/src/openssl30/ssl/s3_cbc.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* | 
| 11 |  |  * This file has no dependencies on the rest of libssl because it is shared | 
| 12 |  |  * with the providers. It contains functions for low level MAC calculations. | 
| 13 |  |  * Responsibility for this lies with the HMAC implementation in the | 
| 14 |  |  * providers. However there are legacy code paths in libssl which also need to | 
| 15 |  |  * do this. In time those legacy code paths can be removed and this file can be | 
| 16 |  |  * moved out of libssl. | 
| 17 |  |  */ | 
| 18 |  |  | 
| 19 |  |  | 
| 20 |  | /* | 
| 21 |  |  * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for | 
| 22 |  |  * internal use. | 
| 23 |  |  */ | 
| 24 |  | #include "internal/deprecated.h" | 
| 25 |  |  | 
| 26 |  | #include "internal/constant_time.h" | 
| 27 |  | #include "internal/cryptlib.h" | 
| 28 |  |  | 
| 29 |  | #include <openssl/evp.h> | 
| 30 |  | #ifndef FIPS_MODULE | 
| 31 |  | # include <openssl/md5.h> | 
| 32 |  | #endif | 
| 33 |  | #include <openssl/sha.h> | 
| 34 |  |  | 
| 35 |  | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx); | 
| 36 |  | int ssl3_cbc_digest_record(const EVP_MD *md, | 
| 37 |  |                            unsigned char *md_out, | 
| 38 |  |                            size_t *md_out_size, | 
| 39 |  |                            const unsigned char *header, | 
| 40 |  |                            const unsigned char *data, | 
| 41 |  |                            size_t data_size, | 
| 42 |  |                            size_t data_plus_mac_plus_padding_size, | 
| 43 |  |                            const unsigned char *mac_secret, | 
| 44 |  |                            size_t mac_secret_length, char is_sslv3); | 
| 45 |  |  | 
| 46 | 0 | # define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ | 
| 47 | 0 |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \ | 
| 48 | 0 |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ | 
| 49 | 0 |                          *((c)++)=(unsigned char)(((l)    )&0xff)) | 
| 50 |  |  | 
| 51 |  | # define l2n6(l,c)       (*((c)++)=(unsigned char)(((l)>>40)&0xff), \ | 
| 52 |  |                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \ | 
| 53 |  |                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \ | 
| 54 |  |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \ | 
| 55 |  |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ | 
| 56 |  |                          *((c)++)=(unsigned char)(((l)    )&0xff)) | 
| 57 |  |  | 
| 58 | 0 | # define l2n8(l,c)       (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ | 
| 59 | 0 |                          *((c)++)=(unsigned char)(((l)>>48)&0xff), \ | 
| 60 | 0 |                          *((c)++)=(unsigned char)(((l)>>40)&0xff), \ | 
| 61 | 0 |                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \ | 
| 62 | 0 |                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \ | 
| 63 | 0 |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \ | 
| 64 | 0 |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ | 
| 65 | 0 |                          *((c)++)=(unsigned char)(((l)    )&0xff)) | 
| 66 |  |  | 
| 67 |  | /* | 
| 68 |  |  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's | 
| 69 |  |  * length field. (SHA-384/512 have 128-bit length.) | 
| 70 |  |  */ | 
| 71 |  | #define MAX_HASH_BIT_COUNT_BYTES 16 | 
| 72 |  |  | 
| 73 |  | /* | 
| 74 |  |  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. | 
| 75 |  |  * Currently SHA-384/512 has a 128-byte block size and that's the largest | 
| 76 |  |  * supported by TLS.) | 
| 77 |  |  */ | 
| 78 |  | #define MAX_HASH_BLOCK_SIZE 128 | 
| 79 |  |  | 
| 80 |  | #ifndef FIPS_MODULE | 
| 81 |  | /* | 
| 82 |  |  * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in | 
| 83 |  |  * little-endian order. The value of p is advanced by four. | 
| 84 |  |  */ | 
| 85 |  | # define u32toLE(n, p) \ | 
| 86 | 0 |          (*((p)++)=(unsigned char)(n), \ | 
| 87 | 0 |           *((p)++)=(unsigned char)(n>>8), \ | 
| 88 | 0 |           *((p)++)=(unsigned char)(n>>16), \ | 
| 89 | 0 |           *((p)++)=(unsigned char)(n>>24)) | 
| 90 |  |  | 
| 91 |  | /* | 
| 92 |  |  * These functions serialize the state of a hash and thus perform the | 
| 93 |  |  * standard "final" operation without adding the padding and length that such | 
| 94 |  |  * a function typically does. | 
| 95 |  |  */ | 
| 96 |  | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) | 
| 97 | 0 | { | 
| 98 | 0 |     MD5_CTX *md5 = ctx; | 
| 99 | 0 |     u32toLE(md5->A, md_out); | 
| 100 | 0 |     u32toLE(md5->B, md_out); | 
| 101 | 0 |     u32toLE(md5->C, md_out); | 
| 102 | 0 |     u32toLE(md5->D, md_out); | 
| 103 | 0 | } | 
| 104 |  | #endif /* FIPS_MODULE */ | 
| 105 |  |  | 
| 106 |  | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) | 
| 107 | 0 | { | 
| 108 | 0 |     SHA_CTX *sha1 = ctx; | 
| 109 | 0 |     l2n(sha1->h0, md_out); | 
| 110 | 0 |     l2n(sha1->h1, md_out); | 
| 111 | 0 |     l2n(sha1->h2, md_out); | 
| 112 | 0 |     l2n(sha1->h3, md_out); | 
| 113 | 0 |     l2n(sha1->h4, md_out); | 
| 114 | 0 | } | 
| 115 |  |  | 
| 116 |  | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) | 
| 117 | 0 | { | 
| 118 | 0 |     SHA256_CTX *sha256 = ctx; | 
| 119 | 0 |     unsigned i; | 
| 120 |  | 
 | 
| 121 | 0 |     for (i = 0; i < 8; i++) { | 
| 122 | 0 |         l2n(sha256->h[i], md_out); | 
| 123 | 0 |     } | 
| 124 | 0 | } | 
| 125 |  |  | 
| 126 |  | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) | 
| 127 | 0 | { | 
| 128 | 0 |     SHA512_CTX *sha512 = ctx; | 
| 129 | 0 |     unsigned i; | 
| 130 |  | 
 | 
| 131 | 0 |     for (i = 0; i < 8; i++) { | 
| 132 | 0 |         l2n8(sha512->h[i], md_out); | 
| 133 | 0 |     } | 
| 134 | 0 | } | 
| 135 |  |  | 
| 136 |  | #undef  LARGEST_DIGEST_CTX | 
| 137 |  | #define LARGEST_DIGEST_CTX SHA512_CTX | 
| 138 |  |  | 
| 139 |  | /*- | 
| 140 |  |  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS | 
| 141 |  |  * record. | 
| 142 |  |  * | 
| 143 |  |  *   ctx: the EVP_MD_CTX from which we take the hash function. | 
| 144 |  |  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. | 
| 145 |  |  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. | 
| 146 |  |  *   md_out_size: if non-NULL, the number of output bytes is written here. | 
| 147 |  |  *   header: the 13-byte, TLS record header. | 
| 148 |  |  *   data: the record data itself, less any preceding explicit IV. | 
| 149 |  |  *   data_size: the secret, reported length of the data once the MAC and padding | 
| 150 |  |  *              has been removed. | 
| 151 |  |  *   data_plus_mac_plus_padding_size: the public length of the whole | 
| 152 |  |  *     record, including MAC and padding. | 
| 153 |  |  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. | 
| 154 |  |  * | 
| 155 |  |  * On entry: we know that data is data_plus_mac_plus_padding_size in length | 
| 156 |  |  * Returns 1 on success or 0 on error | 
| 157 |  |  */ | 
| 158 |  | int ssl3_cbc_digest_record(const EVP_MD *md, | 
| 159 |  |                            unsigned char *md_out, | 
| 160 |  |                            size_t *md_out_size, | 
| 161 |  |                            const unsigned char *header, | 
| 162 |  |                            const unsigned char *data, | 
| 163 |  |                            size_t data_size, | 
| 164 |  |                            size_t data_plus_mac_plus_padding_size, | 
| 165 |  |                            const unsigned char *mac_secret, | 
| 166 |  |                            size_t mac_secret_length, char is_sslv3) | 
| 167 | 0 | { | 
| 168 | 0 |     union { | 
| 169 | 0 |         OSSL_UNION_ALIGN; | 
| 170 | 0 |         unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; | 
| 171 | 0 |     } md_state; | 
| 172 | 0 |     void (*md_final_raw) (void *ctx, unsigned char *md_out); | 
| 173 | 0 |     void (*md_transform) (void *ctx, const unsigned char *block); | 
| 174 | 0 |     size_t md_size, md_block_size = 64; | 
| 175 | 0 |     size_t sslv3_pad_length = 40, header_length, variance_blocks, | 
| 176 | 0 |         len, max_mac_bytes, num_blocks, | 
| 177 | 0 |         num_starting_blocks, k, mac_end_offset, c, index_a, index_b; | 
| 178 | 0 |     size_t bits;          /* at most 18 bits */ | 
| 179 | 0 |     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; | 
| 180 |  |     /* hmac_pad is the masked HMAC key. */ | 
| 181 | 0 |     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; | 
| 182 | 0 |     unsigned char first_block[MAX_HASH_BLOCK_SIZE]; | 
| 183 | 0 |     unsigned char mac_out[EVP_MAX_MD_SIZE]; | 
| 184 | 0 |     size_t i, j; | 
| 185 | 0 |     unsigned md_out_size_u; | 
| 186 | 0 |     EVP_MD_CTX *md_ctx = NULL; | 
| 187 |  |     /* | 
| 188 |  |      * mdLengthSize is the number of bytes in the length field that | 
| 189 |  |      * terminates * the hash. | 
| 190 |  |      */ | 
| 191 | 0 |     size_t md_length_size = 8; | 
| 192 | 0 |     char length_is_big_endian = 1; | 
| 193 | 0 |     int ret = 0; | 
| 194 |  |  | 
| 195 |  |     /* | 
| 196 |  |      * This is a, hopefully redundant, check that allows us to forget about | 
| 197 |  |      * many possible overflows later in this function. | 
| 198 |  |      */ | 
| 199 | 0 |     if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024)) | 
| 200 | 0 |         return 0; | 
| 201 |  |  | 
| 202 | 0 |     if (EVP_MD_is_a(md, "MD5")) { | 
| 203 |  | #ifdef FIPS_MODULE | 
| 204 |  |         return 0; | 
| 205 |  | #else | 
| 206 | 0 |         if (MD5_Init((MD5_CTX *)md_state.c) <= 0) | 
| 207 | 0 |             return 0; | 
| 208 | 0 |         md_final_raw = tls1_md5_final_raw; | 
| 209 | 0 |         md_transform = | 
| 210 | 0 |             (void (*)(void *ctx, const unsigned char *block))MD5_Transform; | 
| 211 | 0 |         md_size = 16; | 
| 212 | 0 |         sslv3_pad_length = 48; | 
| 213 | 0 |         length_is_big_endian = 0; | 
| 214 | 0 | #endif | 
| 215 | 0 |     } else if (EVP_MD_is_a(md, "SHA1")) { | 
| 216 | 0 |         if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) | 
| 217 | 0 |             return 0; | 
| 218 | 0 |         md_final_raw = tls1_sha1_final_raw; | 
| 219 | 0 |         md_transform = | 
| 220 | 0 |             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform; | 
| 221 | 0 |         md_size = 20; | 
| 222 | 0 |     } else if (EVP_MD_is_a(md, "SHA2-224")) { | 
| 223 | 0 |         if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) | 
| 224 | 0 |             return 0; | 
| 225 | 0 |         md_final_raw = tls1_sha256_final_raw; | 
| 226 | 0 |         md_transform = | 
| 227 | 0 |             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; | 
| 228 | 0 |         md_size = 224 / 8; | 
| 229 | 0 |      } else if (EVP_MD_is_a(md, "SHA2-256")) { | 
| 230 | 0 |         if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) | 
| 231 | 0 |             return 0; | 
| 232 | 0 |         md_final_raw = tls1_sha256_final_raw; | 
| 233 | 0 |         md_transform = | 
| 234 | 0 |             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform; | 
| 235 | 0 |         md_size = 32; | 
| 236 | 0 |      } else if (EVP_MD_is_a(md, "SHA2-384")) { | 
| 237 | 0 |         if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) | 
| 238 | 0 |             return 0; | 
| 239 | 0 |         md_final_raw = tls1_sha512_final_raw; | 
| 240 | 0 |         md_transform = | 
| 241 | 0 |             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; | 
| 242 | 0 |         md_size = 384 / 8; | 
| 243 | 0 |         md_block_size = 128; | 
| 244 | 0 |         md_length_size = 16; | 
| 245 | 0 |     } else if (EVP_MD_is_a(md, "SHA2-512")) { | 
| 246 | 0 |         if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) | 
| 247 | 0 |             return 0; | 
| 248 | 0 |         md_final_raw = tls1_sha512_final_raw; | 
| 249 | 0 |         md_transform = | 
| 250 | 0 |             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform; | 
| 251 | 0 |         md_size = 64; | 
| 252 | 0 |         md_block_size = 128; | 
| 253 | 0 |         md_length_size = 16; | 
| 254 | 0 |     } else { | 
| 255 |  |         /* | 
| 256 |  |          * ssl3_cbc_record_digest_supported should have been called first to | 
| 257 |  |          * check that the hash function is supported. | 
| 258 |  |          */ | 
| 259 | 0 |         if (md_out_size != NULL) | 
| 260 | 0 |             *md_out_size = 0; | 
| 261 | 0 |         return ossl_assert(0); | 
| 262 | 0 |     } | 
| 263 |  |  | 
| 264 | 0 |     if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES) | 
| 265 | 0 |             || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE) | 
| 266 | 0 |             || !ossl_assert(md_size <= EVP_MAX_MD_SIZE)) | 
| 267 | 0 |         return 0; | 
| 268 |  |  | 
| 269 | 0 |     header_length = 13; | 
| 270 | 0 |     if (is_sslv3) { | 
| 271 | 0 |         header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence | 
| 272 | 0 |                                                                   * number */  + | 
| 273 | 0 |             1 /* record type */  + | 
| 274 | 0 |             2 /* record length */ ; | 
| 275 | 0 |     } | 
| 276 |  |  | 
| 277 |  |     /* | 
| 278 |  |      * variance_blocks is the number of blocks of the hash that we have to | 
| 279 |  |      * calculate in constant time because they could be altered by the | 
| 280 |  |      * padding value. In SSLv3, the padding must be minimal so the end of | 
| 281 |  |      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively | 
| 282 |  |      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes | 
| 283 |  |      * of hash termination (0x80 + 64-bit length) don't fit in the final | 
| 284 |  |      * block, we say that the final two blocks can vary based on the padding. | 
| 285 |  |      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not | 
| 286 |  |      * required to be minimal. Therefore we say that the final |variance_blocks| | 
| 287 |  |      * blocks can | 
| 288 |  |      * vary based on the padding. Later in the function, if the message is | 
| 289 |  |      * short and there obviously cannot be this many blocks then | 
| 290 |  |      * variance_blocks can be reduced. | 
| 291 |  |      */ | 
| 292 | 0 |     variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1); | 
| 293 |  |     /* | 
| 294 |  |      * From now on we're dealing with the MAC, which conceptually has 13 | 
| 295 |  |      * bytes of `header' before the start of the data (TLS) or 71/75 bytes | 
| 296 |  |      * (SSLv3) | 
| 297 |  |      */ | 
| 298 | 0 |     len = data_plus_mac_plus_padding_size + header_length; | 
| 299 |  |     /* | 
| 300 |  |      * max_mac_bytes contains the maximum bytes of bytes in the MAC, | 
| 301 |  |      * including * |header|, assuming that there's no padding. | 
| 302 |  |      */ | 
| 303 | 0 |     max_mac_bytes = len - md_size - 1; | 
| 304 |  |     /* num_blocks is the maximum number of hash blocks. */ | 
| 305 | 0 |     num_blocks = | 
| 306 | 0 |         (max_mac_bytes + 1 + md_length_size + md_block_size - | 
| 307 | 0 |          1) / md_block_size; | 
| 308 |  |     /* | 
| 309 |  |      * In order to calculate the MAC in constant time we have to handle the | 
| 310 |  |      * final blocks specially because the padding value could cause the end | 
| 311 |  |      * to appear somewhere in the final |variance_blocks| blocks and we can't | 
| 312 |  |      * leak where. However, |num_starting_blocks| worth of data can be hashed | 
| 313 |  |      * right away because no padding value can affect whether they are | 
| 314 |  |      * plaintext. | 
| 315 |  |      */ | 
| 316 | 0 |     num_starting_blocks = 0; | 
| 317 |  |     /* | 
| 318 |  |      * k is the starting byte offset into the conceptual header||data where | 
| 319 |  |      * we start processing. | 
| 320 |  |      */ | 
| 321 | 0 |     k = 0; | 
| 322 |  |     /* | 
| 323 |  |      * mac_end_offset is the index just past the end of the data to be MACed. | 
| 324 |  |      */ | 
| 325 | 0 |     mac_end_offset = data_size + header_length; | 
| 326 |  |     /* | 
| 327 |  |      * c is the index of the 0x80 byte in the final hash block that contains | 
| 328 |  |      * application data. | 
| 329 |  |      */ | 
| 330 | 0 |     c = mac_end_offset % md_block_size; | 
| 331 |  |     /* | 
| 332 |  |      * index_a is the hash block number that contains the 0x80 terminating | 
| 333 |  |      * value. | 
| 334 |  |      */ | 
| 335 | 0 |     index_a = mac_end_offset / md_block_size; | 
| 336 |  |     /* | 
| 337 |  |      * index_b is the hash block number that contains the 64-bit hash length, | 
| 338 |  |      * in bits. | 
| 339 |  |      */ | 
| 340 | 0 |     index_b = (mac_end_offset + md_length_size) / md_block_size; | 
| 341 |  |     /* | 
| 342 |  |      * bits is the hash-length in bits. It includes the additional hash block | 
| 343 |  |      * for the masked HMAC key, or whole of |header| in the case of SSLv3. | 
| 344 |  |      */ | 
| 345 |  |  | 
| 346 |  |     /* | 
| 347 |  |      * For SSLv3, if we're going to have any starting blocks then we need at | 
| 348 |  |      * least two because the header is larger than a single block. | 
| 349 |  |      */ | 
| 350 | 0 |     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { | 
| 351 | 0 |         num_starting_blocks = num_blocks - variance_blocks; | 
| 352 | 0 |         k = md_block_size * num_starting_blocks; | 
| 353 | 0 |     } | 
| 354 |  | 
 | 
| 355 | 0 |     bits = 8 * mac_end_offset; | 
| 356 | 0 |     if (!is_sslv3) { | 
| 357 |  |         /* | 
| 358 |  |          * Compute the initial HMAC block. For SSLv3, the padding and secret | 
| 359 |  |          * bytes are included in |header| because they take more than a | 
| 360 |  |          * single block. | 
| 361 |  |          */ | 
| 362 | 0 |         bits += 8 * md_block_size; | 
| 363 | 0 |         memset(hmac_pad, 0, md_block_size); | 
| 364 | 0 |         if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad))) | 
| 365 | 0 |             return 0; | 
| 366 | 0 |         memcpy(hmac_pad, mac_secret, mac_secret_length); | 
| 367 | 0 |         for (i = 0; i < md_block_size; i++) | 
| 368 | 0 |             hmac_pad[i] ^= 0x36; | 
| 369 |  | 
 | 
| 370 | 0 |         md_transform(md_state.c, hmac_pad); | 
| 371 | 0 |     } | 
| 372 |  |  | 
| 373 | 0 |     if (length_is_big_endian) { | 
| 374 | 0 |         memset(length_bytes, 0, md_length_size - 4); | 
| 375 | 0 |         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); | 
| 376 | 0 |         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); | 
| 377 | 0 |         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); | 
| 378 | 0 |         length_bytes[md_length_size - 1] = (unsigned char)bits; | 
| 379 | 0 |     } else { | 
| 380 | 0 |         memset(length_bytes, 0, md_length_size); | 
| 381 | 0 |         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); | 
| 382 | 0 |         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); | 
| 383 | 0 |         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); | 
| 384 | 0 |         length_bytes[md_length_size - 8] = (unsigned char)bits; | 
| 385 | 0 |     } | 
| 386 |  | 
 | 
| 387 | 0 |     if (k > 0) { | 
| 388 | 0 |         if (is_sslv3) { | 
| 389 | 0 |             size_t overhang; | 
| 390 |  |  | 
| 391 |  |             /* | 
| 392 |  |              * The SSLv3 header is larger than a single block. overhang is | 
| 393 |  |              * the number of bytes beyond a single block that the header | 
| 394 |  |              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no | 
| 395 |  |              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and | 
| 396 |  |              * therefore we can be confident that the header_length will be | 
| 397 |  |              * greater than |md_block_size|. However we add a sanity check just | 
| 398 |  |              * in case | 
| 399 |  |              */ | 
| 400 | 0 |             if (header_length <= md_block_size) { | 
| 401 |  |                 /* Should never happen */ | 
| 402 | 0 |                 return 0; | 
| 403 | 0 |             } | 
| 404 | 0 |             overhang = header_length - md_block_size; | 
| 405 | 0 |             md_transform(md_state.c, header); | 
| 406 | 0 |             memcpy(first_block, header + md_block_size, overhang); | 
| 407 | 0 |             memcpy(first_block + overhang, data, md_block_size - overhang); | 
| 408 | 0 |             md_transform(md_state.c, first_block); | 
| 409 | 0 |             for (i = 1; i < k / md_block_size - 1; i++) | 
| 410 | 0 |                 md_transform(md_state.c, data + md_block_size * i - overhang); | 
| 411 | 0 |         } else { | 
| 412 |  |             /* k is a multiple of md_block_size. */ | 
| 413 | 0 |             memcpy(first_block, header, 13); | 
| 414 | 0 |             memcpy(first_block + 13, data, md_block_size - 13); | 
| 415 | 0 |             md_transform(md_state.c, first_block); | 
| 416 | 0 |             for (i = 1; i < k / md_block_size; i++) | 
| 417 | 0 |                 md_transform(md_state.c, data + md_block_size * i - 13); | 
| 418 | 0 |         } | 
| 419 | 0 |     } | 
| 420 |  |  | 
| 421 | 0 |     memset(mac_out, 0, sizeof(mac_out)); | 
| 422 |  |  | 
| 423 |  |     /* | 
| 424 |  |      * We now process the final hash blocks. For each block, we construct it | 
| 425 |  |      * in constant time. If the |i==index_a| then we'll include the 0x80 | 
| 426 |  |      * bytes and zero pad etc. For each block we selectively copy it, in | 
| 427 |  |      * constant time, to |mac_out|. | 
| 428 |  |      */ | 
| 429 | 0 |     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; | 
| 430 | 0 |          i++) { | 
| 431 | 0 |         unsigned char block[MAX_HASH_BLOCK_SIZE]; | 
| 432 | 0 |         unsigned char is_block_a = constant_time_eq_8_s(i, index_a); | 
| 433 | 0 |         unsigned char is_block_b = constant_time_eq_8_s(i, index_b); | 
| 434 | 0 |         for (j = 0; j < md_block_size; j++) { | 
| 435 | 0 |             unsigned char b = 0, is_past_c, is_past_cp1; | 
| 436 | 0 |             if (k < header_length) | 
| 437 | 0 |                 b = header[k]; | 
| 438 | 0 |             else if (k < data_plus_mac_plus_padding_size + header_length) | 
| 439 | 0 |                 b = data[k - header_length]; | 
| 440 | 0 |             k++; | 
| 441 |  | 
 | 
| 442 | 0 |             is_past_c = is_block_a & constant_time_ge_8_s(j, c); | 
| 443 | 0 |             is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1); | 
| 444 |  |             /* | 
| 445 |  |              * If this is the block containing the end of the application | 
| 446 |  |              * data, and we are at the offset for the 0x80 value, then | 
| 447 |  |              * overwrite b with 0x80. | 
| 448 |  |              */ | 
| 449 | 0 |             b = constant_time_select_8(is_past_c, 0x80, b); | 
| 450 |  |             /* | 
| 451 |  |              * If this block contains the end of the application data | 
| 452 |  |              * and we're past the 0x80 value then just write zero. | 
| 453 |  |              */ | 
| 454 | 0 |             b = b & ~is_past_cp1; | 
| 455 |  |             /* | 
| 456 |  |              * If this is index_b (the final block), but not index_a (the end | 
| 457 |  |              * of the data), then the 64-bit length didn't fit into index_a | 
| 458 |  |              * and we're having to add an extra block of zeros. | 
| 459 |  |              */ | 
| 460 | 0 |             b &= ~is_block_b | is_block_a; | 
| 461 |  |  | 
| 462 |  |             /* | 
| 463 |  |              * The final bytes of one of the blocks contains the length. | 
| 464 |  |              */ | 
| 465 | 0 |             if (j >= md_block_size - md_length_size) { | 
| 466 |  |                 /* If this is index_b, write a length byte. */ | 
| 467 | 0 |                 b = constant_time_select_8(is_block_b, | 
| 468 | 0 |                                            length_bytes[j - | 
| 469 | 0 |                                                         (md_block_size - | 
| 470 | 0 |                                                          md_length_size)], b); | 
| 471 | 0 |             } | 
| 472 | 0 |             block[j] = b; | 
| 473 | 0 |         } | 
| 474 |  | 
 | 
| 475 | 0 |         md_transform(md_state.c, block); | 
| 476 | 0 |         md_final_raw(md_state.c, block); | 
| 477 |  |         /* If this is index_b, copy the hash value to |mac_out|. */ | 
| 478 | 0 |         for (j = 0; j < md_size; j++) | 
| 479 | 0 |             mac_out[j] |= block[j] & is_block_b; | 
| 480 | 0 |     } | 
| 481 |  | 
 | 
| 482 | 0 |     md_ctx = EVP_MD_CTX_new(); | 
| 483 | 0 |     if (md_ctx == NULL) | 
| 484 | 0 |         goto err; | 
| 485 |  |  | 
| 486 | 0 |     if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0) | 
| 487 | 0 |         goto err; | 
| 488 | 0 |     if (is_sslv3) { | 
| 489 |  |         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ | 
| 490 | 0 |         memset(hmac_pad, 0x5c, sslv3_pad_length); | 
| 491 |  | 
 | 
| 492 | 0 |         if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0 | 
| 493 | 0 |             || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0 | 
| 494 | 0 |             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) | 
| 495 | 0 |             goto err; | 
| 496 | 0 |     } else { | 
| 497 |  |         /* Complete the HMAC in the standard manner. */ | 
| 498 | 0 |         for (i = 0; i < md_block_size; i++) | 
| 499 | 0 |             hmac_pad[i] ^= 0x6a; | 
| 500 |  | 
 | 
| 501 | 0 |         if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0 | 
| 502 | 0 |             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0) | 
| 503 | 0 |             goto err; | 
| 504 | 0 |     } | 
| 505 | 0 |     ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u); | 
| 506 | 0 |     if (ret && md_out_size) | 
| 507 | 0 |         *md_out_size = md_out_size_u; | 
| 508 |  | 
 | 
| 509 | 0 |     ret = 1; | 
| 510 | 0 |  err: | 
| 511 | 0 |     EVP_MD_CTX_free(md_ctx); | 
| 512 | 0 |     return ret; | 
| 513 | 0 | } |