/src/openssl/crypto/rsa/rsa_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <openssl/crypto.h> |
17 | | #include <openssl/core_names.h> |
18 | | #ifndef FIPS_MODULE |
19 | | # include <openssl/engine.h> |
20 | | #endif |
21 | | #include <openssl/evp.h> |
22 | | #include <openssl/param_build.h> |
23 | | #include "internal/cryptlib.h" |
24 | | #include "internal/refcount.h" |
25 | | #include "crypto/bn.h" |
26 | | #include "crypto/evp.h" |
27 | | #include "crypto/rsa.h" |
28 | | #include "crypto/security_bits.h" |
29 | | #include "rsa_local.h" |
30 | | |
31 | | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx); |
32 | | |
33 | | #ifndef FIPS_MODULE |
34 | | RSA *RSA_new(void) |
35 | 381 | { |
36 | 381 | return rsa_new_intern(NULL, NULL); |
37 | 381 | } |
38 | | |
39 | | const RSA_METHOD *RSA_get_method(const RSA *rsa) |
40 | 194 | { |
41 | 194 | return rsa->meth; |
42 | 194 | } |
43 | | |
44 | | int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) |
45 | 0 | { |
46 | | /* |
47 | | * NB: The caller is specifically setting a method, so it's not up to us |
48 | | * to deal with which ENGINE it comes from. |
49 | | */ |
50 | 0 | const RSA_METHOD *mtmp; |
51 | 0 | mtmp = rsa->meth; |
52 | 0 | if (mtmp->finish) |
53 | 0 | mtmp->finish(rsa); |
54 | 0 | #ifndef OPENSSL_NO_ENGINE |
55 | 0 | ENGINE_finish(rsa->engine); |
56 | 0 | rsa->engine = NULL; |
57 | 0 | #endif |
58 | 0 | rsa->meth = meth; |
59 | 0 | if (meth->init) |
60 | 0 | meth->init(rsa); |
61 | 0 | return 1; |
62 | 0 | } |
63 | | |
64 | | RSA *RSA_new_method(ENGINE *engine) |
65 | 0 | { |
66 | 0 | return rsa_new_intern(engine, NULL); |
67 | 0 | } |
68 | | #endif |
69 | | |
70 | | RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx) |
71 | 0 | { |
72 | 0 | return rsa_new_intern(NULL, libctx); |
73 | 0 | } |
74 | | |
75 | | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx) |
76 | 381 | { |
77 | 381 | RSA *ret = OPENSSL_zalloc(sizeof(*ret)); |
78 | | |
79 | 381 | if (ret == NULL) |
80 | 0 | return NULL; |
81 | | |
82 | 381 | ret->lock = CRYPTO_THREAD_lock_new(); |
83 | 381 | if (ret->lock == NULL) { |
84 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); |
85 | 0 | OPENSSL_free(ret); |
86 | 0 | return NULL; |
87 | 0 | } |
88 | | |
89 | 381 | if (!CRYPTO_NEW_REF(&ret->references, 1)) { |
90 | 0 | CRYPTO_THREAD_lock_free(ret->lock); |
91 | 0 | OPENSSL_free(ret); |
92 | 0 | return NULL; |
93 | 0 | } |
94 | | |
95 | 381 | ret->libctx = libctx; |
96 | 381 | ret->meth = RSA_get_default_method(); |
97 | 381 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) |
98 | 381 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; |
99 | 381 | if (engine) { |
100 | 0 | if (!ENGINE_init(engine)) { |
101 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); |
102 | 0 | goto err; |
103 | 0 | } |
104 | 0 | ret->engine = engine; |
105 | 381 | } else { |
106 | 381 | ret->engine = ENGINE_get_default_RSA(); |
107 | 381 | } |
108 | 381 | if (ret->engine) { |
109 | 0 | ret->meth = ENGINE_get_RSA(ret->engine); |
110 | 0 | if (ret->meth == NULL) { |
111 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); |
112 | 0 | goto err; |
113 | 0 | } |
114 | 0 | } |
115 | 381 | #endif |
116 | | |
117 | 381 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; |
118 | 381 | #ifndef FIPS_MODULE |
119 | 381 | if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { |
120 | 0 | goto err; |
121 | 0 | } |
122 | 381 | #endif |
123 | | |
124 | 381 | if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { |
125 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL); |
126 | 0 | goto err; |
127 | 0 | } |
128 | | |
129 | 381 | return ret; |
130 | | |
131 | 0 | err: |
132 | 0 | RSA_free(ret); |
133 | 0 | return NULL; |
134 | 381 | } |
135 | | |
136 | | void RSA_free(RSA *r) |
137 | 1.24k | { |
138 | 1.24k | int i; |
139 | | |
140 | 1.24k | if (r == NULL) |
141 | 672 | return; |
142 | | |
143 | 575 | CRYPTO_DOWN_REF(&r->references, &i); |
144 | 575 | REF_PRINT_COUNT("RSA", r); |
145 | 575 | if (i > 0) |
146 | 194 | return; |
147 | 381 | REF_ASSERT_ISNT(i < 0); |
148 | | |
149 | 381 | if (r->meth != NULL && r->meth->finish != NULL) |
150 | 381 | r->meth->finish(r); |
151 | 381 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) |
152 | 381 | ENGINE_finish(r->engine); |
153 | 381 | #endif |
154 | | |
155 | 381 | #ifndef FIPS_MODULE |
156 | 381 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data); |
157 | 381 | #endif |
158 | | |
159 | 381 | CRYPTO_THREAD_lock_free(r->lock); |
160 | 381 | CRYPTO_FREE_REF(&r->references); |
161 | | |
162 | 381 | BN_free(r->n); |
163 | 381 | BN_free(r->e); |
164 | 381 | BN_clear_free(r->d); |
165 | 381 | BN_clear_free(r->p); |
166 | 381 | BN_clear_free(r->q); |
167 | 381 | BN_clear_free(r->dmp1); |
168 | 381 | BN_clear_free(r->dmq1); |
169 | 381 | BN_clear_free(r->iqmp); |
170 | | |
171 | | #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) |
172 | | ossl_rsa_acvp_test_free(r->acvp_test); |
173 | | #endif |
174 | | |
175 | 381 | #ifndef FIPS_MODULE |
176 | 381 | RSA_PSS_PARAMS_free(r->pss); |
177 | 381 | sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free); |
178 | 381 | #endif |
179 | 381 | BN_BLINDING_free(r->blinding); |
180 | 381 | BN_BLINDING_free(r->mt_blinding); |
181 | 381 | OPENSSL_free(r); |
182 | 381 | } |
183 | | |
184 | | int RSA_up_ref(RSA *r) |
185 | 194 | { |
186 | 194 | int i; |
187 | | |
188 | 194 | if (CRYPTO_UP_REF(&r->references, &i) <= 0) |
189 | 0 | return 0; |
190 | | |
191 | 194 | REF_PRINT_COUNT("RSA", r); |
192 | 194 | REF_ASSERT_ISNT(i < 2); |
193 | 194 | return i > 1 ? 1 : 0; |
194 | 194 | } |
195 | | |
196 | | OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r) |
197 | 0 | { |
198 | 0 | return r->libctx; |
199 | 0 | } |
200 | | |
201 | | void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx) |
202 | 194 | { |
203 | 194 | r->libctx = libctx; |
204 | 194 | } |
205 | | |
206 | | #ifndef FIPS_MODULE |
207 | | int RSA_set_ex_data(RSA *r, int idx, void *arg) |
208 | 0 | { |
209 | 0 | return CRYPTO_set_ex_data(&r->ex_data, idx, arg); |
210 | 0 | } |
211 | | |
212 | | void *RSA_get_ex_data(const RSA *r, int idx) |
213 | 0 | { |
214 | 0 | return CRYPTO_get_ex_data(&r->ex_data, idx); |
215 | 0 | } |
216 | | #endif |
217 | | |
218 | | /* |
219 | | * Define a scaling constant for our fixed point arithmetic. |
220 | | * This value must be a power of two because the base two logarithm code |
221 | | * makes this assumption. The exponent must also be a multiple of three so |
222 | | * that the scale factor has an exact cube root. Finally, the scale factor |
223 | | * should not be so large that a multiplication of two scaled numbers |
224 | | * overflows a 64 bit unsigned integer. |
225 | | */ |
226 | | static const unsigned int scale = 1 << 18; |
227 | | static const unsigned int cbrt_scale = 1 << (2 * 18 / 3); |
228 | | |
229 | | /* Define some constants, none exceed 32 bits */ |
230 | | static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */ |
231 | | static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */ |
232 | | static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */ |
233 | | static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */ |
234 | | |
235 | | /* |
236 | | * Multiply two scaled integers together and rescale the result. |
237 | | */ |
238 | | static ossl_inline uint64_t mul2(uint64_t a, uint64_t b) |
239 | 2.22k | { |
240 | 2.22k | return a * b / scale; |
241 | 2.22k | } |
242 | | |
243 | | /* |
244 | | * Calculate the cube root of a 64 bit scaled integer. |
245 | | * Although the cube root of a 64 bit number does fit into a 32 bit unsigned |
246 | | * integer, this is not guaranteed after scaling, so this function has a |
247 | | * 64 bit return. This uses the shifting nth root algorithm with some |
248 | | * algebraic simplifications. |
249 | | */ |
250 | | static uint64_t icbrt64(uint64_t x) |
251 | 106 | { |
252 | 106 | uint64_t r = 0; |
253 | 106 | uint64_t b; |
254 | 106 | int s; |
255 | | |
256 | 2.43k | for (s = 63; s >= 0; s -= 3) { |
257 | 2.33k | r <<= 1; |
258 | 2.33k | b = 3 * r * (r + 1) + 1; |
259 | 2.33k | if ((x >> s) >= b) { |
260 | 572 | x -= b << s; |
261 | 572 | r++; |
262 | 572 | } |
263 | 2.33k | } |
264 | 106 | return r * cbrt_scale; |
265 | 106 | } |
266 | | |
267 | | /* |
268 | | * Calculate the natural logarithm of a 64 bit scaled integer. |
269 | | * This is done by calculating a base two logarithm and scaling. |
270 | | * The maximum logarithm (base 2) is 64 and this reduces base e, so |
271 | | * a 32 bit result should not overflow. The argument passed must be |
272 | | * greater than unity so we don't need to handle negative results. |
273 | | */ |
274 | | static uint32_t ilog_e(uint64_t v) |
275 | 106 | { |
276 | 106 | uint32_t i, r = 0; |
277 | | |
278 | | /* |
279 | | * Scale down the value into the range 1 .. 2. |
280 | | * |
281 | | * If fractional numbers need to be processed, another loop needs |
282 | | * to go here that checks v < scale and if so multiplies it by 2 and |
283 | | * reduces r by scale. This also means making r signed. |
284 | | */ |
285 | 1.02k | while (v >= 2 * scale) { |
286 | 920 | v >>= 1; |
287 | 920 | r += scale; |
288 | 920 | } |
289 | 2.01k | for (i = scale / 2; i != 0; i /= 2) { |
290 | 1.90k | v = mul2(v, v); |
291 | 1.90k | if (v >= 2 * scale) { |
292 | 1.00k | v >>= 1; |
293 | 1.00k | r += i; |
294 | 1.00k | } |
295 | 1.90k | } |
296 | 106 | r = (r * (uint64_t)scale) / log_e; |
297 | 106 | return r; |
298 | 106 | } |
299 | | |
300 | | /* |
301 | | * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC |
302 | | * Modulus Lengths. |
303 | | * |
304 | | * Note that this formula is also referred to in SP800-56A rev3 Appendix D: |
305 | | * for FFC safe prime groups for modp and ffdhe. |
306 | | * After Table 25 and Table 26 it refers to |
307 | | * "The maximum security strength estimates were calculated using the formula in |
308 | | * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight |
309 | | * bits". |
310 | | * |
311 | | * The formula is: |
312 | | * |
313 | | * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)} |
314 | | * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} |
315 | | * The two cube roots are merged together here. |
316 | | */ |
317 | | uint16_t ossl_ifc_ffc_compute_security_bits(int n) |
318 | 194 | { |
319 | 194 | uint64_t x; |
320 | 194 | uint32_t lx; |
321 | 194 | uint16_t y, cap; |
322 | | |
323 | | /* |
324 | | * Look for common values as listed in standards. |
325 | | * These values are not exactly equal to the results from the formulae in |
326 | | * the standards but are defined to be canonical. |
327 | | */ |
328 | 194 | switch (n) { |
329 | 87 | case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ |
330 | 87 | return 112; |
331 | 0 | case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ |
332 | 0 | return 128; |
333 | 0 | case 4096: /* SP 800-56B rev 2 Appendix D */ |
334 | 0 | return 152; |
335 | 0 | case 6144: /* SP 800-56B rev 2 Appendix D */ |
336 | 0 | return 176; |
337 | 0 | case 7680: /* FIPS 140-2 IG 7.5 */ |
338 | 0 | return 192; |
339 | 0 | case 8192: /* SP 800-56B rev 2 Appendix D */ |
340 | 0 | return 200; |
341 | 0 | case 15360: /* FIPS 140-2 IG 7.5 */ |
342 | 0 | return 256; |
343 | 194 | } |
344 | | |
345 | | /* |
346 | | * The first incorrect result (i.e. not accurate or off by one low) occurs |
347 | | * for n = 699668. The true value here is 1200. Instead of using this n |
348 | | * as the check threshold, the smallest n such that the correct result is |
349 | | * 1200 is used instead. |
350 | | */ |
351 | 107 | if (n >= 687737) |
352 | 0 | return 1200; |
353 | 107 | if (n < 8) |
354 | 1 | return 0; |
355 | | |
356 | | /* |
357 | | * To ensure that the output is non-decreasing with respect to n, |
358 | | * a cap needs to be applied to the two values where the function over |
359 | | * estimates the strength (according to the above fast path). |
360 | | */ |
361 | 106 | if (n <= 7680) |
362 | 106 | cap = 192; |
363 | 0 | else if (n <= 15360) |
364 | 0 | cap = 256; |
365 | 0 | else |
366 | 0 | cap = 1200; |
367 | | |
368 | 106 | x = n * (uint64_t)log_2; |
369 | 106 | lx = ilog_e(x); |
370 | 106 | y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690) |
371 | 106 | / log_2); |
372 | 106 | y = (y + 4) & ~7; |
373 | 106 | if (y > cap) |
374 | 0 | y = cap; |
375 | 106 | return y; |
376 | 107 | } |
377 | | |
378 | | |
379 | | |
380 | | int RSA_security_bits(const RSA *rsa) |
381 | 194 | { |
382 | 194 | int bits = BN_num_bits(rsa->n); |
383 | | |
384 | 194 | #ifndef FIPS_MODULE |
385 | 194 | if (rsa->version == RSA_ASN1_VERSION_MULTI) { |
386 | | /* This ought to mean that we have private key at hand. */ |
387 | 0 | int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos); |
388 | |
|
389 | 0 | if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits)) |
390 | 0 | return 0; |
391 | 0 | } |
392 | 194 | #endif |
393 | 194 | return ossl_ifc_ffc_compute_security_bits(bits); |
394 | 194 | } |
395 | | |
396 | | int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) |
397 | 0 | { |
398 | | /* If the fields n and e in r are NULL, the corresponding input |
399 | | * parameters MUST be non-NULL for n and e. d may be |
400 | | * left NULL (in case only the public key is used). |
401 | | */ |
402 | 0 | if ((r->n == NULL && n == NULL) |
403 | 0 | || (r->e == NULL && e == NULL)) |
404 | 0 | return 0; |
405 | | |
406 | 0 | if (n != NULL) { |
407 | 0 | BN_free(r->n); |
408 | 0 | r->n = n; |
409 | 0 | } |
410 | 0 | if (e != NULL) { |
411 | 0 | BN_free(r->e); |
412 | 0 | r->e = e; |
413 | 0 | } |
414 | 0 | if (d != NULL) { |
415 | 0 | BN_clear_free(r->d); |
416 | 0 | r->d = d; |
417 | 0 | BN_set_flags(r->d, BN_FLG_CONSTTIME); |
418 | 0 | } |
419 | 0 | r->dirty_cnt++; |
420 | |
|
421 | 0 | return 1; |
422 | 0 | } |
423 | | |
424 | | int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) |
425 | 0 | { |
426 | | /* If the fields p and q in r are NULL, the corresponding input |
427 | | * parameters MUST be non-NULL. |
428 | | */ |
429 | 0 | if ((r->p == NULL && p == NULL) |
430 | 0 | || (r->q == NULL && q == NULL)) |
431 | 0 | return 0; |
432 | | |
433 | 0 | if (p != NULL) { |
434 | 0 | BN_clear_free(r->p); |
435 | 0 | r->p = p; |
436 | 0 | BN_set_flags(r->p, BN_FLG_CONSTTIME); |
437 | 0 | } |
438 | 0 | if (q != NULL) { |
439 | 0 | BN_clear_free(r->q); |
440 | 0 | r->q = q; |
441 | 0 | BN_set_flags(r->q, BN_FLG_CONSTTIME); |
442 | 0 | } |
443 | 0 | r->dirty_cnt++; |
444 | |
|
445 | 0 | return 1; |
446 | 0 | } |
447 | | |
448 | | int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) |
449 | 0 | { |
450 | | /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input |
451 | | * parameters MUST be non-NULL. |
452 | | */ |
453 | 0 | if ((r->dmp1 == NULL && dmp1 == NULL) |
454 | 0 | || (r->dmq1 == NULL && dmq1 == NULL) |
455 | 0 | || (r->iqmp == NULL && iqmp == NULL)) |
456 | 0 | return 0; |
457 | | |
458 | 0 | if (dmp1 != NULL) { |
459 | 0 | BN_clear_free(r->dmp1); |
460 | 0 | r->dmp1 = dmp1; |
461 | 0 | BN_set_flags(r->dmp1, BN_FLG_CONSTTIME); |
462 | 0 | } |
463 | 0 | if (dmq1 != NULL) { |
464 | 0 | BN_clear_free(r->dmq1); |
465 | 0 | r->dmq1 = dmq1; |
466 | 0 | BN_set_flags(r->dmq1, BN_FLG_CONSTTIME); |
467 | 0 | } |
468 | 0 | if (iqmp != NULL) { |
469 | 0 | BN_clear_free(r->iqmp); |
470 | 0 | r->iqmp = iqmp; |
471 | 0 | BN_set_flags(r->iqmp, BN_FLG_CONSTTIME); |
472 | 0 | } |
473 | 0 | r->dirty_cnt++; |
474 | |
|
475 | 0 | return 1; |
476 | 0 | } |
477 | | |
478 | | #ifndef FIPS_MODULE |
479 | | /* |
480 | | * Is it better to export RSA_PRIME_INFO structure |
481 | | * and related functions to let user pass a triplet? |
482 | | */ |
483 | | int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[], |
484 | | BIGNUM *coeffs[], int pnum) |
485 | 0 | { |
486 | 0 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL; |
487 | 0 | RSA_PRIME_INFO *pinfo; |
488 | 0 | int i; |
489 | |
|
490 | 0 | if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0) |
491 | 0 | return 0; |
492 | | |
493 | 0 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); |
494 | 0 | if (prime_infos == NULL) |
495 | 0 | return 0; |
496 | | |
497 | 0 | if (r->prime_infos != NULL) |
498 | 0 | old = r->prime_infos; |
499 | |
|
500 | 0 | for (i = 0; i < pnum; i++) { |
501 | 0 | pinfo = ossl_rsa_multip_info_new(); |
502 | 0 | if (pinfo == NULL) |
503 | 0 | goto err; |
504 | 0 | if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { |
505 | 0 | BN_clear_free(pinfo->r); |
506 | 0 | BN_clear_free(pinfo->d); |
507 | 0 | BN_clear_free(pinfo->t); |
508 | 0 | pinfo->r = primes[i]; |
509 | 0 | pinfo->d = exps[i]; |
510 | 0 | pinfo->t = coeffs[i]; |
511 | 0 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); |
512 | 0 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); |
513 | 0 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); |
514 | 0 | } else { |
515 | 0 | ossl_rsa_multip_info_free(pinfo); |
516 | 0 | goto err; |
517 | 0 | } |
518 | 0 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
519 | 0 | } |
520 | | |
521 | 0 | r->prime_infos = prime_infos; |
522 | |
|
523 | 0 | if (!ossl_rsa_multip_calc_product(r)) { |
524 | 0 | r->prime_infos = old; |
525 | 0 | goto err; |
526 | 0 | } |
527 | | |
528 | 0 | if (old != NULL) { |
529 | | /* |
530 | | * This is hard to deal with, since the old infos could |
531 | | * also be set by this function and r, d, t should not |
532 | | * be freed in that case. So currently, stay consistent |
533 | | * with other *set0* functions: just free it... |
534 | | */ |
535 | 0 | sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free); |
536 | 0 | } |
537 | |
|
538 | 0 | r->version = RSA_ASN1_VERSION_MULTI; |
539 | 0 | r->dirty_cnt++; |
540 | |
|
541 | 0 | return 1; |
542 | 0 | err: |
543 | | /* r, d, t should not be freed */ |
544 | 0 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); |
545 | 0 | return 0; |
546 | 0 | } |
547 | | #endif |
548 | | |
549 | | void RSA_get0_key(const RSA *r, |
550 | | const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) |
551 | 194 | { |
552 | 194 | if (n != NULL) |
553 | 194 | *n = r->n; |
554 | 194 | if (e != NULL) |
555 | 194 | *e = r->e; |
556 | 194 | if (d != NULL) |
557 | 194 | *d = r->d; |
558 | 194 | } |
559 | | |
560 | | void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) |
561 | 0 | { |
562 | 0 | if (p != NULL) |
563 | 0 | *p = r->p; |
564 | 0 | if (q != NULL) |
565 | 0 | *q = r->q; |
566 | 0 | } |
567 | | |
568 | | #ifndef FIPS_MODULE |
569 | | int RSA_get_multi_prime_extra_count(const RSA *r) |
570 | 0 | { |
571 | 0 | int pnum; |
572 | |
|
573 | 0 | pnum = sk_RSA_PRIME_INFO_num(r->prime_infos); |
574 | 0 | if (pnum <= 0) |
575 | 0 | pnum = 0; |
576 | 0 | return pnum; |
577 | 0 | } |
578 | | |
579 | | int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[]) |
580 | 0 | { |
581 | 0 | int pnum, i; |
582 | 0 | RSA_PRIME_INFO *pinfo; |
583 | |
|
584 | 0 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) |
585 | 0 | return 0; |
586 | | |
587 | | /* |
588 | | * return other primes |
589 | | * it's caller's responsibility to allocate oth_primes[pnum] |
590 | | */ |
591 | 0 | for (i = 0; i < pnum; i++) { |
592 | 0 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
593 | 0 | primes[i] = pinfo->r; |
594 | 0 | } |
595 | |
|
596 | 0 | return 1; |
597 | 0 | } |
598 | | #endif |
599 | | |
600 | | void RSA_get0_crt_params(const RSA *r, |
601 | | const BIGNUM **dmp1, const BIGNUM **dmq1, |
602 | | const BIGNUM **iqmp) |
603 | 0 | { |
604 | 0 | if (dmp1 != NULL) |
605 | 0 | *dmp1 = r->dmp1; |
606 | 0 | if (dmq1 != NULL) |
607 | 0 | *dmq1 = r->dmq1; |
608 | 0 | if (iqmp != NULL) |
609 | 0 | *iqmp = r->iqmp; |
610 | 0 | } |
611 | | |
612 | | #ifndef FIPS_MODULE |
613 | | int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[], |
614 | | const BIGNUM *coeffs[]) |
615 | 0 | { |
616 | 0 | int pnum; |
617 | |
|
618 | 0 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) |
619 | 0 | return 0; |
620 | | |
621 | | /* return other primes */ |
622 | 0 | if (exps != NULL || coeffs != NULL) { |
623 | 0 | RSA_PRIME_INFO *pinfo; |
624 | 0 | int i; |
625 | | |
626 | | /* it's the user's job to guarantee the buffer length */ |
627 | 0 | for (i = 0; i < pnum; i++) { |
628 | 0 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
629 | 0 | if (exps != NULL) |
630 | 0 | exps[i] = pinfo->d; |
631 | 0 | if (coeffs != NULL) |
632 | 0 | coeffs[i] = pinfo->t; |
633 | 0 | } |
634 | 0 | } |
635 | |
|
636 | 0 | return 1; |
637 | 0 | } |
638 | | #endif |
639 | | |
640 | | const BIGNUM *RSA_get0_n(const RSA *r) |
641 | 194 | { |
642 | 194 | return r->n; |
643 | 194 | } |
644 | | |
645 | | const BIGNUM *RSA_get0_e(const RSA *r) |
646 | 0 | { |
647 | 0 | return r->e; |
648 | 0 | } |
649 | | |
650 | | const BIGNUM *RSA_get0_d(const RSA *r) |
651 | 0 | { |
652 | 0 | return r->d; |
653 | 0 | } |
654 | | |
655 | | const BIGNUM *RSA_get0_p(const RSA *r) |
656 | 194 | { |
657 | 194 | return r->p; |
658 | 194 | } |
659 | | |
660 | | const BIGNUM *RSA_get0_q(const RSA *r) |
661 | 0 | { |
662 | 0 | return r->q; |
663 | 0 | } |
664 | | |
665 | | const BIGNUM *RSA_get0_dmp1(const RSA *r) |
666 | 0 | { |
667 | 0 | return r->dmp1; |
668 | 0 | } |
669 | | |
670 | | const BIGNUM *RSA_get0_dmq1(const RSA *r) |
671 | 0 | { |
672 | 0 | return r->dmq1; |
673 | 0 | } |
674 | | |
675 | | const BIGNUM *RSA_get0_iqmp(const RSA *r) |
676 | 0 | { |
677 | 0 | return r->iqmp; |
678 | 0 | } |
679 | | |
680 | | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r) |
681 | 0 | { |
682 | | #ifdef FIPS_MODULE |
683 | | return NULL; |
684 | | #else |
685 | 0 | return r->pss; |
686 | 0 | #endif |
687 | 0 | } |
688 | | |
689 | | /* Internal */ |
690 | | int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss) |
691 | 0 | { |
692 | | #ifdef FIPS_MODULE |
693 | | return 0; |
694 | | #else |
695 | 0 | RSA_PSS_PARAMS_free(r->pss); |
696 | 0 | r->pss = pss; |
697 | 0 | return 1; |
698 | 0 | #endif |
699 | 0 | } |
700 | | |
701 | | /* Internal */ |
702 | | RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r) |
703 | 194 | { |
704 | 194 | return &r->pss_params; |
705 | 194 | } |
706 | | |
707 | | void RSA_clear_flags(RSA *r, int flags) |
708 | 194 | { |
709 | 194 | r->flags &= ~flags; |
710 | 194 | } |
711 | | |
712 | | int RSA_test_flags(const RSA *r, int flags) |
713 | 582 | { |
714 | 582 | return r->flags & flags; |
715 | 582 | } |
716 | | |
717 | | void RSA_set_flags(RSA *r, int flags) |
718 | 194 | { |
719 | 194 | r->flags |= flags; |
720 | 194 | } |
721 | | |
722 | | int RSA_get_version(RSA *r) |
723 | 0 | { |
724 | | /* { two-prime(0), multi(1) } */ |
725 | 0 | return r->version; |
726 | 0 | } |
727 | | |
728 | | #ifndef FIPS_MODULE |
729 | | ENGINE *RSA_get0_engine(const RSA *r) |
730 | 0 | { |
731 | 0 | return r->engine; |
732 | 0 | } |
733 | | |
734 | | int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) |
735 | 0 | { |
736 | | /* If key type not RSA or RSA-PSS return error */ |
737 | 0 | if (ctx != NULL && ctx->pmeth != NULL |
738 | 0 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA |
739 | 0 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) |
740 | 0 | return -1; |
741 | 0 | return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); |
742 | 0 | } |
743 | | #endif |
744 | | |
745 | | DEFINE_STACK_OF(BIGNUM) |
746 | | |
747 | | int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes, |
748 | | const STACK_OF(BIGNUM) *exps, |
749 | | const STACK_OF(BIGNUM) *coeffs) |
750 | 0 | { |
751 | 0 | #ifndef FIPS_MODULE |
752 | 0 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL; |
753 | 0 | #endif |
754 | 0 | int pnum; |
755 | |
|
756 | 0 | if (primes == NULL || exps == NULL || coeffs == NULL) |
757 | 0 | return 0; |
758 | | |
759 | 0 | pnum = sk_BIGNUM_num(primes); |
760 | 0 | if (pnum < 2 |
761 | 0 | || pnum != sk_BIGNUM_num(exps) |
762 | 0 | || pnum != sk_BIGNUM_num(coeffs) + 1) |
763 | 0 | return 0; |
764 | | |
765 | 0 | if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0), |
766 | 0 | sk_BIGNUM_value(primes, 1)) |
767 | 0 | || !RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0), |
768 | 0 | sk_BIGNUM_value(exps, 1), |
769 | 0 | sk_BIGNUM_value(coeffs, 0))) |
770 | 0 | return 0; |
771 | | |
772 | 0 | #ifndef FIPS_MODULE |
773 | 0 | old_infos = r->prime_infos; |
774 | 0 | #endif |
775 | |
|
776 | 0 | if (pnum > 2) { |
777 | 0 | #ifndef FIPS_MODULE |
778 | 0 | int i; |
779 | |
|
780 | 0 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); |
781 | 0 | if (prime_infos == NULL) |
782 | 0 | return 0; |
783 | | |
784 | 0 | for (i = 2; i < pnum; i++) { |
785 | 0 | BIGNUM *prime = sk_BIGNUM_value(primes, i); |
786 | 0 | BIGNUM *exp = sk_BIGNUM_value(exps, i); |
787 | 0 | BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1); |
788 | 0 | RSA_PRIME_INFO *pinfo = NULL; |
789 | |
|
790 | 0 | if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL)) |
791 | 0 | goto err; |
792 | | |
793 | | /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */ |
794 | 0 | if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) |
795 | 0 | goto err; |
796 | | |
797 | 0 | pinfo->r = prime; |
798 | 0 | pinfo->d = exp; |
799 | 0 | pinfo->t = coeff; |
800 | 0 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); |
801 | 0 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); |
802 | 0 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); |
803 | 0 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
804 | 0 | } |
805 | | |
806 | 0 | r->prime_infos = prime_infos; |
807 | |
|
808 | 0 | if (!ossl_rsa_multip_calc_product(r)) { |
809 | 0 | r->prime_infos = old_infos; |
810 | 0 | goto err; |
811 | 0 | } |
812 | | #else |
813 | | return 0; |
814 | | #endif |
815 | 0 | } |
816 | | |
817 | 0 | #ifndef FIPS_MODULE |
818 | 0 | if (old_infos != NULL) { |
819 | | /* |
820 | | * This is hard to deal with, since the old infos could |
821 | | * also be set by this function and r, d, t should not |
822 | | * be freed in that case. So currently, stay consistent |
823 | | * with other *set0* functions: just free it... |
824 | | */ |
825 | 0 | sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free); |
826 | 0 | } |
827 | 0 | #endif |
828 | |
|
829 | 0 | r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT; |
830 | 0 | r->dirty_cnt++; |
831 | |
|
832 | 0 | return 1; |
833 | 0 | #ifndef FIPS_MODULE |
834 | 0 | err: |
835 | | /* r, d, t should not be freed */ |
836 | 0 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); |
837 | 0 | return 0; |
838 | 0 | #endif |
839 | 0 | } |
840 | | |
841 | | DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM) |
842 | | |
843 | | int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes, |
844 | | STACK_OF(BIGNUM_const) *exps, |
845 | | STACK_OF(BIGNUM_const) *coeffs) |
846 | 194 | { |
847 | 194 | #ifndef FIPS_MODULE |
848 | 194 | RSA_PRIME_INFO *pinfo; |
849 | 194 | int i, pnum; |
850 | 194 | #endif |
851 | | |
852 | 194 | if (r == NULL) |
853 | 0 | return 0; |
854 | | |
855 | | /* If |p| is NULL, there are no CRT parameters */ |
856 | 194 | if (RSA_get0_p(r) == NULL) |
857 | 194 | return 1; |
858 | | |
859 | 0 | sk_BIGNUM_const_push(primes, RSA_get0_p(r)); |
860 | 0 | sk_BIGNUM_const_push(primes, RSA_get0_q(r)); |
861 | 0 | sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r)); |
862 | 0 | sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r)); |
863 | 0 | sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r)); |
864 | |
|
865 | 0 | #ifndef FIPS_MODULE |
866 | 0 | pnum = RSA_get_multi_prime_extra_count(r); |
867 | 0 | for (i = 0; i < pnum; i++) { |
868 | 0 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); |
869 | 0 | sk_BIGNUM_const_push(primes, pinfo->r); |
870 | 0 | sk_BIGNUM_const_push(exps, pinfo->d); |
871 | 0 | sk_BIGNUM_const_push(coeffs, pinfo->t); |
872 | 0 | } |
873 | 0 | #endif |
874 | |
|
875 | 0 | return 1; |
876 | 194 | } |
877 | | |
878 | | #ifndef FIPS_MODULE |
879 | | /* Helpers to set or get diverse hash algorithm names */ |
880 | | static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx, |
881 | | /* For checks */ |
882 | | int keytype, int optype, |
883 | | /* For EVP_PKEY_CTX_set_params() */ |
884 | | const char *mdkey, const char *mdname, |
885 | | const char *propkey, const char *mdprops) |
886 | 0 | { |
887 | 0 | OSSL_PARAM params[3], *p = params; |
888 | |
|
889 | 0 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { |
890 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
891 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
892 | 0 | return -2; |
893 | 0 | } |
894 | | |
895 | | /* If key type not RSA return error */ |
896 | 0 | switch (keytype) { |
897 | 0 | case -1: |
898 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") |
899 | 0 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) |
900 | 0 | return -1; |
901 | 0 | break; |
902 | 0 | default: |
903 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) |
904 | 0 | return -1; |
905 | 0 | break; |
906 | 0 | } |
907 | | |
908 | | /* Cast away the const. This is read only so should be safe */ |
909 | 0 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0); |
910 | 0 | if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) { |
911 | | /* Cast away the const. This is read only so should be safe */ |
912 | 0 | *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0); |
913 | 0 | } |
914 | 0 | *p++ = OSSL_PARAM_construct_end(); |
915 | |
|
916 | 0 | return evp_pkey_ctx_set_params_strict(ctx, params); |
917 | 0 | } |
918 | | |
919 | | /* Helpers to set or get diverse hash algorithm names */ |
920 | | static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx, |
921 | | /* For checks */ |
922 | | int keytype, int optype, |
923 | | /* For EVP_PKEY_CTX_get_params() */ |
924 | | const char *mdkey, |
925 | | char *mdname, size_t mdnamesize) |
926 | 0 | { |
927 | 0 | OSSL_PARAM params[2], *p = params; |
928 | |
|
929 | 0 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { |
930 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
931 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
932 | 0 | return -2; |
933 | 0 | } |
934 | | |
935 | | /* If key type not RSA return error */ |
936 | 0 | switch (keytype) { |
937 | 0 | case -1: |
938 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") |
939 | 0 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) |
940 | 0 | return -1; |
941 | 0 | break; |
942 | 0 | default: |
943 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) |
944 | 0 | return -1; |
945 | 0 | break; |
946 | 0 | } |
947 | | |
948 | | /* Cast away the const. This is read only so should be safe */ |
949 | 0 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize); |
950 | 0 | *p++ = OSSL_PARAM_construct_end(); |
951 | |
|
952 | 0 | return evp_pkey_ctx_get_params_strict(ctx, params); |
953 | 0 | } |
954 | | |
955 | | /* |
956 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
957 | | * simply because that's easier. |
958 | | */ |
959 | | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode) |
960 | 0 | { |
961 | 0 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, |
962 | 0 | pad_mode, NULL); |
963 | 0 | } |
964 | | |
965 | | /* |
966 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
967 | | * simply because that's easier. |
968 | | */ |
969 | | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode) |
970 | 0 | { |
971 | 0 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, |
972 | 0 | 0, pad_mode); |
973 | 0 | } |
974 | | |
975 | | /* |
976 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
977 | | * simply because that's easier. |
978 | | */ |
979 | | int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
980 | 0 | { |
981 | 0 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, |
982 | 0 | EVP_PKEY_CTRL_MD, 0, (void *)(md)); |
983 | 0 | } |
984 | | |
985 | | int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx, |
986 | | const char *mdname, |
987 | | const char *mdprops) |
988 | 0 | { |
989 | 0 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, |
990 | 0 | OSSL_PKEY_PARAM_RSA_DIGEST, mdname, |
991 | 0 | OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops); |
992 | 0 | } |
993 | | |
994 | | /* |
995 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
996 | | * simply because that's easier. |
997 | | */ |
998 | | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
999 | 0 | { |
1000 | 0 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
1001 | 0 | EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md)); |
1002 | 0 | } |
1003 | | |
1004 | | int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname, |
1005 | | const char *mdprops) |
1006 | 0 | { |
1007 | 0 | return |
1008 | 0 | int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
1009 | 0 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname, |
1010 | 0 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops); |
1011 | 0 | } |
1012 | | |
1013 | | int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name, |
1014 | | size_t namesize) |
1015 | 0 | { |
1016 | 0 | return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
1017 | 0 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, |
1018 | 0 | name, namesize); |
1019 | 0 | } |
1020 | | |
1021 | | /* |
1022 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1023 | | * simply because that's easier. |
1024 | | */ |
1025 | | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) |
1026 | 0 | { |
1027 | 0 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
1028 | 0 | EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md); |
1029 | 0 | } |
1030 | | |
1031 | | /* |
1032 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1033 | | * simply because that's easier. |
1034 | | */ |
1035 | | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
1036 | 0 | { |
1037 | 0 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
1038 | 0 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); |
1039 | 0 | } |
1040 | | |
1041 | | int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname, |
1042 | | const char *mdprops) |
1043 | 0 | { |
1044 | 0 | return int_set_rsa_md_name(ctx, -1, |
1045 | 0 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, |
1046 | 0 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, |
1047 | 0 | OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops); |
1048 | 0 | } |
1049 | | |
1050 | | int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name, |
1051 | | size_t namesize) |
1052 | 0 | { |
1053 | 0 | return int_get_rsa_md_name(ctx, -1, |
1054 | 0 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, |
1055 | 0 | OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize); |
1056 | 0 | } |
1057 | | |
1058 | | /* |
1059 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1060 | | * simply because that's easier. |
1061 | | */ |
1062 | | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) |
1063 | 0 | { |
1064 | 0 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, |
1065 | 0 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); |
1066 | 0 | } |
1067 | | |
1068 | | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx, |
1069 | | const char *mdname) |
1070 | 0 | { |
1071 | 0 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, |
1072 | 0 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, |
1073 | 0 | NULL, NULL); |
1074 | 0 | } |
1075 | | |
1076 | | /* |
1077 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1078 | | * simply because that's easier. |
1079 | | */ |
1080 | | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) |
1081 | 0 | { |
1082 | 0 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
1083 | 0 | EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md)); |
1084 | 0 | } |
1085 | | |
1086 | | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen) |
1087 | 0 | { |
1088 | 0 | OSSL_PARAM rsa_params[2], *p = rsa_params; |
1089 | 0 | int ret; |
1090 | |
|
1091 | 0 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
1092 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
1093 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
1094 | 0 | return -2; |
1095 | 0 | } |
1096 | | |
1097 | | /* If key type not RSA return error */ |
1098 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) |
1099 | 0 | return -1; |
1100 | | |
1101 | | /* Cast away the const. This is read only so should be safe */ |
1102 | 0 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, |
1103 | 0 | (void *)label, (size_t)llen); |
1104 | 0 | *p++ = OSSL_PARAM_construct_end(); |
1105 | |
|
1106 | 0 | ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params); |
1107 | 0 | if (ret <= 0) |
1108 | 0 | return ret; |
1109 | | |
1110 | | /* Ownership is supposed to be transferred to the callee. */ |
1111 | 0 | OPENSSL_free(label); |
1112 | 0 | return 1; |
1113 | 0 | } |
1114 | | |
1115 | | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label) |
1116 | 0 | { |
1117 | 0 | OSSL_PARAM rsa_params[2], *p = rsa_params; |
1118 | 0 | size_t labellen; |
1119 | |
|
1120 | 0 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { |
1121 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
1122 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
1123 | 0 | return -2; |
1124 | 0 | } |
1125 | | |
1126 | | /* If key type not RSA return error */ |
1127 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) |
1128 | 0 | return -1; |
1129 | | |
1130 | 0 | *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, |
1131 | 0 | (void **)label, 0); |
1132 | 0 | *p++ = OSSL_PARAM_construct_end(); |
1133 | |
|
1134 | 0 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) |
1135 | 0 | return -1; |
1136 | | |
1137 | 0 | labellen = rsa_params[0].return_size; |
1138 | 0 | if (labellen > INT_MAX) |
1139 | 0 | return -1; |
1140 | | |
1141 | 0 | return (int)labellen; |
1142 | 0 | } |
1143 | | |
1144 | | /* |
1145 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1146 | | * simply because that's easier. |
1147 | | */ |
1148 | | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen) |
1149 | 0 | { |
1150 | | /* |
1151 | | * For some reason, the optype was set to this: |
1152 | | * |
1153 | | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY |
1154 | | * |
1155 | | * However, we do use RSA-PSS with the whole gamut of diverse signature |
1156 | | * and verification operations, so the optype gets upgraded to this: |
1157 | | * |
1158 | | * EVP_PKEY_OP_TYPE_SIG |
1159 | | */ |
1160 | 0 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, |
1161 | 0 | EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL); |
1162 | 0 | } |
1163 | | |
1164 | | /* |
1165 | | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, |
1166 | | * simply because that's easier. |
1167 | | */ |
1168 | | int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen) |
1169 | 0 | { |
1170 | | /* |
1171 | | * Because of circumstances, the optype is updated from: |
1172 | | * |
1173 | | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY |
1174 | | * |
1175 | | * to: |
1176 | | * |
1177 | | * EVP_PKEY_OP_TYPE_SIG |
1178 | | */ |
1179 | 0 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, |
1180 | 0 | EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen); |
1181 | 0 | } |
1182 | | |
1183 | | int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen) |
1184 | 0 | { |
1185 | 0 | OSSL_PARAM pad_params[2], *p = pad_params; |
1186 | |
|
1187 | 0 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { |
1188 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
1189 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
1190 | 0 | return -2; |
1191 | 0 | } |
1192 | | |
1193 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) |
1194 | 0 | return -1; |
1195 | | |
1196 | 0 | *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, |
1197 | 0 | &saltlen); |
1198 | 0 | *p++ = OSSL_PARAM_construct_end(); |
1199 | |
|
1200 | 0 | return evp_pkey_ctx_set_params_strict(ctx, pad_params); |
1201 | 0 | } |
1202 | | |
1203 | | int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) |
1204 | 0 | { |
1205 | 0 | OSSL_PARAM params[2], *p = params; |
1206 | 0 | size_t bits2 = bits; |
1207 | |
|
1208 | 0 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { |
1209 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
1210 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
1211 | 0 | return -2; |
1212 | 0 | } |
1213 | | |
1214 | | /* If key type not RSA return error */ |
1215 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") |
1216 | 0 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) |
1217 | 0 | return -1; |
1218 | | |
1219 | 0 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2); |
1220 | 0 | *p++ = OSSL_PARAM_construct_end(); |
1221 | |
|
1222 | 0 | return evp_pkey_ctx_set_params_strict(ctx, params); |
1223 | 0 | } |
1224 | | |
1225 | | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) |
1226 | 0 | { |
1227 | 0 | int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN, |
1228 | 0 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); |
1229 | | |
1230 | | /* |
1231 | | * Satisfy memory semantics for pre-3.0 callers of |
1232 | | * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input |
1233 | | * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success. |
1234 | | */ |
1235 | 0 | if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) { |
1236 | 0 | BN_free(ctx->rsa_pubexp); |
1237 | 0 | ctx->rsa_pubexp = pubexp; |
1238 | 0 | } |
1239 | |
|
1240 | 0 | return ret; |
1241 | 0 | } |
1242 | | |
1243 | | int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) |
1244 | 0 | { |
1245 | 0 | int ret = 0; |
1246 | | |
1247 | | /* |
1248 | | * When we're dealing with a provider, there's no need to duplicate |
1249 | | * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway. |
1250 | | */ |
1251 | 0 | if (evp_pkey_ctx_is_legacy(ctx)) { |
1252 | 0 | pubexp = BN_dup(pubexp); |
1253 | 0 | if (pubexp == NULL) |
1254 | 0 | return 0; |
1255 | 0 | } |
1256 | 0 | ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, |
1257 | 0 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); |
1258 | 0 | if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0) |
1259 | 0 | BN_free(pubexp); |
1260 | 0 | return ret; |
1261 | 0 | } |
1262 | | |
1263 | | int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes) |
1264 | 0 | { |
1265 | 0 | OSSL_PARAM params[2], *p = params; |
1266 | 0 | size_t primes2 = primes; |
1267 | |
|
1268 | 0 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { |
1269 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
1270 | | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ |
1271 | 0 | return -2; |
1272 | 0 | } |
1273 | | |
1274 | | /* If key type not RSA return error */ |
1275 | 0 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") |
1276 | 0 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) |
1277 | 0 | return -1; |
1278 | | |
1279 | 0 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2); |
1280 | 0 | *p++ = OSSL_PARAM_construct_end(); |
1281 | |
|
1282 | 0 | return evp_pkey_ctx_set_params_strict(ctx, params); |
1283 | 0 | } |
1284 | | #endif |