Coverage Report

Created: 2023-09-25 06:41

/src/openssl/crypto/modes/gcm128.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <string.h>
11
#include <openssl/crypto.h>
12
#include "internal/cryptlib.h"
13
#include "internal/endian.h"
14
#include "crypto/modes.h"
15
16
#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
17
typedef size_t size_t_aX __attribute((__aligned__(1)));
18
#else
19
typedef size_t size_t_aX;
20
#endif
21
22
#if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
23
/* redefine, because alignment is ensured */
24
# undef  GETU32
25
# define GETU32(p)       BSWAP4(*(const u32 *)(p))
26
# undef  PUTU32
27
# define PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v)
28
#endif
29
30
/* RISC-V uses C implementation as a fallback. */
31
#if defined(__riscv)
32
# define INCLUDE_C_GMULT_4BIT
33
# define INCLUDE_C_GHASH_4BIT
34
#endif
35
36
#define PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16))
37
0
#define REDUCE1BIT(V)   do { \
38
0
        if (sizeof(size_t)==8) { \
39
0
                u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
40
0
                V.lo  = (V.hi<<63)|(V.lo>>1); \
41
0
                V.hi  = (V.hi>>1 )^T; \
42
0
        } \
43
0
        else { \
44
0
                u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
45
0
                V.lo  = (V.hi<<63)|(V.lo>>1); \
46
0
                V.hi  = (V.hi>>1 )^((u64)T<<32); \
47
0
        } \
48
0
} while(0)
49
50
/*-
51
 *
52
 * NOTE: TABLE_BITS and all non-4bit implementations have been removed in 3.1.
53
 *
54
 * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
55
 * never be set to 8. 8 is effectively reserved for testing purposes.
56
 * TABLE_BITS>1 are lookup-table-driven implementations referred to as
57
 * "Shoup's" in GCM specification. In other words OpenSSL does not cover
58
 * whole spectrum of possible table driven implementations. Why? In
59
 * non-"Shoup's" case memory access pattern is segmented in such manner,
60
 * that it's trivial to see that cache timing information can reveal
61
 * fair portion of intermediate hash value. Given that ciphertext is
62
 * always available to attacker, it's possible for him to attempt to
63
 * deduce secret parameter H and if successful, tamper with messages
64
 * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
65
 * not as trivial, but there is no reason to believe that it's resistant
66
 * to cache-timing attack. And the thing about "8-bit" implementation is
67
 * that it consumes 16 (sixteen) times more memory, 4KB per individual
68
 * key + 1KB shared. Well, on pros side it should be twice as fast as
69
 * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
70
 * was observed to run ~75% faster, closer to 100% for commercial
71
 * compilers... Yet "4-bit" procedure is preferred, because it's
72
 * believed to provide better security-performance balance and adequate
73
 * all-round performance. "All-round" refers to things like:
74
 *
75
 * - shorter setup time effectively improves overall timing for
76
 *   handling short messages;
77
 * - larger table allocation can become unbearable because of VM
78
 *   subsystem penalties (for example on Windows large enough free
79
 *   results in VM working set trimming, meaning that consequent
80
 *   malloc would immediately incur working set expansion);
81
 * - larger table has larger cache footprint, which can affect
82
 *   performance of other code paths (not necessarily even from same
83
 *   thread in Hyper-Threading world);
84
 *
85
 * Value of 1 is not appropriate for performance reasons.
86
 */
87
88
static void gcm_init_4bit(u128 Htable[16], const u64 H[2])
89
0
{
90
0
    u128 V;
91
# if defined(OPENSSL_SMALL_FOOTPRINT)
92
    int i;
93
# endif
94
95
0
    Htable[0].hi = 0;
96
0
    Htable[0].lo = 0;
97
0
    V.hi = H[0];
98
0
    V.lo = H[1];
99
100
# if defined(OPENSSL_SMALL_FOOTPRINT)
101
    for (Htable[8] = V, i = 4; i > 0; i >>= 1) {
102
        REDUCE1BIT(V);
103
        Htable[i] = V;
104
    }
105
106
    for (i = 2; i < 16; i <<= 1) {
107
        u128 *Hi = Htable + i;
108
        int j;
109
        for (V = *Hi, j = 1; j < i; ++j) {
110
            Hi[j].hi = V.hi ^ Htable[j].hi;
111
            Hi[j].lo = V.lo ^ Htable[j].lo;
112
        }
113
    }
114
# else
115
0
    Htable[8] = V;
116
0
    REDUCE1BIT(V);
117
0
    Htable[4] = V;
118
0
    REDUCE1BIT(V);
119
0
    Htable[2] = V;
120
0
    REDUCE1BIT(V);
121
0
    Htable[1] = V;
122
0
    Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
123
0
    V = Htable[4];
124
0
    Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
125
0
    Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
126
0
    Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
127
0
    V = Htable[8];
128
0
    Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
129
0
    Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
130
0
    Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
131
0
    Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
132
0
    Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
133
0
    Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
134
0
    Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
135
0
# endif
136
# if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
137
    /*
138
     * ARM assembler expects specific dword order in Htable.
139
     */
140
    {
141
        int j;
142
        DECLARE_IS_ENDIAN;
143
144
        if (IS_LITTLE_ENDIAN)
145
            for (j = 0; j < 16; ++j) {
146
                V = Htable[j];
147
                Htable[j].hi = V.lo;
148
                Htable[j].lo = V.hi;
149
        } else
150
            for (j = 0; j < 16; ++j) {
151
                V = Htable[j];
152
                Htable[j].hi = V.lo << 32 | V.lo >> 32;
153
                Htable[j].lo = V.hi << 32 | V.hi >> 32;
154
            }
155
    }
156
# endif
157
0
}
158
159
# if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT)
160
static const size_t rem_4bit[16] = {
161
    PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
162
    PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
163
    PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
164
    PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)
165
};
166
167
static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
168
{
169
    u128 Z;
170
    int cnt = 15;
171
    size_t rem, nlo, nhi;
172
    DECLARE_IS_ENDIAN;
173
174
    nlo = ((const u8 *)Xi)[15];
175
    nhi = nlo >> 4;
176
    nlo &= 0xf;
177
178
    Z.hi = Htable[nlo].hi;
179
    Z.lo = Htable[nlo].lo;
180
181
    while (1) {
182
        rem = (size_t)Z.lo & 0xf;
183
        Z.lo = (Z.hi << 60) | (Z.lo >> 4);
184
        Z.hi = (Z.hi >> 4);
185
        if (sizeof(size_t) == 8)
186
            Z.hi ^= rem_4bit[rem];
187
        else
188
            Z.hi ^= (u64)rem_4bit[rem] << 32;
189
190
        Z.hi ^= Htable[nhi].hi;
191
        Z.lo ^= Htable[nhi].lo;
192
193
        if (--cnt < 0)
194
            break;
195
196
        nlo = ((const u8 *)Xi)[cnt];
197
        nhi = nlo >> 4;
198
        nlo &= 0xf;
199
200
        rem = (size_t)Z.lo & 0xf;
201
        Z.lo = (Z.hi << 60) | (Z.lo >> 4);
202
        Z.hi = (Z.hi >> 4);
203
        if (sizeof(size_t) == 8)
204
            Z.hi ^= rem_4bit[rem];
205
        else
206
            Z.hi ^= (u64)rem_4bit[rem] << 32;
207
208
        Z.hi ^= Htable[nlo].hi;
209
        Z.lo ^= Htable[nlo].lo;
210
    }
211
212
    if (IS_LITTLE_ENDIAN) {
213
#  ifdef BSWAP8
214
        Xi[0] = BSWAP8(Z.hi);
215
        Xi[1] = BSWAP8(Z.lo);
216
#  else
217
        u8 *p = (u8 *)Xi;
218
        u32 v;
219
        v = (u32)(Z.hi >> 32);
220
        PUTU32(p, v);
221
        v = (u32)(Z.hi);
222
        PUTU32(p + 4, v);
223
        v = (u32)(Z.lo >> 32);
224
        PUTU32(p + 8, v);
225
        v = (u32)(Z.lo);
226
        PUTU32(p + 12, v);
227
#  endif
228
    } else {
229
        Xi[0] = Z.hi;
230
        Xi[1] = Z.lo;
231
    }
232
}
233
234
# endif
235
236
# if !defined(GHASH_ASM) || defined(INCLUDE_C_GHASH_4BIT)
237
#  if !defined(OPENSSL_SMALL_FOOTPRINT)
238
/*
239
 * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
240
 * details... Compiler-generated code doesn't seem to give any
241
 * performance improvement, at least not on x86[_64]. It's here
242
 * mostly as reference and a placeholder for possible future
243
 * non-trivial optimization[s]...
244
 */
245
static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
246
                           const u8 *inp, size_t len)
247
{
248
    u128 Z;
249
    int cnt;
250
    size_t rem, nlo, nhi;
251
    DECLARE_IS_ENDIAN;
252
253
    do {
254
        cnt = 15;
255
        nlo = ((const u8 *)Xi)[15];
256
        nlo ^= inp[15];
257
        nhi = nlo >> 4;
258
        nlo &= 0xf;
259
260
        Z.hi = Htable[nlo].hi;
261
        Z.lo = Htable[nlo].lo;
262
263
        while (1) {
264
            rem = (size_t)Z.lo & 0xf;
265
            Z.lo = (Z.hi << 60) | (Z.lo >> 4);
266
            Z.hi = (Z.hi >> 4);
267
            if (sizeof(size_t) == 8)
268
                Z.hi ^= rem_4bit[rem];
269
            else
270
                Z.hi ^= (u64)rem_4bit[rem] << 32;
271
272
            Z.hi ^= Htable[nhi].hi;
273
            Z.lo ^= Htable[nhi].lo;
274
275
            if (--cnt < 0)
276
                break;
277
278
            nlo = ((const u8 *)Xi)[cnt];
279
            nlo ^= inp[cnt];
280
            nhi = nlo >> 4;
281
            nlo &= 0xf;
282
283
            rem = (size_t)Z.lo & 0xf;
284
            Z.lo = (Z.hi << 60) | (Z.lo >> 4);
285
            Z.hi = (Z.hi >> 4);
286
            if (sizeof(size_t) == 8)
287
                Z.hi ^= rem_4bit[rem];
288
            else
289
                Z.hi ^= (u64)rem_4bit[rem] << 32;
290
291
            Z.hi ^= Htable[nlo].hi;
292
            Z.lo ^= Htable[nlo].lo;
293
        }
294
295
        if (IS_LITTLE_ENDIAN) {
296
#   ifdef BSWAP8
297
            Xi[0] = BSWAP8(Z.hi);
298
            Xi[1] = BSWAP8(Z.lo);
299
#   else
300
            u8 *p = (u8 *)Xi;
301
            u32 v;
302
            v = (u32)(Z.hi >> 32);
303
            PUTU32(p, v);
304
            v = (u32)(Z.hi);
305
            PUTU32(p + 4, v);
306
            v = (u32)(Z.lo >> 32);
307
            PUTU32(p + 8, v);
308
            v = (u32)(Z.lo);
309
            PUTU32(p + 12, v);
310
#   endif
311
        } else {
312
            Xi[0] = Z.hi;
313
            Xi[1] = Z.lo;
314
        }
315
316
        inp += 16;
317
        /* Block size is 128 bits so len is a multiple of 16 */
318
        len -= 16;
319
    } while (len > 0);
320
}
321
#  endif
322
# else
323
void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);
324
void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
325
                    size_t len);
326
# endif
327
328
0
# define GCM_MUL(ctx)      ctx->funcs.gmult(ctx->Xi.u,ctx->Htable)
329
# if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
330
0
#  define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len)
331
/*
332
 * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing
333
 * effect. In other words idea is to hash data while it's still in L1 cache
334
 * after encryption pass...
335
 */
336
0
#  define GHASH_CHUNK       (3*1024)
337
# endif
338
339
#if     (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ))
340
# if    !defined(I386_ONLY) && \
341
        (defined(__i386)        || defined(__i386__)    || \
342
         defined(__x86_64)      || defined(__x86_64__)  || \
343
         defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64))
344
#  define GHASH_ASM_X86_OR_64
345
346
void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);
347
void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);
348
void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,
349
                     size_t len);
350
351
#  if defined(__i386) || defined(__i386__) || defined(_M_IX86)
352
#   define gcm_init_avx   gcm_init_clmul
353
#   define gcm_gmult_avx  gcm_gmult_clmul
354
#   define gcm_ghash_avx  gcm_ghash_clmul
355
#  else
356
void gcm_init_avx(u128 Htable[16], const u64 Xi[2]);
357
void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]);
358
void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
359
                   size_t len);
360
#  endif
361
362
#  if   defined(__i386) || defined(__i386__) || defined(_M_IX86)
363
#   define GHASH_ASM_X86
364
void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);
365
void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
366
                        size_t len);
367
368
void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);
369
void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,
370
                        size_t len);
371
#  endif
372
# elif defined(__arm__) || defined(__arm) || defined(__aarch64__)
373
#  include "arm_arch.h"
374
#  if __ARM_MAX_ARCH__>=7
375
#   define GHASH_ASM_ARM
376
#   define PMULL_CAPABLE        (OPENSSL_armcap_P & ARMV8_PMULL)
377
#   if defined(__arm__) || defined(__arm)
378
#    define NEON_CAPABLE        (OPENSSL_armcap_P & ARMV7_NEON)
379
#   endif
380
void gcm_init_neon(u128 Htable[16], const u64 Xi[2]);
381
void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);
382
void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,
383
                    size_t len);
384
void gcm_init_v8(u128 Htable[16], const u64 Xi[2]);
385
void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]);
386
void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
387
                  size_t len);
388
#  endif
389
# elif defined(__sparc__) || defined(__sparc)
390
#  include "crypto/sparc_arch.h"
391
#  define GHASH_ASM_SPARC
392
void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]);
393
void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]);
394
void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp,
395
                    size_t len);
396
# elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
397
#  include "crypto/ppc_arch.h"
398
#  define GHASH_ASM_PPC
399
void gcm_init_p8(u128 Htable[16], const u64 Xi[2]);
400
void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]);
401
void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
402
                  size_t len);
403
# elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64
404
#  include "crypto/riscv_arch.h"
405
#  define GHASH_ASM_RV64I
406
/* Zbc/Zbkc (scalar crypto with clmul) based routines. */
407
void gcm_init_rv64i_zbc(u128 Htable[16], const u64 Xi[2]);
408
void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 Xi[2]);
409
void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 Xi[2]);
410
void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]);
411
void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]);
412
void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16],
413
                         const u8 *inp, size_t len);
414
void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16],
415
                               const u8 *inp, size_t len);
416
# endif
417
#endif
418
419
static void gcm_get_funcs(struct gcm_funcs_st *ctx)
420
0
{
421
    /* set defaults -- overridden below as needed */
422
0
    ctx->ginit = gcm_init_4bit;
423
#if !defined(GHASH_ASM)
424
    ctx->gmult = gcm_gmult_4bit;
425
#else
426
0
    ctx->gmult = NULL;
427
0
#endif
428
#if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT)
429
    ctx->ghash = gcm_ghash_4bit;
430
#else
431
0
    ctx->ghash = NULL;
432
0
#endif
433
434
0
#if defined(GHASH_ASM_X86_OR_64)
435
0
# if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
436
    /* x86_64 */
437
0
    if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */
438
0
        if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
439
0
            ctx->ginit = gcm_init_avx;
440
0
            ctx->gmult = gcm_gmult_avx;
441
0
            ctx->ghash = gcm_ghash_avx;
442
0
        } else {
443
0
            ctx->ginit = gcm_init_clmul;
444
0
            ctx->gmult = gcm_gmult_clmul;
445
0
            ctx->ghash = gcm_ghash_clmul;
446
0
        }
447
0
        return;
448
0
    }
449
0
# endif
450
# if defined(GHASH_ASM_X86)
451
    /* x86 only */
452
#  if defined(OPENSSL_IA32_SSE2)
453
    if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
454
        ctx->gmult = gcm_gmult_4bit_mmx;
455
        ctx->ghash = gcm_ghash_4bit_mmx;
456
        return;
457
    }
458
#  else
459
    if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */
460
        ctx->gmult = gcm_gmult_4bit_mmx;
461
        ctx->ghash = gcm_ghash_4bit_mmx;
462
        return;
463
    }
464
#  endif
465
    ctx->gmult = gcm_gmult_4bit_x86;
466
    ctx->ghash = gcm_ghash_4bit_x86;
467
    return;
468
# else
469
    /* x86_64 fallback defaults */
470
0
    ctx->gmult = gcm_gmult_4bit;
471
0
    ctx->ghash = gcm_ghash_4bit;
472
0
    return;
473
0
# endif
474
#elif defined(GHASH_ASM_ARM)
475
    /* ARM defaults */
476
    ctx->gmult = gcm_gmult_4bit;
477
    ctx->ghash = gcm_ghash_4bit;
478
# ifdef PMULL_CAPABLE
479
    if (PMULL_CAPABLE) {
480
        ctx->ginit = (gcm_init_fn)gcm_init_v8;
481
        ctx->gmult = gcm_gmult_v8;
482
        ctx->ghash = gcm_ghash_v8;
483
    }
484
# elif defined(NEON_CAPABLE)
485
    if (NEON_CAPABLE) {
486
        ctx->ginit = gcm_init_neon;
487
        ctx->gmult = gcm_gmult_neon;
488
        ctx->ghash = gcm_ghash_neon;
489
    }
490
# endif
491
    return;
492
#elif defined(GHASH_ASM_SPARC)
493
    /* SPARC defaults */
494
    ctx->gmult = gcm_gmult_4bit;
495
    ctx->ghash = gcm_ghash_4bit;
496
    if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {
497
        ctx->ginit = gcm_init_vis3;
498
        ctx->gmult = gcm_gmult_vis3;
499
        ctx->ghash = gcm_ghash_vis3;
500
    }
501
    return;
502
#elif defined(GHASH_ASM_PPC)
503
    /* PowerPC does not define GHASH_ASM; defaults set above */
504
    if (OPENSSL_ppccap_P & PPC_CRYPTO207) {
505
        ctx->ginit = gcm_init_p8;
506
        ctx->gmult = gcm_gmult_p8;
507
        ctx->ghash = gcm_ghash_p8;
508
    }
509
    return;
510
#elif defined(GHASH_ASM_RV64I)
511
    /* RISCV defaults */
512
    ctx->gmult = gcm_gmult_4bit;
513
    ctx->ghash = gcm_ghash_4bit;
514
515
    if (RISCV_HAS_ZBC()) {
516
        if (RISCV_HAS_ZBKB()) {
517
            ctx->ginit = gcm_init_rv64i_zbc__zbkb;
518
            ctx->gmult = gcm_gmult_rv64i_zbc__zbkb;
519
            ctx->ghash = gcm_ghash_rv64i_zbc__zbkb;
520
        } else if (RISCV_HAS_ZBB()) {
521
            ctx->ginit = gcm_init_rv64i_zbc__zbb;
522
            ctx->gmult = gcm_gmult_rv64i_zbc;
523
            ctx->ghash = gcm_ghash_rv64i_zbc;
524
        } else {
525
            ctx->ginit = gcm_init_rv64i_zbc;
526
            ctx->gmult = gcm_gmult_rv64i_zbc;
527
            ctx->ghash = gcm_ghash_rv64i_zbc;
528
        }
529
    }
530
    return;
531
#elif defined(GHASH_ASM)
532
    /* all other architectures use the generic names */
533
    ctx->gmult = gcm_gmult_4bit;
534
    ctx->ghash = gcm_ghash_4bit;
535
    return;
536
#endif
537
0
}
538
539
void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2])
540
0
{
541
0
    struct gcm_funcs_st funcs;
542
543
0
    gcm_get_funcs(&funcs);
544
0
    funcs.ginit(Htable, H);
545
0
}
546
547
void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
548
0
{
549
0
    struct gcm_funcs_st funcs;
550
551
0
    gcm_get_funcs(&funcs);
552
0
    funcs.gmult(Xi, Htable);
553
0
}
554
555
void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
556
                         const u8 *inp, size_t len)
557
0
{
558
0
    struct gcm_funcs_st funcs;
559
0
    u64 tmp[2];
560
0
    size_t i;
561
562
0
    gcm_get_funcs(&funcs);
563
0
    if (funcs.ghash != NULL) {
564
0
        funcs.ghash(Xi, Htable, inp, len);
565
0
    } else {
566
        /* Emulate ghash if needed */
567
0
        for (i = 0; i < len; i += 16) {
568
0
            memcpy(tmp, &inp[i], sizeof(tmp));
569
0
            Xi[0] ^= tmp[0];
570
0
            Xi[1] ^= tmp[1];
571
0
            funcs.gmult(Xi, Htable);
572
0
        }
573
0
    }
574
0
}
575
576
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block)
577
0
{
578
0
    DECLARE_IS_ENDIAN;
579
580
0
    memset(ctx, 0, sizeof(*ctx));
581
0
    ctx->block = block;
582
0
    ctx->key = key;
583
584
0
    (*block) (ctx->H.c, ctx->H.c, key);
585
586
0
    if (IS_LITTLE_ENDIAN) {
587
        /* H is stored in host byte order */
588
#ifdef BSWAP8
589
        ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
590
        ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
591
#else
592
0
        u8 *p = ctx->H.c;
593
0
        u64 hi, lo;
594
0
        hi = (u64)GETU32(p) << 32 | GETU32(p + 4);
595
0
        lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
596
0
        ctx->H.u[0] = hi;
597
0
        ctx->H.u[1] = lo;
598
0
#endif
599
0
    }
600
601
0
    gcm_get_funcs(&ctx->funcs);
602
0
    ctx->funcs.ginit(ctx->Htable, ctx->H.u);
603
0
}
604
605
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
606
                         size_t len)
607
0
{
608
0
    DECLARE_IS_ENDIAN;
609
0
    unsigned int ctr;
610
611
0
    ctx->len.u[0] = 0;          /* AAD length */
612
0
    ctx->len.u[1] = 0;          /* message length */
613
0
    ctx->ares = 0;
614
0
    ctx->mres = 0;
615
616
0
    if (len == 12) {
617
0
        memcpy(ctx->Yi.c, iv, 12);
618
0
        ctx->Yi.c[12] = 0;
619
0
        ctx->Yi.c[13] = 0;
620
0
        ctx->Yi.c[14] = 0;
621
0
        ctx->Yi.c[15] = 1;
622
0
        ctr = 1;
623
0
    } else {
624
0
        size_t i;
625
0
        u64 len0 = len;
626
627
        /* Borrow ctx->Xi to calculate initial Yi */
628
0
        ctx->Xi.u[0] = 0;
629
0
        ctx->Xi.u[1] = 0;
630
631
0
        while (len >= 16) {
632
0
            for (i = 0; i < 16; ++i)
633
0
                ctx->Xi.c[i] ^= iv[i];
634
0
            GCM_MUL(ctx);
635
0
            iv += 16;
636
0
            len -= 16;
637
0
        }
638
0
        if (len) {
639
0
            for (i = 0; i < len; ++i)
640
0
                ctx->Xi.c[i] ^= iv[i];
641
0
            GCM_MUL(ctx);
642
0
        }
643
0
        len0 <<= 3;
644
0
        if (IS_LITTLE_ENDIAN) {
645
#ifdef BSWAP8
646
            ctx->Xi.u[1] ^= BSWAP8(len0);
647
#else
648
0
            ctx->Xi.c[8] ^= (u8)(len0 >> 56);
649
0
            ctx->Xi.c[9] ^= (u8)(len0 >> 48);
650
0
            ctx->Xi.c[10] ^= (u8)(len0 >> 40);
651
0
            ctx->Xi.c[11] ^= (u8)(len0 >> 32);
652
0
            ctx->Xi.c[12] ^= (u8)(len0 >> 24);
653
0
            ctx->Xi.c[13] ^= (u8)(len0 >> 16);
654
0
            ctx->Xi.c[14] ^= (u8)(len0 >> 8);
655
0
            ctx->Xi.c[15] ^= (u8)(len0);
656
0
#endif
657
0
        } else {
658
0
            ctx->Xi.u[1] ^= len0;
659
0
        }
660
661
0
        GCM_MUL(ctx);
662
663
0
        if (IS_LITTLE_ENDIAN)
664
#ifdef BSWAP4
665
            ctr = BSWAP4(ctx->Xi.d[3]);
666
#else
667
0
            ctr = GETU32(ctx->Xi.c + 12);
668
0
#endif
669
0
        else
670
0
            ctr = ctx->Xi.d[3];
671
672
        /* Copy borrowed Xi to Yi */
673
0
        ctx->Yi.u[0] = ctx->Xi.u[0];
674
0
        ctx->Yi.u[1] = ctx->Xi.u[1];
675
0
    }
676
677
0
    ctx->Xi.u[0] = 0;
678
0
    ctx->Xi.u[1] = 0;
679
680
0
    (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key);
681
0
    ++ctr;
682
0
    if (IS_LITTLE_ENDIAN)
683
#ifdef BSWAP4
684
        ctx->Yi.d[3] = BSWAP4(ctr);
685
#else
686
0
        PUTU32(ctx->Yi.c + 12, ctr);
687
0
#endif
688
0
    else
689
0
        ctx->Yi.d[3] = ctr;
690
0
}
691
692
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
693
                      size_t len)
694
0
{
695
0
    size_t i;
696
0
    unsigned int n;
697
0
    u64 alen = ctx->len.u[0];
698
699
0
    if (ctx->len.u[1])
700
0
        return -2;
701
702
0
    alen += len;
703
0
    if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
704
0
        return -1;
705
0
    ctx->len.u[0] = alen;
706
707
0
    n = ctx->ares;
708
0
    if (n) {
709
0
        while (n && len) {
710
0
            ctx->Xi.c[n] ^= *(aad++);
711
0
            --len;
712
0
            n = (n + 1) % 16;
713
0
        }
714
0
        if (n == 0)
715
0
            GCM_MUL(ctx);
716
0
        else {
717
0
            ctx->ares = n;
718
0
            return 0;
719
0
        }
720
0
    }
721
0
#ifdef GHASH
722
0
    if ((i = (len & (size_t)-16))) {
723
0
        GHASH(ctx, aad, i);
724
0
        aad += i;
725
0
        len -= i;
726
0
    }
727
#else
728
    while (len >= 16) {
729
        for (i = 0; i < 16; ++i)
730
            ctx->Xi.c[i] ^= aad[i];
731
        GCM_MUL(ctx);
732
        aad += 16;
733
        len -= 16;
734
    }
735
#endif
736
0
    if (len) {
737
0
        n = (unsigned int)len;
738
0
        for (i = 0; i < len; ++i)
739
0
            ctx->Xi.c[i] ^= aad[i];
740
0
    }
741
742
0
    ctx->ares = n;
743
0
    return 0;
744
0
}
745
746
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
747
                          const unsigned char *in, unsigned char *out,
748
                          size_t len)
749
0
{
750
0
    DECLARE_IS_ENDIAN;
751
0
    unsigned int n, ctr, mres;
752
0
    size_t i;
753
0
    u64 mlen = ctx->len.u[1];
754
0
    block128_f block = ctx->block;
755
0
    void *key = ctx->key;
756
757
0
    mlen += len;
758
0
    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
759
0
        return -1;
760
0
    ctx->len.u[1] = mlen;
761
762
0
    mres = ctx->mres;
763
764
0
    if (ctx->ares) {
765
        /* First call to encrypt finalizes GHASH(AAD) */
766
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
767
0
        if (len == 0) {
768
0
            GCM_MUL(ctx);
769
0
            ctx->ares = 0;
770
0
            return 0;
771
0
        }
772
0
        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
773
0
        ctx->Xi.u[0] = 0;
774
0
        ctx->Xi.u[1] = 0;
775
0
        mres = sizeof(ctx->Xi);
776
#else
777
        GCM_MUL(ctx);
778
#endif
779
0
        ctx->ares = 0;
780
0
    }
781
782
0
    if (IS_LITTLE_ENDIAN)
783
#ifdef BSWAP4
784
        ctr = BSWAP4(ctx->Yi.d[3]);
785
#else
786
0
        ctr = GETU32(ctx->Yi.c + 12);
787
0
#endif
788
0
    else
789
0
        ctr = ctx->Yi.d[3];
790
791
0
    n = mres % 16;
792
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
793
0
    if (16 % sizeof(size_t) == 0) { /* always true actually */
794
0
        do {
795
0
            if (n) {
796
0
# if defined(GHASH)
797
0
                while (n && len) {
798
0
                    ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
799
0
                    --len;
800
0
                    n = (n + 1) % 16;
801
0
                }
802
0
                if (n == 0) {
803
0
                    GHASH(ctx, ctx->Xn, mres);
804
0
                    mres = 0;
805
0
                } else {
806
0
                    ctx->mres = mres;
807
0
                    return 0;
808
0
                }
809
# else
810
                while (n && len) {
811
                    ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
812
                    --len;
813
                    n = (n + 1) % 16;
814
                }
815
                if (n == 0) {
816
                    GCM_MUL(ctx);
817
                    mres = 0;
818
                } else {
819
                    ctx->mres = n;
820
                    return 0;
821
                }
822
# endif
823
0
            }
824
0
# if defined(STRICT_ALIGNMENT)
825
0
            if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
826
0
                break;
827
0
# endif
828
0
# if defined(GHASH)
829
0
            if (len >= 16 && mres) {
830
0
                GHASH(ctx, ctx->Xn, mres);
831
0
                mres = 0;
832
0
            }
833
0
#  if defined(GHASH_CHUNK)
834
0
            while (len >= GHASH_CHUNK) {
835
0
                size_t j = GHASH_CHUNK;
836
837
0
                while (j) {
838
0
                    size_t_aX *out_t = (size_t_aX *)out;
839
0
                    const size_t_aX *in_t = (const size_t_aX *)in;
840
841
0
                    (*block) (ctx->Yi.c, ctx->EKi.c, key);
842
0
                    ++ctr;
843
0
                    if (IS_LITTLE_ENDIAN)
844
#   ifdef BSWAP4
845
                        ctx->Yi.d[3] = BSWAP4(ctr);
846
#   else
847
0
                        PUTU32(ctx->Yi.c + 12, ctr);
848
0
#   endif
849
0
                    else
850
0
                        ctx->Yi.d[3] = ctr;
851
0
                    for (i = 0; i < 16 / sizeof(size_t); ++i)
852
0
                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
853
0
                    out += 16;
854
0
                    in += 16;
855
0
                    j -= 16;
856
0
                }
857
0
                GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
858
0
                len -= GHASH_CHUNK;
859
0
            }
860
0
#  endif
861
0
            if ((i = (len & (size_t)-16))) {
862
0
                size_t j = i;
863
864
0
                while (len >= 16) {
865
0
                    size_t_aX *out_t = (size_t_aX *)out;
866
0
                    const size_t_aX *in_t = (const size_t_aX *)in;
867
868
0
                    (*block) (ctx->Yi.c, ctx->EKi.c, key);
869
0
                    ++ctr;
870
0
                    if (IS_LITTLE_ENDIAN)
871
#  ifdef BSWAP4
872
                        ctx->Yi.d[3] = BSWAP4(ctr);
873
#  else
874
0
                        PUTU32(ctx->Yi.c + 12, ctr);
875
0
#  endif
876
0
                    else
877
0
                        ctx->Yi.d[3] = ctr;
878
0
                    for (i = 0; i < 16 / sizeof(size_t); ++i)
879
0
                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
880
0
                    out += 16;
881
0
                    in += 16;
882
0
                    len -= 16;
883
0
                }
884
0
                GHASH(ctx, out - j, j);
885
0
            }
886
# else
887
            while (len >= 16) {
888
                size_t *out_t = (size_t *)out;
889
                const size_t *in_t = (const size_t *)in;
890
891
                (*block) (ctx->Yi.c, ctx->EKi.c, key);
892
                ++ctr;
893
                if (IS_LITTLE_ENDIAN)
894
#  ifdef BSWAP4
895
                    ctx->Yi.d[3] = BSWAP4(ctr);
896
#  else
897
                    PUTU32(ctx->Yi.c + 12, ctr);
898
#  endif
899
                else
900
                    ctx->Yi.d[3] = ctr;
901
                for (i = 0; i < 16 / sizeof(size_t); ++i)
902
                    ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
903
                GCM_MUL(ctx);
904
                out += 16;
905
                in += 16;
906
                len -= 16;
907
            }
908
# endif
909
0
            if (len) {
910
0
                (*block) (ctx->Yi.c, ctx->EKi.c, key);
911
0
                ++ctr;
912
0
                if (IS_LITTLE_ENDIAN)
913
# ifdef BSWAP4
914
                    ctx->Yi.d[3] = BSWAP4(ctr);
915
# else
916
0
                    PUTU32(ctx->Yi.c + 12, ctr);
917
0
# endif
918
0
                else
919
0
                    ctx->Yi.d[3] = ctr;
920
0
# if defined(GHASH)
921
0
                while (len--) {
922
0
                    ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
923
0
                    ++n;
924
0
                }
925
# else
926
                while (len--) {
927
                    ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
928
                    ++n;
929
                }
930
                mres = n;
931
# endif
932
0
            }
933
934
0
            ctx->mres = mres;
935
0
            return 0;
936
0
        } while (0);
937
0
    }
938
0
#endif
939
0
    for (i = 0; i < len; ++i) {
940
0
        if (n == 0) {
941
0
            (*block) (ctx->Yi.c, ctx->EKi.c, key);
942
0
            ++ctr;
943
0
            if (IS_LITTLE_ENDIAN)
944
#ifdef BSWAP4
945
                ctx->Yi.d[3] = BSWAP4(ctr);
946
#else
947
0
                PUTU32(ctx->Yi.c + 12, ctr);
948
0
#endif
949
0
            else
950
0
                ctx->Yi.d[3] = ctr;
951
0
        }
952
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
953
0
        ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n];
954
0
        n = (n + 1) % 16;
955
0
        if (mres == sizeof(ctx->Xn)) {
956
0
            GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
957
0
            mres = 0;
958
0
        }
959
#else
960
        ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
961
        mres = n = (n + 1) % 16;
962
        if (n == 0)
963
            GCM_MUL(ctx);
964
#endif
965
0
    }
966
967
0
    ctx->mres = mres;
968
0
    return 0;
969
0
}
970
971
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
972
                          const unsigned char *in, unsigned char *out,
973
                          size_t len)
974
0
{
975
0
    DECLARE_IS_ENDIAN;
976
0
    unsigned int n, ctr, mres;
977
0
    size_t i;
978
0
    u64 mlen = ctx->len.u[1];
979
0
    block128_f block = ctx->block;
980
0
    void *key = ctx->key;
981
982
0
    mlen += len;
983
0
    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
984
0
        return -1;
985
0
    ctx->len.u[1] = mlen;
986
987
0
    mres = ctx->mres;
988
989
0
    if (ctx->ares) {
990
        /* First call to decrypt finalizes GHASH(AAD) */
991
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
992
0
        if (len == 0) {
993
0
            GCM_MUL(ctx);
994
0
            ctx->ares = 0;
995
0
            return 0;
996
0
        }
997
0
        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
998
0
        ctx->Xi.u[0] = 0;
999
0
        ctx->Xi.u[1] = 0;
1000
0
        mres = sizeof(ctx->Xi);
1001
#else
1002
        GCM_MUL(ctx);
1003
#endif
1004
0
        ctx->ares = 0;
1005
0
    }
1006
1007
0
    if (IS_LITTLE_ENDIAN)
1008
#ifdef BSWAP4
1009
        ctr = BSWAP4(ctx->Yi.d[3]);
1010
#else
1011
0
        ctr = GETU32(ctx->Yi.c + 12);
1012
0
#endif
1013
0
    else
1014
0
        ctr = ctx->Yi.d[3];
1015
1016
0
    n = mres % 16;
1017
0
#if !defined(OPENSSL_SMALL_FOOTPRINT)
1018
0
    if (16 % sizeof(size_t) == 0) { /* always true actually */
1019
0
        do {
1020
0
            if (n) {
1021
0
# if defined(GHASH)
1022
0
                while (n && len) {
1023
0
                    *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
1024
0
                    --len;
1025
0
                    n = (n + 1) % 16;
1026
0
                }
1027
0
                if (n == 0) {
1028
0
                    GHASH(ctx, ctx->Xn, mres);
1029
0
                    mres = 0;
1030
0
                } else {
1031
0
                    ctx->mres = mres;
1032
0
                    return 0;
1033
0
                }
1034
# else
1035
                while (n && len) {
1036
                    u8 c = *(in++);
1037
                    *(out++) = c ^ ctx->EKi.c[n];
1038
                    ctx->Xi.c[n] ^= c;
1039
                    --len;
1040
                    n = (n + 1) % 16;
1041
                }
1042
                if (n == 0) {
1043
                    GCM_MUL(ctx);
1044
                    mres = 0;
1045
                } else {
1046
                    ctx->mres = n;
1047
                    return 0;
1048
                }
1049
# endif
1050
0
            }
1051
0
# if defined(STRICT_ALIGNMENT)
1052
0
            if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
1053
0
                break;
1054
0
# endif
1055
0
# if defined(GHASH)
1056
0
            if (len >= 16 && mres) {
1057
0
                GHASH(ctx, ctx->Xn, mres);
1058
0
                mres = 0;
1059
0
            }
1060
0
#  if defined(GHASH_CHUNK)
1061
0
            while (len >= GHASH_CHUNK) {
1062
0
                size_t j = GHASH_CHUNK;
1063
1064
0
                GHASH(ctx, in, GHASH_CHUNK);
1065
0
                while (j) {
1066
0
                    size_t_aX *out_t = (size_t_aX *)out;
1067
0
                    const size_t_aX *in_t = (const size_t_aX *)in;
1068
1069
0
                    (*block) (ctx->Yi.c, ctx->EKi.c, key);
1070
0
                    ++ctr;
1071
0
                    if (IS_LITTLE_ENDIAN)
1072
#   ifdef BSWAP4
1073
                        ctx->Yi.d[3] = BSWAP4(ctr);
1074
#   else
1075
0
                        PUTU32(ctx->Yi.c + 12, ctr);
1076
0
#   endif
1077
0
                    else
1078
0
                        ctx->Yi.d[3] = ctr;
1079
0
                    for (i = 0; i < 16 / sizeof(size_t); ++i)
1080
0
                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
1081
0
                    out += 16;
1082
0
                    in += 16;
1083
0
                    j -= 16;
1084
0
                }
1085
0
                len -= GHASH_CHUNK;
1086
0
            }
1087
0
#  endif
1088
0
            if ((i = (len & (size_t)-16))) {
1089
0
                GHASH(ctx, in, i);
1090
0
                while (len >= 16) {
1091
0
                    size_t_aX *out_t = (size_t_aX *)out;
1092
0
                    const size_t_aX *in_t = (const size_t_aX *)in;
1093
1094
0
                    (*block) (ctx->Yi.c, ctx->EKi.c, key);
1095
0
                    ++ctr;
1096
0
                    if (IS_LITTLE_ENDIAN)
1097
#  ifdef BSWAP4
1098
                        ctx->Yi.d[3] = BSWAP4(ctr);
1099
#  else
1100
0
                        PUTU32(ctx->Yi.c + 12, ctr);
1101
0
#  endif
1102
0
                    else
1103
0
                        ctx->Yi.d[3] = ctr;
1104
0
                    for (i = 0; i < 16 / sizeof(size_t); ++i)
1105
0
                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];
1106
0
                    out += 16;
1107
0
                    in += 16;
1108
0
                    len -= 16;
1109
0
                }
1110
0
            }
1111
# else
1112
            while (len >= 16) {
1113
                size_t *out_t = (size_t *)out;
1114
                const size_t *in_t = (const size_t *)in;
1115
1116
                (*block) (ctx->Yi.c, ctx->EKi.c, key);
1117
                ++ctr;
1118
                if (IS_LITTLE_ENDIAN)
1119
#  ifdef BSWAP4
1120
                    ctx->Yi.d[3] = BSWAP4(ctr);
1121
#  else
1122
                    PUTU32(ctx->Yi.c + 12, ctr);
1123
#  endif
1124
                else
1125
                    ctx->Yi.d[3] = ctr;
1126
                for (i = 0; i < 16 / sizeof(size_t); ++i) {
1127
                    size_t c = in_t[i];
1128
                    out_t[i] = c ^ ctx->EKi.t[i];
1129
                    ctx->Xi.t[i] ^= c;
1130
                }
1131
                GCM_MUL(ctx);
1132
                out += 16;
1133
                in += 16;
1134
                len -= 16;
1135
            }
1136
# endif
1137
0
            if (len) {
1138
0
                (*block) (ctx->Yi.c, ctx->EKi.c, key);
1139
0
                ++ctr;
1140
0
                if (IS_LITTLE_ENDIAN)
1141
# ifdef BSWAP4
1142
                    ctx->Yi.d[3] = BSWAP4(ctr);
1143
# else
1144
0
                    PUTU32(ctx->Yi.c + 12, ctr);
1145
0
# endif
1146
0
                else
1147
0
                    ctx->Yi.d[3] = ctr;
1148
0
# if defined(GHASH)
1149
0
                while (len--) {
1150
0
                    out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
1151
0
                    ++n;
1152
0
                }
1153
# else
1154
                while (len--) {
1155
                    u8 c = in[n];
1156
                    ctx->Xi.c[n] ^= c;
1157
                    out[n] = c ^ ctx->EKi.c[n];
1158
                    ++n;
1159
                }
1160
                mres = n;
1161
# endif
1162
0
            }
1163
1164
0
            ctx->mres = mres;
1165
0
            return 0;
1166
0
        } while (0);
1167
0
    }
1168
0
#endif
1169
0
    for (i = 0; i < len; ++i) {
1170
0
        u8 c;
1171
0
        if (n == 0) {
1172
0
            (*block) (ctx->Yi.c, ctx->EKi.c, key);
1173
0
            ++ctr;
1174
0
            if (IS_LITTLE_ENDIAN)
1175
#ifdef BSWAP4
1176
                ctx->Yi.d[3] = BSWAP4(ctr);
1177
#else
1178
0
                PUTU32(ctx->Yi.c + 12, ctr);
1179
0
#endif
1180
0
            else
1181
0
                ctx->Yi.d[3] = ctr;
1182
0
        }
1183
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
1184
0
        out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n];
1185
0
        n = (n + 1) % 16;
1186
0
        if (mres == sizeof(ctx->Xn)) {
1187
0
            GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
1188
0
            mres = 0;
1189
0
        }
1190
#else
1191
        c = in[i];
1192
        out[i] = c ^ ctx->EKi.c[n];
1193
        ctx->Xi.c[n] ^= c;
1194
        mres = n = (n + 1) % 16;
1195
        if (n == 0)
1196
            GCM_MUL(ctx);
1197
#endif
1198
0
    }
1199
1200
0
    ctx->mres = mres;
1201
0
    return 0;
1202
0
}
1203
1204
int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
1205
                                const unsigned char *in, unsigned char *out,
1206
                                size_t len, ctr128_f stream)
1207
0
{
1208
#if defined(OPENSSL_SMALL_FOOTPRINT)
1209
    return CRYPTO_gcm128_encrypt(ctx, in, out, len);
1210
#else
1211
0
    DECLARE_IS_ENDIAN;
1212
0
    unsigned int n, ctr, mres;
1213
0
    size_t i;
1214
0
    u64 mlen = ctx->len.u[1];
1215
0
    void *key = ctx->key;
1216
1217
0
    mlen += len;
1218
0
    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
1219
0
        return -1;
1220
0
    ctx->len.u[1] = mlen;
1221
1222
0
    mres = ctx->mres;
1223
1224
0
    if (ctx->ares) {
1225
        /* First call to encrypt finalizes GHASH(AAD) */
1226
0
#if defined(GHASH)
1227
0
        if (len == 0) {
1228
0
            GCM_MUL(ctx);
1229
0
            ctx->ares = 0;
1230
0
            return 0;
1231
0
        }
1232
0
        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
1233
0
        ctx->Xi.u[0] = 0;
1234
0
        ctx->Xi.u[1] = 0;
1235
0
        mres = sizeof(ctx->Xi);
1236
#else
1237
        GCM_MUL(ctx);
1238
#endif
1239
0
        ctx->ares = 0;
1240
0
    }
1241
1242
0
    if (IS_LITTLE_ENDIAN)
1243
# ifdef BSWAP4
1244
        ctr = BSWAP4(ctx->Yi.d[3]);
1245
# else
1246
0
        ctr = GETU32(ctx->Yi.c + 12);
1247
0
# endif
1248
0
    else
1249
0
        ctr = ctx->Yi.d[3];
1250
1251
0
    n = mres % 16;
1252
0
    if (n) {
1253
0
# if defined(GHASH)
1254
0
        while (n && len) {
1255
0
            ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
1256
0
            --len;
1257
0
            n = (n + 1) % 16;
1258
0
        }
1259
0
        if (n == 0) {
1260
0
            GHASH(ctx, ctx->Xn, mres);
1261
0
            mres = 0;
1262
0
        } else {
1263
0
            ctx->mres = mres;
1264
0
            return 0;
1265
0
        }
1266
# else
1267
        while (n && len) {
1268
            ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
1269
            --len;
1270
            n = (n + 1) % 16;
1271
        }
1272
        if (n == 0) {
1273
            GCM_MUL(ctx);
1274
            mres = 0;
1275
        } else {
1276
            ctx->mres = n;
1277
            return 0;
1278
        }
1279
# endif
1280
0
    }
1281
0
# if defined(GHASH)
1282
0
        if (len >= 16 && mres) {
1283
0
            GHASH(ctx, ctx->Xn, mres);
1284
0
            mres = 0;
1285
0
        }
1286
0
#  if defined(GHASH_CHUNK)
1287
0
    while (len >= GHASH_CHUNK) {
1288
0
        (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
1289
0
        ctr += GHASH_CHUNK / 16;
1290
0
        if (IS_LITTLE_ENDIAN)
1291
#   ifdef BSWAP4
1292
            ctx->Yi.d[3] = BSWAP4(ctr);
1293
#   else
1294
0
            PUTU32(ctx->Yi.c + 12, ctr);
1295
0
#   endif
1296
0
        else
1297
0
            ctx->Yi.d[3] = ctr;
1298
0
        GHASH(ctx, out, GHASH_CHUNK);
1299
0
        out += GHASH_CHUNK;
1300
0
        in += GHASH_CHUNK;
1301
0
        len -= GHASH_CHUNK;
1302
0
    }
1303
0
#  endif
1304
0
# endif
1305
0
    if ((i = (len & (size_t)-16))) {
1306
0
        size_t j = i / 16;
1307
1308
0
        (*stream) (in, out, j, key, ctx->Yi.c);
1309
0
        ctr += (unsigned int)j;
1310
0
        if (IS_LITTLE_ENDIAN)
1311
# ifdef BSWAP4
1312
            ctx->Yi.d[3] = BSWAP4(ctr);
1313
# else
1314
0
            PUTU32(ctx->Yi.c + 12, ctr);
1315
0
# endif
1316
0
        else
1317
0
            ctx->Yi.d[3] = ctr;
1318
0
        in += i;
1319
0
        len -= i;
1320
0
# if defined(GHASH)
1321
0
        GHASH(ctx, out, i);
1322
0
        out += i;
1323
# else
1324
        while (j--) {
1325
            for (i = 0; i < 16; ++i)
1326
                ctx->Xi.c[i] ^= out[i];
1327
            GCM_MUL(ctx);
1328
            out += 16;
1329
        }
1330
# endif
1331
0
    }
1332
0
    if (len) {
1333
0
        (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
1334
0
        ++ctr;
1335
0
        if (IS_LITTLE_ENDIAN)
1336
# ifdef BSWAP4
1337
            ctx->Yi.d[3] = BSWAP4(ctr);
1338
# else
1339
0
            PUTU32(ctx->Yi.c + 12, ctr);
1340
0
# endif
1341
0
        else
1342
0
            ctx->Yi.d[3] = ctr;
1343
0
        while (len--) {
1344
0
# if defined(GHASH)
1345
0
            ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
1346
# else
1347
            ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n];
1348
# endif
1349
0
            ++n;
1350
0
        }
1351
0
    }
1352
1353
0
    ctx->mres = mres;
1354
0
    return 0;
1355
0
#endif
1356
0
}
1357
1358
int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
1359
                                const unsigned char *in, unsigned char *out,
1360
                                size_t len, ctr128_f stream)
1361
0
{
1362
#if defined(OPENSSL_SMALL_FOOTPRINT)
1363
    return CRYPTO_gcm128_decrypt(ctx, in, out, len);
1364
#else
1365
0
    DECLARE_IS_ENDIAN;
1366
0
    unsigned int n, ctr, mres;
1367
0
    size_t i;
1368
0
    u64 mlen = ctx->len.u[1];
1369
0
    void *key = ctx->key;
1370
1371
0
    mlen += len;
1372
0
    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
1373
0
        return -1;
1374
0
    ctx->len.u[1] = mlen;
1375
1376
0
    mres = ctx->mres;
1377
1378
0
    if (ctx->ares) {
1379
        /* First call to decrypt finalizes GHASH(AAD) */
1380
0
# if defined(GHASH)
1381
0
        if (len == 0) {
1382
0
            GCM_MUL(ctx);
1383
0
            ctx->ares = 0;
1384
0
            return 0;
1385
0
        }
1386
0
        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
1387
0
        ctx->Xi.u[0] = 0;
1388
0
        ctx->Xi.u[1] = 0;
1389
0
        mres = sizeof(ctx->Xi);
1390
# else
1391
        GCM_MUL(ctx);
1392
# endif
1393
0
        ctx->ares = 0;
1394
0
    }
1395
1396
0
    if (IS_LITTLE_ENDIAN)
1397
# ifdef BSWAP4
1398
        ctr = BSWAP4(ctx->Yi.d[3]);
1399
# else
1400
0
        ctr = GETU32(ctx->Yi.c + 12);
1401
0
# endif
1402
0
    else
1403
0
        ctr = ctx->Yi.d[3];
1404
1405
0
    n = mres % 16;
1406
0
    if (n) {
1407
0
# if defined(GHASH)
1408
0
        while (n && len) {
1409
0
            *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
1410
0
            --len;
1411
0
            n = (n + 1) % 16;
1412
0
        }
1413
0
        if (n == 0) {
1414
0
            GHASH(ctx, ctx->Xn, mres);
1415
0
            mres = 0;
1416
0
        } else {
1417
0
            ctx->mres = mres;
1418
0
            return 0;
1419
0
        }
1420
# else
1421
        while (n && len) {
1422
            u8 c = *(in++);
1423
            *(out++) = c ^ ctx->EKi.c[n];
1424
            ctx->Xi.c[n] ^= c;
1425
            --len;
1426
            n = (n + 1) % 16;
1427
        }
1428
        if (n == 0) {
1429
            GCM_MUL(ctx);
1430
            mres = 0;
1431
        } else {
1432
            ctx->mres = n;
1433
            return 0;
1434
        }
1435
# endif
1436
0
    }
1437
0
# if defined(GHASH)
1438
0
    if (len >= 16 && mres) {
1439
0
        GHASH(ctx, ctx->Xn, mres);
1440
0
        mres = 0;
1441
0
    }
1442
0
#  if defined(GHASH_CHUNK)
1443
0
    while (len >= GHASH_CHUNK) {
1444
0
        GHASH(ctx, in, GHASH_CHUNK);
1445
0
        (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
1446
0
        ctr += GHASH_CHUNK / 16;
1447
0
        if (IS_LITTLE_ENDIAN)
1448
#   ifdef BSWAP4
1449
            ctx->Yi.d[3] = BSWAP4(ctr);
1450
#   else
1451
0
            PUTU32(ctx->Yi.c + 12, ctr);
1452
0
#   endif
1453
0
        else
1454
0
            ctx->Yi.d[3] = ctr;
1455
0
        out += GHASH_CHUNK;
1456
0
        in += GHASH_CHUNK;
1457
0
        len -= GHASH_CHUNK;
1458
0
    }
1459
0
#  endif
1460
0
# endif
1461
0
    if ((i = (len & (size_t)-16))) {
1462
0
        size_t j = i / 16;
1463
1464
0
# if defined(GHASH)
1465
0
        GHASH(ctx, in, i);
1466
# else
1467
        while (j--) {
1468
            size_t k;
1469
            for (k = 0; k < 16; ++k)
1470
                ctx->Xi.c[k] ^= in[k];
1471
            GCM_MUL(ctx);
1472
            in += 16;
1473
        }
1474
        j = i / 16;
1475
        in -= i;
1476
# endif
1477
0
        (*stream) (in, out, j, key, ctx->Yi.c);
1478
0
        ctr += (unsigned int)j;
1479
0
        if (IS_LITTLE_ENDIAN)
1480
# ifdef BSWAP4
1481
            ctx->Yi.d[3] = BSWAP4(ctr);
1482
# else
1483
0
            PUTU32(ctx->Yi.c + 12, ctr);
1484
0
# endif
1485
0
        else
1486
0
            ctx->Yi.d[3] = ctr;
1487
0
        out += i;
1488
0
        in += i;
1489
0
        len -= i;
1490
0
    }
1491
0
    if (len) {
1492
0
        (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
1493
0
        ++ctr;
1494
0
        if (IS_LITTLE_ENDIAN)
1495
# ifdef BSWAP4
1496
            ctx->Yi.d[3] = BSWAP4(ctr);
1497
# else
1498
0
            PUTU32(ctx->Yi.c + 12, ctr);
1499
0
# endif
1500
0
        else
1501
0
            ctx->Yi.d[3] = ctr;
1502
0
        while (len--) {
1503
0
# if defined(GHASH)
1504
0
            out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
1505
# else
1506
            u8 c = in[n];
1507
            ctx->Xi.c[mres++] ^= c;
1508
            out[n] = c ^ ctx->EKi.c[n];
1509
# endif
1510
0
            ++n;
1511
0
        }
1512
0
    }
1513
1514
0
    ctx->mres = mres;
1515
0
    return 0;
1516
0
#endif
1517
0
}
1518
1519
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,
1520
                         size_t len)
1521
0
{
1522
0
    DECLARE_IS_ENDIAN;
1523
0
    u64 alen = ctx->len.u[0] << 3;
1524
0
    u64 clen = ctx->len.u[1] << 3;
1525
1526
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
1527
0
    u128 bitlen;
1528
0
    unsigned int mres = ctx->mres;
1529
1530
0
    if (mres) {
1531
0
        unsigned blocks = (mres + 15) & -16;
1532
1533
0
        memset(ctx->Xn + mres, 0, blocks - mres);
1534
0
        mres = blocks;
1535
0
        if (mres == sizeof(ctx->Xn)) {
1536
0
            GHASH(ctx, ctx->Xn, mres);
1537
0
            mres = 0;
1538
0
        }
1539
0
    } else if (ctx->ares) {
1540
0
        GCM_MUL(ctx);
1541
0
    }
1542
#else
1543
    if (ctx->mres || ctx->ares)
1544
        GCM_MUL(ctx);
1545
#endif
1546
1547
0
    if (IS_LITTLE_ENDIAN) {
1548
#ifdef BSWAP8
1549
        alen = BSWAP8(alen);
1550
        clen = BSWAP8(clen);
1551
#else
1552
0
        u8 *p = ctx->len.c;
1553
1554
0
        ctx->len.u[0] = alen;
1555
0
        ctx->len.u[1] = clen;
1556
1557
0
        alen = (u64)GETU32(p) << 32 | GETU32(p + 4);
1558
0
        clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
1559
0
#endif
1560
0
    }
1561
1562
0
#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
1563
0
    bitlen.hi = alen;
1564
0
    bitlen.lo = clen;
1565
0
    memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen));
1566
0
    mres += sizeof(bitlen);
1567
0
    GHASH(ctx, ctx->Xn, mres);
1568
#else
1569
    ctx->Xi.u[0] ^= alen;
1570
    ctx->Xi.u[1] ^= clen;
1571
    GCM_MUL(ctx);
1572
#endif
1573
1574
0
    ctx->Xi.u[0] ^= ctx->EK0.u[0];
1575
0
    ctx->Xi.u[1] ^= ctx->EK0.u[1];
1576
1577
0
    if (tag && len <= sizeof(ctx->Xi))
1578
0
        return CRYPTO_memcmp(ctx->Xi.c, tag, len);
1579
0
    else
1580
0
        return -1;
1581
0
}
1582
1583
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
1584
0
{
1585
0
    CRYPTO_gcm128_finish(ctx, NULL, 0);
1586
0
    memcpy(tag, ctx->Xi.c,
1587
0
           len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
1588
0
}
1589
1590
GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
1591
0
{
1592
0
    GCM128_CONTEXT *ret;
1593
1594
0
    if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL)
1595
0
        CRYPTO_gcm128_init(ret, key, block);
1596
1597
0
    return ret;
1598
0
}
1599
1600
void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
1601
0
{
1602
0
    OPENSSL_clear_free(ctx, sizeof(*ctx));
1603
0
}