/src/openssl30/crypto/rsa/rsa_gen.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  |  * | 
| 4 |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
| 5 |  |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  |  * in the file LICENSE in the source distribution or at | 
| 7 |  |  * https://www.openssl.org/source/license.html | 
| 8 |  |  */ | 
| 9 |  |  | 
| 10 |  | /* | 
| 11 |  |  * NB: these functions have been "upgraded", the deprecated versions (which | 
| 12 |  |  * are compatibility wrappers using these functions) are in rsa_depr.c. - | 
| 13 |  |  * Geoff | 
| 14 |  |  */ | 
| 15 |  |  | 
| 16 |  | /* | 
| 17 |  |  * RSA low level APIs are deprecated for public use, but still ok for | 
| 18 |  |  * internal use. | 
| 19 |  |  */ | 
| 20 |  | #include "internal/deprecated.h" | 
| 21 |  |  | 
| 22 |  | #include <stdio.h> | 
| 23 |  | #include <time.h> | 
| 24 |  | #include "internal/cryptlib.h" | 
| 25 |  | #include <openssl/bn.h> | 
| 26 |  | #include <openssl/self_test.h> | 
| 27 |  | #include "prov/providercommon.h" | 
| 28 |  | #include "rsa_local.h" | 
| 29 |  |  | 
| 30 |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg); | 
| 31 |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, | 
| 32 |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test); | 
| 33 |  |  | 
| 34 |  | /* | 
| 35 |  |  * NB: this wrapper would normally be placed in rsa_lib.c and the static | 
| 36 |  |  * implementation would probably be in rsa_eay.c. Nonetheless, is kept here | 
| 37 |  |  * so that we don't introduce a new linker dependency. Eg. any application | 
| 38 |  |  * that wasn't previously linking object code related to key-generation won't | 
| 39 |  |  * have to now just because key-generation is part of RSA_METHOD. | 
| 40 |  |  */ | 
| 41 |  | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) | 
| 42 | 0 | { | 
| 43 | 0 |     if (rsa->meth->rsa_keygen != NULL) | 
| 44 | 0 |         return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); | 
| 45 |  |  | 
| 46 | 0 |     return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, | 
| 47 | 0 |                                         e_value, cb); | 
| 48 | 0 | } | 
| 49 |  |  | 
| 50 |  | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, | 
| 51 |  |                                  BIGNUM *e_value, BN_GENCB *cb) | 
| 52 | 0 | { | 
| 53 | 0 | #ifndef FIPS_MODULE | 
| 54 |  |     /* multi-prime is only supported with the builtin key generation */ | 
| 55 | 0 |     if (rsa->meth->rsa_multi_prime_keygen != NULL) { | 
| 56 | 0 |         return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, | 
| 57 | 0 |                                                  e_value, cb); | 
| 58 | 0 |     } else if (rsa->meth->rsa_keygen != NULL) { | 
| 59 |  |         /* | 
| 60 |  |          * However, if rsa->meth implements only rsa_keygen, then we | 
| 61 |  |          * have to honour it in 2-prime case and assume that it wouldn't | 
| 62 |  |          * know what to do with multi-prime key generated by builtin | 
| 63 |  |          * subroutine... | 
| 64 |  |          */ | 
| 65 | 0 |         if (primes == 2) | 
| 66 | 0 |             return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); | 
| 67 | 0 |         else | 
| 68 | 0 |             return 0; | 
| 69 | 0 |     } | 
| 70 | 0 | #endif /* FIPS_MODULE */ | 
| 71 | 0 |     return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0); | 
| 72 | 0 | } | 
| 73 |  |  | 
| 74 |  | #ifndef FIPS_MODULE | 
| 75 |  | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes, | 
| 76 |  |                                  BIGNUM *e_value, BN_GENCB *cb) | 
| 77 | 0 | { | 
| 78 | 0 |     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; | 
| 79 | 0 |     int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; | 
| 80 | 0 |     int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; | 
| 81 | 0 |     RSA_PRIME_INFO *pinfo = NULL; | 
| 82 | 0 |     STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; | 
| 83 | 0 |     BN_CTX *ctx = NULL; | 
| 84 | 0 |     BN_ULONG bitst = 0; | 
| 85 | 0 |     unsigned long error = 0; | 
| 86 | 0 |     int ok = -1; | 
| 87 |  | 
 | 
| 88 | 0 |     if (bits < RSA_MIN_MODULUS_BITS) { | 
| 89 | 0 |         ok = 0;             /* we set our own err */ | 
| 90 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
| 91 | 0 |         goto err; | 
| 92 | 0 |     } | 
| 93 |  |  | 
| 94 |  |     /* A bad value for e can cause infinite loops */ | 
| 95 | 0 |     if (e_value != NULL && !ossl_rsa_check_public_exponent(e_value)) { | 
| 96 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); | 
| 97 | 0 |         return 0; | 
| 98 | 0 |     } | 
| 99 |  |  | 
| 100 | 0 |     if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) { | 
| 101 | 0 |         ok = 0;             /* we set our own err */ | 
| 102 | 0 |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID); | 
| 103 | 0 |         goto err; | 
| 104 | 0 |     } | 
| 105 |  |  | 
| 106 | 0 |     ctx = BN_CTX_new_ex(rsa->libctx); | 
| 107 | 0 |     if (ctx == NULL) | 
| 108 | 0 |         goto err; | 
| 109 | 0 |     BN_CTX_start(ctx); | 
| 110 | 0 |     r0 = BN_CTX_get(ctx); | 
| 111 | 0 |     r1 = BN_CTX_get(ctx); | 
| 112 | 0 |     r2 = BN_CTX_get(ctx); | 
| 113 | 0 |     if (r2 == NULL) | 
| 114 | 0 |         goto err; | 
| 115 |  |  | 
| 116 |  |     /* divide bits into 'primes' pieces evenly */ | 
| 117 | 0 |     quo = bits / primes; | 
| 118 | 0 |     rmd = bits % primes; | 
| 119 |  | 
 | 
| 120 | 0 |     for (i = 0; i < primes; i++) | 
| 121 | 0 |         bitsr[i] = (i < rmd) ? quo + 1 : quo; | 
| 122 |  | 
 | 
| 123 | 0 |     rsa->dirty_cnt++; | 
| 124 |  |  | 
| 125 |  |     /* We need the RSA components non-NULL */ | 
| 126 | 0 |     if (!rsa->n && ((rsa->n = BN_new()) == NULL)) | 
| 127 | 0 |         goto err; | 
| 128 | 0 |     if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) | 
| 129 | 0 |         goto err; | 
| 130 | 0 |     BN_set_flags(rsa->d, BN_FLG_CONSTTIME); | 
| 131 | 0 |     if (!rsa->e && ((rsa->e = BN_new()) == NULL)) | 
| 132 | 0 |         goto err; | 
| 133 | 0 |     if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) | 
| 134 | 0 |         goto err; | 
| 135 | 0 |     BN_set_flags(rsa->p, BN_FLG_CONSTTIME); | 
| 136 | 0 |     if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) | 
| 137 | 0 |         goto err; | 
| 138 | 0 |     BN_set_flags(rsa->q, BN_FLG_CONSTTIME); | 
| 139 | 0 |     if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL)) | 
| 140 | 0 |         goto err; | 
| 141 | 0 |     BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME); | 
| 142 | 0 |     if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL)) | 
| 143 | 0 |         goto err; | 
| 144 | 0 |     BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME); | 
| 145 | 0 |     if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL)) | 
| 146 | 0 |         goto err; | 
| 147 | 0 |     BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME); | 
| 148 |  |  | 
| 149 |  |     /* initialize multi-prime components */ | 
| 150 | 0 |     if (primes > RSA_DEFAULT_PRIME_NUM) { | 
| 151 | 0 |         rsa->version = RSA_ASN1_VERSION_MULTI; | 
| 152 | 0 |         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); | 
| 153 | 0 |         if (prime_infos == NULL) | 
| 154 | 0 |             goto err; | 
| 155 | 0 |         if (rsa->prime_infos != NULL) { | 
| 156 |  |             /* could this happen? */ | 
| 157 | 0 |             sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, | 
| 158 | 0 |                                        ossl_rsa_multip_info_free); | 
| 159 | 0 |         } | 
| 160 | 0 |         rsa->prime_infos = prime_infos; | 
| 161 |  |  | 
| 162 |  |         /* prime_info from 2 to |primes| -1 */ | 
| 163 | 0 |         for (i = 2; i < primes; i++) { | 
| 164 | 0 |             pinfo = ossl_rsa_multip_info_new(); | 
| 165 | 0 |             if (pinfo == NULL) | 
| 166 | 0 |                 goto err; | 
| 167 | 0 |             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); | 
| 168 | 0 |         } | 
| 169 | 0 |     } | 
| 170 |  |  | 
| 171 | 0 |     if (BN_copy(rsa->e, e_value) == NULL) | 
| 172 | 0 |         goto err; | 
| 173 |  |  | 
| 174 |  |     /* generate p, q and other primes (if any) */ | 
| 175 | 0 |     for (i = 0; i < primes; i++) { | 
| 176 | 0 |         adj = 0; | 
| 177 | 0 |         retries = 0; | 
| 178 |  | 
 | 
| 179 | 0 |         if (i == 0) { | 
| 180 | 0 |             prime = rsa->p; | 
| 181 | 0 |         } else if (i == 1) { | 
| 182 | 0 |             prime = rsa->q; | 
| 183 | 0 |         } else { | 
| 184 | 0 |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); | 
| 185 | 0 |             prime = pinfo->r; | 
| 186 | 0 |         } | 
| 187 | 0 |         BN_set_flags(prime, BN_FLG_CONSTTIME); | 
| 188 |  | 
 | 
| 189 | 0 |         for (;;) { | 
| 190 | 0 |  redo: | 
| 191 | 0 |             if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL, | 
| 192 | 0 |                                        cb, ctx)) | 
| 193 | 0 |                 goto err; | 
| 194 |  |             /* | 
| 195 |  |              * prime should not be equal to p, q, r_3... | 
| 196 |  |              * (those primes prior to this one) | 
| 197 |  |              */ | 
| 198 | 0 |             { | 
| 199 | 0 |                 int j; | 
| 200 |  | 
 | 
| 201 | 0 |                 for (j = 0; j < i; j++) { | 
| 202 | 0 |                     BIGNUM *prev_prime; | 
| 203 |  | 
 | 
| 204 | 0 |                     if (j == 0) | 
| 205 | 0 |                         prev_prime = rsa->p; | 
| 206 | 0 |                     else if (j == 1) | 
| 207 | 0 |                         prev_prime = rsa->q; | 
| 208 | 0 |                     else | 
| 209 | 0 |                         prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, | 
| 210 | 0 |                                                              j - 2)->r; | 
| 211 |  | 
 | 
| 212 | 0 |                     if (!BN_cmp(prime, prev_prime)) { | 
| 213 | 0 |                         goto redo; | 
| 214 | 0 |                     } | 
| 215 | 0 |                 } | 
| 216 | 0 |             } | 
| 217 | 0 |             if (!BN_sub(r2, prime, BN_value_one())) | 
| 218 | 0 |                 goto err; | 
| 219 | 0 |             ERR_set_mark(); | 
| 220 | 0 |             BN_set_flags(r2, BN_FLG_CONSTTIME); | 
| 221 | 0 |             if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { | 
| 222 |  |                /* GCD == 1 since inverse exists */ | 
| 223 | 0 |                 break; | 
| 224 | 0 |             } | 
| 225 | 0 |             error = ERR_peek_last_error(); | 
| 226 | 0 |             if (ERR_GET_LIB(error) == ERR_LIB_BN | 
| 227 | 0 |                 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { | 
| 228 |  |                 /* GCD != 1 */ | 
| 229 | 0 |                 ERR_pop_to_mark(); | 
| 230 | 0 |             } else { | 
| 231 | 0 |                 goto err; | 
| 232 | 0 |             } | 
| 233 | 0 |             if (!BN_GENCB_call(cb, 2, n++)) | 
| 234 | 0 |                 goto err; | 
| 235 | 0 |         } | 
| 236 |  |  | 
| 237 | 0 |         bitse += bitsr[i]; | 
| 238 |  |  | 
| 239 |  |         /* calculate n immediately to see if it's sufficient */ | 
| 240 | 0 |         if (i == 1) { | 
| 241 |  |             /* we get at least 2 primes */ | 
| 242 | 0 |             if (!BN_mul(r1, rsa->p, rsa->q, ctx)) | 
| 243 | 0 |                 goto err; | 
| 244 | 0 |         } else if (i != 0) { | 
| 245 |  |             /* modulus n = p * q * r_3 * r_4 ... */ | 
| 246 | 0 |             if (!BN_mul(r1, rsa->n, prime, ctx)) | 
| 247 | 0 |                 goto err; | 
| 248 | 0 |         } else { | 
| 249 |  |             /* i == 0, do nothing */ | 
| 250 | 0 |             if (!BN_GENCB_call(cb, 3, i)) | 
| 251 | 0 |                 goto err; | 
| 252 | 0 |             continue; | 
| 253 | 0 |         } | 
| 254 |  |         /* | 
| 255 |  |          * if |r1|, product of factors so far, is not as long as expected | 
| 256 |  |          * (by checking the first 4 bits are less than 0x9 or greater than | 
| 257 |  |          * 0xF). If so, re-generate the last prime. | 
| 258 |  |          * | 
| 259 |  |          * NOTE: This actually can't happen in two-prime case, because of | 
| 260 |  |          * the way factors are generated. | 
| 261 |  |          * | 
| 262 |  |          * Besides, another consideration is, for multi-prime case, even the | 
| 263 |  |          * length modulus is as long as expected, the modulus could start at | 
| 264 |  |          * 0x8, which could be utilized to distinguish a multi-prime private | 
| 265 |  |          * key by using the modulus in a certificate. This is also covered | 
| 266 |  |          * by checking the length should not be less than 0x9. | 
| 267 |  |          */ | 
| 268 | 0 |         if (!BN_rshift(r2, r1, bitse - 4)) | 
| 269 | 0 |             goto err; | 
| 270 | 0 |         bitst = BN_get_word(r2); | 
| 271 |  | 
 | 
| 272 | 0 |         if (bitst < 0x9 || bitst > 0xF) { | 
| 273 |  |             /* | 
| 274 |  |              * For keys with more than 4 primes, we attempt longer factor to | 
| 275 |  |              * meet length requirement. | 
| 276 |  |              * | 
| 277 |  |              * Otherwise, we just re-generate the prime with the same length. | 
| 278 |  |              * | 
| 279 |  |              * This strategy has the following goals: | 
| 280 |  |              * | 
| 281 |  |              * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key | 
| 282 |  |              * 2. stay the same logic with normal 2-prime key | 
| 283 |  |              */ | 
| 284 | 0 |             bitse -= bitsr[i]; | 
| 285 | 0 |             if (!BN_GENCB_call(cb, 2, n++)) | 
| 286 | 0 |                 goto err; | 
| 287 | 0 |             if (primes > 4) { | 
| 288 | 0 |                 if (bitst < 0x9) | 
| 289 | 0 |                     adj++; | 
| 290 | 0 |                 else | 
| 291 | 0 |                     adj--; | 
| 292 | 0 |             } else if (retries == 4) { | 
| 293 |  |                 /* | 
| 294 |  |                  * re-generate all primes from scratch, mainly used | 
| 295 |  |                  * in 4 prime case to avoid long loop. Max retry times | 
| 296 |  |                  * is set to 4. | 
| 297 |  |                  */ | 
| 298 | 0 |                 i = -1; | 
| 299 | 0 |                 bitse = 0; | 
| 300 | 0 |                 continue; | 
| 301 | 0 |             } | 
| 302 | 0 |             retries++; | 
| 303 | 0 |             goto redo; | 
| 304 | 0 |         } | 
| 305 |  |         /* save product of primes for further use, for multi-prime only */ | 
| 306 | 0 |         if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) | 
| 307 | 0 |             goto err; | 
| 308 | 0 |         if (BN_copy(rsa->n, r1) == NULL) | 
| 309 | 0 |             goto err; | 
| 310 | 0 |         if (!BN_GENCB_call(cb, 3, i)) | 
| 311 | 0 |             goto err; | 
| 312 | 0 |     } | 
| 313 |  |  | 
| 314 | 0 |     if (BN_cmp(rsa->p, rsa->q) < 0) { | 
| 315 | 0 |         tmp = rsa->p; | 
| 316 | 0 |         rsa->p = rsa->q; | 
| 317 | 0 |         rsa->q = tmp; | 
| 318 | 0 |     } | 
| 319 |  |  | 
| 320 |  |     /* calculate d */ | 
| 321 |  |  | 
| 322 |  |     /* p - 1 */ | 
| 323 | 0 |     if (!BN_sub(r1, rsa->p, BN_value_one())) | 
| 324 | 0 |         goto err; | 
| 325 |  |     /* q - 1 */ | 
| 326 | 0 |     if (!BN_sub(r2, rsa->q, BN_value_one())) | 
| 327 | 0 |         goto err; | 
| 328 |  |     /* (p - 1)(q - 1) */ | 
| 329 | 0 |     if (!BN_mul(r0, r1, r2, ctx)) | 
| 330 | 0 |         goto err; | 
| 331 |  |     /* multi-prime */ | 
| 332 | 0 |     for (i = 2; i < primes; i++) { | 
| 333 | 0 |         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); | 
| 334 |  |         /* save r_i - 1 to pinfo->d temporarily */ | 
| 335 | 0 |         if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) | 
| 336 | 0 |             goto err; | 
| 337 | 0 |         if (!BN_mul(r0, r0, pinfo->d, ctx)) | 
| 338 | 0 |             goto err; | 
| 339 | 0 |     } | 
| 340 |  |  | 
| 341 | 0 |     { | 
| 342 | 0 |         BIGNUM *pr0 = BN_new(); | 
| 343 |  | 
 | 
| 344 | 0 |         if (pr0 == NULL) | 
| 345 | 0 |             goto err; | 
| 346 |  |  | 
| 347 | 0 |         BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); | 
| 348 | 0 |         if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { | 
| 349 | 0 |             BN_free(pr0); | 
| 350 | 0 |             goto err;               /* d */ | 
| 351 | 0 |         } | 
| 352 |  |         /* We MUST free pr0 before any further use of r0 */ | 
| 353 | 0 |         BN_free(pr0); | 
| 354 | 0 |     } | 
| 355 |  |  | 
| 356 | 0 |     { | 
| 357 | 0 |         BIGNUM *d = BN_new(); | 
| 358 |  | 
 | 
| 359 | 0 |         if (d == NULL) | 
| 360 | 0 |             goto err; | 
| 361 |  |  | 
| 362 | 0 |         BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | 
| 363 |  |  | 
| 364 |  |         /* calculate d mod (p-1) and d mod (q - 1) */ | 
| 365 | 0 |         if (!BN_mod(rsa->dmp1, d, r1, ctx) | 
| 366 | 0 |             || !BN_mod(rsa->dmq1, d, r2, ctx)) { | 
| 367 | 0 |             BN_free(d); | 
| 368 | 0 |             goto err; | 
| 369 | 0 |         } | 
| 370 |  |  | 
| 371 |  |         /* calculate CRT exponents */ | 
| 372 | 0 |         for (i = 2; i < primes; i++) { | 
| 373 | 0 |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); | 
| 374 |  |             /* pinfo->d == r_i - 1 */ | 
| 375 | 0 |             if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { | 
| 376 | 0 |                 BN_free(d); | 
| 377 | 0 |                 goto err; | 
| 378 | 0 |             } | 
| 379 | 0 |         } | 
| 380 |  |  | 
| 381 |  |         /* We MUST free d before any further use of rsa->d */ | 
| 382 | 0 |         BN_free(d); | 
| 383 | 0 |     } | 
| 384 |  |  | 
| 385 | 0 |     { | 
| 386 | 0 |         BIGNUM *p = BN_new(); | 
| 387 |  | 
 | 
| 388 | 0 |         if (p == NULL) | 
| 389 | 0 |             goto err; | 
| 390 | 0 |         BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); | 
| 391 |  |  | 
| 392 |  |         /* calculate inverse of q mod p */ | 
| 393 | 0 |         if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { | 
| 394 | 0 |             BN_free(p); | 
| 395 | 0 |             goto err; | 
| 396 | 0 |         } | 
| 397 |  |  | 
| 398 |  |         /* calculate CRT coefficient for other primes */ | 
| 399 | 0 |         for (i = 2; i < primes; i++) { | 
| 400 | 0 |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); | 
| 401 | 0 |             BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME); | 
| 402 | 0 |             if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { | 
| 403 | 0 |                 BN_free(p); | 
| 404 | 0 |                 goto err; | 
| 405 | 0 |             } | 
| 406 | 0 |         } | 
| 407 |  |  | 
| 408 |  |         /* We MUST free p before any further use of rsa->p */ | 
| 409 | 0 |         BN_free(p); | 
| 410 | 0 |     } | 
| 411 |  |  | 
| 412 | 0 |     ok = 1; | 
| 413 | 0 |  err: | 
| 414 | 0 |     if (ok == -1) { | 
| 415 | 0 |         ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); | 
| 416 | 0 |         ok = 0; | 
| 417 | 0 |     } | 
| 418 | 0 |     BN_CTX_end(ctx); | 
| 419 | 0 |     BN_CTX_free(ctx); | 
| 420 | 0 |     return ok; | 
| 421 | 0 | } | 
| 422 |  | #endif /* FIPS_MODULE */ | 
| 423 |  |  | 
| 424 |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, | 
| 425 |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test) | 
| 426 | 0 | { | 
| 427 | 0 |     int ok = 0; | 
| 428 |  | 
 | 
| 429 |  | #ifdef FIPS_MODULE | 
| 430 |  |     ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); | 
| 431 |  |     pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */ | 
| 432 |  | #else | 
| 433 |  |     /* | 
| 434 |  |      * Only multi-prime keys or insecure keys with a small key length or a | 
| 435 |  |      * public exponent <= 2^16 will use the older rsa_multiprime_keygen(). | 
| 436 |  |      */ | 
| 437 | 0 |     if (primes == 2 | 
| 438 | 0 |             && bits >= 2048 | 
| 439 | 0 |             && (e_value == NULL || BN_num_bits(e_value) > 16)) | 
| 440 | 0 |         ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); | 
| 441 | 0 |     else | 
| 442 | 0 |         ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb); | 
| 443 | 0 | #endif /* FIPS_MODULE */ | 
| 444 |  | 
 | 
| 445 | 0 |     if (pairwise_test && ok > 0) { | 
| 446 | 0 |         OSSL_CALLBACK *stcb = NULL; | 
| 447 | 0 |         void *stcbarg = NULL; | 
| 448 |  | 
 | 
| 449 | 0 |         OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg); | 
| 450 | 0 |         ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg); | 
| 451 | 0 |         if (!ok) { | 
| 452 | 0 |             ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT); | 
| 453 |  |             /* Clear intermediate results */ | 
| 454 | 0 |             BN_clear_free(rsa->d); | 
| 455 | 0 |             BN_clear_free(rsa->p); | 
| 456 | 0 |             BN_clear_free(rsa->q); | 
| 457 | 0 |             BN_clear_free(rsa->dmp1); | 
| 458 | 0 |             BN_clear_free(rsa->dmq1); | 
| 459 | 0 |             BN_clear_free(rsa->iqmp); | 
| 460 | 0 |             rsa->d = NULL; | 
| 461 | 0 |             rsa->p = NULL; | 
| 462 | 0 |             rsa->q = NULL; | 
| 463 | 0 |             rsa->dmp1 = NULL; | 
| 464 | 0 |             rsa->dmq1 = NULL; | 
| 465 | 0 |             rsa->iqmp = NULL; | 
| 466 | 0 |         } | 
| 467 | 0 |     } | 
| 468 | 0 |     return ok; | 
| 469 | 0 | } | 
| 470 |  |  | 
| 471 |  | /* | 
| 472 |  |  * For RSA key generation it is not known whether the key pair will be used | 
| 473 |  |  * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case | 
| 474 |  |  * either a signature verification OR an encryption operation may be used to | 
| 475 |  |  * perform the pairwise consistency check. The simpler encrypt/decrypt operation | 
| 476 |  |  * has been chosen for this case. | 
| 477 |  |  */ | 
| 478 |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg) | 
| 479 | 0 | { | 
| 480 | 0 |     int ret = 0; | 
| 481 | 0 |     unsigned int ciphertxt_len; | 
| 482 | 0 |     unsigned char *ciphertxt = NULL; | 
| 483 | 0 |     const unsigned char plaintxt[16] = {0}; | 
| 484 | 0 |     unsigned char *decoded = NULL; | 
| 485 | 0 |     unsigned int decoded_len; | 
| 486 | 0 |     unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len); | 
| 487 | 0 |     int padding = RSA_PKCS1_PADDING; | 
| 488 | 0 |     OSSL_SELF_TEST *st = NULL; | 
| 489 |  | 
 | 
| 490 | 0 |     st = OSSL_SELF_TEST_new(cb, cbarg); | 
| 491 | 0 |     if (st == NULL) | 
| 492 | 0 |         goto err; | 
| 493 | 0 |     OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT, | 
| 494 | 0 |                            OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1); | 
| 495 |  | 
 | 
| 496 | 0 |     ciphertxt_len = RSA_size(rsa); | 
| 497 |  |     /* | 
| 498 |  |      * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to' | 
| 499 |  |      * parameter to be a maximum of RSA_size() - allocate space for both. | 
| 500 |  |      */ | 
| 501 | 0 |     ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2); | 
| 502 | 0 |     if (ciphertxt == NULL) | 
| 503 | 0 |         goto err; | 
| 504 | 0 |     decoded = ciphertxt + ciphertxt_len; | 
| 505 |  | 
 | 
| 506 | 0 |     ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa, | 
| 507 | 0 |                                        padding); | 
| 508 | 0 |     if (ciphertxt_len <= 0) | 
| 509 | 0 |         goto err; | 
| 510 | 0 |     if (ciphertxt_len == plaintxt_len | 
| 511 | 0 |         && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0) | 
| 512 | 0 |         goto err; | 
| 513 |  |  | 
| 514 | 0 |     OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt); | 
| 515 |  | 
 | 
| 516 | 0 |     decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa, | 
| 517 | 0 |                                       padding); | 
| 518 | 0 |     if (decoded_len != plaintxt_len | 
| 519 | 0 |         || memcmp(decoded, plaintxt,  decoded_len) != 0) | 
| 520 | 0 |         goto err; | 
| 521 |  |  | 
| 522 | 0 |     ret = 1; | 
| 523 | 0 | err: | 
| 524 | 0 |     OSSL_SELF_TEST_onend(st, ret); | 
| 525 | 0 |     OSSL_SELF_TEST_free(st); | 
| 526 | 0 |     OPENSSL_free(ciphertxt); | 
| 527 |  | 
 | 
| 528 | 0 |     return ret; | 
| 529 | 0 | } |