
    if (ret == NULL)
3415
0
        return NULL;
3416
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3417
0
    if (ctx->ext.ticket_key_evp_cb == NULL
3418
0
            && ctx->ext.ticket_key_cb != NULL) {
3419
0
        if (!ssl_hmac_old_new(ret))
3420
0
            goto err;
3421
0
        return ret;
3422
0
    }
3423
0
#endif
3424
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3425
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3426
0
        goto err;
3427
0
    EVP_MAC_free(mac);
3428
0
    return ret;
3429
0
 err:
3430
0
    EVP_MAC_CTX_free(ret->ctx);
3431
0
    EVP_MAC_free(mac);
3432
0
    OPENSSL_free(ret);
3433
0
    return NULL;
3434
0
}
3435
3436
void ssl_hmac_free(SSL_HMAC *ctx)
3437
0
{
3438
0
    if (ctx != NULL) {
3439
0
        EVP_MAC_CTX_free(ctx->ctx);
3440
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3441
0
        ssl_hmac_old_free(ctx);
3442
0
#endif
3443
0
        OPENSSL_free(ctx);
3444
0
    }
3445
0
}
3446
3447
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3448
0
{
3449
0
    return ctx->ctx;
3450
0
}
3451
3452
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3453
0
{
3454
0
    OSSL_PARAM params[2], *p = params;
3455
3456
0
    if (ctx->ctx != NULL) {
3457
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3458
0
        *p = OSSL_PARAM_construct_end();
3459
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3460
0
            return 1;
3461
0
    }
3462
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3463
0
    if (ctx->old_ctx != NULL)
3464
0
        return ssl_hmac_old_init(ctx, key, len, md);
3465
0
#endif
3466
0
    return 0;
3467
0
}
3468
3469
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3470
0
{
3471
0
    if (ctx->ctx != NULL)
3472
0
        return EVP_MAC_update(ctx->ctx, data, len);
3473
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3474
0
    if (ctx->old_ctx != NULL)
3475
0
        return ssl_hmac_old_update(ctx, data, len);
3476
0
#endif
3477
0
    return 0;
3478
0
}
3479
3480
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3481
                   size_t max_size)
3482
0
{
3483
0
    if (ctx->ctx != NULL)
3484
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3485
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3486
0
    if (ctx->old_ctx != NULL)
3487
0
        return ssl_hmac_old_final(ctx, md, len);
3488
0
#endif
3489
0
    return 0;
3490
0
}
3491
3492
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3493
0
{
3494
0
    if (ctx->ctx != NULL)
3495
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3496
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3497
0
    if (ctx->old_ctx != NULL)
3498
0
        return ssl_hmac_old_size(ctx);
3499
0
#endif
3500
0
    return 0;
3501
0
}
3502
3503
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3504
143
{
3505
143
    char gname[OSSL_MAX_NAME_SIZE];
3506
3507
143
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3508
143
        return OBJ_txt2nid(gname);
3509
3510
0
    return NID_undef;
3511
143
}
3512
3513
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3514
                                     const unsigned char *enckey,
3515
                                     size_t enckeylen)
3516
96
{
3517
96
    if (EVP_PKEY_is_a(pkey, "DH")) {
3518
0
        int bits = EVP_PKEY_get_bits(pkey);
3519
3520
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
3521
            /* the encoded key must be padded to the length of the p */
3522
0
            return 0;
3523
96
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
3524
11
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3525
11
            || enckey[0] != 0x04)
3526
4
            return 0;
3527
11
    }
3528
3529
92
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3530
96
}