/src/openssl30/crypto/x509/v3_addr.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* | 
| 11 |  |  * Implementation of RFC 3779 section 2.2. | 
| 12 |  |  */ | 
| 13 |  |  | 
| 14 |  | #include <stdio.h> | 
| 15 |  | #include <stdlib.h> | 
| 16 |  | #include <assert.h> | 
| 17 |  | #include <string.h> | 
| 18 |  |  | 
| 19 |  | #include "internal/cryptlib.h" | 
| 20 |  | #include <openssl/conf.h> | 
| 21 |  | #include <openssl/asn1.h> | 
| 22 |  | #include <openssl/asn1t.h> | 
| 23 |  | #include <openssl/buffer.h> | 
| 24 |  | #include <openssl/x509v3.h> | 
| 25 |  | #include "crypto/x509.h" | 
| 26 |  | #include "ext_dat.h" | 
| 27 |  | #include "x509_local.h" | 
| 28 |  |  | 
| 29 |  | #ifndef OPENSSL_NO_RFC3779 | 
| 30 |  |  | 
| 31 |  | /* | 
| 32 |  |  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. | 
| 33 |  |  */ | 
| 34 |  |  | 
| 35 |  | ASN1_SEQUENCE(IPAddressRange) = { | 
| 36 |  |   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | 
| 37 |  |   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | 
| 38 |  | } ASN1_SEQUENCE_END(IPAddressRange) | 
| 39 |  |  | 
| 40 |  | ASN1_CHOICE(IPAddressOrRange) = { | 
| 41 |  |   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | 
| 42 |  |   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange) | 
| 43 |  | } ASN1_CHOICE_END(IPAddressOrRange) | 
| 44 |  |  | 
| 45 |  | ASN1_CHOICE(IPAddressChoice) = { | 
| 46 |  |   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL), | 
| 47 |  |   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | 
| 48 |  | } ASN1_CHOICE_END(IPAddressChoice) | 
| 49 |  |  | 
| 50 |  | ASN1_SEQUENCE(IPAddressFamily) = { | 
| 51 |  |   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING), | 
| 52 |  |   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | 
| 53 |  | } ASN1_SEQUENCE_END(IPAddressFamily) | 
| 54 |  |  | 
| 55 |  | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | 
| 56 |  |   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | 
| 57 |  |                         IPAddrBlocks, IPAddressFamily) | 
| 58 |  | static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | 
| 59 |  |  | 
| 60 |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | 
| 61 |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) | 
| 62 |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) | 
| 63 |  | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | 
| 64 |  |  | 
| 65 |  | /* | 
| 66 |  |  * How much buffer space do we need for a raw address? | 
| 67 |  |  */ | 
| 68 |  | #define ADDR_RAW_BUF_LEN        16 | 
| 69 |  |  | 
| 70 |  | /* | 
| 71 |  |  * What's the address length associated with this AFI? | 
| 72 |  |  */ | 
| 73 |  | static int length_from_afi(const unsigned afi) | 
| 74 | 0 | { | 
| 75 | 0 |     switch (afi) { | 
| 76 | 0 |     case IANA_AFI_IPV4: | 
| 77 | 0 |         return 4; | 
| 78 | 0 |     case IANA_AFI_IPV6: | 
| 79 | 0 |         return 16; | 
| 80 | 0 |     default: | 
| 81 | 0 |         return 0; | 
| 82 | 0 |     } | 
| 83 | 0 | } | 
| 84 |  |  | 
| 85 |  | /* | 
| 86 |  |  * Extract the AFI from an IPAddressFamily. | 
| 87 |  |  */ | 
| 88 |  | unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) | 
| 89 | 0 | { | 
| 90 | 0 |     if (f == NULL | 
| 91 | 0 |             || f->addressFamily == NULL | 
| 92 | 0 |             || f->addressFamily->data == NULL | 
| 93 | 0 |             || f->addressFamily->length < 2) | 
| 94 | 0 |         return 0; | 
| 95 | 0 |     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; | 
| 96 | 0 | } | 
| 97 |  |  | 
| 98 |  | /* | 
| 99 |  |  * Expand the bitstring form of an address into a raw byte array. | 
| 100 |  |  * At the moment this is coded for simplicity, not speed. | 
| 101 |  |  */ | 
| 102 |  | static int addr_expand(unsigned char *addr, | 
| 103 |  |                        const ASN1_BIT_STRING *bs, | 
| 104 |  |                        const int length, const unsigned char fill) | 
| 105 | 0 | { | 
| 106 | 0 |     if (bs->length < 0 || bs->length > length) | 
| 107 | 0 |         return 0; | 
| 108 | 0 |     if (bs->length > 0) { | 
| 109 | 0 |         memcpy(addr, bs->data, bs->length); | 
| 110 | 0 |         if ((bs->flags & 7) != 0) { | 
| 111 | 0 |             unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | 
| 112 | 0 |             if (fill == 0) | 
| 113 | 0 |                 addr[bs->length - 1] &= ~mask; | 
| 114 | 0 |             else | 
| 115 | 0 |                 addr[bs->length - 1] |= mask; | 
| 116 | 0 |         } | 
| 117 | 0 |     } | 
| 118 | 0 |     memset(addr + bs->length, fill, length - bs->length); | 
| 119 | 0 |     return 1; | 
| 120 | 0 | } | 
| 121 |  |  | 
| 122 |  | /* | 
| 123 |  |  * Extract the prefix length from a bitstring. | 
| 124 |  |  */ | 
| 125 | 0 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) | 
| 126 |  |  | 
| 127 |  | /* | 
| 128 |  |  * i2r handler for one address bitstring. | 
| 129 |  |  */ | 
| 130 |  | static int i2r_address(BIO *out, | 
| 131 |  |                        const unsigned afi, | 
| 132 |  |                        const unsigned char fill, const ASN1_BIT_STRING *bs) | 
| 133 | 0 | { | 
| 134 | 0 |     unsigned char addr[ADDR_RAW_BUF_LEN]; | 
| 135 | 0 |     int i, n; | 
| 136 |  | 
 | 
| 137 | 0 |     if (bs->length < 0) | 
| 138 | 0 |         return 0; | 
| 139 | 0 |     switch (afi) { | 
| 140 | 0 |     case IANA_AFI_IPV4: | 
| 141 | 0 |         if (!addr_expand(addr, bs, 4, fill)) | 
| 142 | 0 |             return 0; | 
| 143 | 0 |         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | 
| 144 | 0 |         break; | 
| 145 | 0 |     case IANA_AFI_IPV6: | 
| 146 | 0 |         if (!addr_expand(addr, bs, 16, fill)) | 
| 147 | 0 |             return 0; | 
| 148 | 0 |         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; | 
| 149 | 0 |              n -= 2) ; | 
| 150 | 0 |         for (i = 0; i < n; i += 2) | 
| 151 | 0 |             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], | 
| 152 | 0 |                        (i < 14 ? ":" : "")); | 
| 153 | 0 |         if (i < 16) | 
| 154 | 0 |             BIO_puts(out, ":"); | 
| 155 | 0 |         if (i == 0) | 
| 156 | 0 |             BIO_puts(out, ":"); | 
| 157 | 0 |         break; | 
| 158 | 0 |     default: | 
| 159 | 0 |         for (i = 0; i < bs->length; i++) | 
| 160 | 0 |             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | 
| 161 | 0 |         BIO_printf(out, "[%d]", (int)(bs->flags & 7)); | 
| 162 | 0 |         break; | 
| 163 | 0 |     } | 
| 164 | 0 |     return 1; | 
| 165 | 0 | } | 
| 166 |  |  | 
| 167 |  | /* | 
| 168 |  |  * i2r handler for a sequence of addresses and ranges. | 
| 169 |  |  */ | 
| 170 |  | static int i2r_IPAddressOrRanges(BIO *out, | 
| 171 |  |                                  const int indent, | 
| 172 |  |                                  const IPAddressOrRanges *aors, | 
| 173 |  |                                  const unsigned afi) | 
| 174 | 0 | { | 
| 175 | 0 |     int i; | 
| 176 | 0 |     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | 
| 177 | 0 |         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | 
| 178 | 0 |         BIO_printf(out, "%*s", indent, ""); | 
| 179 | 0 |         switch (aor->type) { | 
| 180 | 0 |         case IPAddressOrRange_addressPrefix: | 
| 181 | 0 |             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | 
| 182 | 0 |                 return 0; | 
| 183 | 0 |             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | 
| 184 | 0 |             continue; | 
| 185 | 0 |         case IPAddressOrRange_addressRange: | 
| 186 | 0 |             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | 
| 187 | 0 |                 return 0; | 
| 188 | 0 |             BIO_puts(out, "-"); | 
| 189 | 0 |             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | 
| 190 | 0 |                 return 0; | 
| 191 | 0 |             BIO_puts(out, "\n"); | 
| 192 | 0 |             continue; | 
| 193 | 0 |         } | 
| 194 | 0 |     } | 
| 195 | 0 |     return 1; | 
| 196 | 0 | } | 
| 197 |  |  | 
| 198 |  | /* | 
| 199 |  |  * i2r handler for an IPAddrBlocks extension. | 
| 200 |  |  */ | 
| 201 |  | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | 
| 202 |  |                             void *ext, BIO *out, int indent) | 
| 203 | 0 | { | 
| 204 | 0 |     const IPAddrBlocks *addr = ext; | 
| 205 | 0 |     int i; | 
| 206 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 207 | 0 |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 208 | 0 |         const unsigned int afi = X509v3_addr_get_afi(f); | 
| 209 | 0 |         switch (afi) { | 
| 210 | 0 |         case IANA_AFI_IPV4: | 
| 211 | 0 |             BIO_printf(out, "%*sIPv4", indent, ""); | 
| 212 | 0 |             break; | 
| 213 | 0 |         case IANA_AFI_IPV6: | 
| 214 | 0 |             BIO_printf(out, "%*sIPv6", indent, ""); | 
| 215 | 0 |             break; | 
| 216 | 0 |         default: | 
| 217 | 0 |             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | 
| 218 | 0 |             break; | 
| 219 | 0 |         } | 
| 220 | 0 |         if (f->addressFamily->length > 2) { | 
| 221 | 0 |             switch (f->addressFamily->data[2]) { | 
| 222 | 0 |             case 1: | 
| 223 | 0 |                 BIO_puts(out, " (Unicast)"); | 
| 224 | 0 |                 break; | 
| 225 | 0 |             case 2: | 
| 226 | 0 |                 BIO_puts(out, " (Multicast)"); | 
| 227 | 0 |                 break; | 
| 228 | 0 |             case 3: | 
| 229 | 0 |                 BIO_puts(out, " (Unicast/Multicast)"); | 
| 230 | 0 |                 break; | 
| 231 | 0 |             case 4: | 
| 232 | 0 |                 BIO_puts(out, " (MPLS)"); | 
| 233 | 0 |                 break; | 
| 234 | 0 |             case 64: | 
| 235 | 0 |                 BIO_puts(out, " (Tunnel)"); | 
| 236 | 0 |                 break; | 
| 237 | 0 |             case 65: | 
| 238 | 0 |                 BIO_puts(out, " (VPLS)"); | 
| 239 | 0 |                 break; | 
| 240 | 0 |             case 66: | 
| 241 | 0 |                 BIO_puts(out, " (BGP MDT)"); | 
| 242 | 0 |                 break; | 
| 243 | 0 |             case 128: | 
| 244 | 0 |                 BIO_puts(out, " (MPLS-labeled VPN)"); | 
| 245 | 0 |                 break; | 
| 246 | 0 |             default: | 
| 247 | 0 |                 BIO_printf(out, " (Unknown SAFI %u)", | 
| 248 | 0 |                            (unsigned)f->addressFamily->data[2]); | 
| 249 | 0 |                 break; | 
| 250 | 0 |             } | 
| 251 | 0 |         } | 
| 252 | 0 |         switch (f->ipAddressChoice->type) { | 
| 253 | 0 |         case IPAddressChoice_inherit: | 
| 254 | 0 |             BIO_puts(out, ": inherit\n"); | 
| 255 | 0 |             break; | 
| 256 | 0 |         case IPAddressChoice_addressesOrRanges: | 
| 257 | 0 |             BIO_puts(out, ":\n"); | 
| 258 | 0 |             if (!i2r_IPAddressOrRanges(out, | 
| 259 | 0 |                                        indent + 2, | 
| 260 | 0 |                                        f->ipAddressChoice-> | 
| 261 | 0 |                                        u.addressesOrRanges, afi)) | 
| 262 | 0 |                 return 0; | 
| 263 | 0 |             break; | 
| 264 | 0 |         } | 
| 265 | 0 |     } | 
| 266 | 0 |     return 1; | 
| 267 | 0 | } | 
| 268 |  |  | 
| 269 |  | /* | 
| 270 |  |  * Sort comparison function for a sequence of IPAddressOrRange | 
| 271 |  |  * elements. | 
| 272 |  |  * | 
| 273 |  |  * There's no sane answer we can give if addr_expand() fails, and an | 
| 274 |  |  * assertion failure on externally supplied data is seriously uncool, | 
| 275 |  |  * so we just arbitrarily declare that if given invalid inputs this | 
| 276 |  |  * function returns -1.  If this messes up your preferred sort order | 
| 277 |  |  * for garbage input, tough noogies. | 
| 278 |  |  */ | 
| 279 |  | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | 
| 280 |  |                                 const IPAddressOrRange *b, const int length) | 
| 281 | 0 | { | 
| 282 | 0 |     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | 
| 283 | 0 |     int prefixlen_a = 0, prefixlen_b = 0; | 
| 284 | 0 |     int r; | 
| 285 |  | 
 | 
| 286 | 0 |     switch (a->type) { | 
| 287 | 0 |     case IPAddressOrRange_addressPrefix: | 
| 288 | 0 |         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | 
| 289 | 0 |             return -1; | 
| 290 | 0 |         prefixlen_a = addr_prefixlen(a->u.addressPrefix); | 
| 291 | 0 |         break; | 
| 292 | 0 |     case IPAddressOrRange_addressRange: | 
| 293 | 0 |         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | 
| 294 | 0 |             return -1; | 
| 295 | 0 |         prefixlen_a = length * 8; | 
| 296 | 0 |         break; | 
| 297 | 0 |     } | 
| 298 |  |  | 
| 299 | 0 |     switch (b->type) { | 
| 300 | 0 |     case IPAddressOrRange_addressPrefix: | 
| 301 | 0 |         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | 
| 302 | 0 |             return -1; | 
| 303 | 0 |         prefixlen_b = addr_prefixlen(b->u.addressPrefix); | 
| 304 | 0 |         break; | 
| 305 | 0 |     case IPAddressOrRange_addressRange: | 
| 306 | 0 |         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | 
| 307 | 0 |             return -1; | 
| 308 | 0 |         prefixlen_b = length * 8; | 
| 309 | 0 |         break; | 
| 310 | 0 |     } | 
| 311 |  |  | 
| 312 | 0 |     if ((r = memcmp(addr_a, addr_b, length)) != 0) | 
| 313 | 0 |         return r; | 
| 314 | 0 |     else | 
| 315 | 0 |         return prefixlen_a - prefixlen_b; | 
| 316 | 0 | } | 
| 317 |  |  | 
| 318 |  | /* | 
| 319 |  |  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | 
| 320 |  |  * comparison routines are only allowed two arguments. | 
| 321 |  |  */ | 
| 322 |  | static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, | 
| 323 |  |                                   const IPAddressOrRange *const *b) | 
| 324 | 0 | { | 
| 325 | 0 |     return IPAddressOrRange_cmp(*a, *b, 4); | 
| 326 | 0 | } | 
| 327 |  |  | 
| 328 |  | /* | 
| 329 |  |  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | 
| 330 |  |  * comparison routines are only allowed two arguments. | 
| 331 |  |  */ | 
| 332 |  | static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, | 
| 333 |  |                                   const IPAddressOrRange *const *b) | 
| 334 | 0 | { | 
| 335 | 0 |     return IPAddressOrRange_cmp(*a, *b, 16); | 
| 336 | 0 | } | 
| 337 |  |  | 
| 338 |  | /* | 
| 339 |  |  * Calculate whether a range collapses to a prefix. | 
| 340 |  |  * See last paragraph of RFC 3779 2.2.3.7. | 
| 341 |  |  */ | 
| 342 |  | static int range_should_be_prefix(const unsigned char *min, | 
| 343 |  |                                   const unsigned char *max, const int length) | 
| 344 | 0 | { | 
| 345 | 0 |     unsigned char mask; | 
| 346 | 0 |     int i, j; | 
| 347 |  |  | 
| 348 |  |     /* | 
| 349 |  |      * It is the responsibility of the caller to confirm min <= max. We don't | 
| 350 |  |      * use ossl_assert() here since we have no way of signalling an error from | 
| 351 |  |      * this function - so we just use a plain assert instead. | 
| 352 |  |      */ | 
| 353 | 0 |     assert(memcmp(min, max, length) <= 0); | 
| 354 |  |  | 
| 355 | 0 |     for (i = 0; i < length && min[i] == max[i]; i++) ; | 
| 356 | 0 |     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; | 
| 357 | 0 |     if (i < j) | 
| 358 | 0 |         return -1; | 
| 359 | 0 |     if (i > j) | 
| 360 | 0 |         return i * 8; | 
| 361 | 0 |     mask = min[i] ^ max[i]; | 
| 362 | 0 |     switch (mask) { | 
| 363 | 0 |     case 0x01: | 
| 364 | 0 |         j = 7; | 
| 365 | 0 |         break; | 
| 366 | 0 |     case 0x03: | 
| 367 | 0 |         j = 6; | 
| 368 | 0 |         break; | 
| 369 | 0 |     case 0x07: | 
| 370 | 0 |         j = 5; | 
| 371 | 0 |         break; | 
| 372 | 0 |     case 0x0F: | 
| 373 | 0 |         j = 4; | 
| 374 | 0 |         break; | 
| 375 | 0 |     case 0x1F: | 
| 376 | 0 |         j = 3; | 
| 377 | 0 |         break; | 
| 378 | 0 |     case 0x3F: | 
| 379 | 0 |         j = 2; | 
| 380 | 0 |         break; | 
| 381 | 0 |     case 0x7F: | 
| 382 | 0 |         j = 1; | 
| 383 | 0 |         break; | 
| 384 | 0 |     default: | 
| 385 | 0 |         return -1; | 
| 386 | 0 |     } | 
| 387 | 0 |     if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | 
| 388 | 0 |         return -1; | 
| 389 | 0 |     else | 
| 390 | 0 |         return i * 8 + j; | 
| 391 | 0 | } | 
| 392 |  |  | 
| 393 |  | /* | 
| 394 |  |  * Construct a prefix. | 
| 395 |  |  */ | 
| 396 |  | static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, | 
| 397 |  |                               const int prefixlen, const int afilen) | 
| 398 | 0 | { | 
| 399 | 0 |     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | 
| 400 | 0 |     IPAddressOrRange *aor = IPAddressOrRange_new(); | 
| 401 |  | 
 | 
| 402 | 0 |     if (prefixlen < 0 || prefixlen > (afilen * 8)) | 
| 403 | 0 |         return 0; | 
| 404 | 0 |     if (aor == NULL) | 
| 405 | 0 |         return 0; | 
| 406 | 0 |     aor->type = IPAddressOrRange_addressPrefix; | 
| 407 | 0 |     if (aor->u.addressPrefix == NULL && | 
| 408 | 0 |         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | 
| 409 | 0 |         goto err; | 
| 410 | 0 |     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | 
| 411 | 0 |         goto err; | 
| 412 | 0 |     aor->u.addressPrefix->flags &= ~7; | 
| 413 | 0 |     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 414 | 0 |     if (bitlen > 0) { | 
| 415 | 0 |         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | 
| 416 | 0 |         aor->u.addressPrefix->flags |= 8 - bitlen; | 
| 417 | 0 |     } | 
| 418 |  | 
 | 
| 419 | 0 |     *result = aor; | 
| 420 | 0 |     return 1; | 
| 421 |  |  | 
| 422 | 0 |  err: | 
| 423 | 0 |     IPAddressOrRange_free(aor); | 
| 424 | 0 |     return 0; | 
| 425 | 0 | } | 
| 426 |  |  | 
| 427 |  | /* | 
| 428 |  |  * Construct a range.  If it can be expressed as a prefix, | 
| 429 |  |  * return a prefix instead.  Doing this here simplifies | 
| 430 |  |  * the rest of the code considerably. | 
| 431 |  |  */ | 
| 432 |  | static int make_addressRange(IPAddressOrRange **result, | 
| 433 |  |                              unsigned char *min, | 
| 434 |  |                              unsigned char *max, const int length) | 
| 435 | 0 | { | 
| 436 | 0 |     IPAddressOrRange *aor; | 
| 437 | 0 |     int i, prefixlen; | 
| 438 |  | 
 | 
| 439 | 0 |     if (memcmp(min, max, length) > 0) | 
| 440 | 0 |         return 0; | 
| 441 |  |  | 
| 442 | 0 |     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | 
| 443 | 0 |         return make_addressPrefix(result, min, prefixlen, length); | 
| 444 |  |  | 
| 445 | 0 |     if ((aor = IPAddressOrRange_new()) == NULL) | 
| 446 | 0 |         return 0; | 
| 447 | 0 |     aor->type = IPAddressOrRange_addressRange; | 
| 448 | 0 |     if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | 
| 449 | 0 |         goto err; | 
| 450 | 0 |     if (aor->u.addressRange->min == NULL && | 
| 451 | 0 |         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | 
| 452 | 0 |         goto err; | 
| 453 | 0 |     if (aor->u.addressRange->max == NULL && | 
| 454 | 0 |         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | 
| 455 | 0 |         goto err; | 
| 456 |  |  | 
| 457 | 0 |     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; | 
| 458 | 0 |     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | 
| 459 | 0 |         goto err; | 
| 460 | 0 |     aor->u.addressRange->min->flags &= ~7; | 
| 461 | 0 |     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 462 | 0 |     if (i > 0) { | 
| 463 | 0 |         unsigned char b = min[i - 1]; | 
| 464 | 0 |         int j = 1; | 
| 465 | 0 |         while ((b & (0xFFU >> j)) != 0) | 
| 466 | 0 |             ++j; | 
| 467 | 0 |         aor->u.addressRange->min->flags |= 8 - j; | 
| 468 | 0 |     } | 
| 469 |  | 
 | 
| 470 | 0 |     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; | 
| 471 | 0 |     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | 
| 472 | 0 |         goto err; | 
| 473 | 0 |     aor->u.addressRange->max->flags &= ~7; | 
| 474 | 0 |     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 475 | 0 |     if (i > 0) { | 
| 476 | 0 |         unsigned char b = max[i - 1]; | 
| 477 | 0 |         int j = 1; | 
| 478 | 0 |         while ((b & (0xFFU >> j)) != (0xFFU >> j)) | 
| 479 | 0 |             ++j; | 
| 480 | 0 |         aor->u.addressRange->max->flags |= 8 - j; | 
| 481 | 0 |     } | 
| 482 |  | 
 | 
| 483 | 0 |     *result = aor; | 
| 484 | 0 |     return 1; | 
| 485 |  |  | 
| 486 | 0 |  err: | 
| 487 | 0 |     IPAddressOrRange_free(aor); | 
| 488 | 0 |     return 0; | 
| 489 | 0 | } | 
| 490 |  |  | 
| 491 |  | /* | 
| 492 |  |  * Construct a new address family or find an existing one. | 
| 493 |  |  */ | 
| 494 |  | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | 
| 495 |  |                                              const unsigned afi, | 
| 496 |  |                                              const unsigned *safi) | 
| 497 | 0 | { | 
| 498 | 0 |     IPAddressFamily *f; | 
| 499 | 0 |     unsigned char key[3]; | 
| 500 | 0 |     int keylen; | 
| 501 | 0 |     int i; | 
| 502 |  | 
 | 
| 503 | 0 |     key[0] = (afi >> 8) & 0xFF; | 
| 504 | 0 |     key[1] = afi & 0xFF; | 
| 505 | 0 |     if (safi != NULL) { | 
| 506 | 0 |         key[2] = *safi & 0xFF; | 
| 507 | 0 |         keylen = 3; | 
| 508 | 0 |     } else { | 
| 509 | 0 |         keylen = 2; | 
| 510 | 0 |     } | 
| 511 |  | 
 | 
| 512 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 513 | 0 |         f = sk_IPAddressFamily_value(addr, i); | 
| 514 | 0 |         if (f->addressFamily->length == keylen && | 
| 515 | 0 |             !memcmp(f->addressFamily->data, key, keylen)) | 
| 516 | 0 |             return f; | 
| 517 | 0 |     } | 
| 518 |  |  | 
| 519 | 0 |     if ((f = IPAddressFamily_new()) == NULL) | 
| 520 | 0 |         goto err; | 
| 521 | 0 |     if (f->ipAddressChoice == NULL && | 
| 522 | 0 |         (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | 
| 523 | 0 |         goto err; | 
| 524 | 0 |     if (f->addressFamily == NULL && | 
| 525 | 0 |         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | 
| 526 | 0 |         goto err; | 
| 527 | 0 |     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | 
| 528 | 0 |         goto err; | 
| 529 | 0 |     if (!sk_IPAddressFamily_push(addr, f)) | 
| 530 | 0 |         goto err; | 
| 531 |  |  | 
| 532 | 0 |     return f; | 
| 533 |  |  | 
| 534 | 0 |  err: | 
| 535 | 0 |     IPAddressFamily_free(f); | 
| 536 | 0 |     return NULL; | 
| 537 | 0 | } | 
| 538 |  |  | 
| 539 |  | /* | 
| 540 |  |  * Add an inheritance element. | 
| 541 |  |  */ | 
| 542 |  | int X509v3_addr_add_inherit(IPAddrBlocks *addr, | 
| 543 |  |                             const unsigned afi, const unsigned *safi) | 
| 544 | 0 | { | 
| 545 | 0 |     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 
| 546 | 0 |     if (f == NULL || | 
| 547 | 0 |         f->ipAddressChoice == NULL || | 
| 548 | 0 |         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 
| 549 | 0 |          f->ipAddressChoice->u.addressesOrRanges != NULL)) | 
| 550 | 0 |         return 0; | 
| 551 | 0 |     if (f->ipAddressChoice->type == IPAddressChoice_inherit && | 
| 552 | 0 |         f->ipAddressChoice->u.inherit != NULL) | 
| 553 | 0 |         return 1; | 
| 554 | 0 |     if (f->ipAddressChoice->u.inherit == NULL && | 
| 555 | 0 |         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | 
| 556 | 0 |         return 0; | 
| 557 | 0 |     f->ipAddressChoice->type = IPAddressChoice_inherit; | 
| 558 | 0 |     return 1; | 
| 559 | 0 | } | 
| 560 |  |  | 
| 561 |  | /* | 
| 562 |  |  * Construct an IPAddressOrRange sequence, or return an existing one. | 
| 563 |  |  */ | 
| 564 |  | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | 
| 565 |  |                                                const unsigned afi, | 
| 566 |  |                                                const unsigned *safi) | 
| 567 | 0 | { | 
| 568 | 0 |     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 
| 569 | 0 |     IPAddressOrRanges *aors = NULL; | 
| 570 |  | 
 | 
| 571 | 0 |     if (f == NULL || | 
| 572 | 0 |         f->ipAddressChoice == NULL || | 
| 573 | 0 |         (f->ipAddressChoice->type == IPAddressChoice_inherit && | 
| 574 | 0 |          f->ipAddressChoice->u.inherit != NULL)) | 
| 575 | 0 |         return NULL; | 
| 576 | 0 |     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | 
| 577 | 0 |         aors = f->ipAddressChoice->u.addressesOrRanges; | 
| 578 | 0 |     if (aors != NULL) | 
| 579 | 0 |         return aors; | 
| 580 | 0 |     if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | 
| 581 | 0 |         return NULL; | 
| 582 | 0 |     switch (afi) { | 
| 583 | 0 |     case IANA_AFI_IPV4: | 
| 584 | 0 |         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | 
| 585 | 0 |         break; | 
| 586 | 0 |     case IANA_AFI_IPV6: | 
| 587 | 0 |         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | 
| 588 | 0 |         break; | 
| 589 | 0 |     } | 
| 590 | 0 |     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | 
| 591 | 0 |     f->ipAddressChoice->u.addressesOrRanges = aors; | 
| 592 | 0 |     return aors; | 
| 593 | 0 | } | 
| 594 |  |  | 
| 595 |  | /* | 
| 596 |  |  * Add a prefix. | 
| 597 |  |  */ | 
| 598 |  | int X509v3_addr_add_prefix(IPAddrBlocks *addr, | 
| 599 |  |                            const unsigned afi, | 
| 600 |  |                            const unsigned *safi, | 
| 601 |  |                            unsigned char *a, const int prefixlen) | 
| 602 | 0 | { | 
| 603 | 0 |     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 
| 604 | 0 |     IPAddressOrRange *aor; | 
| 605 |  | 
 | 
| 606 | 0 |     if (aors == NULL | 
| 607 | 0 |             || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi))) | 
| 608 | 0 |         return 0; | 
| 609 | 0 |     if (sk_IPAddressOrRange_push(aors, aor)) | 
| 610 | 0 |         return 1; | 
| 611 | 0 |     IPAddressOrRange_free(aor); | 
| 612 | 0 |     return 0; | 
| 613 | 0 | } | 
| 614 |  |  | 
| 615 |  | /* | 
| 616 |  |  * Add a range. | 
| 617 |  |  */ | 
| 618 |  | int X509v3_addr_add_range(IPAddrBlocks *addr, | 
| 619 |  |                           const unsigned afi, | 
| 620 |  |                           const unsigned *safi, | 
| 621 |  |                           unsigned char *min, unsigned char *max) | 
| 622 | 0 | { | 
| 623 | 0 |     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 
| 624 | 0 |     IPAddressOrRange *aor; | 
| 625 | 0 |     int length = length_from_afi(afi); | 
| 626 | 0 |     if (aors == NULL) | 
| 627 | 0 |         return 0; | 
| 628 | 0 |     if (!make_addressRange(&aor, min, max, length)) | 
| 629 | 0 |         return 0; | 
| 630 | 0 |     if (sk_IPAddressOrRange_push(aors, aor)) | 
| 631 | 0 |         return 1; | 
| 632 | 0 |     IPAddressOrRange_free(aor); | 
| 633 | 0 |     return 0; | 
| 634 | 0 | } | 
| 635 |  |  | 
| 636 |  | /* | 
| 637 |  |  * Extract min and max values from an IPAddressOrRange. | 
| 638 |  |  */ | 
| 639 |  | static int extract_min_max(IPAddressOrRange *aor, | 
| 640 |  |                            unsigned char *min, unsigned char *max, int length) | 
| 641 | 0 | { | 
| 642 | 0 |     if (aor == NULL || min == NULL || max == NULL) | 
| 643 | 0 |         return 0; | 
| 644 | 0 |     switch (aor->type) { | 
| 645 | 0 |     case IPAddressOrRange_addressPrefix: | 
| 646 | 0 |         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | 
| 647 | 0 |                 addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | 
| 648 | 0 |     case IPAddressOrRange_addressRange: | 
| 649 | 0 |         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && | 
| 650 | 0 |                 addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | 
| 651 | 0 |     } | 
| 652 | 0 |     return 0; | 
| 653 | 0 | } | 
| 654 |  |  | 
| 655 |  | /* | 
| 656 |  |  * Public wrapper for extract_min_max(). | 
| 657 |  |  */ | 
| 658 |  | int X509v3_addr_get_range(IPAddressOrRange *aor, | 
| 659 |  |                           const unsigned afi, | 
| 660 |  |                           unsigned char *min, | 
| 661 |  |                           unsigned char *max, const int length) | 
| 662 | 0 | { | 
| 663 | 0 |     int afi_length = length_from_afi(afi); | 
| 664 | 0 |     if (aor == NULL || min == NULL || max == NULL || | 
| 665 | 0 |         afi_length == 0 || length < afi_length || | 
| 666 | 0 |         (aor->type != IPAddressOrRange_addressPrefix && | 
| 667 | 0 |          aor->type != IPAddressOrRange_addressRange) || | 
| 668 | 0 |         !extract_min_max(aor, min, max, afi_length)) | 
| 669 | 0 |         return 0; | 
| 670 |  |  | 
| 671 | 0 |     return afi_length; | 
| 672 | 0 | } | 
| 673 |  |  | 
| 674 |  | /* | 
| 675 |  |  * Sort comparison function for a sequence of IPAddressFamily. | 
| 676 |  |  * | 
| 677 |  |  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about | 
| 678 |  |  * the ordering: I can read it as meaning that IPv6 without a SAFI | 
| 679 |  |  * comes before IPv4 with a SAFI, which seems pretty weird.  The | 
| 680 |  |  * examples in appendix B suggest that the author intended the | 
| 681 |  |  * null-SAFI rule to apply only within a single AFI, which is what I | 
| 682 |  |  * would have expected and is what the following code implements. | 
| 683 |  |  */ | 
| 684 |  | static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, | 
| 685 |  |                                const IPAddressFamily *const *b_) | 
| 686 | 0 | { | 
| 687 | 0 |     const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | 
| 688 | 0 |     const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | 
| 689 | 0 |     int len = ((a->length <= b->length) ? a->length : b->length); | 
| 690 | 0 |     int cmp = memcmp(a->data, b->data, len); | 
| 691 | 0 |     return cmp ? cmp : a->length - b->length; | 
| 692 | 0 | } | 
| 693 |  |  | 
| 694 |  | static int IPAddressFamily_check_len(const IPAddressFamily *f) | 
| 695 | 0 | { | 
| 696 | 0 |     if (f->addressFamily->length < 2 || f->addressFamily->length > 3) | 
| 697 | 0 |         return 0; | 
| 698 | 0 |     else | 
| 699 | 0 |         return 1; | 
| 700 | 0 | } | 
| 701 |  |  | 
| 702 |  | /* | 
| 703 |  |  * Check whether an IPAddrBLocks is in canonical form. | 
| 704 |  |  */ | 
| 705 |  | int X509v3_addr_is_canonical(IPAddrBlocks *addr) | 
| 706 | 0 | { | 
| 707 | 0 |     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 
| 708 | 0 |     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 
| 709 | 0 |     IPAddressOrRanges *aors; | 
| 710 | 0 |     int i, j, k; | 
| 711 |  |  | 
| 712 |  |     /* | 
| 713 |  |      * Empty extension is canonical. | 
| 714 |  |      */ | 
| 715 | 0 |     if (addr == NULL) | 
| 716 | 0 |         return 1; | 
| 717 |  |  | 
| 718 |  |     /* | 
| 719 |  |      * Check whether the top-level list is in order. | 
| 720 |  |      */ | 
| 721 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | 
| 722 | 0 |         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | 
| 723 | 0 |         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | 
| 724 |  | 
 | 
| 725 | 0 |         if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b)) | 
| 726 | 0 |             return 0; | 
| 727 |  |  | 
| 728 | 0 |         if (IPAddressFamily_cmp(&a, &b) >= 0) | 
| 729 | 0 |             return 0; | 
| 730 | 0 |     } | 
| 731 |  |  | 
| 732 |  |     /* | 
| 733 |  |      * Top level's ok, now check each address family. | 
| 734 |  |      */ | 
| 735 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 736 | 0 |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 737 | 0 |         int length = length_from_afi(X509v3_addr_get_afi(f)); | 
| 738 |  |  | 
| 739 |  |         /* | 
| 740 |  |          * Inheritance is canonical.  Anything other than inheritance or | 
| 741 |  |          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | 
| 742 |  |          */ | 
| 743 | 0 |         if (f == NULL || f->ipAddressChoice == NULL) | 
| 744 | 0 |             return 0; | 
| 745 | 0 |         switch (f->ipAddressChoice->type) { | 
| 746 | 0 |         case IPAddressChoice_inherit: | 
| 747 | 0 |             continue; | 
| 748 | 0 |         case IPAddressChoice_addressesOrRanges: | 
| 749 | 0 |             break; | 
| 750 | 0 |         default: | 
| 751 | 0 |             return 0; | 
| 752 | 0 |         } | 
| 753 |  |  | 
| 754 | 0 |         if (!IPAddressFamily_check_len(f)) | 
| 755 | 0 |             return 0; | 
| 756 |  |  | 
| 757 |  |         /* | 
| 758 |  |          * It's an IPAddressOrRanges sequence, check it. | 
| 759 |  |          */ | 
| 760 | 0 |         aors = f->ipAddressChoice->u.addressesOrRanges; | 
| 761 | 0 |         if (sk_IPAddressOrRange_num(aors) == 0) | 
| 762 | 0 |             return 0; | 
| 763 | 0 |         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | 
| 764 | 0 |             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 
| 765 | 0 |             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | 
| 766 |  | 
 | 
| 767 | 0 |             if (!extract_min_max(a, a_min, a_max, length) || | 
| 768 | 0 |                 !extract_min_max(b, b_min, b_max, length)) | 
| 769 | 0 |                 return 0; | 
| 770 |  |  | 
| 771 |  |             /* | 
| 772 |  |              * Punt misordered list, overlapping start, or inverted range. | 
| 773 |  |              */ | 
| 774 | 0 |             if (memcmp(a_min, b_min, length) >= 0 || | 
| 775 | 0 |                 memcmp(a_min, a_max, length) > 0 || | 
| 776 | 0 |                 memcmp(b_min, b_max, length) > 0) | 
| 777 | 0 |                 return 0; | 
| 778 |  |  | 
| 779 |  |             /* | 
| 780 |  |              * Punt if adjacent or overlapping.  Check for adjacency by | 
| 781 |  |              * subtracting one from b_min first. | 
| 782 |  |              */ | 
| 783 | 0 |             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; | 
| 784 | 0 |             if (memcmp(a_max, b_min, length) >= 0) | 
| 785 | 0 |                 return 0; | 
| 786 |  |  | 
| 787 |  |             /* | 
| 788 |  |              * Check for range that should be expressed as a prefix. | 
| 789 |  |              */ | 
| 790 | 0 |             if (a->type == IPAddressOrRange_addressRange && | 
| 791 | 0 |                 range_should_be_prefix(a_min, a_max, length) >= 0) | 
| 792 | 0 |                 return 0; | 
| 793 | 0 |         } | 
| 794 |  |  | 
| 795 |  |         /* | 
| 796 |  |          * Check range to see if it's inverted or should be a | 
| 797 |  |          * prefix. | 
| 798 |  |          */ | 
| 799 | 0 |         j = sk_IPAddressOrRange_num(aors) - 1; | 
| 800 | 0 |         { | 
| 801 | 0 |             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 
| 802 | 0 |             if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 
| 803 | 0 |                 if (!extract_min_max(a, a_min, a_max, length)) | 
| 804 | 0 |                     return 0; | 
| 805 | 0 |                 if (memcmp(a_min, a_max, length) > 0 || | 
| 806 | 0 |                     range_should_be_prefix(a_min, a_max, length) >= 0) | 
| 807 | 0 |                     return 0; | 
| 808 | 0 |             } | 
| 809 | 0 |         } | 
| 810 | 0 |     } | 
| 811 |  |  | 
| 812 |  |     /* | 
| 813 |  |      * If we made it through all that, we're happy. | 
| 814 |  |      */ | 
| 815 | 0 |     return 1; | 
| 816 | 0 | } | 
| 817 |  |  | 
| 818 |  | /* | 
| 819 |  |  * Whack an IPAddressOrRanges into canonical form. | 
| 820 |  |  */ | 
| 821 |  | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | 
| 822 |  |                                       const unsigned afi) | 
| 823 | 0 | { | 
| 824 | 0 |     int i, j, length = length_from_afi(afi); | 
| 825 |  |  | 
| 826 |  |     /* | 
| 827 |  |      * Sort the IPAddressOrRanges sequence. | 
| 828 |  |      */ | 
| 829 | 0 |     sk_IPAddressOrRange_sort(aors); | 
| 830 |  |  | 
| 831 |  |     /* | 
| 832 |  |      * Clean up representation issues, punt on duplicates or overlaps. | 
| 833 |  |      */ | 
| 834 | 0 |     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | 
| 835 | 0 |         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | 
| 836 | 0 |         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | 
| 837 | 0 |         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 
| 838 | 0 |         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 
| 839 |  | 
 | 
| 840 | 0 |         if (!extract_min_max(a, a_min, a_max, length) || | 
| 841 | 0 |             !extract_min_max(b, b_min, b_max, length)) | 
| 842 | 0 |             return 0; | 
| 843 |  |  | 
| 844 |  |         /* | 
| 845 |  |          * Punt inverted ranges. | 
| 846 |  |          */ | 
| 847 | 0 |         if (memcmp(a_min, a_max, length) > 0 || | 
| 848 | 0 |             memcmp(b_min, b_max, length) > 0) | 
| 849 | 0 |             return 0; | 
| 850 |  |  | 
| 851 |  |         /* | 
| 852 |  |          * Punt overlaps. | 
| 853 |  |          */ | 
| 854 | 0 |         if (memcmp(a_max, b_min, length) >= 0) | 
| 855 | 0 |             return 0; | 
| 856 |  |  | 
| 857 |  |         /* | 
| 858 |  |          * Merge if a and b are adjacent.  We check for | 
| 859 |  |          * adjacency by subtracting one from b_min first. | 
| 860 |  |          */ | 
| 861 | 0 |         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; | 
| 862 | 0 |         if (memcmp(a_max, b_min, length) == 0) { | 
| 863 | 0 |             IPAddressOrRange *merged; | 
| 864 | 0 |             if (!make_addressRange(&merged, a_min, b_max, length)) | 
| 865 | 0 |                 return 0; | 
| 866 | 0 |             (void)sk_IPAddressOrRange_set(aors, i, merged); | 
| 867 | 0 |             (void)sk_IPAddressOrRange_delete(aors, i + 1); | 
| 868 | 0 |             IPAddressOrRange_free(a); | 
| 869 | 0 |             IPAddressOrRange_free(b); | 
| 870 | 0 |             --i; | 
| 871 | 0 |             continue; | 
| 872 | 0 |         } | 
| 873 | 0 |     } | 
| 874 |  |  | 
| 875 |  |     /* | 
| 876 |  |      * Check for inverted final range. | 
| 877 |  |      */ | 
| 878 | 0 |     j = sk_IPAddressOrRange_num(aors) - 1; | 
| 879 | 0 |     { | 
| 880 | 0 |         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 
| 881 | 0 |         if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 
| 882 | 0 |             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 
| 883 | 0 |             if (!extract_min_max(a, a_min, a_max, length)) | 
| 884 | 0 |                 return 0; | 
| 885 | 0 |             if (memcmp(a_min, a_max, length) > 0) | 
| 886 | 0 |                 return 0; | 
| 887 | 0 |         } | 
| 888 | 0 |     } | 
| 889 |  |  | 
| 890 | 0 |     return 1; | 
| 891 | 0 | } | 
| 892 |  |  | 
| 893 |  | /* | 
| 894 |  |  * Whack an IPAddrBlocks extension into canonical form. | 
| 895 |  |  */ | 
| 896 |  | int X509v3_addr_canonize(IPAddrBlocks *addr) | 
| 897 | 0 | { | 
| 898 | 0 |     int i; | 
| 899 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 900 | 0 |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 901 |  | 
 | 
| 902 | 0 |         if (!IPAddressFamily_check_len(f)) | 
| 903 | 0 |             return 0; | 
| 904 |  |  | 
| 905 | 0 |         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 
| 906 | 0 |             !IPAddressOrRanges_canonize(f->ipAddressChoice-> | 
| 907 | 0 |                                         u.addressesOrRanges, | 
| 908 | 0 |                                         X509v3_addr_get_afi(f))) | 
| 909 | 0 |             return 0; | 
| 910 | 0 |     } | 
| 911 | 0 |     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | 
| 912 | 0 |     sk_IPAddressFamily_sort(addr); | 
| 913 | 0 |     if (!ossl_assert(X509v3_addr_is_canonical(addr))) | 
| 914 | 0 |         return 0; | 
| 915 | 0 |     return 1; | 
| 916 | 0 | } | 
| 917 |  |  | 
| 918 |  | /* | 
| 919 |  |  * v2i handler for the IPAddrBlocks extension. | 
| 920 |  |  */ | 
| 921 |  | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, | 
| 922 |  |                               struct v3_ext_ctx *ctx, | 
| 923 |  |                               STACK_OF(CONF_VALUE) *values) | 
| 924 | 0 | { | 
| 925 | 0 |     static const char v4addr_chars[] = "0123456789."; | 
| 926 | 0 |     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | 
| 927 | 0 |     IPAddrBlocks *addr = NULL; | 
| 928 | 0 |     char *s = NULL, *t; | 
| 929 | 0 |     int i; | 
| 930 |  | 
 | 
| 931 | 0 |     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | 
| 932 | 0 |         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 933 | 0 |         return NULL; | 
| 934 | 0 |     } | 
| 935 |  |  | 
| 936 | 0 |     for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | 
| 937 | 0 |         CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | 
| 938 | 0 |         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | 
| 939 | 0 |         unsigned afi, *safi = NULL, safi_; | 
| 940 | 0 |         const char *addr_chars = NULL; | 
| 941 | 0 |         int prefixlen, i1, i2, delim, length; | 
| 942 |  | 
 | 
| 943 | 0 |         if (!ossl_v3_name_cmp(val->name, "IPv4")) { | 
| 944 | 0 |             afi = IANA_AFI_IPV4; | 
| 945 | 0 |         } else if (!ossl_v3_name_cmp(val->name, "IPv6")) { | 
| 946 | 0 |             afi = IANA_AFI_IPV6; | 
| 947 | 0 |         } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) { | 
| 948 | 0 |             afi = IANA_AFI_IPV4; | 
| 949 | 0 |             safi = &safi_; | 
| 950 | 0 |         } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) { | 
| 951 | 0 |             afi = IANA_AFI_IPV6; | 
| 952 | 0 |             safi = &safi_; | 
| 953 | 0 |         } else { | 
| 954 | 0 |             ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR, | 
| 955 | 0 |                            "%s", val->name); | 
| 956 | 0 |             goto err; | 
| 957 | 0 |         } | 
| 958 |  |  | 
| 959 | 0 |         switch (afi) { | 
| 960 | 0 |         case IANA_AFI_IPV4: | 
| 961 | 0 |             addr_chars = v4addr_chars; | 
| 962 | 0 |             break; | 
| 963 | 0 |         case IANA_AFI_IPV6: | 
| 964 | 0 |             addr_chars = v6addr_chars; | 
| 965 | 0 |             break; | 
| 966 | 0 |         } | 
| 967 |  |  | 
| 968 | 0 |         length = length_from_afi(afi); | 
| 969 |  |  | 
| 970 |  |         /* | 
| 971 |  |          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate | 
| 972 |  |          * the other input values. | 
| 973 |  |          */ | 
| 974 | 0 |         if (safi != NULL) { | 
| 975 | 0 |             *safi = strtoul(val->value, &t, 0); | 
| 976 | 0 |             t += strspn(t, " \t"); | 
| 977 | 0 |             if (*safi > 0xFF || *t++ != ':') { | 
| 978 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI); | 
| 979 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 980 | 0 |                 goto err; | 
| 981 | 0 |             } | 
| 982 | 0 |             t += strspn(t, " \t"); | 
| 983 | 0 |             s = OPENSSL_strdup(t); | 
| 984 | 0 |         } else { | 
| 985 | 0 |             s = OPENSSL_strdup(val->value); | 
| 986 | 0 |         } | 
| 987 | 0 |         if (s == NULL) { | 
| 988 | 0 |             ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 989 | 0 |             goto err; | 
| 990 | 0 |         } | 
| 991 |  |  | 
| 992 |  |         /* | 
| 993 |  |          * Check for inheritance.  Not worth additional complexity to | 
| 994 |  |          * optimize this (seldom-used) case. | 
| 995 |  |          */ | 
| 996 | 0 |         if (strcmp(s, "inherit") == 0) { | 
| 997 | 0 |             if (!X509v3_addr_add_inherit(addr, afi, safi)) { | 
| 998 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE); | 
| 999 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 1000 | 0 |                 goto err; | 
| 1001 | 0 |             } | 
| 1002 | 0 |             OPENSSL_free(s); | 
| 1003 | 0 |             s = NULL; | 
| 1004 | 0 |             continue; | 
| 1005 | 0 |         } | 
| 1006 |  |  | 
| 1007 | 0 |         i1 = strspn(s, addr_chars); | 
| 1008 | 0 |         i2 = i1 + strspn(s + i1, " \t"); | 
| 1009 | 0 |         delim = s[i2++]; | 
| 1010 | 0 |         s[i1] = '\0'; | 
| 1011 |  | 
 | 
| 1012 | 0 |         if (ossl_a2i_ipadd(min, s) != length) { | 
| 1013 | 0 |             ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); | 
| 1014 | 0 |             X509V3_conf_add_error_name_value(val); | 
| 1015 | 0 |             goto err; | 
| 1016 | 0 |         } | 
| 1017 |  |  | 
| 1018 | 0 |         switch (delim) { | 
| 1019 | 0 |         case '/': | 
| 1020 | 0 |             prefixlen = (int)strtoul(s + i2, &t, 10); | 
| 1021 | 0 |             if (t == s + i2 | 
| 1022 | 0 |                     || *t != '\0' | 
| 1023 | 0 |                     || prefixlen > (length * 8) | 
| 1024 | 0 |                     || prefixlen < 0) { | 
| 1025 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1026 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 1027 | 0 |                 goto err; | 
| 1028 | 0 |             } | 
| 1029 | 0 |             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | 
| 1030 | 0 |                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 1031 | 0 |                 goto err; | 
| 1032 | 0 |             } | 
| 1033 | 0 |             break; | 
| 1034 | 0 |         case '-': | 
| 1035 | 0 |             i1 = i2 + strspn(s + i2, " \t"); | 
| 1036 | 0 |             i2 = i1 + strspn(s + i1, addr_chars); | 
| 1037 | 0 |             if (i1 == i2 || s[i2] != '\0') { | 
| 1038 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1039 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 1040 | 0 |                 goto err; | 
| 1041 | 0 |             } | 
| 1042 | 0 |             if (ossl_a2i_ipadd(max, s + i1) != length) { | 
| 1043 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); | 
| 1044 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 1045 | 0 |                 goto err; | 
| 1046 | 0 |             } | 
| 1047 | 0 |             if (memcmp(min, max, length_from_afi(afi)) > 0) { | 
| 1048 | 0 |                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1049 | 0 |                 X509V3_conf_add_error_name_value(val); | 
| 1050 | 0 |                 goto err; | 
| 1051 | 0 |             } | 
| 1052 | 0 |             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { | 
| 1053 | 0 |                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 1054 | 0 |                 goto err; | 
| 1055 | 0 |             } | 
| 1056 | 0 |             break; | 
| 1057 | 0 |         case '\0': | 
| 1058 | 0 |             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | 
| 1059 | 0 |                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 1060 | 0 |                 goto err; | 
| 1061 | 0 |             } | 
| 1062 | 0 |             break; | 
| 1063 | 0 |         default: | 
| 1064 | 0 |             ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1065 | 0 |             X509V3_conf_add_error_name_value(val); | 
| 1066 | 0 |             goto err; | 
| 1067 | 0 |         } | 
| 1068 |  |  | 
| 1069 | 0 |         OPENSSL_free(s); | 
| 1070 | 0 |         s = NULL; | 
| 1071 | 0 |     } | 
| 1072 |  |  | 
| 1073 |  |     /* | 
| 1074 |  |      * Canonize the result, then we're done. | 
| 1075 |  |      */ | 
| 1076 | 0 |     if (!X509v3_addr_canonize(addr)) | 
| 1077 | 0 |         goto err; | 
| 1078 | 0 |     return addr; | 
| 1079 |  |  | 
| 1080 | 0 |  err: | 
| 1081 | 0 |     OPENSSL_free(s); | 
| 1082 | 0 |     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | 
| 1083 | 0 |     return NULL; | 
| 1084 | 0 | } | 
| 1085 |  |  | 
| 1086 |  | /* | 
| 1087 |  |  * OpenSSL dispatch | 
| 1088 |  |  */ | 
| 1089 |  | const X509V3_EXT_METHOD ossl_v3_addr = { | 
| 1090 |  |     NID_sbgp_ipAddrBlock,       /* nid */ | 
| 1091 |  |     0,                          /* flags */ | 
| 1092 |  |     ASN1_ITEM_ref(IPAddrBlocks), /* template */ | 
| 1093 |  |     0, 0, 0, 0,                 /* old functions, ignored */ | 
| 1094 |  |     0,                          /* i2s */ | 
| 1095 |  |     0,                          /* s2i */ | 
| 1096 |  |     0,                          /* i2v */ | 
| 1097 |  |     v2i_IPAddrBlocks,           /* v2i */ | 
| 1098 |  |     i2r_IPAddrBlocks,           /* i2r */ | 
| 1099 |  |     0,                          /* r2i */ | 
| 1100 |  |     NULL                        /* extension-specific data */ | 
| 1101 |  | }; | 
| 1102 |  |  | 
| 1103 |  | /* | 
| 1104 |  |  * Figure out whether extension sues inheritance. | 
| 1105 |  |  */ | 
| 1106 |  | int X509v3_addr_inherits(IPAddrBlocks *addr) | 
| 1107 | 0 | { | 
| 1108 | 0 |     int i; | 
| 1109 | 0 |     if (addr == NULL) | 
| 1110 | 0 |         return 0; | 
| 1111 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 1112 | 0 |         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 1113 | 0 |         if (f->ipAddressChoice->type == IPAddressChoice_inherit) | 
| 1114 | 0 |             return 1; | 
| 1115 | 0 |     } | 
| 1116 | 0 |     return 0; | 
| 1117 | 0 | } | 
| 1118 |  |  | 
| 1119 |  | /* | 
| 1120 |  |  * Figure out whether parent contains child. | 
| 1121 |  |  */ | 
| 1122 |  | static int addr_contains(IPAddressOrRanges *parent, | 
| 1123 |  |                          IPAddressOrRanges *child, int length) | 
| 1124 | 0 | { | 
| 1125 | 0 |     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | 
| 1126 | 0 |     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | 
| 1127 | 0 |     int p, c; | 
| 1128 |  | 
 | 
| 1129 | 0 |     if (child == NULL || parent == child) | 
| 1130 | 0 |         return 1; | 
| 1131 | 0 |     if (parent == NULL) | 
| 1132 | 0 |         return 0; | 
| 1133 |  |  | 
| 1134 | 0 |     p = 0; | 
| 1135 | 0 |     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | 
| 1136 | 0 |         if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | 
| 1137 | 0 |                              c_min, c_max, length)) | 
| 1138 | 0 |             return 0; | 
| 1139 | 0 |         for (;; p++) { | 
| 1140 | 0 |             if (p >= sk_IPAddressOrRange_num(parent)) | 
| 1141 | 0 |                 return 0; | 
| 1142 | 0 |             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), | 
| 1143 | 0 |                                  p_min, p_max, length)) | 
| 1144 | 0 |                 return 0; | 
| 1145 | 0 |             if (memcmp(p_max, c_max, length) < 0) | 
| 1146 | 0 |                 continue; | 
| 1147 | 0 |             if (memcmp(p_min, c_min, length) > 0) | 
| 1148 | 0 |                 return 0; | 
| 1149 | 0 |             break; | 
| 1150 | 0 |         } | 
| 1151 | 0 |     } | 
| 1152 |  |  | 
| 1153 | 0 |     return 1; | 
| 1154 | 0 | } | 
| 1155 |  |  | 
| 1156 |  | /* | 
| 1157 |  |  * Test whether a is a subset of b. | 
| 1158 |  |  */ | 
| 1159 |  | int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | 
| 1160 | 0 | { | 
| 1161 | 0 |     int i; | 
| 1162 | 0 |     if (a == NULL || a == b) | 
| 1163 | 0 |         return 1; | 
| 1164 | 0 |     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) | 
| 1165 | 0 |         return 0; | 
| 1166 | 0 |     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | 
| 1167 | 0 |     for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | 
| 1168 | 0 |         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | 
| 1169 | 0 |         int j = sk_IPAddressFamily_find(b, fa); | 
| 1170 | 0 |         IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); | 
| 1171 |  | 
 | 
| 1172 | 0 |         if (fb == NULL) | 
| 1173 | 0 |             return 0; | 
| 1174 | 0 |         if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb)) | 
| 1175 | 0 |             return 0; | 
| 1176 | 0 |         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | 
| 1177 | 0 |                            fa->ipAddressChoice->u.addressesOrRanges, | 
| 1178 | 0 |                            length_from_afi(X509v3_addr_get_afi(fb)))) | 
| 1179 | 0 |             return 0; | 
| 1180 | 0 |     } | 
| 1181 | 0 |     return 1; | 
| 1182 | 0 | } | 
| 1183 |  |  | 
| 1184 |  | /* | 
| 1185 |  |  * Validation error handling via callback. | 
| 1186 |  |  */ | 
| 1187 |  | # define validation_err(_err_)            \ | 
| 1188 | 0 |     do {                                  \ | 
| 1189 | 0 |         if (ctx != NULL) {                \ | 
| 1190 | 0 |             ctx->error = _err_;           \ | 
| 1191 | 0 |             ctx->error_depth = i;         \ | 
| 1192 | 0 |             ctx->current_cert = x;        \ | 
| 1193 | 0 |             rv = ctx->verify_cb(0, ctx);  \ | 
| 1194 | 0 |         } else {                          \ | 
| 1195 | 0 |             rv = 0;                       \ | 
| 1196 | 0 |         }                                 \ | 
| 1197 | 0 |         if (rv == 0)                      \ | 
| 1198 | 0 |             goto done;                    \ | 
| 1199 | 0 |     } while (0) | 
| 1200 |  |  | 
| 1201 |  | /* | 
| 1202 |  |  * Core code for RFC 3779 2.3 path validation. | 
| 1203 |  |  * | 
| 1204 |  |  * Returns 1 for success, 0 on error. | 
| 1205 |  |  * | 
| 1206 |  |  * When returning 0, ctx->error MUST be set to an appropriate value other than | 
| 1207 |  |  * X509_V_OK. | 
| 1208 |  |  */ | 
| 1209 |  | static int addr_validate_path_internal(X509_STORE_CTX *ctx, | 
| 1210 |  |                                        STACK_OF(X509) *chain, | 
| 1211 |  |                                        IPAddrBlocks *ext) | 
| 1212 | 0 | { | 
| 1213 | 0 |     IPAddrBlocks *child = NULL; | 
| 1214 | 0 |     int i, j, ret = 0, rv; | 
| 1215 | 0 |     X509 *x; | 
| 1216 |  | 
 | 
| 1217 | 0 |     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) | 
| 1218 | 0 |             || !ossl_assert(ctx != NULL || ext != NULL) | 
| 1219 | 0 |             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { | 
| 1220 | 0 |         if (ctx != NULL) | 
| 1221 | 0 |             ctx->error = X509_V_ERR_UNSPECIFIED; | 
| 1222 | 0 |         return 0; | 
| 1223 | 0 |     } | 
| 1224 |  |  | 
| 1225 |  |     /* | 
| 1226 |  |      * Figure out where to start.  If we don't have an extension to | 
| 1227 |  |      * check, we're done.  Otherwise, check canonical form and | 
| 1228 |  |      * set up for walking up the chain. | 
| 1229 |  |      */ | 
| 1230 | 0 |     if (ext != NULL) { | 
| 1231 | 0 |         i = -1; | 
| 1232 | 0 |         x = NULL; | 
| 1233 | 0 |     } else { | 
| 1234 | 0 |         i = 0; | 
| 1235 | 0 |         x = sk_X509_value(chain, i); | 
| 1236 | 0 |         if ((ext = x->rfc3779_addr) == NULL) | 
| 1237 | 0 |             return 1; /* Return success */ | 
| 1238 | 0 |     } | 
| 1239 | 0 |     if (!X509v3_addr_is_canonical(ext)) | 
| 1240 | 0 |         validation_err(X509_V_ERR_INVALID_EXTENSION); | 
| 1241 | 0 |     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | 
| 1242 | 0 |     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | 
| 1243 | 0 |         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE); | 
| 1244 | 0 |         if (ctx != NULL) | 
| 1245 | 0 |             ctx->error = X509_V_ERR_OUT_OF_MEM; | 
| 1246 | 0 |         goto done; | 
| 1247 | 0 |     } | 
| 1248 |  |  | 
| 1249 |  |     /* | 
| 1250 |  |      * Now walk up the chain.  No cert may list resources that its | 
| 1251 |  |      * parent doesn't list. | 
| 1252 |  |      */ | 
| 1253 | 0 |     for (i++; i < sk_X509_num(chain); i++) { | 
| 1254 | 0 |         x = sk_X509_value(chain, i); | 
| 1255 | 0 |         if (!X509v3_addr_is_canonical(x->rfc3779_addr)) | 
| 1256 | 0 |             validation_err(X509_V_ERR_INVALID_EXTENSION); | 
| 1257 | 0 |         if (x->rfc3779_addr == NULL) { | 
| 1258 | 0 |             for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
| 1259 | 0 |                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | 
| 1260 |  | 
 | 
| 1261 | 0 |                 if (!IPAddressFamily_check_len(fc)) | 
| 1262 | 0 |                     goto done; | 
| 1263 |  |  | 
| 1264 | 0 |                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | 
| 1265 | 0 |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 
| 1266 | 0 |                     break; | 
| 1267 | 0 |                 } | 
| 1268 | 0 |             } | 
| 1269 | 0 |             continue; | 
| 1270 | 0 |         } | 
| 1271 | 0 |         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, | 
| 1272 | 0 |                                               IPAddressFamily_cmp); | 
| 1273 | 0 |         for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
| 1274 | 0 |             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | 
| 1275 | 0 |             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | 
| 1276 | 0 |             IPAddressFamily *fp = | 
| 1277 | 0 |                 sk_IPAddressFamily_value(x->rfc3779_addr, k); | 
| 1278 |  | 
 | 
| 1279 | 0 |             if (fp == NULL) { | 
| 1280 | 0 |                 if (fc->ipAddressChoice->type == | 
| 1281 | 0 |                     IPAddressChoice_addressesOrRanges) { | 
| 1282 | 0 |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 
| 1283 | 0 |                     break; | 
| 1284 | 0 |                 } | 
| 1285 | 0 |                 continue; | 
| 1286 | 0 |             } | 
| 1287 |  |  | 
| 1288 | 0 |             if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp)) | 
| 1289 | 0 |                 goto done; | 
| 1290 |  |  | 
| 1291 | 0 |             if (fp->ipAddressChoice->type == | 
| 1292 | 0 |                 IPAddressChoice_addressesOrRanges) { | 
| 1293 | 0 |                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit | 
| 1294 | 0 |                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | 
| 1295 | 0 |                                      fc->ipAddressChoice->u.addressesOrRanges, | 
| 1296 | 0 |                                      length_from_afi(X509v3_addr_get_afi(fc)))) | 
| 1297 | 0 |                     (void)sk_IPAddressFamily_set(child, j, fp); | 
| 1298 | 0 |                 else | 
| 1299 | 0 |                     validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 
| 1300 | 0 |             } | 
| 1301 | 0 |         } | 
| 1302 | 0 |     } | 
| 1303 |  |  | 
| 1304 |  |     /* | 
| 1305 |  |      * Trust anchor can't inherit. | 
| 1306 |  |      */ | 
| 1307 | 0 |     if (x->rfc3779_addr != NULL) { | 
| 1308 | 0 |         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | 
| 1309 | 0 |             IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | 
| 1310 |  | 
 | 
| 1311 | 0 |             if (!IPAddressFamily_check_len(fp)) | 
| 1312 | 0 |                 goto done; | 
| 1313 |  |  | 
| 1314 | 0 |             if (fp->ipAddressChoice->type == IPAddressChoice_inherit | 
| 1315 | 0 |                 && sk_IPAddressFamily_find(child, fp) >= 0) | 
| 1316 | 0 |                 validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 
| 1317 | 0 |         } | 
| 1318 | 0 |     } | 
| 1319 | 0 |     ret = 1; | 
| 1320 | 0 |  done: | 
| 1321 | 0 |     sk_IPAddressFamily_free(child); | 
| 1322 | 0 |     return ret; | 
| 1323 | 0 | } | 
| 1324 |  |  | 
| 1325 |  | #undef validation_err | 
| 1326 |  |  | 
| 1327 |  | /* | 
| 1328 |  |  * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | 
| 1329 |  |  */ | 
| 1330 |  | int X509v3_addr_validate_path(X509_STORE_CTX *ctx) | 
| 1331 | 0 | { | 
| 1332 | 0 |     if (ctx->chain == NULL | 
| 1333 | 0 |             || sk_X509_num(ctx->chain) == 0 | 
| 1334 | 0 |             || ctx->verify_cb == NULL) { | 
| 1335 | 0 |         ctx->error = X509_V_ERR_UNSPECIFIED; | 
| 1336 | 0 |         return 0; | 
| 1337 | 0 |     } | 
| 1338 | 0 |     return addr_validate_path_internal(ctx, ctx->chain, NULL); | 
| 1339 | 0 | } | 
| 1340 |  |  | 
| 1341 |  | /* | 
| 1342 |  |  * RFC 3779 2.3 path validation of an extension. | 
| 1343 |  |  * Test whether chain covers extension. | 
| 1344 |  |  */ | 
| 1345 |  | int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, | 
| 1346 |  |                                   IPAddrBlocks *ext, int allow_inheritance) | 
| 1347 | 0 | { | 
| 1348 | 0 |     if (ext == NULL) | 
| 1349 | 0 |         return 1; | 
| 1350 | 0 |     if (chain == NULL || sk_X509_num(chain) == 0) | 
| 1351 | 0 |         return 0; | 
| 1352 | 0 |     if (!allow_inheritance && X509v3_addr_inherits(ext)) | 
| 1353 | 0 |         return 0; | 
| 1354 | 0 |     return addr_validate_path_internal(NULL, chain, ext); | 
| 1355 | 0 | } | 
| 1356 |  |  | 
| 1357 |  | #endif                          /* OPENSSL_NO_RFC3779 */ |