Coverage Report

Created: 2023-09-25 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
6.23M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
363
{
145
363
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
363
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
363
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
363
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
363
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
363
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
363
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
363
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
363
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
363
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
692
{
162
692
    memset(out, 0, 66);
163
692
    (*((limb *) & out[0])) = in[0];
164
692
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
692
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
692
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
692
    (*((limb_aX *) & out[29])) = in[4];
168
692
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
692
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
692
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
692
    (*((limb_aX *) & out[58])) = in[8];
172
692
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
363
{
177
363
    felem_bytearray b_out;
178
363
    int num_bytes;
179
180
363
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
363
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
363
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
363
    bin66_to_felem(out, b_out);
190
363
    return 1;
191
363
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
692
{
196
692
    felem_bytearray b_out;
197
692
    felem_to_bin66(b_out, in);
198
692
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
692
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
221k
{
221
221k
    out[0] = in[0];
222
221k
    out[1] = in[1];
223
221k
    out[2] = in[2];
224
221k
    out[3] = in[3];
225
221k
    out[4] = in[4];
226
221k
    out[5] = in[5];
227
221k
    out[6] = in[6];
228
221k
    out[7] = in[7];
229
221k
    out[8] = in[8];
230
221k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
69.1k
{
235
69.1k
    out[0] += in[0];
236
69.1k
    out[1] += in[1];
237
69.1k
    out[2] += in[2];
238
69.1k
    out[3] += in[3];
239
69.1k
    out[4] += in[4];
240
69.1k
    out[5] += in[5];
241
69.1k
    out[6] += in[6];
242
69.1k
    out[7] += in[7];
243
69.1k
    out[8] += in[8];
244
69.1k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
589k
{
249
589k
    out[0] = in[0] * scalar;
250
589k
    out[1] = in[1] * scalar;
251
589k
    out[2] = in[2] * scalar;
252
589k
    out[3] = in[3] * scalar;
253
589k
    out[4] = in[4] * scalar;
254
589k
    out[5] = in[5] * scalar;
255
589k
    out[6] = in[6] * scalar;
256
589k
    out[7] = in[7] * scalar;
257
589k
    out[8] = in[8] * scalar;
258
589k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
102k
{
263
102k
    out[0] *= scalar;
264
102k
    out[1] *= scalar;
265
102k
    out[2] *= scalar;
266
102k
    out[3] *= scalar;
267
102k
    out[4] *= scalar;
268
102k
    out[5] *= scalar;
269
102k
    out[6] *= scalar;
270
102k
    out[7] *= scalar;
271
102k
    out[8] *= scalar;
272
102k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
34.3k
{
277
34.3k
    out[0] *= scalar;
278
34.3k
    out[1] *= scalar;
279
34.3k
    out[2] *= scalar;
280
34.3k
    out[3] *= scalar;
281
34.3k
    out[4] *= scalar;
282
34.3k
    out[5] *= scalar;
283
34.3k
    out[6] *= scalar;
284
34.3k
    out[7] *= scalar;
285
34.3k
    out[8] *= scalar;
286
34.3k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
2.52k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
2.52k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
2.52k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
2.52k
    out[0] = two62m3 - in[0];
302
2.52k
    out[1] = two62m2 - in[1];
303
2.52k
    out[2] = two62m2 - in[2];
304
2.52k
    out[3] = two62m2 - in[3];
305
2.52k
    out[4] = two62m2 - in[4];
306
2.52k
    out[5] = two62m2 - in[5];
307
2.52k
    out[6] = two62m2 - in[6];
308
2.52k
    out[7] = two62m2 - in[7];
309
2.52k
    out[8] = two62m2 - in[8];
310
2.52k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
56.4k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
56.4k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
56.4k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
56.4k
    out[0] += two62m3 - in[0];
328
56.4k
    out[1] += two62m2 - in[1];
329
56.4k
    out[2] += two62m2 - in[2];
330
56.4k
    out[3] += two62m2 - in[3];
331
56.4k
    out[4] += two62m2 - in[4];
332
56.4k
    out[5] += two62m2 - in[5];
333
56.4k
    out[6] += two62m2 - in[6];
334
56.4k
    out[7] += two62m2 - in[7];
335
56.4k
    out[8] += two62m2 - in[8];
336
56.4k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
98.2k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
98.2k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
98.2k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
98.2k
    out[0] += two63m6 - in[0];
359
98.2k
    out[1] += two63m5 - in[1];
360
98.2k
    out[2] += two63m5 - in[2];
361
98.2k
    out[3] += two63m5 - in[3];
362
98.2k
    out[4] += two63m5 - in[4];
363
98.2k
    out[5] += two63m5 - in[5];
364
98.2k
    out[6] += two63m5 - in[6];
365
98.2k
    out[7] += two63m5 - in[7];
366
98.2k
    out[8] += two63m5 - in[8];
367
98.2k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
34.3k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
34.3k
    static const uint128_t two127m70 =
382
34.3k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
34.3k
    static const uint128_t two127m69 =
384
34.3k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
34.3k
    out[0] += (two127m70 - in[0]);
387
34.3k
    out[1] += (two127m69 - in[1]);
388
34.3k
    out[2] += (two127m69 - in[2]);
389
34.3k
    out[3] += (two127m69 - in[3]);
390
34.3k
    out[4] += (two127m69 - in[4]);
391
34.3k
    out[5] += (two127m69 - in[5]);
392
34.3k
    out[6] += (two127m69 - in[6]);
393
34.3k
    out[7] += (two127m69 - in[7]);
394
34.3k
    out[8] += (two127m69 - in[8]);
395
34.3k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
203k
{
406
203k
    felem inx2, inx4;
407
203k
    felem_scalar(inx2, in, 2);
408
203k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
203k
    out[0] = ((uint128_t) in[0]) * in[0];
422
203k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
203k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
203k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
203k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
203k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
203k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
203k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
203k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
203k
             ((uint128_t) in[1]) * inx2[5] +
431
203k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
203k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
203k
             ((uint128_t) in[1]) * inx2[6] +
434
203k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
203k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
203k
             ((uint128_t) in[1]) * inx2[7] +
437
203k
             ((uint128_t) in[2]) * inx2[6] +
438
203k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
203k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
203k
              ((uint128_t) in[2]) * inx4[7] +
452
203k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
203k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
203k
              ((uint128_t) in[3]) * inx4[7] +
457
203k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
203k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
203k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
203k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
203k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
203k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
203k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
203k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
203k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
203k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
173k
{
490
173k
    felem in2x2;
491
173k
    felem_scalar(in2x2, in2, 2);
492
493
173k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
173k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
173k
             ((uint128_t) in1[1]) * in2[0];
497
498
173k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
173k
             ((uint128_t) in1[1]) * in2[1] +
500
173k
             ((uint128_t) in1[2]) * in2[0];
501
502
173k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
173k
             ((uint128_t) in1[1]) * in2[2] +
504
173k
             ((uint128_t) in1[2]) * in2[1] +
505
173k
             ((uint128_t) in1[3]) * in2[0];
506
507
173k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
173k
             ((uint128_t) in1[1]) * in2[3] +
509
173k
             ((uint128_t) in1[2]) * in2[2] +
510
173k
             ((uint128_t) in1[3]) * in2[1] +
511
173k
             ((uint128_t) in1[4]) * in2[0];
512
513
173k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
173k
             ((uint128_t) in1[1]) * in2[4] +
515
173k
             ((uint128_t) in1[2]) * in2[3] +
516
173k
             ((uint128_t) in1[3]) * in2[2] +
517
173k
             ((uint128_t) in1[4]) * in2[1] +
518
173k
             ((uint128_t) in1[5]) * in2[0];
519
520
173k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
173k
             ((uint128_t) in1[1]) * in2[5] +
522
173k
             ((uint128_t) in1[2]) * in2[4] +
523
173k
             ((uint128_t) in1[3]) * in2[3] +
524
173k
             ((uint128_t) in1[4]) * in2[2] +
525
173k
             ((uint128_t) in1[5]) * in2[1] +
526
173k
             ((uint128_t) in1[6]) * in2[0];
527
528
173k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
173k
             ((uint128_t) in1[1]) * in2[6] +
530
173k
             ((uint128_t) in1[2]) * in2[5] +
531
173k
             ((uint128_t) in1[3]) * in2[4] +
532
173k
             ((uint128_t) in1[4]) * in2[3] +
533
173k
             ((uint128_t) in1[5]) * in2[2] +
534
173k
             ((uint128_t) in1[6]) * in2[1] +
535
173k
             ((uint128_t) in1[7]) * in2[0];
536
537
173k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
173k
             ((uint128_t) in1[1]) * in2[7] +
539
173k
             ((uint128_t) in1[2]) * in2[6] +
540
173k
             ((uint128_t) in1[3]) * in2[5] +
541
173k
             ((uint128_t) in1[4]) * in2[4] +
542
173k
             ((uint128_t) in1[5]) * in2[3] +
543
173k
             ((uint128_t) in1[6]) * in2[2] +
544
173k
             ((uint128_t) in1[7]) * in2[1] +
545
173k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
173k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
173k
              ((uint128_t) in1[2]) * in2x2[7] +
551
173k
              ((uint128_t) in1[3]) * in2x2[6] +
552
173k
              ((uint128_t) in1[4]) * in2x2[5] +
553
173k
              ((uint128_t) in1[5]) * in2x2[4] +
554
173k
              ((uint128_t) in1[6]) * in2x2[3] +
555
173k
              ((uint128_t) in1[7]) * in2x2[2] +
556
173k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
173k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
173k
              ((uint128_t) in1[3]) * in2x2[7] +
560
173k
              ((uint128_t) in1[4]) * in2x2[6] +
561
173k
              ((uint128_t) in1[5]) * in2x2[5] +
562
173k
              ((uint128_t) in1[6]) * in2x2[4] +
563
173k
              ((uint128_t) in1[7]) * in2x2[3] +
564
173k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
173k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
173k
              ((uint128_t) in1[4]) * in2x2[7] +
568
173k
              ((uint128_t) in1[5]) * in2x2[6] +
569
173k
              ((uint128_t) in1[6]) * in2x2[5] +
570
173k
              ((uint128_t) in1[7]) * in2x2[4] +
571
173k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
173k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
173k
              ((uint128_t) in1[5]) * in2x2[7] +
575
173k
              ((uint128_t) in1[6]) * in2x2[6] +
576
173k
              ((uint128_t) in1[7]) * in2x2[5] +
577
173k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
173k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
173k
              ((uint128_t) in1[6]) * in2x2[7] +
581
173k
              ((uint128_t) in1[7]) * in2x2[6] +
582
173k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
173k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
173k
              ((uint128_t) in1[7]) * in2x2[7] +
586
173k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
173k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
173k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
173k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
173k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
342k
{
605
342k
    u64 overflow1, overflow2;
606
607
342k
    out[0] = ((limb) in[0]) & bottom58bits;
608
342k
    out[1] = ((limb) in[1]) & bottom58bits;
609
342k
    out[2] = ((limb) in[2]) & bottom58bits;
610
342k
    out[3] = ((limb) in[3]) & bottom58bits;
611
342k
    out[4] = ((limb) in[4]) & bottom58bits;
612
342k
    out[5] = ((limb) in[5]) & bottom58bits;
613
342k
    out[6] = ((limb) in[6]) & bottom58bits;
614
342k
    out[7] = ((limb) in[7]) & bottom58bits;
615
342k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
342k
    out[1] += ((limb) in[0]) >> 58;
620
342k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
342k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
342k
    out[2] += ((limb) in[1]) >> 58;
628
342k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
342k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
342k
    out[3] += ((limb) in[2]) >> 58;
632
342k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
342k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
342k
    out[4] += ((limb) in[3]) >> 58;
636
342k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
342k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
342k
    out[5] += ((limb) in[4]) >> 58;
640
342k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
342k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
342k
    out[6] += ((limb) in[5]) >> 58;
644
342k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
342k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
342k
    out[7] += ((limb) in[6]) >> 58;
648
342k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
342k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
342k
    out[8] += ((limb) in[7]) >> 58;
652
342k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
342k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
342k
    overflow1 += ((limb) in[8]) >> 58;
660
342k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
342k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
342k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
342k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
342k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
342k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
342k
    out[1] += out[0] >> 58;
670
342k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
342k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
203k
# define felem_square felem_square_ref
726
173k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
97
{
753
97
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
97
    largefelem tmp;
755
97
    unsigned i;
756
757
97
    felem_square(tmp, in);
758
97
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
97
    felem_mul(tmp, in, ftmp);
760
97
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
97
    felem_assign(ftmp2, ftmp);
762
97
    felem_square(tmp, ftmp);
763
97
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
97
    felem_mul(tmp, in, ftmp);
765
97
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
97
    felem_square(tmp, ftmp);
767
97
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
97
    felem_square(tmp, ftmp2);
770
97
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
97
    felem_square(tmp, ftmp3);
772
97
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
97
    felem_mul(tmp, ftmp3, ftmp2);
774
97
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
97
    felem_assign(ftmp2, ftmp3);
777
97
    felem_square(tmp, ftmp3);
778
97
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
97
    felem_square(tmp, ftmp3);
780
97
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
97
    felem_square(tmp, ftmp3);
782
97
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
97
    felem_square(tmp, ftmp3);
784
97
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
97
    felem_assign(ftmp4, ftmp3);
786
97
    felem_mul(tmp, ftmp3, ftmp);
787
97
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
97
    felem_square(tmp, ftmp4);
789
97
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
97
    felem_mul(tmp, ftmp3, ftmp2);
791
97
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
97
    felem_assign(ftmp2, ftmp3);
793
794
873
    for (i = 0; i < 8; i++) {
795
776
        felem_square(tmp, ftmp3);
796
776
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
776
    }
798
97
    felem_mul(tmp, ftmp3, ftmp2);
799
97
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
97
    felem_assign(ftmp2, ftmp3);
801
802
1.64k
    for (i = 0; i < 16; i++) {
803
1.55k
        felem_square(tmp, ftmp3);
804
1.55k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
1.55k
    }
806
97
    felem_mul(tmp, ftmp3, ftmp2);
807
97
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
97
    felem_assign(ftmp2, ftmp3);
809
810
3.20k
    for (i = 0; i < 32; i++) {
811
3.10k
        felem_square(tmp, ftmp3);
812
3.10k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
3.10k
    }
814
97
    felem_mul(tmp, ftmp3, ftmp2);
815
97
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
97
    felem_assign(ftmp2, ftmp3);
817
818
6.30k
    for (i = 0; i < 64; i++) {
819
6.20k
        felem_square(tmp, ftmp3);
820
6.20k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
6.20k
    }
822
97
    felem_mul(tmp, ftmp3, ftmp2);
823
97
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
97
    felem_assign(ftmp2, ftmp3);
825
826
12.5k
    for (i = 0; i < 128; i++) {
827
12.4k
        felem_square(tmp, ftmp3);
828
12.4k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
12.4k
    }
830
97
    felem_mul(tmp, ftmp3, ftmp2);
831
97
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
97
    felem_assign(ftmp2, ftmp3);
833
834
24.9k
    for (i = 0; i < 256; i++) {
835
24.8k
        felem_square(tmp, ftmp3);
836
24.8k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
24.8k
    }
838
97
    felem_mul(tmp, ftmp3, ftmp2);
839
97
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
970
    for (i = 0; i < 9; i++) {
842
873
        felem_square(tmp, ftmp3);
843
873
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
873
    }
845
97
    felem_mul(tmp, ftmp3, ftmp4);
846
97
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
97
    felem_mul(tmp, ftmp3, in);
848
97
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
97
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
48.6k
{
866
48.6k
    felem ftmp;
867
48.6k
    limb is_zero, is_p;
868
48.6k
    felem_assign(ftmp, in);
869
870
48.6k
    ftmp[0] += ftmp[8] >> 57;
871
48.6k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
48.6k
    ftmp[1] += ftmp[0] >> 58;
874
48.6k
    ftmp[0] &= bottom58bits;
875
48.6k
    ftmp[2] += ftmp[1] >> 58;
876
48.6k
    ftmp[1] &= bottom58bits;
877
48.6k
    ftmp[3] += ftmp[2] >> 58;
878
48.6k
    ftmp[2] &= bottom58bits;
879
48.6k
    ftmp[4] += ftmp[3] >> 58;
880
48.6k
    ftmp[3] &= bottom58bits;
881
48.6k
    ftmp[5] += ftmp[4] >> 58;
882
48.6k
    ftmp[4] &= bottom58bits;
883
48.6k
    ftmp[6] += ftmp[5] >> 58;
884
48.6k
    ftmp[5] &= bottom58bits;
885
48.6k
    ftmp[7] += ftmp[6] >> 58;
886
48.6k
    ftmp[6] &= bottom58bits;
887
48.6k
    ftmp[8] += ftmp[7] >> 58;
888
48.6k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
48.6k
    is_zero = 0;
898
48.6k
    is_zero |= ftmp[0];
899
48.6k
    is_zero |= ftmp[1];
900
48.6k
    is_zero |= ftmp[2];
901
48.6k
    is_zero |= ftmp[3];
902
48.6k
    is_zero |= ftmp[4];
903
48.6k
    is_zero |= ftmp[5];
904
48.6k
    is_zero |= ftmp[6];
905
48.6k
    is_zero |= ftmp[7];
906
48.6k
    is_zero |= ftmp[8];
907
908
48.6k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
48.6k
    is_zero = 0 - (is_zero >> 63);
914
915
48.6k
    is_p = ftmp[0] ^ kPrime[0];
916
48.6k
    is_p |= ftmp[1] ^ kPrime[1];
917
48.6k
    is_p |= ftmp[2] ^ kPrime[2];
918
48.6k
    is_p |= ftmp[3] ^ kPrime[3];
919
48.6k
    is_p |= ftmp[4] ^ kPrime[4];
920
48.6k
    is_p |= ftmp[5] ^ kPrime[5];
921
48.6k
    is_p |= ftmp[6] ^ kPrime[6];
922
48.6k
    is_p |= ftmp[7] ^ kPrime[7];
923
48.6k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
48.6k
    is_p--;
926
48.6k
    is_p = 0 - (is_p >> 63);
927
928
48.6k
    is_zero |= is_p;
929
48.6k
    return is_zero;
930
48.6k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
485
{
944
485
    limb is_p, is_greater, sign;
945
485
    static const limb two58 = ((limb) 1) << 58;
946
947
485
    felem_assign(out, in);
948
949
485
    out[0] += out[8] >> 57;
950
485
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
485
    out[1] += out[0] >> 58;
953
485
    out[0] &= bottom58bits;
954
485
    out[2] += out[1] >> 58;
955
485
    out[1] &= bottom58bits;
956
485
    out[3] += out[2] >> 58;
957
485
    out[2] &= bottom58bits;
958
485
    out[4] += out[3] >> 58;
959
485
    out[3] &= bottom58bits;
960
485
    out[5] += out[4] >> 58;
961
485
    out[4] &= bottom58bits;
962
485
    out[6] += out[5] >> 58;
963
485
    out[5] &= bottom58bits;
964
485
    out[7] += out[6] >> 58;
965
485
    out[6] &= bottom58bits;
966
485
    out[8] += out[7] >> 58;
967
485
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
485
    is_p = out[0] ^ kPrime[0];
981
485
    is_p |= out[1] ^ kPrime[1];
982
485
    is_p |= out[2] ^ kPrime[2];
983
485
    is_p |= out[3] ^ kPrime[3];
984
485
    is_p |= out[4] ^ kPrime[4];
985
485
    is_p |= out[5] ^ kPrime[5];
986
485
    is_p |= out[6] ^ kPrime[6];
987
485
    is_p |= out[7] ^ kPrime[7];
988
485
    is_p |= out[8] ^ kPrime[8];
989
990
485
    is_p--;
991
485
    is_p &= is_p << 32;
992
485
    is_p &= is_p << 16;
993
485
    is_p &= is_p << 8;
994
485
    is_p &= is_p << 4;
995
485
    is_p &= is_p << 2;
996
485
    is_p &= is_p << 1;
997
485
    is_p = 0 - (is_p >> 63);
998
485
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
485
    out[0] &= is_p;
1003
485
    out[1] &= is_p;
1004
485
    out[2] &= is_p;
1005
485
    out[3] &= is_p;
1006
485
    out[4] &= is_p;
1007
485
    out[5] &= is_p;
1008
485
    out[6] &= is_p;
1009
485
    out[7] &= is_p;
1010
485
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
485
    is_greater = out[8] >> 57;
1017
485
    is_greater |= is_greater << 32;
1018
485
    is_greater |= is_greater << 16;
1019
485
    is_greater |= is_greater << 8;
1020
485
    is_greater |= is_greater << 4;
1021
485
    is_greater |= is_greater << 2;
1022
485
    is_greater |= is_greater << 1;
1023
485
    is_greater = 0 - (is_greater >> 63);
1024
1025
485
    out[0] -= kPrime[0] & is_greater;
1026
485
    out[1] -= kPrime[1] & is_greater;
1027
485
    out[2] -= kPrime[2] & is_greater;
1028
485
    out[3] -= kPrime[3] & is_greater;
1029
485
    out[4] -= kPrime[4] & is_greater;
1030
485
    out[5] -= kPrime[5] & is_greater;
1031
485
    out[6] -= kPrime[6] & is_greater;
1032
485
    out[7] -= kPrime[7] & is_greater;
1033
485
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
485
    sign = -(out[0] >> 63);
1037
485
    out[0] += (two58 & sign);
1038
485
    out[1] -= (1 & sign);
1039
485
    sign = -(out[1] >> 63);
1040
485
    out[1] += (two58 & sign);
1041
485
    out[2] -= (1 & sign);
1042
485
    sign = -(out[2] >> 63);
1043
485
    out[2] += (two58 & sign);
1044
485
    out[3] -= (1 & sign);
1045
485
    sign = -(out[3] >> 63);
1046
485
    out[3] += (two58 & sign);
1047
485
    out[4] -= (1 & sign);
1048
485
    sign = -(out[4] >> 63);
1049
485
    out[4] += (two58 & sign);
1050
485
    out[5] -= (1 & sign);
1051
485
    sign = -(out[0] >> 63);
1052
485
    out[5] += (two58 & sign);
1053
485
    out[6] -= (1 & sign);
1054
485
    sign = -(out[6] >> 63);
1055
485
    out[6] += (two58 & sign);
1056
485
    out[7] -= (1 & sign);
1057
485
    sign = -(out[7] >> 63);
1058
485
    out[7] += (two58 & sign);
1059
485
    out[8] -= (1 & sign);
1060
485
    sign = -(out[5] >> 63);
1061
485
    out[5] += (two58 & sign);
1062
485
    out[6] -= (1 & sign);
1063
485
    sign = -(out[6] >> 63);
1064
485
    out[6] += (two58 & sign);
1065
485
    out[7] -= (1 & sign);
1066
485
    sign = -(out[7] >> 63);
1067
485
    out[7] += (two58 & sign);
1068
485
    out[8] -= (1 & sign);
1069
485
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
22.1k
{
1091
22.1k
    largefelem tmp, tmp2;
1092
22.1k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
22.1k
    felem_assign(ftmp, x_in);
1095
22.1k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
22.1k
    felem_square(tmp, z_in);
1099
22.1k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
22.1k
    felem_square(tmp, y_in);
1103
22.1k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
22.1k
    felem_mul(tmp, x_in, gamma);
1107
22.1k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
22.1k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
22.1k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
22.1k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
22.1k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
22.1k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
22.1k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
22.1k
    felem_assign(ftmp, beta);
1132
22.1k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
22.1k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
22.1k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
22.1k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
22.1k
    felem_assign(ftmp, y_in);
1142
22.1k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
22.1k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
22.1k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
22.1k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
22.1k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
22.1k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
22.1k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
22.1k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
22.1k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
22.1k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
22.1k
    felem_reduce(y_out, tmp);
1183
22.1k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
75.4k
{
1188
75.4k
    unsigned i;
1189
754k
    for (i = 0; i < NLIMBS; ++i) {
1190
678k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
678k
        out[i] ^= tmp;
1192
678k
    }
1193
75.4k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
12.1k
{
1211
12.1k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
12.1k
    largefelem tmp, tmp2;
1213
12.1k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
12.1k
    limb points_equal;
1215
1216
12.1k
    z1_is_zero = felem_is_zero(z1);
1217
12.1k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
12.1k
    felem_square(tmp, z1);
1221
12.1k
    felem_reduce(ftmp, tmp);
1222
1223
12.1k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
2.66k
        felem_square(tmp, z2);
1226
2.66k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
2.66k
        felem_mul(tmp, x1, ftmp2);
1230
2.66k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
2.66k
        felem_assign(ftmp5, z1);
1234
2.66k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
2.66k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
2.66k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
2.66k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
2.66k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
2.66k
        felem_mul(tmp, ftmp2, z2);
1248
2.66k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
2.66k
        felem_mul(tmp, y1, ftmp2);
1252
2.66k
        felem_reduce(ftmp6, tmp);
1253
9.49k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
9.49k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
9.49k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
9.49k
        felem_assign(ftmp6, y1);
1266
9.49k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
12.1k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
12.1k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
12.1k
    felem_reduce(ftmp4, tmp);
1276
1277
12.1k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
12.1k
    felem_mul(tmp, ftmp5, ftmp4);
1281
12.1k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
12.1k
    felem_mul(tmp, ftmp, z1);
1285
12.1k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
12.1k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
12.1k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
12.1k
    felem_reduce(ftmp5, tmp);
1295
12.1k
    y_equal = felem_is_zero(ftmp5);
1296
12.1k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
12.1k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
12.1k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
12.1k
    felem_assign(ftmp, ftmp4);
1339
12.1k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
12.1k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
12.1k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
12.1k
    felem_mul(tmp, ftmp4, ftmp);
1347
12.1k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
12.1k
    felem_mul(tmp, ftmp3, ftmp);
1351
12.1k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
12.1k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
12.1k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
12.1k
    felem_assign(ftmp3, ftmp4);
1359
12.1k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
12.1k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
12.1k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
12.1k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
12.1k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
12.1k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
12.1k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
12.1k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
12.1k
    felem_reduce(y_out, tmp);
1383
1384
12.1k
    copy_conditional(x_out, x2, z1_is_zero);
1385
12.1k
    copy_conditional(x_out, x1, z2_is_zero);
1386
12.1k
    copy_conditional(y_out, y2, z1_is_zero);
1387
12.1k
    copy_conditional(y_out, y1, z2_is_zero);
1388
12.1k
    copy_conditional(z_out, z2, z1_is_zero);
1389
12.1k
    copy_conditional(z_out, z1, z2_is_zero);
1390
12.1k
    felem_assign(x3, x_out);
1391
12.1k
    felem_assign(y3, y_out);
1392
12.1k
    felem_assign(z3, z_out);
1393
12.1k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
12.0k
{
1549
12.0k
    unsigned i, j;
1550
12.0k
    limb *outlimbs = &out[0][0];
1551
1552
12.0k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
207k
    for (i = 0; i < size; i++) {
1555
195k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
195k
        limb mask = i ^ idx;
1557
195k
        mask |= mask >> 4;
1558
195k
        mask |= mask >> 2;
1559
195k
        mask |= mask >> 1;
1560
195k
        mask &= 1;
1561
195k
        mask--;
1562
5.48M
        for (j = 0; j < NLIMBS * 3; j++)
1563
5.28M
            outlimbs[j] |= inlimbs[j] & mask;
1564
195k
    }
1565
12.0k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
53.1k
{
1570
53.1k
    if (i < 0)
1571
24
        return 0;
1572
53.1k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
53.1k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
97
{
1588
97
    int i, skip;
1589
97
    unsigned num, gen_mul = (g_scalar != NULL);
1590
97
    felem nq[3], tmp[4];
1591
97
    limb bits;
1592
97
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
97
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
97
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
22.1k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
22.0k
        if (!skip)
1607
21.9k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
22.0k
        if (gen_mul && (i <= 130)) {
1611
9.56k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
9.56k
            if (i < 130) {
1613
9.49k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
9.49k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
9.49k
                bits |= get_bit(g_scalar, i);
1616
9.49k
            }
1617
            /* select the point to add, in constant time */
1618
9.56k
            select_point(bits, 16, g_pre_comp, tmp);
1619
9.56k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
9.49k
                point_add(nq[0], nq[1], nq[2],
1622
9.49k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
9.49k
            } else {
1624
73
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
73
                skip = 0;
1626
73
            }
1627
9.56k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
22.0k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
5.04k
            for (num = 0; num < num_points; ++num) {
1633
2.52k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
2.52k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
2.52k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
2.52k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
2.52k
                bits |= get_bit(scalars[num], i) << 1;
1638
2.52k
                bits |= get_bit(scalars[num], i - 1);
1639
2.52k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
2.52k
                select_point(digit, 17, pre_comp[num], tmp);
1645
2.52k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
2.52k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
2.52k
                if (!skip) {
1650
2.49k
                    point_add(nq[0], nq[1], nq[2],
1651
2.49k
                              nq[0], nq[1], nq[2],
1652
2.49k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
2.49k
                } else {
1654
24
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
24
                    skip = 0;
1656
24
                }
1657
2.52k
            }
1658
2.52k
        }
1659
22.0k
    }
1660
97
    felem_assign(x_out, nq[0]);
1661
97
    felem_assign(y_out, nq[1]);
1662
97
    felem_assign(z_out, nq[2]);
1663
97
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
79
{
1674
79
    static const EC_METHOD ret = {
1675
79
        EC_FLAGS_DEFAULT_OCT,
1676
79
        NID_X9_62_prime_field,
1677
79
        ossl_ec_GFp_nistp521_group_init,
1678
79
        ossl_ec_GFp_simple_group_finish,
1679
79
        ossl_ec_GFp_simple_group_clear_finish,
1680
79
        ossl_ec_GFp_nist_group_copy,
1681
79
        ossl_ec_GFp_nistp521_group_set_curve,
1682
79
        ossl_ec_GFp_simple_group_get_curve,
1683
79
        ossl_ec_GFp_simple_group_get_degree,
1684
79
        ossl_ec_group_simple_order_bits,
1685
79
        ossl_ec_GFp_simple_group_check_discriminant,
1686
79
        ossl_ec_GFp_simple_point_init,
1687
79
        ossl_ec_GFp_simple_point_finish,
1688
79
        ossl_ec_GFp_simple_point_clear_finish,
1689
79
        ossl_ec_GFp_simple_point_copy,
1690
79
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
79
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
79
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
79
        0 /* point_set_compressed_coordinates */ ,
1694
79
        0 /* point2oct */ ,
1695
79
        0 /* oct2point */ ,
1696
79
        ossl_ec_GFp_simple_add,
1697
79
        ossl_ec_GFp_simple_dbl,
1698
79
        ossl_ec_GFp_simple_invert,
1699
79
        ossl_ec_GFp_simple_is_at_infinity,
1700
79
        ossl_ec_GFp_simple_is_on_curve,
1701
79
        ossl_ec_GFp_simple_cmp,
1702
79
        ossl_ec_GFp_simple_make_affine,
1703
79
        ossl_ec_GFp_simple_points_make_affine,
1704
79
        ossl_ec_GFp_nistp521_points_mul,
1705
79
        ossl_ec_GFp_nistp521_precompute_mult,
1706
79
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
79
        ossl_ec_GFp_nist_field_mul,
1708
79
        ossl_ec_GFp_nist_field_sqr,
1709
79
        0 /* field_div */ ,
1710
79
        ossl_ec_GFp_simple_field_inv,
1711
79
        0 /* field_encode */ ,
1712
79
        0 /* field_decode */ ,
1713
79
        0,                      /* field_set_to_one */
1714
79
        ossl_ec_key_simple_priv2oct,
1715
79
        ossl_ec_key_simple_oct2priv,
1716
79
        0, /* set private */
1717
79
        ossl_ec_key_simple_generate_key,
1718
79
        ossl_ec_key_simple_check_key,
1719
79
        ossl_ec_key_simple_generate_public_key,
1720
79
        0, /* keycopy */
1721
79
        0, /* keyfinish */
1722
79
        ossl_ecdh_simple_compute_key,
1723
79
        ossl_ecdsa_simple_sign_setup,
1724
79
        ossl_ecdsa_simple_sign_sig,
1725
79
        ossl_ecdsa_simple_verify_sig,
1726
79
        0, /* field_inverse_mod_ord */
1727
79
        0, /* blind_coordinates */
1728
79
        0, /* ladder_pre */
1729
79
        0, /* ladder_step */
1730
79
        0  /* ladder_post */
1731
79
    };
1732
1733
79
    return &ret;
1734
79
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
207
{
1793
207
    int ret;
1794
207
    ret = ossl_ec_GFp_simple_group_init(group);
1795
207
    group->a_is_minus3 = 1;
1796
207
    return ret;
1797
207
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
79
{
1803
79
    int ret = 0;
1804
79
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
79
#ifndef FIPS_MODULE
1806
79
    BN_CTX *new_ctx = NULL;
1807
1808
79
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
79
#endif
1811
79
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
79
    BN_CTX_start(ctx);
1815
79
    curve_p = BN_CTX_get(ctx);
1816
79
    curve_a = BN_CTX_get(ctx);
1817
79
    curve_b = BN_CTX_get(ctx);
1818
79
    if (curve_b == NULL)
1819
0
        goto err;
1820
79
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
79
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
79
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
79
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
79
    group->field_mod_func = BN_nist_mod_521;
1828
79
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
79
 err:
1830
79
    BN_CTX_end(ctx);
1831
79
#ifndef FIPS_MODULE
1832
79
    BN_CTX_free(new_ctx);
1833
79
#endif
1834
79
    return ret;
1835
79
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
97
{
1846
97
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
97
    largefelem tmp;
1848
1849
97
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
97
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
97
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
97
    felem_inv(z2, z1);
1857
97
    felem_square(tmp, z2);
1858
97
    felem_reduce(z1, tmp);
1859
97
    felem_mul(tmp, x_in, z1);
1860
97
    felem_reduce(x_in, tmp);
1861
97
    felem_contract(x_out, x_in);
1862
97
    if (x != NULL) {
1863
97
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
97
    }
1868
97
    felem_mul(tmp, z1, z2);
1869
97
    felem_reduce(z1, tmp);
1870
97
    felem_mul(tmp, y_in, z1);
1871
97
    felem_reduce(y_in, tmp);
1872
97
    felem_contract(y_out, y_in);
1873
97
    if (y != NULL) {
1874
85
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
85
    }
1879
97
    return 1;
1880
97
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
97
{
1921
97
    int ret = 0;
1922
97
    int j;
1923
97
    int mixed = 0;
1924
97
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
97
    felem_bytearray g_secret;
1926
97
    felem_bytearray *secrets = NULL;
1927
97
    felem (*pre_comp)[17][3] = NULL;
1928
97
    felem *tmp_felems = NULL;
1929
97
    unsigned i;
1930
97
    int num_bytes;
1931
97
    int have_pre_comp = 0;
1932
97
    size_t num_points = num;
1933
97
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
97
    NISTP521_PRE_COMP *pre = NULL;
1935
97
    felem(*g_pre_comp)[3] = NULL;
1936
97
    EC_POINT *generator = NULL;
1937
97
    const EC_POINT *p = NULL;
1938
97
    const BIGNUM *p_scalar = NULL;
1939
1940
97
    BN_CTX_start(ctx);
1941
97
    x = BN_CTX_get(ctx);
1942
97
    y = BN_CTX_get(ctx);
1943
97
    z = BN_CTX_get(ctx);
1944
97
    tmp_scalar = BN_CTX_get(ctx);
1945
97
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
97
    if (scalar != NULL) {
1949
73
        pre = group->pre_comp.nistp521;
1950
73
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
73
        else
1954
            /* try to use the standard precomputation */
1955
73
            g_pre_comp = (felem(*)[3]) gmul;
1956
73
        generator = EC_POINT_new(group);
1957
73
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
73
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
73
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
73
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
73
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
73
                                                                generator,
1968
73
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
73
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
73
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
73
    }
1980
1981
97
    if (num_points > 0) {
1982
24
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
24
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
24
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
24
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
24
        if ((secrets == NULL) || (pre_comp == NULL)
1995
24
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
48
        for (i = 0; i < num_points; ++i) {
2005
24
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
24
            } else {
2013
                /* the i^th point */
2014
24
                p = points[i];
2015
24
                p_scalar = scalars[i];
2016
24
            }
2017
24
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
24
                if ((BN_num_bits(p_scalar) > 521)
2020
24
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
24
                } else {
2032
24
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
24
                                               secrets[i], sizeof(secrets[i]));
2034
24
                }
2035
24
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
24
                if ((!BN_to_felem(x_out, p->X)) ||
2041
24
                    (!BN_to_felem(y_out, p->Y)) ||
2042
24
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
24
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
24
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
24
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
384
                for (j = 2; j <= 16; ++j) {
2048
360
                    if (j & 1) {
2049
168
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
168
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
168
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
168
                                  pre_comp[i][j - 1][0],
2053
168
                                  pre_comp[i][j - 1][1],
2054
168
                                  pre_comp[i][j - 1][2]);
2055
192
                    } else {
2056
192
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
192
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
192
                                     pre_comp[i][j / 2][1],
2059
192
                                     pre_comp[i][j / 2][2]);
2060
192
                    }
2061
360
                }
2062
24
            }
2063
24
        }
2064
24
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
24
    }
2067
2068
    /* the scalar for the generator */
2069
97
    if ((scalar != NULL) && (have_pre_comp)) {
2070
73
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
73
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
73
        } else {
2083
73
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
73
        }
2085
        /* do the multiplication with generator precomputation */
2086
73
        batch_mul(x_out, y_out, z_out,
2087
73
                  (const felem_bytearray(*))secrets, num_points,
2088
73
                  g_secret,
2089
73
                  mixed, (const felem(*)[17][3])pre_comp,
2090
73
                  (const felem(*)[3])g_pre_comp);
2091
73
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
24
        batch_mul(x_out, y_out, z_out,
2094
24
                  (const felem_bytearray(*))secrets, num_points,
2095
24
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
24
    }
2097
    /* reduce the output to its unique minimal representation */
2098
97
    felem_contract(x_in, x_out);
2099
97
    felem_contract(y_in, y_out);
2100
97
    felem_contract(z_in, z_out);
2101
97
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
97
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
97
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
97
                                                             ctx);
2108
2109
97
 err:
2110
97
    BN_CTX_end(ctx);
2111
97
    EC_POINT_free(generator);
2112
97
    OPENSSL_free(secrets);
2113
97
    OPENSSL_free(pre_comp);
2114
97
    OPENSSL_free(tmp_felems);
2115
97
    return ret;
2116
97
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}