Coverage Report

Created: 2023-09-25 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
0
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
0
{
145
0
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
0
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
0
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
0
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
0
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
0
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
0
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
0
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
0
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
0
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
0
{
162
0
    memset(out, 0, 66);
163
0
    (*((limb *) & out[0])) = in[0];
164
0
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
0
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
0
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
0
    (*((limb_aX *) & out[29])) = in[4];
168
0
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
0
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
0
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
0
    (*((limb_aX *) & out[58])) = in[8];
172
0
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
0
{
177
0
    felem_bytearray b_out;
178
0
    int num_bytes;
179
180
0
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
0
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
0
    bin66_to_felem(out, b_out);
190
0
    return 1;
191
0
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
0
{
196
0
    felem_bytearray b_out;
197
0
    felem_to_bin66(b_out, in);
198
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
0
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
0
{
221
0
    out[0] = in[0];
222
0
    out[1] = in[1];
223
0
    out[2] = in[2];
224
0
    out[3] = in[3];
225
0
    out[4] = in[4];
226
0
    out[5] = in[5];
227
0
    out[6] = in[6];
228
0
    out[7] = in[7];
229
0
    out[8] = in[8];
230
0
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
0
{
235
0
    out[0] += in[0];
236
0
    out[1] += in[1];
237
0
    out[2] += in[2];
238
0
    out[3] += in[3];
239
0
    out[4] += in[4];
240
0
    out[5] += in[5];
241
0
    out[6] += in[6];
242
0
    out[7] += in[7];
243
0
    out[8] += in[8];
244
0
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
0
{
249
0
    out[0] = in[0] * scalar;
250
0
    out[1] = in[1] * scalar;
251
0
    out[2] = in[2] * scalar;
252
0
    out[3] = in[3] * scalar;
253
0
    out[4] = in[4] * scalar;
254
0
    out[5] = in[5] * scalar;
255
0
    out[6] = in[6] * scalar;
256
0
    out[7] = in[7] * scalar;
257
0
    out[8] = in[8] * scalar;
258
0
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
0
{
263
0
    out[0] *= scalar;
264
0
    out[1] *= scalar;
265
0
    out[2] *= scalar;
266
0
    out[3] *= scalar;
267
0
    out[4] *= scalar;
268
0
    out[5] *= scalar;
269
0
    out[6] *= scalar;
270
0
    out[7] *= scalar;
271
0
    out[8] *= scalar;
272
0
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
0
{
277
0
    out[0] *= scalar;
278
0
    out[1] *= scalar;
279
0
    out[2] *= scalar;
280
0
    out[3] *= scalar;
281
0
    out[4] *= scalar;
282
0
    out[5] *= scalar;
283
0
    out[6] *= scalar;
284
0
    out[7] *= scalar;
285
0
    out[8] *= scalar;
286
0
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
0
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
0
    out[0] += two62m3 - in[0];
328
0
    out[1] += two62m2 - in[1];
329
0
    out[2] += two62m2 - in[2];
330
0
    out[3] += two62m2 - in[3];
331
0
    out[4] += two62m2 - in[4];
332
0
    out[5] += two62m2 - in[5];
333
0
    out[6] += two62m2 - in[6];
334
0
    out[7] += two62m2 - in[7];
335
0
    out[8] += two62m2 - in[8];
336
0
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
0
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
0
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
0
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
0
    out[0] += two63m6 - in[0];
359
0
    out[1] += two63m5 - in[1];
360
0
    out[2] += two63m5 - in[2];
361
0
    out[3] += two63m5 - in[3];
362
0
    out[4] += two63m5 - in[4];
363
0
    out[5] += two63m5 - in[5];
364
0
    out[6] += two63m5 - in[6];
365
0
    out[7] += two63m5 - in[7];
366
0
    out[8] += two63m5 - in[8];
367
0
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
0
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
0
    static const uint128_t two127m70 =
382
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
0
    static const uint128_t two127m69 =
384
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
0
    out[0] += (two127m70 - in[0]);
387
0
    out[1] += (two127m69 - in[1]);
388
0
    out[2] += (two127m69 - in[2]);
389
0
    out[3] += (two127m69 - in[3]);
390
0
    out[4] += (two127m69 - in[4]);
391
0
    out[5] += (two127m69 - in[5]);
392
0
    out[6] += (two127m69 - in[6]);
393
0
    out[7] += (two127m69 - in[7]);
394
0
    out[8] += (two127m69 - in[8]);
395
0
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
0
{
406
0
    felem inx2, inx4;
407
0
    felem_scalar(inx2, in, 2);
408
0
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
0
    out[0] = ((uint128_t) in[0]) * in[0];
422
0
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
0
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
0
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
0
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
0
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
0
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
0
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
0
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
0
             ((uint128_t) in[1]) * inx2[5] +
431
0
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
0
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
0
             ((uint128_t) in[1]) * inx2[6] +
434
0
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
0
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
0
             ((uint128_t) in[1]) * inx2[7] +
437
0
             ((uint128_t) in[2]) * inx2[6] +
438
0
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
0
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
0
              ((uint128_t) in[2]) * inx4[7] +
452
0
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
0
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
0
              ((uint128_t) in[3]) * inx4[7] +
457
0
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
0
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
0
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
0
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
0
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
0
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
0
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
0
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
0
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
0
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
0
{
490
0
    felem in2x2;
491
0
    felem_scalar(in2x2, in2, 2);
492
493
0
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
0
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
0
             ((uint128_t) in1[1]) * in2[0];
497
498
0
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
0
             ((uint128_t) in1[1]) * in2[1] +
500
0
             ((uint128_t) in1[2]) * in2[0];
501
502
0
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
0
             ((uint128_t) in1[1]) * in2[2] +
504
0
             ((uint128_t) in1[2]) * in2[1] +
505
0
             ((uint128_t) in1[3]) * in2[0];
506
507
0
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
0
             ((uint128_t) in1[1]) * in2[3] +
509
0
             ((uint128_t) in1[2]) * in2[2] +
510
0
             ((uint128_t) in1[3]) * in2[1] +
511
0
             ((uint128_t) in1[4]) * in2[0];
512
513
0
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
0
             ((uint128_t) in1[1]) * in2[4] +
515
0
             ((uint128_t) in1[2]) * in2[3] +
516
0
             ((uint128_t) in1[3]) * in2[2] +
517
0
             ((uint128_t) in1[4]) * in2[1] +
518
0
             ((uint128_t) in1[5]) * in2[0];
519
520
0
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
0
             ((uint128_t) in1[1]) * in2[5] +
522
0
             ((uint128_t) in1[2]) * in2[4] +
523
0
             ((uint128_t) in1[3]) * in2[3] +
524
0
             ((uint128_t) in1[4]) * in2[2] +
525
0
             ((uint128_t) in1[5]) * in2[1] +
526
0
             ((uint128_t) in1[6]) * in2[0];
527
528
0
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
0
             ((uint128_t) in1[1]) * in2[6] +
530
0
             ((uint128_t) in1[2]) * in2[5] +
531
0
             ((uint128_t) in1[3]) * in2[4] +
532
0
             ((uint128_t) in1[4]) * in2[3] +
533
0
             ((uint128_t) in1[5]) * in2[2] +
534
0
             ((uint128_t) in1[6]) * in2[1] +
535
0
             ((uint128_t) in1[7]) * in2[0];
536
537
0
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
0
             ((uint128_t) in1[1]) * in2[7] +
539
0
             ((uint128_t) in1[2]) * in2[6] +
540
0
             ((uint128_t) in1[3]) * in2[5] +
541
0
             ((uint128_t) in1[4]) * in2[4] +
542
0
             ((uint128_t) in1[5]) * in2[3] +
543
0
             ((uint128_t) in1[6]) * in2[2] +
544
0
             ((uint128_t) in1[7]) * in2[1] +
545
0
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
0
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
0
              ((uint128_t) in1[2]) * in2x2[7] +
551
0
              ((uint128_t) in1[3]) * in2x2[6] +
552
0
              ((uint128_t) in1[4]) * in2x2[5] +
553
0
              ((uint128_t) in1[5]) * in2x2[4] +
554
0
              ((uint128_t) in1[6]) * in2x2[3] +
555
0
              ((uint128_t) in1[7]) * in2x2[2] +
556
0
              ((uint128_t) in1[8]) * in2x2[1];
557
558
0
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
0
              ((uint128_t) in1[3]) * in2x2[7] +
560
0
              ((uint128_t) in1[4]) * in2x2[6] +
561
0
              ((uint128_t) in1[5]) * in2x2[5] +
562
0
              ((uint128_t) in1[6]) * in2x2[4] +
563
0
              ((uint128_t) in1[7]) * in2x2[3] +
564
0
              ((uint128_t) in1[8]) * in2x2[2];
565
566
0
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
0
              ((uint128_t) in1[4]) * in2x2[7] +
568
0
              ((uint128_t) in1[5]) * in2x2[6] +
569
0
              ((uint128_t) in1[6]) * in2x2[5] +
570
0
              ((uint128_t) in1[7]) * in2x2[4] +
571
0
              ((uint128_t) in1[8]) * in2x2[3];
572
573
0
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
0
              ((uint128_t) in1[5]) * in2x2[7] +
575
0
              ((uint128_t) in1[6]) * in2x2[6] +
576
0
              ((uint128_t) in1[7]) * in2x2[5] +
577
0
              ((uint128_t) in1[8]) * in2x2[4];
578
579
0
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
0
              ((uint128_t) in1[6]) * in2x2[7] +
581
0
              ((uint128_t) in1[7]) * in2x2[6] +
582
0
              ((uint128_t) in1[8]) * in2x2[5];
583
584
0
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
0
              ((uint128_t) in1[7]) * in2x2[7] +
586
0
              ((uint128_t) in1[8]) * in2x2[6];
587
588
0
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
0
              ((uint128_t) in1[8]) * in2x2[7];
590
591
0
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
0
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
0
{
605
0
    u64 overflow1, overflow2;
606
607
0
    out[0] = ((limb) in[0]) & bottom58bits;
608
0
    out[1] = ((limb) in[1]) & bottom58bits;
609
0
    out[2] = ((limb) in[2]) & bottom58bits;
610
0
    out[3] = ((limb) in[3]) & bottom58bits;
611
0
    out[4] = ((limb) in[4]) & bottom58bits;
612
0
    out[5] = ((limb) in[5]) & bottom58bits;
613
0
    out[6] = ((limb) in[6]) & bottom58bits;
614
0
    out[7] = ((limb) in[7]) & bottom58bits;
615
0
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
0
    out[1] += ((limb) in[0]) >> 58;
620
0
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
0
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
0
    out[2] += ((limb) in[1]) >> 58;
628
0
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
0
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
0
    out[3] += ((limb) in[2]) >> 58;
632
0
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
0
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
0
    out[4] += ((limb) in[3]) >> 58;
636
0
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
0
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
0
    out[5] += ((limb) in[4]) >> 58;
640
0
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
0
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
0
    out[6] += ((limb) in[5]) >> 58;
644
0
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
0
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
0
    out[7] += ((limb) in[6]) >> 58;
648
0
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
0
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
0
    out[8] += ((limb) in[7]) >> 58;
652
0
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
0
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
0
    overflow1 += ((limb) in[8]) >> 58;
660
0
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
0
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
0
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
0
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
0
    out[0] += overflow1;        /* out[0] < 2^60 */
667
0
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
0
    out[1] += out[0] >> 58;
670
0
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
0
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
0
# define felem_square felem_square_ref
726
0
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
0
{
753
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
0
    largefelem tmp;
755
0
    unsigned i;
756
757
0
    felem_square(tmp, in);
758
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
0
    felem_mul(tmp, in, ftmp);
760
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
0
    felem_assign(ftmp2, ftmp);
762
0
    felem_square(tmp, ftmp);
763
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
0
    felem_mul(tmp, in, ftmp);
765
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
0
    felem_square(tmp, ftmp);
767
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
0
    felem_square(tmp, ftmp2);
770
0
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
0
    felem_square(tmp, ftmp3);
772
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
0
    felem_mul(tmp, ftmp3, ftmp2);
774
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
0
    felem_assign(ftmp2, ftmp3);
777
0
    felem_square(tmp, ftmp3);
778
0
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
0
    felem_square(tmp, ftmp3);
780
0
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
0
    felem_square(tmp, ftmp3);
782
0
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
0
    felem_square(tmp, ftmp3);
784
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
0
    felem_assign(ftmp4, ftmp3);
786
0
    felem_mul(tmp, ftmp3, ftmp);
787
0
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
0
    felem_square(tmp, ftmp4);
789
0
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
0
    felem_mul(tmp, ftmp3, ftmp2);
791
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
0
    felem_assign(ftmp2, ftmp3);
793
794
0
    for (i = 0; i < 8; i++) {
795
0
        felem_square(tmp, ftmp3);
796
0
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
0
    }
798
0
    felem_mul(tmp, ftmp3, ftmp2);
799
0
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
0
    felem_assign(ftmp2, ftmp3);
801
802
0
    for (i = 0; i < 16; i++) {
803
0
        felem_square(tmp, ftmp3);
804
0
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
0
    }
806
0
    felem_mul(tmp, ftmp3, ftmp2);
807
0
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
0
    felem_assign(ftmp2, ftmp3);
809
810
0
    for (i = 0; i < 32; i++) {
811
0
        felem_square(tmp, ftmp3);
812
0
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
0
    }
814
0
    felem_mul(tmp, ftmp3, ftmp2);
815
0
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
0
    felem_assign(ftmp2, ftmp3);
817
818
0
    for (i = 0; i < 64; i++) {
819
0
        felem_square(tmp, ftmp3);
820
0
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
0
    }
822
0
    felem_mul(tmp, ftmp3, ftmp2);
823
0
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
0
    felem_assign(ftmp2, ftmp3);
825
826
0
    for (i = 0; i < 128; i++) {
827
0
        felem_square(tmp, ftmp3);
828
0
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
0
    }
830
0
    felem_mul(tmp, ftmp3, ftmp2);
831
0
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
0
    felem_assign(ftmp2, ftmp3);
833
834
0
    for (i = 0; i < 256; i++) {
835
0
        felem_square(tmp, ftmp3);
836
0
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
0
    }
838
0
    felem_mul(tmp, ftmp3, ftmp2);
839
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
0
    for (i = 0; i < 9; i++) {
842
0
        felem_square(tmp, ftmp3);
843
0
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
0
    }
845
0
    felem_mul(tmp, ftmp3, ftmp4);
846
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
0
    felem_mul(tmp, ftmp3, in);
848
0
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
0
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
0
{
866
0
    felem ftmp;
867
0
    limb is_zero, is_p;
868
0
    felem_assign(ftmp, in);
869
870
0
    ftmp[0] += ftmp[8] >> 57;
871
0
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
0
    ftmp[1] += ftmp[0] >> 58;
874
0
    ftmp[0] &= bottom58bits;
875
0
    ftmp[2] += ftmp[1] >> 58;
876
0
    ftmp[1] &= bottom58bits;
877
0
    ftmp[3] += ftmp[2] >> 58;
878
0
    ftmp[2] &= bottom58bits;
879
0
    ftmp[4] += ftmp[3] >> 58;
880
0
    ftmp[3] &= bottom58bits;
881
0
    ftmp[5] += ftmp[4] >> 58;
882
0
    ftmp[4] &= bottom58bits;
883
0
    ftmp[6] += ftmp[5] >> 58;
884
0
    ftmp[5] &= bottom58bits;
885
0
    ftmp[7] += ftmp[6] >> 58;
886
0
    ftmp[6] &= bottom58bits;
887
0
    ftmp[8] += ftmp[7] >> 58;
888
0
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
0
    is_zero = 0;
898
0
    is_zero |= ftmp[0];
899
0
    is_zero |= ftmp[1];
900
0
    is_zero |= ftmp[2];
901
0
    is_zero |= ftmp[3];
902
0
    is_zero |= ftmp[4];
903
0
    is_zero |= ftmp[5];
904
0
    is_zero |= ftmp[6];
905
0
    is_zero |= ftmp[7];
906
0
    is_zero |= ftmp[8];
907
908
0
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
0
    is_zero = 0 - (is_zero >> 63);
914
915
0
    is_p = ftmp[0] ^ kPrime[0];
916
0
    is_p |= ftmp[1] ^ kPrime[1];
917
0
    is_p |= ftmp[2] ^ kPrime[2];
918
0
    is_p |= ftmp[3] ^ kPrime[3];
919
0
    is_p |= ftmp[4] ^ kPrime[4];
920
0
    is_p |= ftmp[5] ^ kPrime[5];
921
0
    is_p |= ftmp[6] ^ kPrime[6];
922
0
    is_p |= ftmp[7] ^ kPrime[7];
923
0
    is_p |= ftmp[8] ^ kPrime[8];
924
925
0
    is_p--;
926
0
    is_p = 0 - (is_p >> 63);
927
928
0
    is_zero |= is_p;
929
0
    return is_zero;
930
0
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
0
{
944
0
    limb is_p, is_greater, sign;
945
0
    static const limb two58 = ((limb) 1) << 58;
946
947
0
    felem_assign(out, in);
948
949
0
    out[0] += out[8] >> 57;
950
0
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
0
    out[1] += out[0] >> 58;
953
0
    out[0] &= bottom58bits;
954
0
    out[2] += out[1] >> 58;
955
0
    out[1] &= bottom58bits;
956
0
    out[3] += out[2] >> 58;
957
0
    out[2] &= bottom58bits;
958
0
    out[4] += out[3] >> 58;
959
0
    out[3] &= bottom58bits;
960
0
    out[5] += out[4] >> 58;
961
0
    out[4] &= bottom58bits;
962
0
    out[6] += out[5] >> 58;
963
0
    out[5] &= bottom58bits;
964
0
    out[7] += out[6] >> 58;
965
0
    out[6] &= bottom58bits;
966
0
    out[8] += out[7] >> 58;
967
0
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
0
    is_p = out[0] ^ kPrime[0];
981
0
    is_p |= out[1] ^ kPrime[1];
982
0
    is_p |= out[2] ^ kPrime[2];
983
0
    is_p |= out[3] ^ kPrime[3];
984
0
    is_p |= out[4] ^ kPrime[4];
985
0
    is_p |= out[5] ^ kPrime[5];
986
0
    is_p |= out[6] ^ kPrime[6];
987
0
    is_p |= out[7] ^ kPrime[7];
988
0
    is_p |= out[8] ^ kPrime[8];
989
990
0
    is_p--;
991
0
    is_p &= is_p << 32;
992
0
    is_p &= is_p << 16;
993
0
    is_p &= is_p << 8;
994
0
    is_p &= is_p << 4;
995
0
    is_p &= is_p << 2;
996
0
    is_p &= is_p << 1;
997
0
    is_p = 0 - (is_p >> 63);
998
0
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
0
    out[0] &= is_p;
1003
0
    out[1] &= is_p;
1004
0
    out[2] &= is_p;
1005
0
    out[3] &= is_p;
1006
0
    out[4] &= is_p;
1007
0
    out[5] &= is_p;
1008
0
    out[6] &= is_p;
1009
0
    out[7] &= is_p;
1010
0
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
0
    is_greater = out[8] >> 57;
1017
0
    is_greater |= is_greater << 32;
1018
0
    is_greater |= is_greater << 16;
1019
0
    is_greater |= is_greater << 8;
1020
0
    is_greater |= is_greater << 4;
1021
0
    is_greater |= is_greater << 2;
1022
0
    is_greater |= is_greater << 1;
1023
0
    is_greater = 0 - (is_greater >> 63);
1024
1025
0
    out[0] -= kPrime[0] & is_greater;
1026
0
    out[1] -= kPrime[1] & is_greater;
1027
0
    out[2] -= kPrime[2] & is_greater;
1028
0
    out[3] -= kPrime[3] & is_greater;
1029
0
    out[4] -= kPrime[4] & is_greater;
1030
0
    out[5] -= kPrime[5] & is_greater;
1031
0
    out[6] -= kPrime[6] & is_greater;
1032
0
    out[7] -= kPrime[7] & is_greater;
1033
0
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
0
    sign = -(out[0] >> 63);
1037
0
    out[0] += (two58 & sign);
1038
0
    out[1] -= (1 & sign);
1039
0
    sign = -(out[1] >> 63);
1040
0
    out[1] += (two58 & sign);
1041
0
    out[2] -= (1 & sign);
1042
0
    sign = -(out[2] >> 63);
1043
0
    out[2] += (two58 & sign);
1044
0
    out[3] -= (1 & sign);
1045
0
    sign = -(out[3] >> 63);
1046
0
    out[3] += (two58 & sign);
1047
0
    out[4] -= (1 & sign);
1048
0
    sign = -(out[4] >> 63);
1049
0
    out[4] += (two58 & sign);
1050
0
    out[5] -= (1 & sign);
1051
0
    sign = -(out[0] >> 63);
1052
0
    out[5] += (two58 & sign);
1053
0
    out[6] -= (1 & sign);
1054
0
    sign = -(out[6] >> 63);
1055
0
    out[6] += (two58 & sign);
1056
0
    out[7] -= (1 & sign);
1057
0
    sign = -(out[7] >> 63);
1058
0
    out[7] += (two58 & sign);
1059
0
    out[8] -= (1 & sign);
1060
0
    sign = -(out[5] >> 63);
1061
0
    out[5] += (two58 & sign);
1062
0
    out[6] -= (1 & sign);
1063
0
    sign = -(out[6] >> 63);
1064
0
    out[6] += (two58 & sign);
1065
0
    out[7] -= (1 & sign);
1066
0
    sign = -(out[7] >> 63);
1067
0
    out[7] += (two58 & sign);
1068
0
    out[8] -= (1 & sign);
1069
0
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
0
{
1091
0
    largefelem tmp, tmp2;
1092
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
0
    felem_assign(ftmp, x_in);
1095
0
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
0
    felem_square(tmp, z_in);
1099
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
0
    felem_square(tmp, y_in);
1103
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
0
    felem_mul(tmp, x_in, gamma);
1107
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
0
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
0
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
0
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
0
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
0
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
0
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
0
    felem_assign(ftmp, beta);
1132
0
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
0
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
0
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
0
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
0
    felem_assign(ftmp, y_in);
1142
0
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
0
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
0
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
0
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
0
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
0
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
0
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
0
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
0
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
0
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
0
    felem_reduce(y_out, tmp);
1183
0
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
0
{
1188
0
    unsigned i;
1189
0
    for (i = 0; i < NLIMBS; ++i) {
1190
0
        const limb tmp = mask & (in[i] ^ out[i]);
1191
0
        out[i] ^= tmp;
1192
0
    }
1193
0
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
0
{
1211
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
0
    largefelem tmp, tmp2;
1213
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
0
    limb points_equal;
1215
1216
0
    z1_is_zero = felem_is_zero(z1);
1217
0
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
0
    felem_square(tmp, z1);
1221
0
    felem_reduce(ftmp, tmp);
1222
1223
0
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
0
        felem_square(tmp, z2);
1226
0
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
0
        felem_mul(tmp, x1, ftmp2);
1230
0
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
0
        felem_assign(ftmp5, z1);
1234
0
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
0
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
0
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
0
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
0
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
0
        felem_mul(tmp, ftmp2, z2);
1248
0
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
0
        felem_mul(tmp, y1, ftmp2);
1252
0
        felem_reduce(ftmp6, tmp);
1253
0
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
0
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
0
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
0
        felem_assign(ftmp6, y1);
1266
0
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
0
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
0
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
0
    felem_reduce(ftmp4, tmp);
1276
1277
0
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
0
    felem_mul(tmp, ftmp5, ftmp4);
1281
0
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
0
    felem_mul(tmp, ftmp, z1);
1285
0
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
0
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
0
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
0
    felem_reduce(ftmp5, tmp);
1295
0
    y_equal = felem_is_zero(ftmp5);
1296
0
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
0
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
0
    felem_assign(ftmp, ftmp4);
1339
0
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
0
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
0
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
0
    felem_mul(tmp, ftmp4, ftmp);
1347
0
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
0
    felem_mul(tmp, ftmp3, ftmp);
1351
0
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
0
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
0
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
0
    felem_assign(ftmp3, ftmp4);
1359
0
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
0
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
0
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
0
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
0
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
0
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
0
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
0
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
0
    felem_reduce(y_out, tmp);
1383
1384
0
    copy_conditional(x_out, x2, z1_is_zero);
1385
0
    copy_conditional(x_out, x1, z2_is_zero);
1386
0
    copy_conditional(y_out, y2, z1_is_zero);
1387
0
    copy_conditional(y_out, y1, z2_is_zero);
1388
0
    copy_conditional(z_out, z2, z1_is_zero);
1389
0
    copy_conditional(z_out, z1, z2_is_zero);
1390
0
    felem_assign(x3, x_out);
1391
0
    felem_assign(y3, y_out);
1392
0
    felem_assign(z3, z_out);
1393
0
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
0
{
1549
0
    unsigned i, j;
1550
0
    limb *outlimbs = &out[0][0];
1551
1552
0
    memset(out, 0, sizeof(*out) * 3);
1553
1554
0
    for (i = 0; i < size; i++) {
1555
0
        const limb *inlimbs = &pre_comp[i][0][0];
1556
0
        limb mask = i ^ idx;
1557
0
        mask |= mask >> 4;
1558
0
        mask |= mask >> 2;
1559
0
        mask |= mask >> 1;
1560
0
        mask &= 1;
1561
0
        mask--;
1562
0
        for (j = 0; j < NLIMBS * 3; j++)
1563
0
            outlimbs[j] |= inlimbs[j] & mask;
1564
0
    }
1565
0
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
0
{
1570
0
    if (i < 0)
1571
0
        return 0;
1572
0
    return (in[i >> 3] >> (i & 7)) & 1;
1573
0
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
0
{
1588
0
    int i, skip;
1589
0
    unsigned num, gen_mul = (g_scalar != NULL);
1590
0
    felem nq[3], tmp[4];
1591
0
    limb bits;
1592
0
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
0
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
0
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
0
        if (!skip)
1607
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
0
        if (gen_mul && (i <= 130)) {
1611
0
            bits = get_bit(g_scalar, i + 390) << 3;
1612
0
            if (i < 130) {
1613
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
0
                bits |= get_bit(g_scalar, i);
1616
0
            }
1617
            /* select the point to add, in constant time */
1618
0
            select_point(bits, 16, g_pre_comp, tmp);
1619
0
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
0
                point_add(nq[0], nq[1], nq[2],
1622
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
0
            } else {
1624
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
0
                skip = 0;
1626
0
            }
1627
0
        }
1628
1629
        /* do other additions every 5 doublings */
1630
0
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
0
            for (num = 0; num < num_points; ++num) {
1633
0
                bits = get_bit(scalars[num], i + 4) << 5;
1634
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
0
                bits |= get_bit(scalars[num], i) << 1;
1638
0
                bits |= get_bit(scalars[num], i - 1);
1639
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
0
                select_point(digit, 17, pre_comp[num], tmp);
1645
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
0
                if (!skip) {
1650
0
                    point_add(nq[0], nq[1], nq[2],
1651
0
                              nq[0], nq[1], nq[2],
1652
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
0
                } else {
1654
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
0
                    skip = 0;
1656
0
                }
1657
0
            }
1658
0
        }
1659
0
    }
1660
0
    felem_assign(x_out, nq[0]);
1661
0
    felem_assign(y_out, nq[1]);
1662
0
    felem_assign(z_out, nq[2]);
1663
0
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
0
{
1674
0
    static const EC_METHOD ret = {
1675
0
        EC_FLAGS_DEFAULT_OCT,
1676
0
        NID_X9_62_prime_field,
1677
0
        ossl_ec_GFp_nistp521_group_init,
1678
0
        ossl_ec_GFp_simple_group_finish,
1679
0
        ossl_ec_GFp_simple_group_clear_finish,
1680
0
        ossl_ec_GFp_nist_group_copy,
1681
0
        ossl_ec_GFp_nistp521_group_set_curve,
1682
0
        ossl_ec_GFp_simple_group_get_curve,
1683
0
        ossl_ec_GFp_simple_group_get_degree,
1684
0
        ossl_ec_group_simple_order_bits,
1685
0
        ossl_ec_GFp_simple_group_check_discriminant,
1686
0
        ossl_ec_GFp_simple_point_init,
1687
0
        ossl_ec_GFp_simple_point_finish,
1688
0
        ossl_ec_GFp_simple_point_clear_finish,
1689
0
        ossl_ec_GFp_simple_point_copy,
1690
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
0
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
0
        0 /* point_set_compressed_coordinates */ ,
1694
0
        0 /* point2oct */ ,
1695
0
        0 /* oct2point */ ,
1696
0
        ossl_ec_GFp_simple_add,
1697
0
        ossl_ec_GFp_simple_dbl,
1698
0
        ossl_ec_GFp_simple_invert,
1699
0
        ossl_ec_GFp_simple_is_at_infinity,
1700
0
        ossl_ec_GFp_simple_is_on_curve,
1701
0
        ossl_ec_GFp_simple_cmp,
1702
0
        ossl_ec_GFp_simple_make_affine,
1703
0
        ossl_ec_GFp_simple_points_make_affine,
1704
0
        ossl_ec_GFp_nistp521_points_mul,
1705
0
        ossl_ec_GFp_nistp521_precompute_mult,
1706
0
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
0
        ossl_ec_GFp_nist_field_mul,
1708
0
        ossl_ec_GFp_nist_field_sqr,
1709
0
        0 /* field_div */ ,
1710
0
        ossl_ec_GFp_simple_field_inv,
1711
0
        0 /* field_encode */ ,
1712
0
        0 /* field_decode */ ,
1713
0
        0,                      /* field_set_to_one */
1714
0
        ossl_ec_key_simple_priv2oct,
1715
0
        ossl_ec_key_simple_oct2priv,
1716
0
        0, /* set private */
1717
0
        ossl_ec_key_simple_generate_key,
1718
0
        ossl_ec_key_simple_check_key,
1719
0
        ossl_ec_key_simple_generate_public_key,
1720
0
        0, /* keycopy */
1721
0
        0, /* keyfinish */
1722
0
        ossl_ecdh_simple_compute_key,
1723
0
        ossl_ecdsa_simple_sign_setup,
1724
0
        ossl_ecdsa_simple_sign_sig,
1725
0
        ossl_ecdsa_simple_verify_sig,
1726
0
        0, /* field_inverse_mod_ord */
1727
0
        0, /* blind_coordinates */
1728
0
        0, /* ladder_pre */
1729
0
        0, /* ladder_step */
1730
0
        0  /* ladder_post */
1731
0
    };
1732
1733
0
    return &ret;
1734
0
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
0
{
1793
0
    int ret;
1794
0
    ret = ossl_ec_GFp_simple_group_init(group);
1795
0
    group->a_is_minus3 = 1;
1796
0
    return ret;
1797
0
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
0
{
1803
0
    int ret = 0;
1804
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
0
#ifndef FIPS_MODULE
1806
0
    BN_CTX *new_ctx = NULL;
1807
1808
0
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
0
#endif
1811
0
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
0
    BN_CTX_start(ctx);
1815
0
    curve_p = BN_CTX_get(ctx);
1816
0
    curve_a = BN_CTX_get(ctx);
1817
0
    curve_b = BN_CTX_get(ctx);
1818
0
    if (curve_b == NULL)
1819
0
        goto err;
1820
0
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
0
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
0
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
0
    group->field_mod_func = BN_nist_mod_521;
1828
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
0
 err:
1830
0
    BN_CTX_end(ctx);
1831
0
#ifndef FIPS_MODULE
1832
0
    BN_CTX_free(new_ctx);
1833
0
#endif
1834
0
    return ret;
1835
0
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
0
{
1846
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
0
    largefelem tmp;
1848
1849
0
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
0
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
0
    felem_inv(z2, z1);
1857
0
    felem_square(tmp, z2);
1858
0
    felem_reduce(z1, tmp);
1859
0
    felem_mul(tmp, x_in, z1);
1860
0
    felem_reduce(x_in, tmp);
1861
0
    felem_contract(x_out, x_in);
1862
0
    if (x != NULL) {
1863
0
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
0
    }
1868
0
    felem_mul(tmp, z1, z2);
1869
0
    felem_reduce(z1, tmp);
1870
0
    felem_mul(tmp, y_in, z1);
1871
0
    felem_reduce(y_in, tmp);
1872
0
    felem_contract(y_out, y_in);
1873
0
    if (y != NULL) {
1874
0
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
0
    }
1879
0
    return 1;
1880
0
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
0
{
1921
0
    int ret = 0;
1922
0
    int j;
1923
0
    int mixed = 0;
1924
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
0
    felem_bytearray g_secret;
1926
0
    felem_bytearray *secrets = NULL;
1927
0
    felem (*pre_comp)[17][3] = NULL;
1928
0
    felem *tmp_felems = NULL;
1929
0
    unsigned i;
1930
0
    int num_bytes;
1931
0
    int have_pre_comp = 0;
1932
0
    size_t num_points = num;
1933
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
0
    NISTP521_PRE_COMP *pre = NULL;
1935
0
    felem(*g_pre_comp)[3] = NULL;
1936
0
    EC_POINT *generator = NULL;
1937
0
    const EC_POINT *p = NULL;
1938
0
    const BIGNUM *p_scalar = NULL;
1939
1940
0
    BN_CTX_start(ctx);
1941
0
    x = BN_CTX_get(ctx);
1942
0
    y = BN_CTX_get(ctx);
1943
0
    z = BN_CTX_get(ctx);
1944
0
    tmp_scalar = BN_CTX_get(ctx);
1945
0
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
0
    if (scalar != NULL) {
1949
0
        pre = group->pre_comp.nistp521;
1950
0
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
0
        else
1954
            /* try to use the standard precomputation */
1955
0
            g_pre_comp = (felem(*)[3]) gmul;
1956
0
        generator = EC_POINT_new(group);
1957
0
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
0
                                                                generator,
1968
0
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
0
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
0
    }
1980
1981
0
    if (num_points > 0) {
1982
0
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
0
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
0
        if ((secrets == NULL) || (pre_comp == NULL)
1995
0
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
0
        for (i = 0; i < num_points; ++i) {
2005
0
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
0
            } else {
2013
                /* the i^th point */
2014
0
                p = points[i];
2015
0
                p_scalar = scalars[i];
2016
0
            }
2017
0
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
0
                if ((BN_num_bits(p_scalar) > 521)
2020
0
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
0
                } else {
2032
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
0
                                               secrets[i], sizeof(secrets[i]));
2034
0
                }
2035
0
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
0
                if ((!BN_to_felem(x_out, p->X)) ||
2041
0
                    (!BN_to_felem(y_out, p->Y)) ||
2042
0
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
0
                for (j = 2; j <= 16; ++j) {
2048
0
                    if (j & 1) {
2049
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
0
                                  pre_comp[i][j - 1][0],
2053
0
                                  pre_comp[i][j - 1][1],
2054
0
                                  pre_comp[i][j - 1][2]);
2055
0
                    } else {
2056
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
0
                                     pre_comp[i][j / 2][1],
2059
0
                                     pre_comp[i][j / 2][2]);
2060
0
                    }
2061
0
                }
2062
0
            }
2063
0
        }
2064
0
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
0
    }
2067
2068
    /* the scalar for the generator */
2069
0
    if ((scalar != NULL) && (have_pre_comp)) {
2070
0
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
0
        } else {
2083
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
0
        }
2085
        /* do the multiplication with generator precomputation */
2086
0
        batch_mul(x_out, y_out, z_out,
2087
0
                  (const felem_bytearray(*))secrets, num_points,
2088
0
                  g_secret,
2089
0
                  mixed, (const felem(*)[17][3])pre_comp,
2090
0
                  (const felem(*)[3])g_pre_comp);
2091
0
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
0
    felem_contract(x_in, x_out);
2099
0
    felem_contract(y_in, y_out);
2100
0
    felem_contract(z_in, z_out);
2101
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
0
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
0
                                                             ctx);
2108
2109
0
 err:
2110
0
    BN_CTX_end(ctx);
2111
0
    EC_POINT_free(generator);
2112
0
    OPENSSL_free(secrets);
2113
0
    OPENSSL_free(pre_comp);
2114
0
    OPENSSL_free(tmp_felems);
2115
0
    return ret;
2116
0
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}