Coverage Report

Created: 2023-09-25 06:41

/src/openssl/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
5.22k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
5.22k
    return ossl_seconds2time(60 * 60 * 2);
101
5.22k
}
102
103
int tls1_new(SSL *s)
104
5.22k
{
105
5.22k
    if (!ssl3_new(s))
106
0
        return 0;
107
5.22k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
5.22k
    return 1;
111
5.22k
}
112
113
void tls1_free(SSL *s)
114
4.61k
{
115
4.61k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
4.61k
    if (sc == NULL)
118
0
        return;
119
120
4.61k
    OPENSSL_free(sc->ext.session_ticket);
121
4.61k
    ssl3_free(s);
122
4.61k
}
123
124
int tls1_clear(SSL *s)
125
20.8k
{
126
20.8k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
20.8k
    if (sc == NULL)
129
0
        return 0;
130
131
20.8k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
20.8k
    if (s->method->version == TLS_ANY_VERSION)
135
20.8k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
20.8k
    return 1;
140
20.8k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
62.6k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
276k
{
235
276k
    struct provider_ctx_data_st *pgd = data;
236
276k
    SSL_CTX *ctx = pgd->ctx;
237
276k
    OSSL_PROVIDER *provider = pgd->provider;
238
276k
    const OSSL_PARAM *p;
239
276k
    TLS_GROUP_INFO *ginf = NULL;
240
276k
    EVP_KEYMGMT *keymgmt;
241
276k
    unsigned int gid;
242
276k
    unsigned int is_kem = 0;
243
276k
    int ret = 0;
244
245
276k
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
31.3k
        TLS_GROUP_INFO *tmp = NULL;
247
248
31.3k
        if (ctx->group_list_max_len == 0)
249
5.22k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
31.3k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
26.1k
        else
252
26.1k
            tmp = OPENSSL_realloc(ctx->group_list,
253
31.3k
                                  (ctx->group_list_max_len
254
31.3k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
31.3k
                                  * sizeof(TLS_GROUP_INFO));
256
31.3k
        if (tmp == NULL)
257
0
            return 0;
258
31.3k
        ctx->group_list = tmp;
259
31.3k
        memset(tmp + ctx->group_list_max_len,
260
31.3k
               0,
261
31.3k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
31.3k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
31.3k
    }
264
265
276k
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
276k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
276k
    ginf->tlsname = OPENSSL_strdup(p->data);
273
276k
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
276k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
276k
    ginf->realname = OPENSSL_strdup(p->data);
282
276k
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
276k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
276k
    ginf->group_id = (uint16_t)gid;
291
292
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
276k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
276k
    ginf->algorithm = OPENSSL_strdup(p->data);
298
276k
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
276k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
276k
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
276k
    ginf->is_kem = 1 & is_kem;
313
314
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
276k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
276k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
276k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
276k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
276k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
276k
    ret = 1;
344
276k
    ERR_set_mark();
345
276k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
276k
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
276k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
276k
            ctx->group_list_len++;
362
276k
            ginf = NULL;
363
276k
        }
364
276k
        EVP_KEYMGMT_free(keymgmt);
365
276k
    }
366
276k
    ERR_pop_to_mark();
367
276k
 err:
368
276k
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
276k
    return ret;
375
276k
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
10.4k
{
379
10.4k
    struct provider_ctx_data_st pgd;
380
381
10.4k
    pgd.ctx = vctx;
382
10.4k
    pgd.provider = provider;
383
10.4k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
10.4k
                                          add_provider_groups, &pgd);
385
10.4k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
5.22k
{
389
5.22k
    size_t i, j, num_deflt_grps = 0;
390
5.22k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
5.22k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
93.9k
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
4.34M
        for (j = 0; j < ctx->group_list_len; j++) {
397
4.31M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
52.2k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
52.2k
                break;
400
52.2k
            }
401
4.31M
        }
402
88.7k
    }
403
404
5.22k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
5.22k
    ctx->ext.supported_groups_default
408
5.22k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
5.22k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
5.22k
    memcpy(ctx->ext.supported_groups_default,
414
5.22k
           tmp_supp_groups,
415
5.22k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
5.22k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
5.22k
    return 1;
419
5.22k
}
420
421
0
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
422
static OSSL_CALLBACK add_provider_sigalgs;
423
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424
0
{
425
0
    struct provider_ctx_data_st *pgd = data;
426
0
    SSL_CTX *ctx = pgd->ctx;
427
0
    OSSL_PROVIDER *provider = pgd->provider;
428
0
    const OSSL_PARAM *p;
429
0
    TLS_SIGALG_INFO *sinf = NULL;
430
0
    EVP_KEYMGMT *keymgmt;
431
0
    const char *keytype;
432
0
    unsigned int code_point = 0;
433
0
    int ret = 0;
434
435
0
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436
0
        TLS_SIGALG_INFO *tmp = NULL;
437
438
0
        if (ctx->sigalg_list_max_len == 0)
439
0
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440
0
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441
0
        else
442
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
443
0
                                  (ctx->sigalg_list_max_len
444
0
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445
0
                                  * sizeof(TLS_SIGALG_INFO));
446
0
        if (tmp == NULL)
447
0
            return 0;
448
0
        ctx->sigalg_list = tmp;
449
0
        memset(tmp + ctx->sigalg_list_max_len, 0,
450
0
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451
0
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452
0
    }
453
454
0
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456
    /* First, mandatory parameters */
457
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460
0
        goto err;
461
0
    }
462
0
    OPENSSL_free(sinf->sigalg_name);
463
0
    sinf->sigalg_name = OPENSSL_strdup(p->data);
464
0
    if (sinf->sigalg_name == NULL)
465
0
        goto err;
466
467
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468
0
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470
0
        goto err;
471
0
    }
472
0
    OPENSSL_free(sinf->name);
473
0
    sinf->name = OPENSSL_strdup(p->data);
474
0
    if (sinf->name == NULL)
475
0
        goto err;
476
477
0
    p = OSSL_PARAM_locate_const(params,
478
0
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479
0
    if (p == NULL
480
0
        || !OSSL_PARAM_get_uint(p, &code_point)
481
0
        || code_point > UINT16_MAX) {
482
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483
0
        goto err;
484
0
    }
485
0
    sinf->code_point = (uint16_t)code_point;
486
487
0
    p = OSSL_PARAM_locate_const(params,
488
0
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489
0
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491
0
        goto err;
492
0
    }
493
494
    /* Now, optional parameters */
495
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496
0
    if (p == NULL) {
497
0
        sinf->sigalg_oid = NULL;
498
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499
0
        goto err;
500
0
    } else {
501
0
        OPENSSL_free(sinf->sigalg_oid);
502
0
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
503
0
        if (sinf->sigalg_oid == NULL)
504
0
            goto err;
505
0
    }
506
507
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508
0
    if (p == NULL) {
509
0
        sinf->sig_name = NULL;
510
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511
0
        goto err;
512
0
    } else {
513
0
        OPENSSL_free(sinf->sig_name);
514
0
        sinf->sig_name = OPENSSL_strdup(p->data);
515
0
        if (sinf->sig_name == NULL)
516
0
            goto err;
517
0
    }
518
519
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520
0
    if (p == NULL) {
521
0
        sinf->sig_oid = NULL;
522
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523
0
        goto err;
524
0
    } else {
525
0
        OPENSSL_free(sinf->sig_oid);
526
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
527
0
        if (sinf->sig_oid == NULL)
528
0
            goto err;
529
0
    }
530
531
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532
0
    if (p == NULL) {
533
0
        sinf->hash_name = NULL;
534
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535
0
        goto err;
536
0
    } else {
537
0
        OPENSSL_free(sinf->hash_name);
538
0
        sinf->hash_name = OPENSSL_strdup(p->data);
539
0
        if (sinf->hash_name == NULL)
540
0
            goto err;
541
0
    }
542
543
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544
0
    if (p == NULL) {
545
0
        sinf->hash_oid = NULL;
546
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547
0
        goto err;
548
0
    } else {
549
0
        OPENSSL_free(sinf->hash_oid);
550
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
551
0
        if (sinf->hash_oid == NULL)
552
0
            goto err;
553
0
    }
554
555
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556
0
    if (p == NULL) {
557
0
        sinf->keytype = NULL;
558
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559
0
        goto err;
560
0
    } else {
561
0
        OPENSSL_free(sinf->keytype);
562
0
        sinf->keytype = OPENSSL_strdup(p->data);
563
0
        if (sinf->keytype == NULL)
564
0
            goto err;
565
0
    }
566
567
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568
0
    if (p == NULL) {
569
0
        sinf->keytype_oid = NULL;
570
0
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571
0
        goto err;
572
0
    } else {
573
0
        OPENSSL_free(sinf->keytype_oid);
574
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
575
0
        if (sinf->keytype_oid == NULL)
576
0
            goto err;
577
0
    }
578
579
    /* The remaining parameters below are mandatory again */
580
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583
0
        goto err;
584
0
    }
585
0
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586
0
        ((sinf->mintls < TLS1_3_VERSION))) {
587
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588
0
        ret = 1;
589
0
        goto err;
590
0
    }
591
592
0
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593
0
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595
0
        goto err;
596
0
    }
597
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598
0
        ((sinf->maxtls < sinf->mintls))) {
599
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600
0
        goto err;
601
0
    }
602
0
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603
0
        ((sinf->maxtls < TLS1_3_VERSION))) {
604
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605
0
        ret = 1;
606
0
        goto err;
607
0
    }
608
609
    /*
610
     * Now check that the algorithm is actually usable for our property query
611
     * string. Regardless of the result we still return success because we have
612
     * successfully processed this signature, even though we may decide not to
613
     * use it.
614
     */
615
0
    ret = 1;
616
0
    ERR_set_mark();
617
0
    keytype = (sinf->keytype != NULL
618
0
               ? sinf->keytype
619
0
               : (sinf->sig_name != NULL
620
0
                  ? sinf->sig_name
621
0
                  : sinf->sigalg_name));
622
0
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623
0
    if (keymgmt != NULL) {
624
        /*
625
         * We have successfully fetched the algorithm - however if the provider
626
         * doesn't match this one then we ignore it.
627
         *
628
         * Note: We're cheating a little here. Technically if the same algorithm
629
         * is available from more than one provider then it is undefined which
630
         * implementation you will get back. Theoretically this could be
631
         * different every time...we assume here that you'll always get the
632
         * same one back if you repeat the exact same fetch. Is this a reasonable
633
         * assumption to make (in which case perhaps we should document this
634
         * behaviour)?
635
         */
636
0
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637
            /*
638
             * We have a match - so we could use this signature;
639
             * Check proper object registration first, though. 
640
             * Don't care about return value as this may have been
641
             * done within providers or previous calls to
642
             * add_provider_sigalgs.
643
             */
644
0
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645
            /* sanity check: Without successful registration don't use alg */
646
0
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647
0
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649
0
                    goto err;
650
0
            }
651
0
            if (sinf->sig_name != NULL)
652
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653
0
            if (sinf->keytype != NULL)
654
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655
0
            if (sinf->hash_name != NULL)
656
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657
0
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658
0
                          (sinf->hash_name != NULL
659
0
                           ? OBJ_txt2nid(sinf->hash_name)
660
0
                           : NID_undef),
661
0
                          OBJ_txt2nid(keytype));
662
0
            ctx->sigalg_list_len++;
663
0
            sinf = NULL;
664
0
        }
665
0
        EVP_KEYMGMT_free(keymgmt);
666
0
    }
667
0
    ERR_pop_to_mark();
668
0
 err:
669
0
    if (sinf != NULL) {
670
0
        OPENSSL_free(sinf->name);
671
0
        sinf->name = NULL;
672
0
        OPENSSL_free(sinf->sigalg_name);
673
0
        sinf->sigalg_name = NULL;
674
0
        OPENSSL_free(sinf->sigalg_oid);
675
0
        sinf->sigalg_oid = NULL;
676
0
        OPENSSL_free(sinf->sig_name);
677
0
        sinf->sig_name = NULL;
678
0
        OPENSSL_free(sinf->sig_oid);
679
0
        sinf->sig_oid = NULL;
680
0
        OPENSSL_free(sinf->hash_name);
681
0
        sinf->hash_name = NULL;
682
0
        OPENSSL_free(sinf->hash_oid);
683
0
        sinf->hash_oid = NULL;
684
0
        OPENSSL_free(sinf->keytype);
685
0
        sinf->keytype = NULL;
686
0
        OPENSSL_free(sinf->keytype_oid);
687
0
        sinf->keytype_oid = NULL;
688
0
    }
689
0
    return ret;
690
0
}
691
692
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693
10.4k
{
694
10.4k
    struct provider_ctx_data_st pgd;
695
696
10.4k
    pgd.ctx = vctx;
697
10.4k
    pgd.provider = provider;
698
10.4k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699
10.4k
                                   add_provider_sigalgs, &pgd);
700
    /*
701
     * Always OK, even if provider doesn't support the capability:
702
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
703
     */
704
10.4k
    return 1;
705
10.4k
}
706
707
int ssl_load_sigalgs(SSL_CTX *ctx)
708
5.22k
{
709
5.22k
    size_t i;
710
5.22k
    SSL_CERT_LOOKUP lu;
711
712
5.22k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713
0
        return 0;
714
715
    /* now populate ctx->ssl_cert_info */
716
5.22k
    if (ctx->sigalg_list_len > 0) {
717
0
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
718
0
        if (ctx->ssl_cert_info == NULL)
719
0
            return 0;
720
0
        for(i = 0; i < ctx->sigalg_list_len; i++) {
721
0
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
722
0
            ctx->ssl_cert_info[i].amask = SSL_aANY;
723
0
        }
724
0
    }
725
726
    /* 
727
     * For now, leave it at this: legacy sigalgs stay in their own
728
     * data structures until "legacy cleanup" occurs.
729
     */
730
731
5.22k
    return 1;
732
5.22k
}
733
734
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
735
0
{
736
0
    size_t i;
737
738
0
    for (i = 0; i < ctx->group_list_len; i++) {
739
0
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
740
0
                || strcmp(ctx->group_list[i].realname, name) == 0)
741
0
            return ctx->group_list[i].group_id;
742
0
    }
743
744
0
    return 0;
745
0
}
746
747
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
748
12.4k
{
749
12.4k
    size_t i;
750
751
500k
    for (i = 0; i < ctx->group_list_len; i++) {
752
500k
        if (ctx->group_list[i].group_id == group_id)
753
12.4k
            return &ctx->group_list[i];
754
500k
    }
755
756
0
    return NULL;
757
12.4k
}
758
759
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
760
0
{
761
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
762
763
0
    if (tls_group_info == NULL)
764
0
        return NULL;
765
766
0
    return tls_group_info->tlsname;
767
0
}
768
769
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
770
6.92k
{
771
6.92k
    size_t i;
772
773
6.92k
    if (group_id == 0)
774
0
        return NID_undef;
775
776
    /*
777
     * Return well known Group NIDs - for backwards compatibility. This won't
778
     * work for groups we don't know about.
779
     */
780
185k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
781
185k
    {
782
185k
        if (nid_to_group[i].group_id == group_id)
783
6.92k
            return nid_to_group[i].nid;
784
185k
    }
785
0
    if (!include_unknown)
786
0
        return NID_undef;
787
0
    return TLSEXT_nid_unknown | (int)group_id;
788
0
}
789
790
uint16_t tls1_nid2group_id(int nid)
791
2.63k
{
792
2.63k
    size_t i;
793
794
    /*
795
     * Return well known Group ids - for backwards compatibility. This won't
796
     * work for groups we don't know about.
797
     */
798
60.6k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
799
60.6k
    {
800
60.6k
        if (nid_to_group[i].nid == nid)
801
2.63k
            return nid_to_group[i].group_id;
802
60.6k
    }
803
804
0
    return 0;
805
2.63k
}
806
807
/*
808
 * Set *pgroups to the supported groups list and *pgroupslen to
809
 * the number of groups supported.
810
 */
811
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
812
                               size_t *pgroupslen)
813
4.96k
{
814
4.96k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
815
816
    /* For Suite B mode only include P-256, P-384 */
817
4.96k
    switch (tls1_suiteb(s)) {
818
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
819
0
        *pgroups = suiteb_curves;
820
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
821
0
        break;
822
823
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
824
0
        *pgroups = suiteb_curves;
825
0
        *pgroupslen = 1;
826
0
        break;
827
828
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
829
0
        *pgroups = suiteb_curves + 1;
830
0
        *pgroupslen = 1;
831
0
        break;
832
833
4.96k
    default:
834
4.96k
        if (s->ext.supportedgroups == NULL) {
835
4.96k
            *pgroups = sctx->ext.supported_groups_default;
836
4.96k
            *pgroupslen = sctx->ext.supported_groups_default_len;
837
4.96k
        } else {
838
0
            *pgroups = s->ext.supportedgroups;
839
0
            *pgroupslen = s->ext.supportedgroups_len;
840
0
        }
841
4.96k
        break;
842
4.96k
    }
843
4.96k
}
844
845
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
846
                    int minversion, int maxversion,
847
                    int isec, int *okfortls13)
848
1.26k
{
849
1.26k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
850
1.26k
                                                       group_id);
851
1.26k
    int ret;
852
853
1.26k
    if (okfortls13 != NULL)
854
0
        *okfortls13 = 0;
855
856
1.26k
    if (ginfo == NULL)
857
0
        return 0;
858
859
1.26k
    if (SSL_CONNECTION_IS_DTLS(s)) {
860
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
861
0
            return 0;
862
0
        if (ginfo->maxdtls == 0)
863
0
            ret = 1;
864
0
        else
865
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
866
0
        if (ginfo->mindtls > 0)
867
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
868
1.26k
    } else {
869
1.26k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
870
0
            return 0;
871
1.26k
        if (ginfo->maxtls == 0)
872
1.26k
            ret = 1;
873
0
        else
874
0
            ret = (minversion <= ginfo->maxtls);
875
1.26k
        if (ginfo->mintls > 0)
876
1.26k
            ret &= (maxversion >= ginfo->mintls);
877
1.26k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
878
0
            *okfortls13 = (ginfo->maxtls == 0)
879
0
                          || (ginfo->maxtls >= TLS1_3_VERSION);
880
1.26k
    }
881
1.26k
    ret &= !isec
882
1.26k
           || strcmp(ginfo->algorithm, "EC") == 0
883
1.26k
           || strcmp(ginfo->algorithm, "X25519") == 0
884
1.26k
           || strcmp(ginfo->algorithm, "X448") == 0;
885
886
1.26k
    return ret;
887
1.26k
}
888
889
/* See if group is allowed by security callback */
890
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
891
6.92k
{
892
6.92k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
893
6.92k
                                                       group);
894
6.92k
    unsigned char gtmp[2];
895
896
6.92k
    if (ginfo == NULL)
897
0
        return 0;
898
899
6.92k
    gtmp[0] = group >> 8;
900
6.92k
    gtmp[1] = group & 0xff;
901
6.92k
    return ssl_security(s, op, ginfo->secbits,
902
6.92k
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
903
6.92k
}
904
905
/* Return 1 if "id" is in "list" */
906
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
907
7.73k
{
908
7.73k
    size_t i;
909
61.8k
    for (i = 0; i < listlen; i++)
910
56.8k
        if (list[i] == id)
911
2.81k
            return 1;
912
4.92k
    return 0;
913
7.73k
}
914
915
/*-
916
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
917
 * if there is no match.
918
 * For nmatch == -1, return number of matches
919
 * For nmatch == -2, return the id of the group to use for
920
 * a tmp key, or 0 if there is no match.
921
 */
922
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
923
3.62k
{
924
3.62k
    const uint16_t *pref, *supp;
925
3.62k
    size_t num_pref, num_supp, i;
926
3.62k
    int k;
927
3.62k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
928
929
    /* Can't do anything on client side */
930
3.62k
    if (s->server == 0)
931
0
        return 0;
932
3.62k
    if (nmatch == -2) {
933
843
        if (tls1_suiteb(s)) {
934
            /*
935
             * For Suite B ciphersuite determines curve: we already know
936
             * these are acceptable due to previous checks.
937
             */
938
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
939
940
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
941
0
                return OSSL_TLS_GROUP_ID_secp256r1;
942
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
943
0
                return OSSL_TLS_GROUP_ID_secp384r1;
944
            /* Should never happen */
945
0
            return 0;
946
0
        }
947
        /* If not Suite B just return first preference shared curve */
948
843
        nmatch = 0;
949
843
    }
950
    /*
951
     * If server preference set, our groups are the preference order
952
     * otherwise peer decides.
953
     */
954
3.62k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
955
0
        tls1_get_supported_groups(s, &pref, &num_pref);
956
0
        tls1_get_peer_groups(s, &supp, &num_supp);
957
3.62k
    } else {
958
3.62k
        tls1_get_peer_groups(s, &pref, &num_pref);
959
3.62k
        tls1_get_supported_groups(s, &supp, &num_supp);
960
3.62k
    }
961
962
8.66k
    for (k = 0, i = 0; i < num_pref; i++) {
963
6.83k
        uint16_t id = pref[i];
964
6.83k
        const TLS_GROUP_INFO *inf;
965
966
6.83k
        if (!tls1_in_list(id, supp, num_supp)
967
6.83k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
968
4.48k
            continue;
969
2.34k
        inf = tls1_group_id_lookup(ctx, id);
970
2.34k
        if (!ossl_assert(inf != NULL))
971
0
            return 0;
972
2.34k
        if (SSL_CONNECTION_IS_DTLS(s)) {
973
0
            if (inf->maxdtls == -1)
974
0
                continue;
975
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
976
0
                    || (inf->maxdtls != 0
977
0
                        && DTLS_VERSION_GT(s->version, inf->maxdtls)))
978
0
                continue;
979
2.34k
        } else {
980
2.34k
            if (inf->maxtls == -1)
981
0
                continue;
982
2.34k
            if ((inf->mintls != 0 && s->version < inf->mintls)
983
2.34k
                    || (inf->maxtls != 0 && s->version > inf->maxtls))
984
563
                continue;
985
2.34k
        }
986
987
1.78k
        if (nmatch == k)
988
1.78k
            return id;
989
0
         k++;
990
0
    }
991
1.83k
    if (nmatch == -1)
992
0
        return k;
993
    /* Out of range (nmatch > k). */
994
1.83k
    return 0;
995
1.83k
}
996
997
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
998
                    int *groups, size_t ngroups)
999
0
{
1000
0
    uint16_t *glist;
1001
0
    size_t i;
1002
    /*
1003
     * Bitmap of groups included to detect duplicates: two variables are added
1004
     * to detect duplicates as some values are more than 32.
1005
     */
1006
0
    unsigned long *dup_list = NULL;
1007
0
    unsigned long dup_list_egrp = 0;
1008
0
    unsigned long dup_list_dhgrp = 0;
1009
1010
0
    if (ngroups == 0) {
1011
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1012
0
        return 0;
1013
0
    }
1014
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1015
0
        return 0;
1016
0
    for (i = 0; i < ngroups; i++) {
1017
0
        unsigned long idmask;
1018
0
        uint16_t id;
1019
0
        id = tls1_nid2group_id(groups[i]);
1020
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1021
0
            goto err;
1022
0
        idmask = 1L << (id & 0x00FF);
1023
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1024
0
        if (!id || ((*dup_list) & idmask))
1025
0
            goto err;
1026
0
        *dup_list |= idmask;
1027
0
        glist[i] = id;
1028
0
    }
1029
0
    OPENSSL_free(*pext);
1030
0
    *pext = glist;
1031
0
    *pextlen = ngroups;
1032
0
    return 1;
1033
0
err:
1034
0
    OPENSSL_free(glist);
1035
0
    return 0;
1036
0
}
1037
1038
0
# define GROUPLIST_INCREMENT   40
1039
# define GROUP_NAME_BUFFER_LENGTH 64
1040
typedef struct {
1041
    SSL_CTX *ctx;
1042
    size_t gidcnt;
1043
    size_t gidmax;
1044
    uint16_t *gid_arr;
1045
} gid_cb_st;
1046
1047
static int gid_cb(const char *elem, int len, void *arg)
1048
0
{
1049
0
    gid_cb_st *garg = arg;
1050
0
    size_t i;
1051
0
    uint16_t gid = 0;
1052
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1053
1054
0
    if (elem == NULL)
1055
0
        return 0;
1056
0
    if (garg->gidcnt == garg->gidmax) {
1057
0
        uint16_t *tmp =
1058
0
            OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
1059
0
        if (tmp == NULL)
1060
0
            return 0;
1061
0
        garg->gidmax += GROUPLIST_INCREMENT;
1062
0
        garg->gid_arr = tmp;
1063
0
    }
1064
0
    if (len > (int)(sizeof(etmp) - 1))
1065
0
        return 0;
1066
0
    memcpy(etmp, elem, len);
1067
0
    etmp[len] = 0;
1068
1069
0
    gid = tls1_group_name2id(garg->ctx, etmp);
1070
0
    if (gid == 0) {
1071
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1072
0
                       "group '%s' cannot be set", etmp);
1073
0
        return 0;
1074
0
    }
1075
0
    for (i = 0; i < garg->gidcnt; i++)
1076
0
        if (garg->gid_arr[i] == gid)
1077
0
            return 0;
1078
0
    garg->gid_arr[garg->gidcnt++] = gid;
1079
0
    return 1;
1080
0
}
1081
1082
/* Set groups based on a colon separated list */
1083
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1084
                         const char *str)
1085
0
{
1086
0
    gid_cb_st gcb;
1087
0
    uint16_t *tmparr;
1088
0
    int ret = 0;
1089
1090
0
    gcb.gidcnt = 0;
1091
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1092
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1093
0
    if (gcb.gid_arr == NULL)
1094
0
        return 0;
1095
0
    gcb.ctx = ctx;
1096
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1097
0
        goto end;
1098
0
    if (pext == NULL) {
1099
0
        ret = 1;
1100
0
        goto end;
1101
0
    }
1102
1103
    /*
1104
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1105
     * the result
1106
     */
1107
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1108
0
    if (tmparr == NULL)
1109
0
        goto end;
1110
0
    OPENSSL_free(*pext);
1111
0
    *pext = tmparr;
1112
0
    *pextlen = gcb.gidcnt;
1113
0
    ret = 1;
1114
0
 end:
1115
0
    OPENSSL_free(gcb.gid_arr);
1116
0
    return ret;
1117
0
}
1118
1119
/* Check a group id matches preferences */
1120
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1121
                        int check_own_groups)
1122
2.63k
    {
1123
2.63k
    const uint16_t *groups;
1124
2.63k
    size_t groups_len;
1125
1126
2.63k
    if (group_id == 0)
1127
0
        return 0;
1128
1129
    /* Check for Suite B compliance */
1130
2.63k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1131
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1132
1133
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1134
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1135
0
                return 0;
1136
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1137
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1138
0
                return 0;
1139
0
        } else {
1140
            /* Should never happen */
1141
0
            return 0;
1142
0
        }
1143
0
    }
1144
1145
2.63k
    if (check_own_groups) {
1146
        /* Check group is one of our preferences */
1147
0
        tls1_get_supported_groups(s, &groups, &groups_len);
1148
0
        if (!tls1_in_list(group_id, groups, groups_len))
1149
0
            return 0;
1150
0
    }
1151
1152
2.63k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1153
0
        return 0;
1154
1155
    /* For clients, nothing more to check */
1156
2.63k
    if (!s->server)
1157
0
        return 1;
1158
1159
    /* Check group is one of peers preferences */
1160
2.63k
    tls1_get_peer_groups(s, &groups, &groups_len);
1161
1162
    /*
1163
     * RFC 4492 does not require the supported elliptic curves extension
1164
     * so if it is not sent we can just choose any curve.
1165
     * It is invalid to send an empty list in the supported groups
1166
     * extension, so groups_len == 0 always means no extension.
1167
     */
1168
2.63k
    if (groups_len == 0)
1169
1.73k
            return 1;
1170
905
    return tls1_in_list(group_id, groups, groups_len);
1171
2.63k
}
1172
1173
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1174
                         size_t *num_formats)
1175
142
{
1176
    /*
1177
     * If we have a custom point format list use it otherwise use default
1178
     */
1179
142
    if (s->ext.ecpointformats) {
1180
0
        *pformats = s->ext.ecpointformats;
1181
0
        *num_formats = s->ext.ecpointformats_len;
1182
142
    } else {
1183
142
        *pformats = ecformats_default;
1184
        /* For Suite B we don't support char2 fields */
1185
142
        if (tls1_suiteb(s))
1186
0
            *num_formats = sizeof(ecformats_default) - 1;
1187
142
        else
1188
142
            *num_formats = sizeof(ecformats_default);
1189
142
    }
1190
142
}
1191
1192
/* Check a key is compatible with compression extension */
1193
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1194
2.67k
{
1195
2.67k
    unsigned char comp_id;
1196
2.67k
    size_t i;
1197
2.67k
    int point_conv;
1198
1199
    /* If not an EC key nothing to check */
1200
2.67k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1201
0
        return 1;
1202
1203
1204
    /* Get required compression id */
1205
2.67k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1206
2.67k
    if (point_conv == 0)
1207
0
        return 0;
1208
2.67k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1209
2.67k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1210
2.67k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1211
        /*
1212
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1213
         * this check.
1214
         */
1215
0
        return 1;
1216
0
    } else {
1217
0
        int field_type = EVP_PKEY_get_field_type(pkey);
1218
1219
0
        if (field_type == NID_X9_62_prime_field)
1220
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1221
0
        else if (field_type == NID_X9_62_characteristic_two_field)
1222
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1223
0
        else
1224
0
            return 0;
1225
0
    }
1226
    /*
1227
     * If point formats extension present check it, otherwise everything is
1228
     * supported (see RFC4492).
1229
     */
1230
2.67k
    if (s->ext.peer_ecpointformats == NULL)
1231
2.48k
        return 1;
1232
1233
479
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1234
445
        if (s->ext.peer_ecpointformats[i] == comp_id)
1235
151
            return 1;
1236
445
    }
1237
34
    return 0;
1238
185
}
1239
1240
/* Return group id of a key */
1241
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1242
2.63k
{
1243
2.63k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1244
1245
2.63k
    if (curve_nid == NID_undef)
1246
0
        return 0;
1247
2.63k
    return tls1_nid2group_id(curve_nid);
1248
2.63k
}
1249
1250
/*
1251
 * Check cert parameters compatible with extensions: currently just checks EC
1252
 * certificates have compatible curves and compression.
1253
 */
1254
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1255
8.01k
{
1256
8.01k
    uint16_t group_id;
1257
8.01k
    EVP_PKEY *pkey;
1258
8.01k
    pkey = X509_get0_pubkey(x);
1259
8.01k
    if (pkey == NULL)
1260
0
        return 0;
1261
    /* If not EC nothing to do */
1262
8.01k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1263
5.34k
        return 1;
1264
    /* Check compression */
1265
2.67k
    if (!tls1_check_pkey_comp(s, pkey))
1266
34
        return 0;
1267
2.63k
    group_id = tls1_get_group_id(pkey);
1268
    /*
1269
     * For a server we allow the certificate to not be in our list of supported
1270
     * groups.
1271
     */
1272
2.63k
    if (!tls1_check_group_id(s, group_id, !s->server))
1273
438
        return 0;
1274
    /*
1275
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1276
     * SHA384+P-384.
1277
     */
1278
2.20k
    if (check_ee_md && tls1_suiteb(s)) {
1279
0
        int check_md;
1280
0
        size_t i;
1281
1282
        /* Check to see we have necessary signing algorithm */
1283
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1284
0
            check_md = NID_ecdsa_with_SHA256;
1285
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1286
0
            check_md = NID_ecdsa_with_SHA384;
1287
0
        else
1288
0
            return 0;           /* Should never happen */
1289
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1290
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1291
0
                return 1;
1292
0
        }
1293
0
        return 0;
1294
0
    }
1295
2.20k
    return 1;
1296
2.20k
}
1297
1298
/*
1299
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1300
 * @s: SSL connection
1301
 * @cid: Cipher ID we're considering using
1302
 *
1303
 * Checks that the kECDHE cipher suite we're considering using
1304
 * is compatible with the client extensions.
1305
 *
1306
 * Returns 0 when the cipher can't be used or 1 when it can.
1307
 */
1308
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1309
2.77k
{
1310
    /* If not Suite B just need a shared group */
1311
2.77k
    if (!tls1_suiteb(s))
1312
2.77k
        return tls1_shared_group(s, 0) != 0;
1313
    /*
1314
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1315
     * curves permitted.
1316
     */
1317
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1318
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1319
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1320
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1321
1322
0
    return 0;
1323
0
}
1324
1325
/* Default sigalg schemes */
1326
static const uint16_t tls12_sigalgs[] = {
1327
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1328
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1329
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1330
    TLSEXT_SIGALG_ed25519,
1331
    TLSEXT_SIGALG_ed448,
1332
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1333
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1334
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1335
1336
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1337
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1338
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1339
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1340
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1341
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1342
1343
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1344
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1345
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1346
1347
    TLSEXT_SIGALG_ecdsa_sha224,
1348
    TLSEXT_SIGALG_ecdsa_sha1,
1349
1350
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1352
1353
    TLSEXT_SIGALG_dsa_sha224,
1354
    TLSEXT_SIGALG_dsa_sha1,
1355
1356
    TLSEXT_SIGALG_dsa_sha256,
1357
    TLSEXT_SIGALG_dsa_sha384,
1358
    TLSEXT_SIGALG_dsa_sha512,
1359
1360
#ifndef OPENSSL_NO_GOST
1361
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1362
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1363
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1364
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1365
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1366
#endif
1367
};
1368
1369
1370
static const uint16_t suiteb_sigalgs[] = {
1371
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1372
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1373
};
1374
1375
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1376
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1377
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1378
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1379
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1380
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1381
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1382
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1383
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1384
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1385
    {"ed25519", TLSEXT_SIGALG_ed25519,
1386
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1387
     NID_undef, NID_undef, 1},
1388
    {"ed448", TLSEXT_SIGALG_ed448,
1389
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1390
     NID_undef, NID_undef, 1},
1391
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1392
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1393
     NID_ecdsa_with_SHA224, NID_undef, 1},
1394
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1395
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1396
     NID_ecdsa_with_SHA1, NID_undef, 1},
1397
    {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1398
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1399
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1400
    {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1401
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1402
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1403
    {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1404
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1405
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1406
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1407
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1408
     NID_undef, NID_undef, 1},
1409
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1410
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1411
     NID_undef, NID_undef, 1},
1412
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1413
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1414
     NID_undef, NID_undef, 1},
1415
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1416
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1417
     NID_undef, NID_undef, 1},
1418
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1419
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1420
     NID_undef, NID_undef, 1},
1421
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1422
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1423
     NID_undef, NID_undef, 1},
1424
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1425
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1426
     NID_sha256WithRSAEncryption, NID_undef, 1},
1427
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1428
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1429
     NID_sha384WithRSAEncryption, NID_undef, 1},
1430
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1431
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1432
     NID_sha512WithRSAEncryption, NID_undef, 1},
1433
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1434
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1435
     NID_sha224WithRSAEncryption, NID_undef, 1},
1436
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1437
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1438
     NID_sha1WithRSAEncryption, NID_undef, 1},
1439
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1440
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1441
     NID_dsa_with_SHA256, NID_undef, 1},
1442
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1443
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1444
     NID_undef, NID_undef, 1},
1445
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1446
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1447
     NID_undef, NID_undef, 1},
1448
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1449
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1450
     NID_undef, NID_undef, 1},
1451
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1452
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1453
     NID_dsaWithSHA1, NID_undef, 1},
1454
#ifndef OPENSSL_NO_GOST
1455
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1456
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1457
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1458
     NID_undef, NID_undef, 1},
1459
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1460
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1461
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1462
     NID_undef, NID_undef, 1},
1463
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1464
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1465
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1466
     NID_undef, NID_undef, 1},
1467
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1468
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1469
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1470
     NID_undef, NID_undef, 1},
1471
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1472
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1473
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1474
     NID_undef, NID_undef, 1}
1475
#endif
1476
};
1477
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1478
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1479
    "rsa_pkcs1_md5_sha1", 0,
1480
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1481
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1482
     NID_undef, NID_undef, 1
1483
};
1484
1485
/*
1486
 * Default signature algorithm values used if signature algorithms not present.
1487
 * From RFC5246. Note: order must match certificate index order.
1488
 */
1489
static const uint16_t tls_default_sigalg[] = {
1490
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1491
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1492
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1493
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1494
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1495
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1496
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1497
    0, /* SSL_PKEY_ED25519 */
1498
    0, /* SSL_PKEY_ED448 */
1499
};
1500
1501
int ssl_setup_sigalgs(SSL_CTX *ctx)
1502
5.22k
{
1503
5.22k
    size_t i, cache_idx, sigalgs_len;
1504
5.22k
    const SIGALG_LOOKUP *lu;
1505
5.22k
    SIGALG_LOOKUP *cache = NULL;
1506
5.22k
    uint16_t *tls12_sigalgs_list = NULL;
1507
5.22k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1508
5.22k
    int ret = 0;
1509
1510
5.22k
    if (ctx == NULL)
1511
0
        goto err;
1512
1513
5.22k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1514
1515
5.22k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1516
5.22k
    if (cache == NULL || tmpkey == NULL)
1517
0
        goto err;
1518
1519
5.22k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1520
5.22k
    if (tls12_sigalgs_list == NULL)
1521
0
        goto err;
1522
1523
5.22k
    ERR_set_mark();
1524
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1525
5.22k
    for (i = 0, lu = sigalg_lookup_tbl;
1526
167k
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1527
161k
        EVP_PKEY_CTX *pctx;
1528
1529
161k
        cache[i] = *lu;
1530
161k
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1531
1532
        /*
1533
         * Check hash is available.
1534
         * This test is not perfect. A provider could have support
1535
         * for a signature scheme, but not a particular hash. However the hash
1536
         * could be available from some other loaded provider. In that case it
1537
         * could be that the signature is available, and the hash is available
1538
         * independently - but not as a combination. We ignore this for now.
1539
         */
1540
161k
        if (lu->hash != NID_undef
1541
161k
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1542
26.1k
            cache[i].enabled = 0;
1543
26.1k
            continue;
1544
26.1k
        }
1545
1546
135k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1547
0
            cache[i].enabled = 0;
1548
0
            continue;
1549
0
        }
1550
135k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1551
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1552
135k
        if (pctx == NULL)
1553
0
            cache[i].enabled = 0;
1554
135k
        EVP_PKEY_CTX_free(pctx);
1555
135k
    }
1556
1557
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1558
5.22k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1559
5.22k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1560
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1561
0
        cache[cache_idx].name = si.name;
1562
0
        cache[cache_idx].sigalg = si.code_point;
1563
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1564
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1565
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1566
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1567
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1568
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1569
0
        cache[cache_idx].curve = NID_undef;
1570
        /* all provided sigalgs are enabled by load */
1571
0
        cache[cache_idx].enabled = 1;
1572
0
        cache_idx++;
1573
0
    }
1574
5.22k
    ERR_pop_to_mark();
1575
5.22k
    ctx->sigalg_lookup_cache = cache;
1576
5.22k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1577
5.22k
    ctx->tls12_sigalgs_len = sigalgs_len;
1578
5.22k
    cache = NULL;
1579
5.22k
    tls12_sigalgs_list = NULL;
1580
1581
5.22k
    ret = 1;
1582
5.22k
 err:
1583
5.22k
    OPENSSL_free(cache);
1584
5.22k
    OPENSSL_free(tls12_sigalgs_list);
1585
5.22k
    EVP_PKEY_free(tmpkey);
1586
5.22k
    return ret;
1587
5.22k
}
1588
1589
/* Lookup TLS signature algorithm */
1590
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1591
                                               uint16_t sigalg)
1592
96.0k
{
1593
96.0k
    size_t i;
1594
96.0k
    const SIGALG_LOOKUP *lu;
1595
1596
96.0k
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1597
2.50M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1598
2.45M
         lu++, i++) {
1599
2.45M
        if (lu->sigalg == sigalg) {
1600
41.3k
            if (!lu->enabled)
1601
7.94k
                return NULL;
1602
33.4k
            return lu;
1603
41.3k
        }
1604
2.45M
    }
1605
54.6k
    return NULL;
1606
96.0k
}
1607
/* Lookup hash: return 0 if invalid or not enabled */
1608
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1609
43.6k
{
1610
43.6k
    const EVP_MD *md;
1611
1612
43.6k
    if (lu == NULL)
1613
0
        return 0;
1614
    /* lu->hash == NID_undef means no associated digest */
1615
43.6k
    if (lu->hash == NID_undef) {
1616
1.37k
        md = NULL;
1617
42.2k
    } else {
1618
42.2k
        md = ssl_md(ctx, lu->hash_idx);
1619
42.2k
        if (md == NULL)
1620
0
            return 0;
1621
42.2k
    }
1622
43.6k
    if (pmd)
1623
34.4k
        *pmd = md;
1624
43.6k
    return 1;
1625
43.6k
}
1626
1627
/*
1628
 * Check if key is large enough to generate RSA-PSS signature.
1629
 *
1630
 * The key must greater than or equal to 2 * hash length + 2.
1631
 * SHA512 has a hash length of 64 bytes, which is incompatible
1632
 * with a 128 byte (1024 bit) key.
1633
 */
1634
209
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1635
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1636
                                      const SIGALG_LOOKUP *lu)
1637
209
{
1638
209
    const EVP_MD *md;
1639
1640
209
    if (pkey == NULL)
1641
0
        return 0;
1642
209
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1643
0
        return 0;
1644
209
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1645
0
        return 0;
1646
209
    return 1;
1647
209
}
1648
1649
/*
1650
 * Returns a signature algorithm when the peer did not send a list of supported
1651
 * signature algorithms. The signature algorithm is fixed for the certificate
1652
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1653
 * certificate type from |s| will be used.
1654
 * Returns the signature algorithm to use, or NULL on error.
1655
 */
1656
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1657
                                                   int idx)
1658
22.7k
{
1659
22.7k
    if (idx == -1) {
1660
1.93k
        if (s->server) {
1661
1.93k
            size_t i;
1662
1663
            /* Work out index corresponding to ciphersuite */
1664
2.70k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1665
2.70k
                const SSL_CERT_LOOKUP *clu
1666
2.70k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1667
1668
2.70k
                if (clu == NULL)
1669
0
                    continue;
1670
2.70k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1671
1.93k
                    idx = i;
1672
1.93k
                    break;
1673
1.93k
                }
1674
2.70k
            }
1675
1676
            /*
1677
             * Some GOST ciphersuites allow more than one signature algorithms
1678
             * */
1679
1.93k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1680
0
                int real_idx;
1681
1682
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1683
0
                     real_idx--) {
1684
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1685
0
                        idx = real_idx;
1686
0
                        break;
1687
0
                    }
1688
0
                }
1689
0
            }
1690
            /*
1691
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1692
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1693
             */
1694
1.93k
            else if (idx == SSL_PKEY_GOST12_256) {
1695
0
                int real_idx;
1696
1697
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1698
0
                     real_idx--) {
1699
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1700
0
                         idx = real_idx;
1701
0
                         break;
1702
0
                     }
1703
0
                }
1704
0
            }
1705
1.93k
        } else {
1706
0
            idx = s->cert->key - s->cert->pkeys;
1707
0
        }
1708
1.93k
    }
1709
22.7k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1710
0
        return NULL;
1711
1712
22.7k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1713
21.3k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1714
1715
21.3k
        if (lu == NULL)
1716
13.8k
            return NULL;
1717
7.49k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1718
0
            return NULL;
1719
7.49k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1720
0
            return NULL;
1721
7.49k
        return lu;
1722
7.49k
    }
1723
1.37k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1724
0
        return NULL;
1725
1.37k
    return &legacy_rsa_sigalg;
1726
1.37k
}
1727
/* Set peer sigalg based key type */
1728
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1729
0
{
1730
0
    size_t idx;
1731
0
    const SIGALG_LOOKUP *lu;
1732
1733
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1734
0
        return 0;
1735
0
    lu = tls1_get_legacy_sigalg(s, idx);
1736
0
    if (lu == NULL)
1737
0
        return 0;
1738
0
    s->s3.tmp.peer_sigalg = lu;
1739
0
    return 1;
1740
0
}
1741
1742
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1743
4.61k
{
1744
    /*
1745
     * If Suite B mode use Suite B sigalgs only, ignore any other
1746
     * preferences.
1747
     */
1748
4.61k
    switch (tls1_suiteb(s)) {
1749
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1750
0
        *psigs = suiteb_sigalgs;
1751
0
        return OSSL_NELEM(suiteb_sigalgs);
1752
1753
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1754
0
        *psigs = suiteb_sigalgs;
1755
0
        return 1;
1756
1757
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1758
0
        *psigs = suiteb_sigalgs + 1;
1759
0
        return 1;
1760
4.61k
    }
1761
    /*
1762
     *  We use client_sigalgs (if not NULL) if we're a server
1763
     *  and sending a certificate request or if we're a client and
1764
     *  determining which shared algorithm to use.
1765
     */
1766
4.61k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1767
0
        *psigs = s->cert->client_sigalgs;
1768
0
        return s->cert->client_sigalgslen;
1769
4.61k
    } else if (s->cert->conf_sigalgs) {
1770
0
        *psigs = s->cert->conf_sigalgs;
1771
0
        return s->cert->conf_sigalgslen;
1772
4.61k
    } else {
1773
4.61k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1774
4.61k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1775
4.61k
    }
1776
4.61k
}
1777
1778
/*
1779
 * Called by servers only. Checks that we have a sig alg that supports the
1780
 * specified EC curve.
1781
 */
1782
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1783
0
{
1784
0
   const uint16_t *sigs;
1785
0
   size_t siglen, i;
1786
1787
0
    if (s->cert->conf_sigalgs) {
1788
0
        sigs = s->cert->conf_sigalgs;
1789
0
        siglen = s->cert->conf_sigalgslen;
1790
0
    } else {
1791
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1792
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1793
0
    }
1794
1795
0
    for (i = 0; i < siglen; i++) {
1796
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1797
1798
0
        if (lu == NULL)
1799
0
            continue;
1800
0
        if (lu->sig == EVP_PKEY_EC
1801
0
                && lu->curve != NID_undef
1802
0
                && curve == lu->curve)
1803
0
            return 1;
1804
0
    }
1805
1806
0
    return 0;
1807
0
}
1808
1809
/*
1810
 * Return the number of security bits for the signature algorithm, or 0 on
1811
 * error.
1812
 */
1813
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1814
33.0k
{
1815
33.0k
    const EVP_MD *md = NULL;
1816
33.0k
    int secbits = 0;
1817
1818
33.0k
    if (!tls1_lookup_md(ctx, lu, &md))
1819
0
        return 0;
1820
33.0k
    if (md != NULL)
1821
31.7k
    {
1822
31.7k
        int md_type = EVP_MD_get_type(md);
1823
1824
        /* Security bits: half digest bits */
1825
31.7k
        secbits = EVP_MD_get_size(md) * 4;
1826
        /*
1827
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1828
         * they're no longer accepted at security level 1. The real values don't
1829
         * really matter as long as they're lower than 80, which is our
1830
         * security level 1.
1831
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1832
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1833
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1834
         * puts a chosen-prefix attack for MD5 at 2^39.
1835
         */
1836
31.7k
        if (md_type == NID_sha1)
1837
9.11k
            secbits = 64;
1838
22.6k
        else if (md_type == NID_md5_sha1)
1839
1.37k
            secbits = 67;
1840
21.2k
        else if (md_type == NID_md5)
1841
0
            secbits = 39;
1842
31.7k
    } else {
1843
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1844
1.34k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1845
258
            secbits = 128;
1846
1.08k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1847
1.08k
            secbits = 224;
1848
1.34k
    }
1849
    /*
1850
     * For provider-based sigalgs we have secbits information available
1851
     * in the (provider-loaded) sigalg_list structure
1852
     */
1853
33.0k
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1854
33.0k
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1855
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1856
0
    }
1857
33.0k
    return secbits;
1858
33.0k
}
1859
1860
/*
1861
 * Check signature algorithm is consistent with sent supported signature
1862
 * algorithms and if so set relevant digest and signature scheme in
1863
 * s.
1864
 */
1865
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1866
0
{
1867
0
    const uint16_t *sent_sigs;
1868
0
    const EVP_MD *md = NULL;
1869
0
    char sigalgstr[2];
1870
0
    size_t sent_sigslen, i, cidx;
1871
0
    int pkeyid = -1;
1872
0
    const SIGALG_LOOKUP *lu;
1873
0
    int secbits = 0;
1874
1875
0
    pkeyid = EVP_PKEY_get_id(pkey);
1876
1877
0
    if (SSL_CONNECTION_IS_TLS13(s)) {
1878
        /* Disallow DSA for TLS 1.3 */
1879
0
        if (pkeyid == EVP_PKEY_DSA) {
1880
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1881
0
            return 0;
1882
0
        }
1883
        /* Only allow PSS for TLS 1.3 */
1884
0
        if (pkeyid == EVP_PKEY_RSA)
1885
0
            pkeyid = EVP_PKEY_RSA_PSS;
1886
0
    }
1887
0
    lu = tls1_lookup_sigalg(s, sig);
1888
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1889
0
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1890
0
        pkeyid = lu->sig;
1891
1892
    /* Should never happen */
1893
0
    if (pkeyid == -1)
1894
0
        return -1;
1895
1896
    /*
1897
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1898
     * is consistent with signature: RSA keys can be used for RSA-PSS
1899
     */
1900
0
    if (lu == NULL
1901
0
        || (SSL_CONNECTION_IS_TLS13(s)
1902
0
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1903
0
        || (pkeyid != lu->sig
1904
0
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1905
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1906
0
        return 0;
1907
0
    }
1908
    /* Check the sigalg is consistent with the key OID */
1909
0
    if (!ssl_cert_lookup_by_nid(
1910
0
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1911
0
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1912
0
            || lu->sig_idx != (int)cidx) {
1913
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1914
0
        return 0;
1915
0
    }
1916
1917
0
    if (pkeyid == EVP_PKEY_EC) {
1918
1919
        /* Check point compression is permitted */
1920
0
        if (!tls1_check_pkey_comp(s, pkey)) {
1921
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1922
0
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1923
0
            return 0;
1924
0
        }
1925
1926
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1927
0
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1928
0
            int curve = ssl_get_EC_curve_nid(pkey);
1929
1930
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1931
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1932
0
                return 0;
1933
0
            }
1934
0
        }
1935
0
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1936
            /* Check curve matches extensions */
1937
0
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1938
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1939
0
                return 0;
1940
0
            }
1941
0
            if (tls1_suiteb(s)) {
1942
                /* Check sigalg matches a permissible Suite B value */
1943
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1944
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1945
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1946
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1947
0
                    return 0;
1948
0
                }
1949
0
            }
1950
0
        }
1951
0
    } else if (tls1_suiteb(s)) {
1952
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1953
0
        return 0;
1954
0
    }
1955
1956
    /* Check signature matches a type we sent */
1957
0
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1958
0
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1959
0
        if (sig == *sent_sigs)
1960
0
            break;
1961
0
    }
1962
    /* Allow fallback to SHA1 if not strict mode */
1963
0
    if (i == sent_sigslen && (lu->hash != NID_sha1
1964
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1965
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1966
0
        return 0;
1967
0
    }
1968
0
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1969
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1970
0
        return 0;
1971
0
    }
1972
    /*
1973
     * Make sure security callback allows algorithm. For historical
1974
     * reasons we have to pass the sigalg as a two byte char array.
1975
     */
1976
0
    sigalgstr[0] = (sig >> 8) & 0xff;
1977
0
    sigalgstr[1] = sig & 0xff;
1978
0
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1979
0
    if (secbits == 0 ||
1980
0
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1981
0
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1982
0
                      (void *)sigalgstr)) {
1983
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1984
0
        return 0;
1985
0
    }
1986
    /* Store the sigalg the peer uses */
1987
0
    s->s3.tmp.peer_sigalg = lu;
1988
0
    return 1;
1989
0
}
1990
1991
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1992
0
{
1993
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1994
1995
0
    if (sc == NULL)
1996
0
        return 0;
1997
1998
0
    if (sc->s3.tmp.peer_sigalg == NULL)
1999
0
        return 0;
2000
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2001
0
    return 1;
2002
0
}
2003
2004
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2005
0
{
2006
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2007
2008
0
    if (sc == NULL)
2009
0
        return 0;
2010
2011
0
    if (sc->s3.tmp.sigalg == NULL)
2012
0
        return 0;
2013
0
    *pnid = sc->s3.tmp.sigalg->sig;
2014
0
    return 1;
2015
0
}
2016
2017
/*
2018
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2019
 * supported, doesn't appear in supported signature algorithms, isn't supported
2020
 * by the enabled protocol versions or by the security level.
2021
 *
2022
 * This function should only be used for checking which ciphers are supported
2023
 * by the client.
2024
 *
2025
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2026
 */
2027
int ssl_set_client_disabled(SSL_CONNECTION *s)
2028
0
{
2029
0
    s->s3.tmp.mask_a = 0;
2030
0
    s->s3.tmp.mask_k = 0;
2031
0
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2032
0
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2033
0
                                &s->s3.tmp.max_ver, NULL) != 0)
2034
0
        return 0;
2035
0
#ifndef OPENSSL_NO_PSK
2036
    /* with PSK there must be client callback set */
2037
0
    if (!s->psk_client_callback) {
2038
0
        s->s3.tmp.mask_a |= SSL_aPSK;
2039
0
        s->s3.tmp.mask_k |= SSL_PSK;
2040
0
    }
2041
0
#endif                          /* OPENSSL_NO_PSK */
2042
0
#ifndef OPENSSL_NO_SRP
2043
0
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2044
0
        s->s3.tmp.mask_a |= SSL_aSRP;
2045
0
        s->s3.tmp.mask_k |= SSL_kSRP;
2046
0
    }
2047
0
#endif
2048
0
    return 1;
2049
0
}
2050
2051
/*
2052
 * ssl_cipher_disabled - check that a cipher is disabled or not
2053
 * @s: SSL connection that you want to use the cipher on
2054
 * @c: cipher to check
2055
 * @op: Security check that you want to do
2056
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2057
 *
2058
 * Returns 1 when it's disabled, 0 when enabled.
2059
 */
2060
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2061
                        int op, int ecdhe)
2062
0
{
2063
0
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2064
0
        || c->algorithm_auth & s->s3.tmp.mask_a)
2065
0
        return 1;
2066
0
    if (s->s3.tmp.max_ver == 0)
2067
0
        return 1;
2068
2069
0
    if (SSL_IS_QUIC_HANDSHAKE(s))
2070
        /* For QUIC, only allow these ciphersuites. */
2071
0
        switch (SSL_CIPHER_get_id(c)) {
2072
0
        case TLS1_3_CK_AES_128_GCM_SHA256:
2073
0
        case TLS1_3_CK_AES_256_GCM_SHA384:
2074
0
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2075
0
            break;
2076
0
        default:
2077
0
            return 1;
2078
0
        }
2079
2080
0
    if (!SSL_CONNECTION_IS_DTLS(s)) {
2081
0
        int min_tls = c->min_tls;
2082
2083
        /*
2084
         * For historical reasons we will allow ECHDE to be selected by a server
2085
         * in SSLv3 if we are a client
2086
         */
2087
0
        if (min_tls == TLS1_VERSION && ecdhe
2088
0
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2089
0
            min_tls = SSL3_VERSION;
2090
2091
0
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
2092
0
            return 1;
2093
0
    }
2094
0
    if (SSL_CONNECTION_IS_DTLS(s)
2095
0
            && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
2096
0
                || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
2097
0
        return 1;
2098
2099
0
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2100
0
}
2101
2102
int tls_use_ticket(SSL_CONNECTION *s)
2103
2.24k
{
2104
2.24k
    if ((s->options & SSL_OP_NO_TICKET))
2105
0
        return 0;
2106
2.24k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2107
2.24k
}
2108
2109
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2110
3.34k
{
2111
3.34k
    size_t i;
2112
2113
    /* Clear any shared signature algorithms */
2114
3.34k
    OPENSSL_free(s->shared_sigalgs);
2115
3.34k
    s->shared_sigalgs = NULL;
2116
3.34k
    s->shared_sigalgslen = 0;
2117
2118
    /* Clear certificate validity flags */
2119
3.34k
    if (s->s3.tmp.valid_flags)
2120
43
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2121
3.30k
    else
2122
3.30k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2123
3.34k
    if (s->s3.tmp.valid_flags == NULL)
2124
0
        return 0;
2125
    /*
2126
     * If peer sent no signature algorithms check to see if we support
2127
     * the default algorithm for each certificate type
2128
     */
2129
3.34k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2130
3.34k
            && s->s3.tmp.peer_sigalgs == NULL) {
2131
2.30k
        const uint16_t *sent_sigs;
2132
2.30k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2133
2134
23.0k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2135
20.7k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2136
20.7k
            size_t j;
2137
2138
20.7k
            if (lu == NULL)
2139
13.8k
                continue;
2140
            /* Check default matches a type we sent */
2141
153k
            for (j = 0; j < sent_sigslen; j++) {
2142
152k
                if (lu->sigalg == sent_sigs[j]) {
2143
6.20k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2144
6.20k
                        break;
2145
6.20k
                }
2146
152k
            }
2147
6.92k
        }
2148
2.30k
        return 1;
2149
2.30k
    }
2150
2151
1.03k
    if (!tls1_process_sigalgs(s)) {
2152
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2153
0
        return 0;
2154
0
    }
2155
1.03k
    if (s->shared_sigalgs != NULL)
2156
1.01k
        return 1;
2157
2158
    /* Fatal error if no shared signature algorithms */
2159
1.03k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2160
15
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2161
15
    return 0;
2162
1.03k
}
2163
2164
/*-
2165
 * Gets the ticket information supplied by the client if any.
2166
 *
2167
 *   hello: The parsed ClientHello data
2168
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2169
 *       point to the resulting session.
2170
 */
2171
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2172
                                             CLIENTHELLO_MSG *hello,
2173
                                             SSL_SESSION **ret)
2174
2.12k
{
2175
2.12k
    size_t size;
2176
2.12k
    RAW_EXTENSION *ticketext;
2177
2178
2.12k
    *ret = NULL;
2179
2.12k
    s->ext.ticket_expected = 0;
2180
2181
    /*
2182
     * If tickets disabled or not supported by the protocol version
2183
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2184
     * resumption.
2185
     */
2186
2.12k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2187
25
        return SSL_TICKET_NONE;
2188
2189
2.10k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2190
2.10k
    if (!ticketext->present)
2191
1.85k
        return SSL_TICKET_NONE;
2192
2193
254
    size = PACKET_remaining(&ticketext->data);
2194
2195
254
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2196
254
                              hello->session_id, hello->session_id_len, ret);
2197
2.10k
}
2198
2199
/*-
2200
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2201
 *
2202
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2203
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2204
 * session tickets and one will never be decrypted, nor will
2205
 * s->ext.ticket_expected be set to 1.
2206
 *
2207
 * Side effects:
2208
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2209
 *   a new session ticket to the client because the client indicated support
2210
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2211
 *   a session ticket or we couldn't use the one it gave us, or if
2212
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2213
 *   Otherwise, s->ext.ticket_expected is set to 0.
2214
 *
2215
 *   etick: points to the body of the session ticket extension.
2216
 *   eticklen: the length of the session tickets extension.
2217
 *   sess_id: points at the session ID.
2218
 *   sesslen: the length of the session ID.
2219
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2220
 *       point to the resulting session.
2221
 */
2222
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2223
                                     const unsigned char *etick,
2224
                                     size_t eticklen,
2225
                                     const unsigned char *sess_id,
2226
                                     size_t sesslen, SSL_SESSION **psess)
2227
493
{
2228
493
    SSL_SESSION *sess = NULL;
2229
493
    unsigned char *sdec;
2230
493
    const unsigned char *p;
2231
493
    int slen, ivlen, renew_ticket = 0, declen;
2232
493
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2233
493
    size_t mlen;
2234
493
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2235
493
    SSL_HMAC *hctx = NULL;
2236
493
    EVP_CIPHER_CTX *ctx = NULL;
2237
493
    SSL_CTX *tctx = s->session_ctx;
2238
493
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2239
2240
493
    if (eticklen == 0) {
2241
        /*
2242
         * The client will accept a ticket but doesn't currently have
2243
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2244
         */
2245
101
        ret = SSL_TICKET_EMPTY;
2246
101
        goto end;
2247
101
    }
2248
392
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2249
        /*
2250
         * Indicate that the ticket couldn't be decrypted rather than
2251
         * generating the session from ticket now, trigger
2252
         * abbreviated handshake based on external mechanism to
2253
         * calculate the master secret later.
2254
         */
2255
0
        ret = SSL_TICKET_NO_DECRYPT;
2256
0
        goto end;
2257
0
    }
2258
2259
    /* Need at least keyname + iv */
2260
392
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2261
94
        ret = SSL_TICKET_NO_DECRYPT;
2262
94
        goto end;
2263
94
    }
2264
2265
    /* Initialize session ticket encryption and HMAC contexts */
2266
298
    hctx = ssl_hmac_new(tctx);
2267
298
    if (hctx == NULL) {
2268
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2269
0
        goto end;
2270
0
    }
2271
298
    ctx = EVP_CIPHER_CTX_new();
2272
298
    if (ctx == NULL) {
2273
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2274
0
        goto end;
2275
0
    }
2276
298
#ifndef OPENSSL_NO_DEPRECATED_3_0
2277
298
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2278
#else
2279
    if (tctx->ext.ticket_key_evp_cb != NULL)
2280
#endif
2281
0
    {
2282
0
        unsigned char *nctick = (unsigned char *)etick;
2283
0
        int rv = 0;
2284
2285
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2286
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2287
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2288
0
                                             ctx,
2289
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2290
0
                                             0);
2291
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2292
0
        else if (tctx->ext.ticket_key_cb != NULL)
2293
            /* if 0 is returned, write an empty ticket */
2294
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2295
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2296
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2297
0
#endif
2298
0
        if (rv < 0) {
2299
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2300
0
            goto end;
2301
0
        }
2302
0
        if (rv == 0) {
2303
0
            ret = SSL_TICKET_NO_DECRYPT;
2304
0
            goto end;
2305
0
        }
2306
0
        if (rv == 2)
2307
0
            renew_ticket = 1;
2308
298
    } else {
2309
298
        EVP_CIPHER *aes256cbc = NULL;
2310
2311
        /* Check key name matches */
2312
298
        if (memcmp(etick, tctx->ext.tick_key_name,
2313
298
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2314
28
            ret = SSL_TICKET_NO_DECRYPT;
2315
28
            goto end;
2316
28
        }
2317
2318
270
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2319
270
                                     sctx->propq);
2320
270
        if (aes256cbc == NULL
2321
270
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2322
270
                             sizeof(tctx->ext.secure->tick_hmac_key),
2323
270
                             "SHA256") <= 0
2324
270
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2325
270
                                  tctx->ext.secure->tick_aes_key,
2326
270
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2327
0
            EVP_CIPHER_free(aes256cbc);
2328
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2329
0
            goto end;
2330
0
        }
2331
270
        EVP_CIPHER_free(aes256cbc);
2332
270
        if (SSL_CONNECTION_IS_TLS13(s))
2333
149
            renew_ticket = 1;
2334
270
    }
2335
    /*
2336
     * Attempt to process session ticket, first conduct sanity and integrity
2337
     * checks on ticket.
2338
     */
2339
270
    mlen = ssl_hmac_size(hctx);
2340
270
    if (mlen == 0) {
2341
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2342
0
        goto end;
2343
0
    }
2344
2345
270
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2346
270
    if (ivlen < 0) {
2347
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2348
0
        goto end;
2349
0
    }
2350
2351
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2352
270
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2353
13
        ret = SSL_TICKET_NO_DECRYPT;
2354
13
        goto end;
2355
13
    }
2356
257
    eticklen -= mlen;
2357
    /* Check HMAC of encrypted ticket */
2358
257
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2359
257
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2360
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2361
0
        goto end;
2362
0
    }
2363
2364
257
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2365
30
        ret = SSL_TICKET_NO_DECRYPT;
2366
30
        goto end;
2367
30
    }
2368
    /* Attempt to decrypt session data */
2369
    /* Move p after IV to start of encrypted ticket, update length */
2370
227
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2371
227
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2372
227
    sdec = OPENSSL_malloc(eticklen);
2373
227
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2374
227
                                          (int)eticklen) <= 0) {
2375
0
        OPENSSL_free(sdec);
2376
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2377
0
        goto end;
2378
0
    }
2379
227
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2380
10
        OPENSSL_free(sdec);
2381
10
        ret = SSL_TICKET_NO_DECRYPT;
2382
10
        goto end;
2383
10
    }
2384
217
    slen += declen;
2385
217
    p = sdec;
2386
2387
217
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2388
217
    slen -= p - sdec;
2389
217
    OPENSSL_free(sdec);
2390
217
    if (sess) {
2391
        /* Some additional consistency checks */
2392
186
        if (slen != 0) {
2393
2
            SSL_SESSION_free(sess);
2394
2
            sess = NULL;
2395
2
            ret = SSL_TICKET_NO_DECRYPT;
2396
2
            goto end;
2397
2
        }
2398
        /*
2399
         * The session ID, if non-empty, is used by some clients to detect
2400
         * that the ticket has been accepted. So we copy it to the session
2401
         * structure. If it is empty set length to zero as required by
2402
         * standard.
2403
         */
2404
184
        if (sesslen) {
2405
64
            memcpy(sess->session_id, sess_id, sesslen);
2406
64
            sess->session_id_length = sesslen;
2407
64
        }
2408
184
        if (renew_ticket)
2409
114
            ret = SSL_TICKET_SUCCESS_RENEW;
2410
70
        else
2411
70
            ret = SSL_TICKET_SUCCESS;
2412
184
        goto end;
2413
186
    }
2414
31
    ERR_clear_error();
2415
    /*
2416
     * For session parse failure, indicate that we need to send a new ticket.
2417
     */
2418
31
    ret = SSL_TICKET_NO_DECRYPT;
2419
2420
493
 end:
2421
493
    EVP_CIPHER_CTX_free(ctx);
2422
493
    ssl_hmac_free(hctx);
2423
2424
    /*
2425
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2426
     * detected above. The callback is responsible for checking |ret| before it
2427
     * performs any action
2428
     */
2429
493
    if (s->session_ctx->decrypt_ticket_cb != NULL
2430
493
            && (ret == SSL_TICKET_EMPTY
2431
0
                || ret == SSL_TICKET_NO_DECRYPT
2432
0
                || ret == SSL_TICKET_SUCCESS
2433
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2434
0
        size_t keyname_len = eticklen;
2435
0
        int retcb;
2436
2437
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2438
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2439
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2440
0
                                                  sess, etick, keyname_len,
2441
0
                                                  ret,
2442
0
                                                  s->session_ctx->ticket_cb_data);
2443
0
        switch (retcb) {
2444
0
        case SSL_TICKET_RETURN_ABORT:
2445
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2446
0
            break;
2447
2448
0
        case SSL_TICKET_RETURN_IGNORE:
2449
0
            ret = SSL_TICKET_NONE;
2450
0
            SSL_SESSION_free(sess);
2451
0
            sess = NULL;
2452
0
            break;
2453
2454
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2455
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2456
0
                ret = SSL_TICKET_NO_DECRYPT;
2457
            /* else the value of |ret| will already do the right thing */
2458
0
            SSL_SESSION_free(sess);
2459
0
            sess = NULL;
2460
0
            break;
2461
2462
0
        case SSL_TICKET_RETURN_USE:
2463
0
        case SSL_TICKET_RETURN_USE_RENEW:
2464
0
            if (ret != SSL_TICKET_SUCCESS
2465
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2466
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2467
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2468
0
                ret = SSL_TICKET_SUCCESS;
2469
0
            else
2470
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2471
0
            break;
2472
2473
0
        default:
2474
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2475
0
        }
2476
0
    }
2477
2478
493
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2479
493
        switch (ret) {
2480
208
        case SSL_TICKET_NO_DECRYPT:
2481
322
        case SSL_TICKET_SUCCESS_RENEW:
2482
423
        case SSL_TICKET_EMPTY:
2483
423
            s->ext.ticket_expected = 1;
2484
493
        }
2485
493
    }
2486
2487
493
    *psess = sess;
2488
2489
493
    return ret;
2490
493
}
2491
2492
/* Check to see if a signature algorithm is allowed */
2493
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2494
                                const SIGALG_LOOKUP *lu)
2495
33.4k
{
2496
33.4k
    unsigned char sigalgstr[2];
2497
33.4k
    int secbits;
2498
2499
33.4k
    if (lu == NULL || !lu->enabled)
2500
0
        return 0;
2501
    /* DSA is not allowed in TLS 1.3 */
2502
33.4k
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2503
324
        return 0;
2504
    /*
2505
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2506
     * spec
2507
     */
2508
33.0k
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2509
33.0k
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2510
33.0k
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2511
0
            || lu->hash_idx == SSL_MD_MD5_IDX
2512
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2513
0
        return 0;
2514
2515
    /* See if public key algorithm allowed */
2516
33.0k
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2517
0
        return 0;
2518
2519
33.0k
    if (lu->sig == NID_id_GostR3410_2012_256
2520
33.0k
            || lu->sig == NID_id_GostR3410_2012_512
2521
33.0k
            || lu->sig == NID_id_GostR3410_2001) {
2522
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2523
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2524
0
            return 0;
2525
0
        if (!s->server
2526
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2527
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2528
0
            int i, num;
2529
0
            STACK_OF(SSL_CIPHER) *sk;
2530
2531
            /*
2532
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2533
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2534
             * ciphersuites enabled.
2535
             */
2536
2537
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2538
0
                return 0;
2539
2540
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2541
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2542
0
            for (i = 0; i < num; i++) {
2543
0
                const SSL_CIPHER *c;
2544
2545
0
                c = sk_SSL_CIPHER_value(sk, i);
2546
                /* Skip disabled ciphers */
2547
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2548
0
                    continue;
2549
2550
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2551
0
                    break;
2552
0
            }
2553
0
            if (i == num)
2554
0
                return 0;
2555
0
        }
2556
0
    }
2557
2558
    /* Finally see if security callback allows it */
2559
33.0k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2560
33.0k
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2561
33.0k
    sigalgstr[1] = lu->sigalg & 0xff;
2562
33.0k
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2563
33.0k
}
2564
2565
/*
2566
 * Get a mask of disabled public key algorithms based on supported signature
2567
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2568
 * disabled.
2569
 */
2570
2571
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2572
0
{
2573
0
    const uint16_t *sigalgs;
2574
0
    size_t i, sigalgslen;
2575
0
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2576
    /*
2577
     * Go through all signature algorithms seeing if we support any
2578
     * in disabled_mask.
2579
     */
2580
0
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2581
0
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2582
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2583
0
        const SSL_CERT_LOOKUP *clu;
2584
2585
0
        if (lu == NULL)
2586
0
            continue;
2587
2588
0
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2589
0
                                     SSL_CONNECTION_GET_CTX(s));
2590
0
        if (clu == NULL)
2591
0
                continue;
2592
2593
        /* If algorithm is disabled see if we can enable it */
2594
0
        if ((clu->amask & disabled_mask) != 0
2595
0
                && tls12_sigalg_allowed(s, op, lu))
2596
0
            disabled_mask &= ~clu->amask;
2597
0
    }
2598
0
    *pmask_a |= disabled_mask;
2599
0
}
2600
2601
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2602
                       const uint16_t *psig, size_t psiglen)
2603
0
{
2604
0
    size_t i;
2605
0
    int rv = 0;
2606
2607
0
    for (i = 0; i < psiglen; i++, psig++) {
2608
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2609
2610
0
        if (lu == NULL
2611
0
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2612
0
            continue;
2613
0
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2614
0
            return 0;
2615
        /*
2616
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2617
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2618
         */
2619
0
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2620
0
            || (lu->sig != EVP_PKEY_RSA
2621
0
                && lu->hash != NID_sha1
2622
0
                && lu->hash != NID_sha224)))
2623
0
            rv = 1;
2624
0
    }
2625
0
    if (rv == 0)
2626
0
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2627
0
    return rv;
2628
0
}
2629
2630
/* Given preference and allowed sigalgs set shared sigalgs */
2631
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2632
                                   const SIGALG_LOOKUP **shsig,
2633
                                   const uint16_t *pref, size_t preflen,
2634
                                   const uint16_t *allow, size_t allowlen)
2635
2.05k
{
2636
2.05k
    const uint16_t *ptmp, *atmp;
2637
2.05k
    size_t i, j, nmatch = 0;
2638
46.7k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2639
44.7k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2640
2641
        /* Skip disabled hashes or signature algorithms */
2642
44.7k
        if (lu == NULL
2643
44.7k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2644
20.5k
            continue;
2645
343k
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2646
343k
            if (*ptmp == *atmp) {
2647
24.2k
                nmatch++;
2648
24.2k
                if (shsig)
2649
12.1k
                    *shsig++ = lu;
2650
24.2k
                break;
2651
24.2k
            }
2652
343k
        }
2653
24.2k
    }
2654
2.05k
    return nmatch;
2655
2.05k
}
2656
2657
/* Set shared signature algorithms for SSL structures */
2658
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2659
1.03k
{
2660
1.03k
    const uint16_t *pref, *allow, *conf;
2661
1.03k
    size_t preflen, allowlen, conflen;
2662
1.03k
    size_t nmatch;
2663
1.03k
    const SIGALG_LOOKUP **salgs = NULL;
2664
1.03k
    CERT *c = s->cert;
2665
1.03k
    unsigned int is_suiteb = tls1_suiteb(s);
2666
2667
1.03k
    OPENSSL_free(s->shared_sigalgs);
2668
1.03k
    s->shared_sigalgs = NULL;
2669
1.03k
    s->shared_sigalgslen = 0;
2670
    /* If client use client signature algorithms if not NULL */
2671
1.03k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2672
0
        conf = c->client_sigalgs;
2673
0
        conflen = c->client_sigalgslen;
2674
1.03k
    } else if (c->conf_sigalgs && !is_suiteb) {
2675
0
        conf = c->conf_sigalgs;
2676
0
        conflen = c->conf_sigalgslen;
2677
0
    } else
2678
1.03k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2679
1.03k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2680
0
        pref = conf;
2681
0
        preflen = conflen;
2682
0
        allow = s->s3.tmp.peer_sigalgs;
2683
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2684
1.03k
    } else {
2685
1.03k
        allow = conf;
2686
1.03k
        allowlen = conflen;
2687
1.03k
        pref = s->s3.tmp.peer_sigalgs;
2688
1.03k
        preflen = s->s3.tmp.peer_sigalgslen;
2689
1.03k
    }
2690
1.03k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2691
1.03k
    if (nmatch) {
2692
1.01k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2693
0
            return 0;
2694
1.01k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2695
1.01k
    } else {
2696
15
        salgs = NULL;
2697
15
    }
2698
1.03k
    s->shared_sigalgs = salgs;
2699
1.03k
    s->shared_sigalgslen = nmatch;
2700
1.03k
    return 1;
2701
1.03k
}
2702
2703
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2704
2.96k
{
2705
2.96k
    unsigned int stmp;
2706
2.96k
    size_t size, i;
2707
2.96k
    uint16_t *buf;
2708
2709
2.96k
    size = PACKET_remaining(pkt);
2710
2711
    /* Invalid data length */
2712
2.96k
    if (size == 0 || (size & 1) != 0)
2713
3
        return 0;
2714
2715
2.95k
    size >>= 1;
2716
2717
2.95k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2718
0
        return 0;
2719
30.5k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2720
27.6k
        buf[i] = stmp;
2721
2722
2.95k
    if (i != size) {
2723
0
        OPENSSL_free(buf);
2724
0
        return 0;
2725
0
    }
2726
2727
2.95k
    OPENSSL_free(*pdest);
2728
2.95k
    *pdest = buf;
2729
2.95k
    *pdestlen = size;
2730
2731
2.95k
    return 1;
2732
2.95k
}
2733
2734
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2735
1.32k
{
2736
    /* Extension ignored for inappropriate versions */
2737
1.32k
    if (!SSL_USE_SIGALGS(s))
2738
6
        return 1;
2739
    /* Should never happen */
2740
1.31k
    if (s->cert == NULL)
2741
0
        return 0;
2742
2743
1.31k
    if (cert)
2744
190
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2745
190
                             &s->s3.tmp.peer_cert_sigalgslen);
2746
1.12k
    else
2747
1.12k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2748
1.12k
                             &s->s3.tmp.peer_sigalgslen);
2749
2750
1.31k
}
2751
2752
/* Set preferred digest for each key type */
2753
2754
int tls1_process_sigalgs(SSL_CONNECTION *s)
2755
1.03k
{
2756
1.03k
    size_t i;
2757
1.03k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2758
2759
1.03k
    if (!tls1_set_shared_sigalgs(s))
2760
0
        return 0;
2761
2762
10.3k
    for (i = 0; i < s->ssl_pkey_num; i++)
2763
9.30k
        pvalid[i] = 0;
2764
2765
13.1k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2766
12.1k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2767
12.1k
        int idx = sigptr->sig_idx;
2768
2769
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2770
12.1k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2771
165
            continue;
2772
        /* If not disabled indicate we can explicitly sign */
2773
11.9k
        if (pvalid[idx] == 0
2774
11.9k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2775
1.39k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2776
11.9k
    }
2777
1.03k
    return 1;
2778
1.03k
}
2779
2780
int SSL_get_sigalgs(SSL *s, int idx,
2781
                    int *psign, int *phash, int *psignhash,
2782
                    unsigned char *rsig, unsigned char *rhash)
2783
0
{
2784
0
    uint16_t *psig;
2785
0
    size_t numsigalgs;
2786
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2787
2788
0
    if (sc == NULL)
2789
0
        return 0;
2790
2791
0
    psig = sc->s3.tmp.peer_sigalgs;
2792
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2793
2794
0
    if (psig == NULL || numsigalgs > INT_MAX)
2795
0
        return 0;
2796
0
    if (idx >= 0) {
2797
0
        const SIGALG_LOOKUP *lu;
2798
2799
0
        if (idx >= (int)numsigalgs)
2800
0
            return 0;
2801
0
        psig += idx;
2802
0
        if (rhash != NULL)
2803
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2804
0
        if (rsig != NULL)
2805
0
            *rsig = (unsigned char)(*psig & 0xff);
2806
0
        lu = tls1_lookup_sigalg(sc, *psig);
2807
0
        if (psign != NULL)
2808
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2809
0
        if (phash != NULL)
2810
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2811
0
        if (psignhash != NULL)
2812
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2813
0
    }
2814
0
    return (int)numsigalgs;
2815
0
}
2816
2817
int SSL_get_shared_sigalgs(SSL *s, int idx,
2818
                           int *psign, int *phash, int *psignhash,
2819
                           unsigned char *rsig, unsigned char *rhash)
2820
0
{
2821
0
    const SIGALG_LOOKUP *shsigalgs;
2822
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2823
2824
0
    if (sc == NULL)
2825
0
        return 0;
2826
2827
0
    if (sc->shared_sigalgs == NULL
2828
0
        || idx < 0
2829
0
        || idx >= (int)sc->shared_sigalgslen
2830
0
        || sc->shared_sigalgslen > INT_MAX)
2831
0
        return 0;
2832
0
    shsigalgs = sc->shared_sigalgs[idx];
2833
0
    if (phash != NULL)
2834
0
        *phash = shsigalgs->hash;
2835
0
    if (psign != NULL)
2836
0
        *psign = shsigalgs->sig;
2837
0
    if (psignhash != NULL)
2838
0
        *psignhash = shsigalgs->sigandhash;
2839
0
    if (rsig != NULL)
2840
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2841
0
    if (rhash != NULL)
2842
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2843
0
    return (int)sc->shared_sigalgslen;
2844
0
}
2845
2846
/* Maximum possible number of unique entries in sigalgs array */
2847
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2848
2849
typedef struct {
2850
    size_t sigalgcnt;
2851
    /* TLSEXT_SIGALG_XXX values */
2852
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2853
} sig_cb_st;
2854
2855
static void get_sigorhash(int *psig, int *phash, const char *str)
2856
0
{
2857
0
    if (strcmp(str, "RSA") == 0) {
2858
0
        *psig = EVP_PKEY_RSA;
2859
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2860
0
        *psig = EVP_PKEY_RSA_PSS;
2861
0
    } else if (strcmp(str, "DSA") == 0) {
2862
0
        *psig = EVP_PKEY_DSA;
2863
0
    } else if (strcmp(str, "ECDSA") == 0) {
2864
0
        *psig = EVP_PKEY_EC;
2865
0
    } else {
2866
0
        *phash = OBJ_sn2nid(str);
2867
0
        if (*phash == NID_undef)
2868
0
            *phash = OBJ_ln2nid(str);
2869
0
    }
2870
0
}
2871
/* Maximum length of a signature algorithm string component */
2872
#define TLS_MAX_SIGSTRING_LEN   40
2873
2874
static int sig_cb(const char *elem, int len, void *arg)
2875
0
{
2876
0
    sig_cb_st *sarg = arg;
2877
0
    size_t i;
2878
0
    const SIGALG_LOOKUP *s;
2879
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2880
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2881
0
    if (elem == NULL)
2882
0
        return 0;
2883
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2884
0
        return 0;
2885
0
    if (len > (int)(sizeof(etmp) - 1))
2886
0
        return 0;
2887
0
    memcpy(etmp, elem, len);
2888
0
    etmp[len] = 0;
2889
0
    p = strchr(etmp, '+');
2890
    /*
2891
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2892
     * if there's no '+' in the provided name, look for the new-style combined
2893
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2894
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2895
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2896
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2897
     * in the table.
2898
     */
2899
0
    if (p == NULL) {
2900
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2901
0
             i++, s++) {
2902
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2903
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2904
0
                break;
2905
0
            }
2906
0
        }
2907
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2908
0
            return 0;
2909
0
    } else {
2910
0
        *p = 0;
2911
0
        p++;
2912
0
        if (*p == 0)
2913
0
            return 0;
2914
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2915
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2916
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2917
0
            return 0;
2918
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2919
0
             i++, s++) {
2920
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2921
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2922
0
                break;
2923
0
            }
2924
0
        }
2925
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2926
0
            return 0;
2927
0
    }
2928
2929
    /* Reject duplicates */
2930
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2931
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2932
0
            sarg->sigalgcnt--;
2933
0
            return 0;
2934
0
        }
2935
0
    }
2936
0
    return 1;
2937
0
}
2938
2939
/*
2940
 * Set supported signature algorithms based on a colon separated list of the
2941
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2942
 */
2943
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2944
0
{
2945
0
    sig_cb_st sig;
2946
0
    sig.sigalgcnt = 0;
2947
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2948
0
        return 0;
2949
0
    if (c == NULL)
2950
0
        return 1;
2951
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2952
0
}
2953
2954
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2955
                     int client)
2956
0
{
2957
0
    uint16_t *sigalgs;
2958
2959
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
2960
0
        return 0;
2961
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2962
2963
0
    if (client) {
2964
0
        OPENSSL_free(c->client_sigalgs);
2965
0
        c->client_sigalgs = sigalgs;
2966
0
        c->client_sigalgslen = salglen;
2967
0
    } else {
2968
0
        OPENSSL_free(c->conf_sigalgs);
2969
0
        c->conf_sigalgs = sigalgs;
2970
0
        c->conf_sigalgslen = salglen;
2971
0
    }
2972
2973
0
    return 1;
2974
0
}
2975
2976
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2977
0
{
2978
0
    uint16_t *sigalgs, *sptr;
2979
0
    size_t i;
2980
2981
0
    if (salglen & 1)
2982
0
        return 0;
2983
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
2984
0
        return 0;
2985
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2986
0
        size_t j;
2987
0
        const SIGALG_LOOKUP *curr;
2988
0
        int md_id = *psig_nids++;
2989
0
        int sig_id = *psig_nids++;
2990
2991
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2992
0
             j++, curr++) {
2993
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2994
0
                *sptr++ = curr->sigalg;
2995
0
                break;
2996
0
            }
2997
0
        }
2998
2999
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3000
0
            goto err;
3001
0
    }
3002
3003
0
    if (client) {
3004
0
        OPENSSL_free(c->client_sigalgs);
3005
0
        c->client_sigalgs = sigalgs;
3006
0
        c->client_sigalgslen = salglen / 2;
3007
0
    } else {
3008
0
        OPENSSL_free(c->conf_sigalgs);
3009
0
        c->conf_sigalgs = sigalgs;
3010
0
        c->conf_sigalgslen = salglen / 2;
3011
0
    }
3012
3013
0
    return 1;
3014
3015
0
 err:
3016
0
    OPENSSL_free(sigalgs);
3017
0
    return 0;
3018
0
}
3019
3020
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3021
0
{
3022
0
    int sig_nid, use_pc_sigalgs = 0;
3023
0
    size_t i;
3024
0
    const SIGALG_LOOKUP *sigalg;
3025
0
    size_t sigalgslen;
3026
3027
0
    if (default_nid == -1)
3028
0
        return 1;
3029
0
    sig_nid = X509_get_signature_nid(x);
3030
0
    if (default_nid)
3031
0
        return sig_nid == default_nid ? 1 : 0;
3032
3033
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3034
        /*
3035
         * If we're in TLSv1.3 then we only get here if we're checking the
3036
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3037
         * otherwise we default to normal sigalgs.
3038
         */
3039
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3040
0
        use_pc_sigalgs = 1;
3041
0
    } else {
3042
0
        sigalgslen = s->shared_sigalgslen;
3043
0
    }
3044
0
    for (i = 0; i < sigalgslen; i++) {
3045
0
        sigalg = use_pc_sigalgs
3046
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3047
0
                 : s->shared_sigalgs[i];
3048
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3049
0
            return 1;
3050
0
    }
3051
0
    return 0;
3052
0
}
3053
3054
/* Check to see if a certificate issuer name matches list of CA names */
3055
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3056
0
{
3057
0
    const X509_NAME *nm;
3058
0
    int i;
3059
0
    nm = X509_get_issuer_name(x);
3060
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3061
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3062
0
            return 1;
3063
0
    }
3064
0
    return 0;
3065
0
}
3066
3067
/*
3068
 * Check certificate chain is consistent with TLS extensions and is usable by
3069
 * server. This servers two purposes: it allows users to check chains before
3070
 * passing them to the server and it allows the server to check chains before
3071
 * attempting to use them.
3072
 */
3073
3074
/* Flags which need to be set for a certificate when strict mode not set */
3075
3076
#define CERT_PKEY_VALID_FLAGS \
3077
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3078
/* Strict mode flags */
3079
#define CERT_PKEY_STRICT_FLAGS \
3080
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3081
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3082
3083
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3084
                     STACK_OF(X509) *chain, int idx)
3085
24.0k
{
3086
24.0k
    int i;
3087
24.0k
    int rv = 0;
3088
24.0k
    int check_flags = 0, strict_mode;
3089
24.0k
    CERT_PKEY *cpk = NULL;
3090
24.0k
    CERT *c = s->cert;
3091
24.0k
    uint32_t *pvalid;
3092
24.0k
    unsigned int suiteb_flags = tls1_suiteb(s);
3093
3094
    /*
3095
     * Meaning of idx:
3096
     * idx == -1 means SSL_check_chain() invocation
3097
     * idx == -2 means checking client certificate chains
3098
     * idx >= 0 means checking SSL_PKEY index
3099
     *
3100
     * For RPK, where there may be no cert, we ignore -1
3101
     */
3102
24.0k
    if (idx != -1) {
3103
24.0k
        if (idx == -2) {
3104
0
            cpk = c->key;
3105
0
            idx = (int)(cpk - c->pkeys);
3106
0
        } else
3107
24.0k
            cpk = c->pkeys + idx;
3108
24.0k
        pvalid = s->s3.tmp.valid_flags + idx;
3109
24.0k
        x = cpk->x509;
3110
24.0k
        pk = cpk->privatekey;
3111
24.0k
        chain = cpk->chain;
3112
24.0k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3113
24.0k
        if (tls12_rpk_and_privkey(s, idx)) {
3114
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3115
0
                return 0;
3116
0
            *pvalid = rv = CERT_PKEY_RPK;
3117
0
            return rv;
3118
0
        }
3119
        /* If no cert or key, forget it */
3120
24.0k
        if (x == NULL || pk == NULL)
3121
16.0k
            goto end;
3122
24.0k
    } else {
3123
0
        size_t certidx;
3124
3125
0
        if (x == NULL || pk == NULL)
3126
0
            return 0;
3127
3128
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3129
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3130
0
            return 0;
3131
0
        idx = certidx;
3132
0
        pvalid = s->s3.tmp.valid_flags + idx;
3133
3134
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3135
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3136
0
        else
3137
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3138
0
        strict_mode = 1;
3139
0
    }
3140
3141
8.01k
    if (suiteb_flags) {
3142
0
        int ok;
3143
0
        if (check_flags)
3144
0
            check_flags |= CERT_PKEY_SUITEB;
3145
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3146
0
        if (ok == X509_V_OK)
3147
0
            rv |= CERT_PKEY_SUITEB;
3148
0
        else if (!check_flags)
3149
0
            goto end;
3150
0
    }
3151
3152
    /*
3153
     * Check all signature algorithms are consistent with signature
3154
     * algorithms extension if TLS 1.2 or later and strict mode.
3155
     */
3156
8.01k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3157
8.01k
        && strict_mode) {
3158
0
        int default_nid;
3159
0
        int rsign = 0;
3160
3161
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3162
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3163
0
            default_nid = 0;
3164
        /* If no sigalgs extension use defaults from RFC5246 */
3165
0
        } else {
3166
0
            switch (idx) {
3167
0
            case SSL_PKEY_RSA:
3168
0
                rsign = EVP_PKEY_RSA;
3169
0
                default_nid = NID_sha1WithRSAEncryption;
3170
0
                break;
3171
3172
0
            case SSL_PKEY_DSA_SIGN:
3173
0
                rsign = EVP_PKEY_DSA;
3174
0
                default_nid = NID_dsaWithSHA1;
3175
0
                break;
3176
3177
0
            case SSL_PKEY_ECC:
3178
0
                rsign = EVP_PKEY_EC;
3179
0
                default_nid = NID_ecdsa_with_SHA1;
3180
0
                break;
3181
3182
0
            case SSL_PKEY_GOST01:
3183
0
                rsign = NID_id_GostR3410_2001;
3184
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3185
0
                break;
3186
3187
0
            case SSL_PKEY_GOST12_256:
3188
0
                rsign = NID_id_GostR3410_2012_256;
3189
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3190
0
                break;
3191
3192
0
            case SSL_PKEY_GOST12_512:
3193
0
                rsign = NID_id_GostR3410_2012_512;
3194
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3195
0
                break;
3196
3197
0
            default:
3198
0
                default_nid = -1;
3199
0
                break;
3200
0
            }
3201
0
        }
3202
        /*
3203
         * If peer sent no signature algorithms extension and we have set
3204
         * preferred signature algorithms check we support sha1.
3205
         */
3206
0
        if (default_nid > 0 && c->conf_sigalgs) {
3207
0
            size_t j;
3208
0
            const uint16_t *p = c->conf_sigalgs;
3209
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3210
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3211
3212
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3213
0
                    break;
3214
0
            }
3215
0
            if (j == c->conf_sigalgslen) {
3216
0
                if (check_flags)
3217
0
                    goto skip_sigs;
3218
0
                else
3219
0
                    goto end;
3220
0
            }
3221
0
        }
3222
        /* Check signature algorithm of each cert in chain */
3223
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3224
            /*
3225
             * We only get here if the application has called SSL_check_chain(),
3226
             * so check_flags is always set.
3227
             */
3228
0
            if (find_sig_alg(s, x, pk) != NULL)
3229
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3230
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3231
0
            if (!check_flags)
3232
0
                goto end;
3233
0
        } else
3234
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3235
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3236
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3237
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3238
0
                if (check_flags) {
3239
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3240
0
                    break;
3241
0
                } else
3242
0
                    goto end;
3243
0
            }
3244
0
        }
3245
0
    }
3246
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3247
8.01k
    else if (check_flags)
3248
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3249
8.01k
 skip_sigs:
3250
    /* Check cert parameters are consistent */
3251
8.01k
    if (tls1_check_cert_param(s, x, 1))
3252
7.54k
        rv |= CERT_PKEY_EE_PARAM;
3253
472
    else if (!check_flags)
3254
472
        goto end;
3255
7.54k
    if (!s->server)
3256
0
        rv |= CERT_PKEY_CA_PARAM;
3257
    /* In strict mode check rest of chain too */
3258
7.54k
    else if (strict_mode) {
3259
0
        rv |= CERT_PKEY_CA_PARAM;
3260
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3261
0
            X509 *ca = sk_X509_value(chain, i);
3262
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3263
0
                if (check_flags) {
3264
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3265
0
                    break;
3266
0
                } else
3267
0
                    goto end;
3268
0
            }
3269
0
        }
3270
0
    }
3271
7.54k
    if (!s->server && strict_mode) {
3272
0
        STACK_OF(X509_NAME) *ca_dn;
3273
0
        int check_type = 0;
3274
3275
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3276
0
            check_type = TLS_CT_RSA_SIGN;
3277
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3278
0
            check_type = TLS_CT_DSS_SIGN;
3279
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3280
0
            check_type = TLS_CT_ECDSA_SIGN;
3281
3282
0
        if (check_type) {
3283
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3284
0
            size_t j;
3285
3286
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3287
0
                if (*ctypes == check_type) {
3288
0
                    rv |= CERT_PKEY_CERT_TYPE;
3289
0
                    break;
3290
0
                }
3291
0
            }
3292
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3293
0
                goto end;
3294
0
        } else {
3295
0
            rv |= CERT_PKEY_CERT_TYPE;
3296
0
        }
3297
3298
0
        ca_dn = s->s3.tmp.peer_ca_names;
3299
3300
0
        if (ca_dn == NULL
3301
0
            || sk_X509_NAME_num(ca_dn) == 0
3302
0
            || ssl_check_ca_name(ca_dn, x))
3303
0
            rv |= CERT_PKEY_ISSUER_NAME;
3304
0
        else
3305
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3306
0
                X509 *xtmp = sk_X509_value(chain, i);
3307
3308
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3309
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3310
0
                    break;
3311
0
                }
3312
0
            }
3313
3314
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3315
0
            goto end;
3316
0
    } else
3317
7.54k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3318
3319
7.54k
    if (!check_flags || (rv & check_flags) == check_flags)
3320
7.54k
        rv |= CERT_PKEY_VALID;
3321
3322
24.0k
 end:
3323
3324
24.0k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3325
17.5k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3326
6.52k
    else
3327
6.52k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3328
3329
    /*
3330
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3331
     * chain is invalid.
3332
     */
3333
24.0k
    if (!check_flags) {
3334
24.0k
        if (rv & CERT_PKEY_VALID) {
3335
7.54k
            *pvalid = rv;
3336
16.5k
        } else {
3337
            /* Preserve sign and explicit sign flag, clear rest */
3338
16.5k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3339
16.5k
            return 0;
3340
16.5k
        }
3341
24.0k
    }
3342
7.54k
    return rv;
3343
24.0k
}
3344
3345
/* Set validity of certificates in an SSL structure */
3346
void tls1_set_cert_validity(SSL_CONNECTION *s)
3347
2.67k
{
3348
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3349
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3350
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3351
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3352
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3353
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3354
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3355
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3356
2.67k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3357
2.67k
}
3358
3359
/* User level utility function to check a chain is suitable */
3360
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3361
0
{
3362
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3363
3364
0
    if (sc == NULL)
3365
0
        return 0;
3366
3367
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3368
0
}
3369
3370
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3371
0
{
3372
0
    EVP_PKEY *dhp = NULL;
3373
0
    BIGNUM *p;
3374
0
    int dh_secbits = 80, sec_level_bits;
3375
0
    EVP_PKEY_CTX *pctx = NULL;
3376
0
    OSSL_PARAM_BLD *tmpl = NULL;
3377
0
    OSSL_PARAM *params = NULL;
3378
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3379
3380
0
    if (s->cert->dh_tmp_auto != 2) {
3381
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3382
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3383
0
                dh_secbits = 128;
3384
0
            else
3385
0
                dh_secbits = 80;
3386
0
        } else {
3387
0
            if (s->s3.tmp.cert == NULL)
3388
0
                return NULL;
3389
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3390
0
        }
3391
0
    }
3392
3393
    /* Do not pick a prime that is too weak for the current security level */
3394
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3395
0
                                                 NULL, NULL);
3396
0
    if (dh_secbits < sec_level_bits)
3397
0
        dh_secbits = sec_level_bits;
3398
3399
0
    if (dh_secbits >= 192)
3400
0
        p = BN_get_rfc3526_prime_8192(NULL);
3401
0
    else if (dh_secbits >= 152)
3402
0
        p = BN_get_rfc3526_prime_4096(NULL);
3403
0
    else if (dh_secbits >= 128)
3404
0
        p = BN_get_rfc3526_prime_3072(NULL);
3405
0
    else if (dh_secbits >= 112)
3406
0
        p = BN_get_rfc3526_prime_2048(NULL);
3407
0
    else
3408
0
        p = BN_get_rfc2409_prime_1024(NULL);
3409
0
    if (p == NULL)
3410
0
        goto err;
3411
3412
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3413
0
    if (pctx == NULL
3414
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3415
0
        goto err;
3416
3417
0
    tmpl = OSSL_PARAM_BLD_new();
3418
0
    if (tmpl == NULL
3419
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3420
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3421
0
        goto err;
3422
3423
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3424
0
    if (params == NULL
3425
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3426
0
        goto err;
3427
3428
0
err:
3429
0
    OSSL_PARAM_free(params);
3430
0
    OSSL_PARAM_BLD_free(tmpl);
3431
0
    EVP_PKEY_CTX_free(pctx);
3432
0
    BN_free(p);
3433
0
    return dhp;
3434
0
}
3435
3436
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3437
                                 int op)
3438
18.2k
{
3439
18.2k
    int secbits = -1;
3440
18.2k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3441
3442
18.2k
    if (pkey) {
3443
        /*
3444
         * If no parameters this will return -1 and fail using the default
3445
         * security callback for any non-zero security level. This will
3446
         * reject keys which omit parameters but this only affects DSA and
3447
         * omission of parameters is never (?) done in practice.
3448
         */
3449
18.2k
        secbits = EVP_PKEY_get_security_bits(pkey);
3450
18.2k
    }
3451
18.2k
    if (s != NULL)
3452
2.57k
        return ssl_security(s, op, secbits, 0, x);
3453
15.6k
    else
3454
15.6k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3455
18.2k
}
3456
3457
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3458
                                 int op)
3459
18.2k
{
3460
    /* Lookup signature algorithm digest */
3461
18.2k
    int secbits, nid, pknid;
3462
3463
    /* Don't check signature if self signed */
3464
18.2k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3465
18.2k
        return 1;
3466
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3467
0
        secbits = -1;
3468
    /* If digest NID not defined use signature NID */
3469
0
    if (nid == NID_undef)
3470
0
        nid = pknid;
3471
0
    if (s != NULL)
3472
0
        return ssl_security(s, op, secbits, nid, x);
3473
0
    else
3474
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3475
0
}
3476
3477
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3478
                      int is_ee)
3479
18.2k
{
3480
18.2k
    if (vfy)
3481
0
        vfy = SSL_SECOP_PEER;
3482
18.2k
    if (is_ee) {
3483
18.2k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3484
0
            return SSL_R_EE_KEY_TOO_SMALL;
3485
18.2k
    } else {
3486
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3487
0
            return SSL_R_CA_KEY_TOO_SMALL;
3488
0
    }
3489
18.2k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3490
0
        return SSL_R_CA_MD_TOO_WEAK;
3491
18.2k
    return 1;
3492
18.2k
}
3493
3494
/*
3495
 * Check security of a chain, if |sk| includes the end entity certificate then
3496
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3497
 * one to the peer. Return values: 1 if ok otherwise error code to use
3498
 */
3499
3500
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3501
                            X509 *x, int vfy)
3502
2.57k
{
3503
2.57k
    int rv, start_idx, i;
3504
3505
2.57k
    if (x == NULL) {
3506
2.57k
        x = sk_X509_value(sk, 0);
3507
2.57k
        if (x == NULL)
3508
0
            return ERR_R_INTERNAL_ERROR;
3509
2.57k
        start_idx = 1;
3510
2.57k
    } else
3511
0
        start_idx = 0;
3512
3513
2.57k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3514
2.57k
    if (rv != 1)
3515
0
        return rv;
3516
3517
2.57k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3518
0
        x = sk_X509_value(sk, i);
3519
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3520
0
        if (rv != 1)
3521
0
            return rv;
3522
0
    }
3523
2.57k
    return 1;
3524
2.57k
}
3525
3526
/*
3527
 * For TLS 1.2 servers check if we have a certificate which can be used
3528
 * with the signature algorithm "lu" and return index of certificate.
3529
 */
3530
3531
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3532
                                     const SIGALG_LOOKUP *lu)
3533
8.89k
{
3534
8.89k
    int sig_idx = lu->sig_idx;
3535
8.89k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3536
8.89k
                                                        SSL_CONNECTION_GET_CTX(s));
3537
3538
    /* If not recognised or not supported by cipher mask it is not suitable */
3539
8.89k
    if (clu == NULL
3540
8.89k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3541
8.89k
            || (clu->nid == EVP_PKEY_RSA_PSS
3542
8.09k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3543
876
        return -1;
3544
3545
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3546
8.02k
    if (tls12_rpk_and_privkey(s, sig_idx))
3547
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3548
3549
8.02k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3550
8.02k
}
3551
3552
/*
3553
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3554
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3555
 * the key.
3556
 * Returns true if the cert is usable and false otherwise.
3557
 */
3558
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3559
                             X509 *x, EVP_PKEY *pkey)
3560
10.7k
{
3561
10.7k
    const SIGALG_LOOKUP *lu;
3562
10.7k
    int mdnid, pknid, supported;
3563
10.7k
    size_t i;
3564
10.7k
    const char *mdname = NULL;
3565
10.7k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3566
3567
    /*
3568
     * If the given EVP_PKEY cannot support signing with this digest,
3569
     * the answer is simply 'no'.
3570
     */
3571
10.7k
    if (sig->hash != NID_undef)
3572
10.7k
        mdname = OBJ_nid2sn(sig->hash);
3573
10.7k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3574
10.7k
                                                    mdname,
3575
10.7k
                                                    sctx->propq);
3576
10.7k
    if (supported <= 0)
3577
0
        return 0;
3578
3579
    /*
3580
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3581
     * on the sigalg with which the certificate was signed (by its issuer).
3582
     */
3583
10.7k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3584
7.69k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3585
0
            return 0;
3586
37.6k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3587
29.9k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3588
29.9k
            if (lu == NULL)
3589
28.5k
                continue;
3590
3591
            /*
3592
             * This does not differentiate between the
3593
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3594
             * have a chain here that lets us look at the key OID in the
3595
             * signing certificate.
3596
             */
3597
1.39k
            if (mdnid == lu->hash && pknid == lu->sig)
3598
11
                return 1;
3599
1.39k
        }
3600
7.68k
        return 0;
3601
7.69k
    }
3602
3603
    /*
3604
     * Without signat_algorithms_cert, any certificate for which we have
3605
     * a viable public key is permitted.
3606
     */
3607
3.01k
    return 1;
3608
10.7k
}
3609
3610
/*
3611
 * Returns true if |s| has a usable certificate configured for use
3612
 * with signature scheme |sig|.
3613
 * "Usable" includes a check for presence as well as applying
3614
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3615
 * Returns false if no usable certificate is found.
3616
 */
3617
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3618
10.7k
{
3619
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3620
10.7k
    if (idx == -1)
3621
1.67k
        idx = sig->sig_idx;
3622
10.7k
    if (!ssl_has_cert(s, idx))
3623
38
        return 0;
3624
3625
10.7k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3626
10.7k
                             s->cert->pkeys[idx].privatekey);
3627
10.7k
}
3628
3629
/*
3630
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3631
 * specified signature scheme |sig|, or false otherwise.
3632
 */
3633
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3634
                          EVP_PKEY *pkey)
3635
0
{
3636
0
    size_t idx;
3637
3638
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3639
0
        return 0;
3640
3641
    /* Check the key is consistent with the sig alg */
3642
0
    if ((int)idx != sig->sig_idx)
3643
0
        return 0;
3644
3645
0
    return check_cert_usable(s, sig, x, pkey);
3646
0
}
3647
3648
/*
3649
 * Find a signature scheme that works with the supplied certificate |x| and key
3650
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3651
 * available certs/keys to find one that works.
3652
 */
3653
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3654
                                         EVP_PKEY *pkey)
3655
656
{
3656
656
    const SIGALG_LOOKUP *lu = NULL;
3657
656
    size_t i;
3658
656
    int curve = -1;
3659
656
    EVP_PKEY *tmppkey;
3660
656
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3661
3662
    /* Look for a shared sigalgs matching possible certificates */
3663
1.94k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3664
1.90k
        lu = s->shared_sigalgs[i];
3665
3666
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3667
1.90k
        if (lu->hash == NID_sha1
3668
1.90k
            || lu->hash == NID_sha224
3669
1.90k
            || lu->sig == EVP_PKEY_DSA
3670
1.90k
            || lu->sig == EVP_PKEY_RSA)
3671
238
            continue;
3672
        /* Check that we have a cert, and signature_algorithms_cert */
3673
1.67k
        if (!tls1_lookup_md(sctx, lu, NULL))
3674
0
            continue;
3675
1.67k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3676
1.67k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3677
62
            continue;
3678
3679
1.60k
        tmppkey = (pkey != NULL) ? pkey
3680
1.60k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3681
3682
1.60k
        if (lu->sig == EVP_PKEY_EC) {
3683
1.44k
            if (curve == -1)
3684
517
                curve = ssl_get_EC_curve_nid(tmppkey);
3685
1.44k
            if (lu->curve != NID_undef && curve != lu->curve)
3686
987
                continue;
3687
1.44k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3688
            /* validate that key is large enough for the signature algorithm */
3689
162
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3690
0
                continue;
3691
162
        }
3692
622
        break;
3693
1.60k
    }
3694
3695
656
    if (i == s->shared_sigalgslen)
3696
34
        return NULL;
3697
3698
622
    return lu;
3699
656
}
3700
3701
/*
3702
 * Choose an appropriate signature algorithm based on available certificates
3703
 * Sets chosen certificate and signature algorithm.
3704
 *
3705
 * For servers if we fail to find a required certificate it is a fatal error,
3706
 * an appropriate error code is set and a TLS alert is sent.
3707
 *
3708
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3709
 * a fatal error: we will either try another certificate or not present one
3710
 * to the server. In this case no error is set.
3711
 */
3712
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3713
3.13k
{
3714
3.13k
    const SIGALG_LOOKUP *lu = NULL;
3715
3.13k
    int sig_idx = -1;
3716
3717
3.13k
    s->s3.tmp.cert = NULL;
3718
3.13k
    s->s3.tmp.sigalg = NULL;
3719
3720
3.13k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3721
656
        lu = find_sig_alg(s, NULL, NULL);
3722
656
        if (lu == NULL) {
3723
34
            if (!fatalerrs)
3724
0
                return 1;
3725
34
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3726
34
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3727
34
            return 0;
3728
34
        }
3729
2.47k
    } else {
3730
        /* If ciphersuite doesn't require a cert nothing to do */
3731
2.47k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3732
193
            return 1;
3733
2.28k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3734
0
                return 1;
3735
3736
2.28k
        if (SSL_USE_SIGALGS(s)) {
3737
1.61k
            size_t i;
3738
1.61k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3739
344
                int curve = -1;
3740
344
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3741
3742
                /* For Suite B need to match signature algorithm to curve */
3743
344
                if (tls1_suiteb(s))
3744
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3745
0
                                                 .privatekey);
3746
3747
                /*
3748
                 * Find highest preference signature algorithm matching
3749
                 * cert type
3750
                 */
3751
9.09k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3752
8.89k
                    lu = s->shared_sigalgs[i];
3753
3754
8.89k
                    if (s->server) {
3755
8.89k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3756
1.09k
                            continue;
3757
8.89k
                    } else {
3758
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3759
3760
0
                        sig_idx = lu->sig_idx;
3761
0
                        if (cc_idx != sig_idx)
3762
0
                            continue;
3763
0
                    }
3764
                    /* Check that we have a cert, and sig_algs_cert */
3765
7.80k
                    if (!has_usable_cert(s, lu, sig_idx))
3766
7.66k
                        continue;
3767
147
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3768
                        /* validate that key is large enough for the signature algorithm */
3769
47
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3770
3771
47
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3772
0
                            continue;
3773
47
                    }
3774
147
                    if (curve == -1 || lu->curve == curve)
3775
147
                        break;
3776
147
                }
3777
344
#ifndef OPENSSL_NO_GOST
3778
                /*
3779
                 * Some Windows-based implementations do not send GOST algorithms indication
3780
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3781
                 * we have to assume GOST support.
3782
                 */
3783
344
                if (i == s->shared_sigalgslen
3784
344
                    && (s->s3.tmp.new_cipher->algorithm_auth
3785
197
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3786
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3787
0
                    if (!fatalerrs)
3788
0
                      return 1;
3789
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3790
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3791
0
                    return 0;
3792
0
                  } else {
3793
0
                    i = 0;
3794
0
                    sig_idx = lu->sig_idx;
3795
0
                  }
3796
0
                }
3797
344
#endif
3798
344
                if (i == s->shared_sigalgslen) {
3799
197
                    if (!fatalerrs)
3800
0
                        return 1;
3801
197
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3802
197
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3803
197
                    return 0;
3804
197
                }
3805
1.27k
            } else {
3806
                /*
3807
                 * If we have no sigalg use defaults
3808
                 */
3809
1.27k
                const uint16_t *sent_sigs;
3810
1.27k
                size_t sent_sigslen;
3811
3812
1.27k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3813
0
                    if (!fatalerrs)
3814
0
                        return 1;
3815
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3816
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3817
0
                    return 0;
3818
0
                }
3819
3820
                /* Check signature matches a type we sent */
3821
1.27k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3822
26.2k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3823
26.2k
                    if (lu->sigalg == *sent_sigs
3824
26.2k
                            && has_usable_cert(s, lu, lu->sig_idx))
3825
1.27k
                        break;
3826
26.2k
                }
3827
1.27k
                if (i == sent_sigslen) {
3828
0
                    if (!fatalerrs)
3829
0
                        return 1;
3830
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3831
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3832
0
                    return 0;
3833
0
                }
3834
1.27k
            }
3835
1.61k
        } else {
3836
668
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3837
0
                if (!fatalerrs)
3838
0
                    return 1;
3839
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3840
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3841
0
                return 0;
3842
0
            }
3843
668
        }
3844
2.28k
    }
3845
2.70k
    if (sig_idx == -1)
3846
2.56k
        sig_idx = lu->sig_idx;
3847
2.70k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3848
2.70k
    s->cert->key = s->s3.tmp.cert;
3849
2.70k
    s->s3.tmp.sigalg = lu;
3850
2.70k
    return 1;
3851
3.13k
}
3852
3853
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3854
0
{
3855
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3856
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3857
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3858
0
        return 0;
3859
0
    }
3860
3861
0
    ctx->ext.max_fragment_len_mode = mode;
3862
0
    return 1;
3863
0
}
3864
3865
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3866
0
{
3867
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3868
3869
0
    if (sc == NULL
3870
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3871
0
        return 0;
3872
3873
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3874
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3875
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3876
0
        return 0;
3877
0
    }
3878
3879
0
    sc->ext.max_fragment_len_mode = mode;
3880
0
    return 1;
3881
0
}
3882
3883
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3884
0
{
3885
0
    return session->ext.max_fragment_len_mode;
3886
0
}
3887
3888
/*
3889
 * Helper functions for HMAC access with legacy support included.
3890
 */
3891
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3892
304
{
3893
304
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3894
304
    EVP_MAC *mac = NULL;
3895
3896
304
    if (ret == NULL)
3897
0
        return NULL;
3898
304
#ifndef OPENSSL_NO_DEPRECATED_3_0
3899
304
    if (ctx->ext.ticket_key_evp_cb == NULL
3900
304
            && ctx->ext.ticket_key_cb != NULL) {
3901
0
        if (!ssl_hmac_old_new(ret))
3902
0
            goto err;
3903
0
        return ret;
3904
0
    }
3905
304
#endif
3906
304
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3907
304
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3908
0
        goto err;
3909
304
    EVP_MAC_free(mac);
3910
304
    return ret;
3911
0
 err:
3912
0
    EVP_MAC_CTX_free(ret->ctx);
3913
0
    EVP_MAC_free(mac);
3914
0
    OPENSSL_free(ret);
3915
0
    return NULL;
3916
304
}
3917
3918
void ssl_hmac_free(SSL_HMAC *ctx)
3919
499
{
3920
499
    if (ctx != NULL) {
3921
304
        EVP_MAC_CTX_free(ctx->ctx);
3922
304
#ifndef OPENSSL_NO_DEPRECATED_3_0
3923
304
        ssl_hmac_old_free(ctx);
3924
304
#endif
3925
304
        OPENSSL_free(ctx);
3926
304
    }
3927
499
}
3928
3929
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3930
0
{
3931
0
    return ctx->ctx;
3932
0
}
3933
3934
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3935
276
{
3936
276
    OSSL_PARAM params[2], *p = params;
3937
3938
276
    if (ctx->ctx != NULL) {
3939
276
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3940
276
        *p = OSSL_PARAM_construct_end();
3941
276
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3942
276
            return 1;
3943
276
    }
3944
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3945
0
    if (ctx->old_ctx != NULL)
3946
0
        return ssl_hmac_old_init(ctx, key, len, md);
3947
0
#endif
3948
0
    return 0;
3949
0
}
3950
3951
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3952
263
{
3953
263
    if (ctx->ctx != NULL)
3954
263
        return EVP_MAC_update(ctx->ctx, data, len);
3955
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3956
0
    if (ctx->old_ctx != NULL)
3957
0
        return ssl_hmac_old_update(ctx, data, len);
3958
0
#endif
3959
0
    return 0;
3960
0
}
3961
3962
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3963
                   size_t max_size)
3964
263
{
3965
263
    if (ctx->ctx != NULL)
3966
263
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3967
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3968
0
    if (ctx->old_ctx != NULL)
3969
0
        return ssl_hmac_old_final(ctx, md, len);
3970
0
#endif
3971
0
    return 0;
3972
0
}
3973
3974
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3975
270
{
3976
270
    if (ctx->ctx != NULL)
3977
270
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3978
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3979
0
    if (ctx->old_ctx != NULL)
3980
0
        return ssl_hmac_old_size(ctx);
3981
0
#endif
3982
0
    return 0;
3983
0
}
3984
3985
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3986
3.15k
{
3987
3.15k
    char gname[OSSL_MAX_NAME_SIZE];
3988
3989
3.15k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3990
3.15k
        return OBJ_txt2nid(gname);
3991
3992
0
    return NID_undef;
3993
3.15k
}
3994
3995
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3996
                                     const unsigned char *enckey,
3997
                                     size_t enckeylen)
3998
543
{
3999
543
    if (EVP_PKEY_is_a(pkey, "DH")) {
4000
1
        int bits = EVP_PKEY_get_bits(pkey);
4001
4002
1
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4003
            /* the encoded key must be padded to the length of the p */
4004
1
            return 0;
4005
542
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4006
18
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4007
18
            || enckey[0] != 0x04)
4008
6
            return 0;
4009
18
    }
4010
4011
536
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4012
543
}