Coverage Report

Created: 2023-09-25 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
0
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
108
{
145
108
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
108
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
108
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
108
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
108
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
108
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
108
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
108
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
108
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
108
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
72
{
162
72
    memset(out, 0, 66);
163
72
    (*((limb *) & out[0])) = in[0];
164
72
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
72
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
72
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
72
    (*((limb_aX *) & out[29])) = in[4];
168
72
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
72
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
72
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
72
    (*((limb_aX *) & out[58])) = in[8];
172
72
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
108
{
177
108
    felem_bytearray b_out;
178
108
    int num_bytes;
179
180
108
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
108
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
108
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
108
    bin66_to_felem(out, b_out);
190
108
    return 1;
191
108
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
72
{
196
72
    felem_bytearray b_out;
197
72
    felem_to_bin66(b_out, in);
198
72
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
72
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
396
{
221
396
    out[0] = in[0];
222
396
    out[1] = in[1];
223
396
    out[2] = in[2];
224
396
    out[3] = in[3];
225
396
    out[4] = in[4];
226
396
    out[5] = in[5];
227
396
    out[6] = in[6];
228
396
    out[7] = in[7];
229
396
    out[8] = in[8];
230
396
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
0
{
235
0
    out[0] += in[0];
236
0
    out[1] += in[1];
237
0
    out[2] += in[2];
238
0
    out[3] += in[3];
239
0
    out[4] += in[4];
240
0
    out[5] += in[5];
241
0
    out[6] += in[6];
242
0
    out[7] += in[7];
243
0
    out[8] += in[8];
244
0
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
38.3k
{
249
38.3k
    out[0] = in[0] * scalar;
250
38.3k
    out[1] = in[1] * scalar;
251
38.3k
    out[2] = in[2] * scalar;
252
38.3k
    out[3] = in[3] * scalar;
253
38.3k
    out[4] = in[4] * scalar;
254
38.3k
    out[5] = in[5] * scalar;
255
38.3k
    out[6] = in[6] * scalar;
256
38.3k
    out[7] = in[7] * scalar;
257
38.3k
    out[8] = in[8] * scalar;
258
38.3k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
0
{
263
0
    out[0] *= scalar;
264
0
    out[1] *= scalar;
265
0
    out[2] *= scalar;
266
0
    out[3] *= scalar;
267
0
    out[4] *= scalar;
268
0
    out[5] *= scalar;
269
0
    out[6] *= scalar;
270
0
    out[7] *= scalar;
271
0
    out[8] *= scalar;
272
0
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
0
{
277
0
    out[0] *= scalar;
278
0
    out[1] *= scalar;
279
0
    out[2] *= scalar;
280
0
    out[3] *= scalar;
281
0
    out[4] *= scalar;
282
0
    out[5] *= scalar;
283
0
    out[6] *= scalar;
284
0
    out[7] *= scalar;
285
0
    out[8] *= scalar;
286
0
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
0
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
0
    out[0] += two62m3 - in[0];
328
0
    out[1] += two62m2 - in[1];
329
0
    out[2] += two62m2 - in[2];
330
0
    out[3] += two62m2 - in[3];
331
0
    out[4] += two62m2 - in[4];
332
0
    out[5] += two62m2 - in[5];
333
0
    out[6] += two62m2 - in[6];
334
0
    out[7] += two62m2 - in[7];
335
0
    out[8] += two62m2 - in[8];
336
0
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
0
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
0
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
0
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
0
    out[0] += two63m6 - in[0];
359
0
    out[1] += two63m5 - in[1];
360
0
    out[2] += two63m5 - in[2];
361
0
    out[3] += two63m5 - in[3];
362
0
    out[4] += two63m5 - in[4];
363
0
    out[5] += two63m5 - in[5];
364
0
    out[6] += two63m5 - in[6];
365
0
    out[7] += two63m5 - in[7];
366
0
    out[8] += two63m5 - in[8];
367
0
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
0
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
0
    static const uint128_t two127m70 =
382
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
0
    static const uint128_t two127m69 =
384
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
0
    out[0] += (two127m70 - in[0]);
387
0
    out[1] += (two127m69 - in[1]);
388
0
    out[2] += (two127m69 - in[2]);
389
0
    out[3] += (two127m69 - in[3]);
390
0
    out[4] += (two127m69 - in[4]);
391
0
    out[5] += (two127m69 - in[5]);
392
0
    out[6] += (two127m69 - in[6]);
393
0
    out[7] += (two127m69 - in[7]);
394
0
    out[8] += (two127m69 - in[8]);
395
0
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
18.8k
{
406
18.8k
    felem inx2, inx4;
407
18.8k
    felem_scalar(inx2, in, 2);
408
18.8k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
18.8k
    out[0] = ((uint128_t) in[0]) * in[0];
422
18.8k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
18.8k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
18.8k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
18.8k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
18.8k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
18.8k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
18.8k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
18.8k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
18.8k
             ((uint128_t) in[1]) * inx2[5] +
431
18.8k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
18.8k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
18.8k
             ((uint128_t) in[1]) * inx2[6] +
434
18.8k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
18.8k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
18.8k
             ((uint128_t) in[1]) * inx2[7] +
437
18.8k
             ((uint128_t) in[2]) * inx2[6] +
438
18.8k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
18.8k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
18.8k
              ((uint128_t) in[2]) * inx4[7] +
452
18.8k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
18.8k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
18.8k
              ((uint128_t) in[3]) * inx4[7] +
457
18.8k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
18.8k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
18.8k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
18.8k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
18.8k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
18.8k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
18.8k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
18.8k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
18.8k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
18.8k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
576
{
490
576
    felem in2x2;
491
576
    felem_scalar(in2x2, in2, 2);
492
493
576
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
576
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
576
             ((uint128_t) in1[1]) * in2[0];
497
498
576
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
576
             ((uint128_t) in1[1]) * in2[1] +
500
576
             ((uint128_t) in1[2]) * in2[0];
501
502
576
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
576
             ((uint128_t) in1[1]) * in2[2] +
504
576
             ((uint128_t) in1[2]) * in2[1] +
505
576
             ((uint128_t) in1[3]) * in2[0];
506
507
576
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
576
             ((uint128_t) in1[1]) * in2[3] +
509
576
             ((uint128_t) in1[2]) * in2[2] +
510
576
             ((uint128_t) in1[3]) * in2[1] +
511
576
             ((uint128_t) in1[4]) * in2[0];
512
513
576
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
576
             ((uint128_t) in1[1]) * in2[4] +
515
576
             ((uint128_t) in1[2]) * in2[3] +
516
576
             ((uint128_t) in1[3]) * in2[2] +
517
576
             ((uint128_t) in1[4]) * in2[1] +
518
576
             ((uint128_t) in1[5]) * in2[0];
519
520
576
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
576
             ((uint128_t) in1[1]) * in2[5] +
522
576
             ((uint128_t) in1[2]) * in2[4] +
523
576
             ((uint128_t) in1[3]) * in2[3] +
524
576
             ((uint128_t) in1[4]) * in2[2] +
525
576
             ((uint128_t) in1[5]) * in2[1] +
526
576
             ((uint128_t) in1[6]) * in2[0];
527
528
576
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
576
             ((uint128_t) in1[1]) * in2[6] +
530
576
             ((uint128_t) in1[2]) * in2[5] +
531
576
             ((uint128_t) in1[3]) * in2[4] +
532
576
             ((uint128_t) in1[4]) * in2[3] +
533
576
             ((uint128_t) in1[5]) * in2[2] +
534
576
             ((uint128_t) in1[6]) * in2[1] +
535
576
             ((uint128_t) in1[7]) * in2[0];
536
537
576
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
576
             ((uint128_t) in1[1]) * in2[7] +
539
576
             ((uint128_t) in1[2]) * in2[6] +
540
576
             ((uint128_t) in1[3]) * in2[5] +
541
576
             ((uint128_t) in1[4]) * in2[4] +
542
576
             ((uint128_t) in1[5]) * in2[3] +
543
576
             ((uint128_t) in1[6]) * in2[2] +
544
576
             ((uint128_t) in1[7]) * in2[1] +
545
576
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
576
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
576
              ((uint128_t) in1[2]) * in2x2[7] +
551
576
              ((uint128_t) in1[3]) * in2x2[6] +
552
576
              ((uint128_t) in1[4]) * in2x2[5] +
553
576
              ((uint128_t) in1[5]) * in2x2[4] +
554
576
              ((uint128_t) in1[6]) * in2x2[3] +
555
576
              ((uint128_t) in1[7]) * in2x2[2] +
556
576
              ((uint128_t) in1[8]) * in2x2[1];
557
558
576
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
576
              ((uint128_t) in1[3]) * in2x2[7] +
560
576
              ((uint128_t) in1[4]) * in2x2[6] +
561
576
              ((uint128_t) in1[5]) * in2x2[5] +
562
576
              ((uint128_t) in1[6]) * in2x2[4] +
563
576
              ((uint128_t) in1[7]) * in2x2[3] +
564
576
              ((uint128_t) in1[8]) * in2x2[2];
565
566
576
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
576
              ((uint128_t) in1[4]) * in2x2[7] +
568
576
              ((uint128_t) in1[5]) * in2x2[6] +
569
576
              ((uint128_t) in1[6]) * in2x2[5] +
570
576
              ((uint128_t) in1[7]) * in2x2[4] +
571
576
              ((uint128_t) in1[8]) * in2x2[3];
572
573
576
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
576
              ((uint128_t) in1[5]) * in2x2[7] +
575
576
              ((uint128_t) in1[6]) * in2x2[6] +
576
576
              ((uint128_t) in1[7]) * in2x2[5] +
577
576
              ((uint128_t) in1[8]) * in2x2[4];
578
579
576
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
576
              ((uint128_t) in1[6]) * in2x2[7] +
581
576
              ((uint128_t) in1[7]) * in2x2[6] +
582
576
              ((uint128_t) in1[8]) * in2x2[5];
583
584
576
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
576
              ((uint128_t) in1[7]) * in2x2[7] +
586
576
              ((uint128_t) in1[8]) * in2x2[6];
587
588
576
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
576
              ((uint128_t) in1[8]) * in2x2[7];
590
591
576
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
576
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
19.4k
{
605
19.4k
    u64 overflow1, overflow2;
606
607
19.4k
    out[0] = ((limb) in[0]) & bottom58bits;
608
19.4k
    out[1] = ((limb) in[1]) & bottom58bits;
609
19.4k
    out[2] = ((limb) in[2]) & bottom58bits;
610
19.4k
    out[3] = ((limb) in[3]) & bottom58bits;
611
19.4k
    out[4] = ((limb) in[4]) & bottom58bits;
612
19.4k
    out[5] = ((limb) in[5]) & bottom58bits;
613
19.4k
    out[6] = ((limb) in[6]) & bottom58bits;
614
19.4k
    out[7] = ((limb) in[7]) & bottom58bits;
615
19.4k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
19.4k
    out[1] += ((limb) in[0]) >> 58;
620
19.4k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
19.4k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
19.4k
    out[2] += ((limb) in[1]) >> 58;
628
19.4k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
19.4k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
19.4k
    out[3] += ((limb) in[2]) >> 58;
632
19.4k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
19.4k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
19.4k
    out[4] += ((limb) in[3]) >> 58;
636
19.4k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
19.4k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
19.4k
    out[5] += ((limb) in[4]) >> 58;
640
19.4k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
19.4k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
19.4k
    out[6] += ((limb) in[5]) >> 58;
644
19.4k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
19.4k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
19.4k
    out[7] += ((limb) in[6]) >> 58;
648
19.4k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
19.4k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
19.4k
    out[8] += ((limb) in[7]) >> 58;
652
19.4k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
19.4k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
19.4k
    overflow1 += ((limb) in[8]) >> 58;
660
19.4k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
19.4k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
19.4k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
19.4k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
19.4k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
19.4k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
19.4k
    out[1] += out[0] >> 58;
670
19.4k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
19.4k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
18.8k
# define felem_square felem_square_ref
726
576
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
36
{
753
36
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
36
    largefelem tmp;
755
36
    unsigned i;
756
757
36
    felem_square(tmp, in);
758
36
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
36
    felem_mul(tmp, in, ftmp);
760
36
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
36
    felem_assign(ftmp2, ftmp);
762
36
    felem_square(tmp, ftmp);
763
36
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
36
    felem_mul(tmp, in, ftmp);
765
36
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
36
    felem_square(tmp, ftmp);
767
36
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
36
    felem_square(tmp, ftmp2);
770
36
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
36
    felem_square(tmp, ftmp3);
772
36
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
36
    felem_mul(tmp, ftmp3, ftmp2);
774
36
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
36
    felem_assign(ftmp2, ftmp3);
777
36
    felem_square(tmp, ftmp3);
778
36
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
36
    felem_square(tmp, ftmp3);
780
36
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
36
    felem_square(tmp, ftmp3);
782
36
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
36
    felem_square(tmp, ftmp3);
784
36
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
36
    felem_assign(ftmp4, ftmp3);
786
36
    felem_mul(tmp, ftmp3, ftmp);
787
36
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
36
    felem_square(tmp, ftmp4);
789
36
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
36
    felem_mul(tmp, ftmp3, ftmp2);
791
36
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
36
    felem_assign(ftmp2, ftmp3);
793
794
324
    for (i = 0; i < 8; i++) {
795
288
        felem_square(tmp, ftmp3);
796
288
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
288
    }
798
36
    felem_mul(tmp, ftmp3, ftmp2);
799
36
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
36
    felem_assign(ftmp2, ftmp3);
801
802
612
    for (i = 0; i < 16; i++) {
803
576
        felem_square(tmp, ftmp3);
804
576
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
576
    }
806
36
    felem_mul(tmp, ftmp3, ftmp2);
807
36
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
36
    felem_assign(ftmp2, ftmp3);
809
810
1.18k
    for (i = 0; i < 32; i++) {
811
1.15k
        felem_square(tmp, ftmp3);
812
1.15k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
1.15k
    }
814
36
    felem_mul(tmp, ftmp3, ftmp2);
815
36
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
36
    felem_assign(ftmp2, ftmp3);
817
818
2.34k
    for (i = 0; i < 64; i++) {
819
2.30k
        felem_square(tmp, ftmp3);
820
2.30k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
2.30k
    }
822
36
    felem_mul(tmp, ftmp3, ftmp2);
823
36
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
36
    felem_assign(ftmp2, ftmp3);
825
826
4.64k
    for (i = 0; i < 128; i++) {
827
4.60k
        felem_square(tmp, ftmp3);
828
4.60k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
4.60k
    }
830
36
    felem_mul(tmp, ftmp3, ftmp2);
831
36
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
36
    felem_assign(ftmp2, ftmp3);
833
834
9.25k
    for (i = 0; i < 256; i++) {
835
9.21k
        felem_square(tmp, ftmp3);
836
9.21k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
9.21k
    }
838
36
    felem_mul(tmp, ftmp3, ftmp2);
839
36
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
360
    for (i = 0; i < 9; i++) {
842
324
        felem_square(tmp, ftmp3);
843
324
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
324
    }
845
36
    felem_mul(tmp, ftmp3, ftmp4);
846
36
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
36
    felem_mul(tmp, ftmp3, in);
848
36
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
36
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
0
{
866
0
    felem ftmp;
867
0
    limb is_zero, is_p;
868
0
    felem_assign(ftmp, in);
869
870
0
    ftmp[0] += ftmp[8] >> 57;
871
0
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
0
    ftmp[1] += ftmp[0] >> 58;
874
0
    ftmp[0] &= bottom58bits;
875
0
    ftmp[2] += ftmp[1] >> 58;
876
0
    ftmp[1] &= bottom58bits;
877
0
    ftmp[3] += ftmp[2] >> 58;
878
0
    ftmp[2] &= bottom58bits;
879
0
    ftmp[4] += ftmp[3] >> 58;
880
0
    ftmp[3] &= bottom58bits;
881
0
    ftmp[5] += ftmp[4] >> 58;
882
0
    ftmp[4] &= bottom58bits;
883
0
    ftmp[6] += ftmp[5] >> 58;
884
0
    ftmp[5] &= bottom58bits;
885
0
    ftmp[7] += ftmp[6] >> 58;
886
0
    ftmp[6] &= bottom58bits;
887
0
    ftmp[8] += ftmp[7] >> 58;
888
0
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
0
    is_zero = 0;
898
0
    is_zero |= ftmp[0];
899
0
    is_zero |= ftmp[1];
900
0
    is_zero |= ftmp[2];
901
0
    is_zero |= ftmp[3];
902
0
    is_zero |= ftmp[4];
903
0
    is_zero |= ftmp[5];
904
0
    is_zero |= ftmp[6];
905
0
    is_zero |= ftmp[7];
906
0
    is_zero |= ftmp[8];
907
908
0
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
0
    is_zero = 0 - (is_zero >> 63);
914
915
0
    is_p = ftmp[0] ^ kPrime[0];
916
0
    is_p |= ftmp[1] ^ kPrime[1];
917
0
    is_p |= ftmp[2] ^ kPrime[2];
918
0
    is_p |= ftmp[3] ^ kPrime[3];
919
0
    is_p |= ftmp[4] ^ kPrime[4];
920
0
    is_p |= ftmp[5] ^ kPrime[5];
921
0
    is_p |= ftmp[6] ^ kPrime[6];
922
0
    is_p |= ftmp[7] ^ kPrime[7];
923
0
    is_p |= ftmp[8] ^ kPrime[8];
924
925
0
    is_p--;
926
0
    is_p = 0 - (is_p >> 63);
927
928
0
    is_zero |= is_p;
929
0
    return is_zero;
930
0
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
72
{
944
72
    limb is_p, is_greater, sign;
945
72
    static const limb two58 = ((limb) 1) << 58;
946
947
72
    felem_assign(out, in);
948
949
72
    out[0] += out[8] >> 57;
950
72
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
72
    out[1] += out[0] >> 58;
953
72
    out[0] &= bottom58bits;
954
72
    out[2] += out[1] >> 58;
955
72
    out[1] &= bottom58bits;
956
72
    out[3] += out[2] >> 58;
957
72
    out[2] &= bottom58bits;
958
72
    out[4] += out[3] >> 58;
959
72
    out[3] &= bottom58bits;
960
72
    out[5] += out[4] >> 58;
961
72
    out[4] &= bottom58bits;
962
72
    out[6] += out[5] >> 58;
963
72
    out[5] &= bottom58bits;
964
72
    out[7] += out[6] >> 58;
965
72
    out[6] &= bottom58bits;
966
72
    out[8] += out[7] >> 58;
967
72
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
72
    is_p = out[0] ^ kPrime[0];
981
72
    is_p |= out[1] ^ kPrime[1];
982
72
    is_p |= out[2] ^ kPrime[2];
983
72
    is_p |= out[3] ^ kPrime[3];
984
72
    is_p |= out[4] ^ kPrime[4];
985
72
    is_p |= out[5] ^ kPrime[5];
986
72
    is_p |= out[6] ^ kPrime[6];
987
72
    is_p |= out[7] ^ kPrime[7];
988
72
    is_p |= out[8] ^ kPrime[8];
989
990
72
    is_p--;
991
72
    is_p &= is_p << 32;
992
72
    is_p &= is_p << 16;
993
72
    is_p &= is_p << 8;
994
72
    is_p &= is_p << 4;
995
72
    is_p &= is_p << 2;
996
72
    is_p &= is_p << 1;
997
72
    is_p = 0 - (is_p >> 63);
998
72
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
72
    out[0] &= is_p;
1003
72
    out[1] &= is_p;
1004
72
    out[2] &= is_p;
1005
72
    out[3] &= is_p;
1006
72
    out[4] &= is_p;
1007
72
    out[5] &= is_p;
1008
72
    out[6] &= is_p;
1009
72
    out[7] &= is_p;
1010
72
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
72
    is_greater = out[8] >> 57;
1017
72
    is_greater |= is_greater << 32;
1018
72
    is_greater |= is_greater << 16;
1019
72
    is_greater |= is_greater << 8;
1020
72
    is_greater |= is_greater << 4;
1021
72
    is_greater |= is_greater << 2;
1022
72
    is_greater |= is_greater << 1;
1023
72
    is_greater = 0 - (is_greater >> 63);
1024
1025
72
    out[0] -= kPrime[0] & is_greater;
1026
72
    out[1] -= kPrime[1] & is_greater;
1027
72
    out[2] -= kPrime[2] & is_greater;
1028
72
    out[3] -= kPrime[3] & is_greater;
1029
72
    out[4] -= kPrime[4] & is_greater;
1030
72
    out[5] -= kPrime[5] & is_greater;
1031
72
    out[6] -= kPrime[6] & is_greater;
1032
72
    out[7] -= kPrime[7] & is_greater;
1033
72
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
72
    sign = -(out[0] >> 63);
1037
72
    out[0] += (two58 & sign);
1038
72
    out[1] -= (1 & sign);
1039
72
    sign = -(out[1] >> 63);
1040
72
    out[1] += (two58 & sign);
1041
72
    out[2] -= (1 & sign);
1042
72
    sign = -(out[2] >> 63);
1043
72
    out[2] += (two58 & sign);
1044
72
    out[3] -= (1 & sign);
1045
72
    sign = -(out[3] >> 63);
1046
72
    out[3] += (two58 & sign);
1047
72
    out[4] -= (1 & sign);
1048
72
    sign = -(out[4] >> 63);
1049
72
    out[4] += (two58 & sign);
1050
72
    out[5] -= (1 & sign);
1051
72
    sign = -(out[0] >> 63);
1052
72
    out[5] += (two58 & sign);
1053
72
    out[6] -= (1 & sign);
1054
72
    sign = -(out[6] >> 63);
1055
72
    out[6] += (two58 & sign);
1056
72
    out[7] -= (1 & sign);
1057
72
    sign = -(out[7] >> 63);
1058
72
    out[7] += (two58 & sign);
1059
72
    out[8] -= (1 & sign);
1060
72
    sign = -(out[5] >> 63);
1061
72
    out[5] += (two58 & sign);
1062
72
    out[6] -= (1 & sign);
1063
72
    sign = -(out[6] >> 63);
1064
72
    out[6] += (two58 & sign);
1065
72
    out[7] -= (1 & sign);
1066
72
    sign = -(out[7] >> 63);
1067
72
    out[7] += (two58 & sign);
1068
72
    out[8] -= (1 & sign);
1069
72
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
0
{
1091
0
    largefelem tmp, tmp2;
1092
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
0
    felem_assign(ftmp, x_in);
1095
0
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
0
    felem_square(tmp, z_in);
1099
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
0
    felem_square(tmp, y_in);
1103
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
0
    felem_mul(tmp, x_in, gamma);
1107
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
0
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
0
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
0
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
0
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
0
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
0
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
0
    felem_assign(ftmp, beta);
1132
0
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
0
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
0
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
0
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
0
    felem_assign(ftmp, y_in);
1142
0
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
0
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
0
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
0
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
0
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
0
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
0
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
0
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
0
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
0
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
0
    felem_reduce(y_out, tmp);
1183
0
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
0
{
1188
0
    unsigned i;
1189
0
    for (i = 0; i < NLIMBS; ++i) {
1190
0
        const limb tmp = mask & (in[i] ^ out[i]);
1191
0
        out[i] ^= tmp;
1192
0
    }
1193
0
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
0
{
1211
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
0
    largefelem tmp, tmp2;
1213
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
0
    limb points_equal;
1215
1216
0
    z1_is_zero = felem_is_zero(z1);
1217
0
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
0
    felem_square(tmp, z1);
1221
0
    felem_reduce(ftmp, tmp);
1222
1223
0
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
0
        felem_square(tmp, z2);
1226
0
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
0
        felem_mul(tmp, x1, ftmp2);
1230
0
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
0
        felem_assign(ftmp5, z1);
1234
0
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
0
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
0
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
0
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
0
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
0
        felem_mul(tmp, ftmp2, z2);
1248
0
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
0
        felem_mul(tmp, y1, ftmp2);
1252
0
        felem_reduce(ftmp6, tmp);
1253
0
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
0
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
0
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
0
        felem_assign(ftmp6, y1);
1266
0
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
0
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
0
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
0
    felem_reduce(ftmp4, tmp);
1276
1277
0
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
0
    felem_mul(tmp, ftmp5, ftmp4);
1281
0
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
0
    felem_mul(tmp, ftmp, z1);
1285
0
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
0
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
0
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
0
    felem_reduce(ftmp5, tmp);
1295
0
    y_equal = felem_is_zero(ftmp5);
1296
0
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
0
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
0
    felem_assign(ftmp, ftmp4);
1339
0
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
0
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
0
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
0
    felem_mul(tmp, ftmp4, ftmp);
1347
0
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
0
    felem_mul(tmp, ftmp3, ftmp);
1351
0
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
0
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
0
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
0
    felem_assign(ftmp3, ftmp4);
1359
0
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
0
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
0
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
0
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
0
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
0
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
0
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
0
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
0
    felem_reduce(y_out, tmp);
1383
1384
0
    copy_conditional(x_out, x2, z1_is_zero);
1385
0
    copy_conditional(x_out, x1, z2_is_zero);
1386
0
    copy_conditional(y_out, y2, z1_is_zero);
1387
0
    copy_conditional(y_out, y1, z2_is_zero);
1388
0
    copy_conditional(z_out, z2, z1_is_zero);
1389
0
    copy_conditional(z_out, z1, z2_is_zero);
1390
0
    felem_assign(x3, x_out);
1391
0
    felem_assign(y3, y_out);
1392
0
    felem_assign(z3, z_out);
1393
0
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
0
{
1549
0
    unsigned i, j;
1550
0
    limb *outlimbs = &out[0][0];
1551
1552
0
    memset(out, 0, sizeof(*out) * 3);
1553
1554
0
    for (i = 0; i < size; i++) {
1555
0
        const limb *inlimbs = &pre_comp[i][0][0];
1556
0
        limb mask = i ^ idx;
1557
0
        mask |= mask >> 4;
1558
0
        mask |= mask >> 2;
1559
0
        mask |= mask >> 1;
1560
0
        mask &= 1;
1561
0
        mask--;
1562
0
        for (j = 0; j < NLIMBS * 3; j++)
1563
0
            outlimbs[j] |= inlimbs[j] & mask;
1564
0
    }
1565
0
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
0
{
1570
0
    if (i < 0)
1571
0
        return 0;
1572
0
    return (in[i >> 3] >> (i & 7)) & 1;
1573
0
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
0
{
1588
0
    int i, skip;
1589
0
    unsigned num, gen_mul = (g_scalar != NULL);
1590
0
    felem nq[3], tmp[4];
1591
0
    limb bits;
1592
0
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
0
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
0
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
0
        if (!skip)
1607
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
0
        if (gen_mul && (i <= 130)) {
1611
0
            bits = get_bit(g_scalar, i + 390) << 3;
1612
0
            if (i < 130) {
1613
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
0
                bits |= get_bit(g_scalar, i);
1616
0
            }
1617
            /* select the point to add, in constant time */
1618
0
            select_point(bits, 16, g_pre_comp, tmp);
1619
0
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
0
                point_add(nq[0], nq[1], nq[2],
1622
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
0
            } else {
1624
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
0
                skip = 0;
1626
0
            }
1627
0
        }
1628
1629
        /* do other additions every 5 doublings */
1630
0
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
0
            for (num = 0; num < num_points; ++num) {
1633
0
                bits = get_bit(scalars[num], i + 4) << 5;
1634
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
0
                bits |= get_bit(scalars[num], i) << 1;
1638
0
                bits |= get_bit(scalars[num], i - 1);
1639
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
0
                select_point(digit, 17, pre_comp[num], tmp);
1645
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
0
                if (!skip) {
1650
0
                    point_add(nq[0], nq[1], nq[2],
1651
0
                              nq[0], nq[1], nq[2],
1652
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
0
                } else {
1654
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
0
                    skip = 0;
1656
0
                }
1657
0
            }
1658
0
        }
1659
0
    }
1660
0
    felem_assign(x_out, nq[0]);
1661
0
    felem_assign(y_out, nq[1]);
1662
0
    felem_assign(z_out, nq[2]);
1663
0
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
97
{
1674
97
    static const EC_METHOD ret = {
1675
97
        EC_FLAGS_DEFAULT_OCT,
1676
97
        NID_X9_62_prime_field,
1677
97
        ossl_ec_GFp_nistp521_group_init,
1678
97
        ossl_ec_GFp_simple_group_finish,
1679
97
        ossl_ec_GFp_simple_group_clear_finish,
1680
97
        ossl_ec_GFp_nist_group_copy,
1681
97
        ossl_ec_GFp_nistp521_group_set_curve,
1682
97
        ossl_ec_GFp_simple_group_get_curve,
1683
97
        ossl_ec_GFp_simple_group_get_degree,
1684
97
        ossl_ec_group_simple_order_bits,
1685
97
        ossl_ec_GFp_simple_group_check_discriminant,
1686
97
        ossl_ec_GFp_simple_point_init,
1687
97
        ossl_ec_GFp_simple_point_finish,
1688
97
        ossl_ec_GFp_simple_point_clear_finish,
1689
97
        ossl_ec_GFp_simple_point_copy,
1690
97
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
97
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
97
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
97
        0 /* point_set_compressed_coordinates */ ,
1694
97
        0 /* point2oct */ ,
1695
97
        0 /* oct2point */ ,
1696
97
        ossl_ec_GFp_simple_add,
1697
97
        ossl_ec_GFp_simple_dbl,
1698
97
        ossl_ec_GFp_simple_invert,
1699
97
        ossl_ec_GFp_simple_is_at_infinity,
1700
97
        ossl_ec_GFp_simple_is_on_curve,
1701
97
        ossl_ec_GFp_simple_cmp,
1702
97
        ossl_ec_GFp_simple_make_affine,
1703
97
        ossl_ec_GFp_simple_points_make_affine,
1704
97
        ossl_ec_GFp_nistp521_points_mul,
1705
97
        ossl_ec_GFp_nistp521_precompute_mult,
1706
97
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
97
        ossl_ec_GFp_nist_field_mul,
1708
97
        ossl_ec_GFp_nist_field_sqr,
1709
97
        0 /* field_div */ ,
1710
97
        ossl_ec_GFp_simple_field_inv,
1711
97
        0 /* field_encode */ ,
1712
97
        0 /* field_decode */ ,
1713
97
        0,                      /* field_set_to_one */
1714
97
        ossl_ec_key_simple_priv2oct,
1715
97
        ossl_ec_key_simple_oct2priv,
1716
97
        0, /* set private */
1717
97
        ossl_ec_key_simple_generate_key,
1718
97
        ossl_ec_key_simple_check_key,
1719
97
        ossl_ec_key_simple_generate_public_key,
1720
97
        0, /* keycopy */
1721
97
        0, /* keyfinish */
1722
97
        ossl_ecdh_simple_compute_key,
1723
97
        ossl_ecdsa_simple_sign_setup,
1724
97
        ossl_ecdsa_simple_sign_sig,
1725
97
        ossl_ecdsa_simple_verify_sig,
1726
97
        0, /* field_inverse_mod_ord */
1727
97
        0, /* blind_coordinates */
1728
97
        0, /* ladder_pre */
1729
97
        0, /* ladder_step */
1730
97
        0  /* ladder_post */
1731
97
    };
1732
1733
97
    return &ret;
1734
97
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
194
{
1793
194
    int ret;
1794
194
    ret = ossl_ec_GFp_simple_group_init(group);
1795
194
    group->a_is_minus3 = 1;
1796
194
    return ret;
1797
194
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
97
{
1803
97
    int ret = 0;
1804
97
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
97
#ifndef FIPS_MODULE
1806
97
    BN_CTX *new_ctx = NULL;
1807
1808
97
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
97
#endif
1811
97
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
97
    BN_CTX_start(ctx);
1815
97
    curve_p = BN_CTX_get(ctx);
1816
97
    curve_a = BN_CTX_get(ctx);
1817
97
    curve_b = BN_CTX_get(ctx);
1818
97
    if (curve_b == NULL)
1819
0
        goto err;
1820
97
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
97
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
97
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
97
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
97
    group->field_mod_func = BN_nist_mod_521;
1828
97
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
97
 err:
1830
97
    BN_CTX_end(ctx);
1831
97
#ifndef FIPS_MODULE
1832
97
    BN_CTX_free(new_ctx);
1833
97
#endif
1834
97
    return ret;
1835
97
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
36
{
1846
36
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
36
    largefelem tmp;
1848
1849
36
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
36
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
36
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
36
    felem_inv(z2, z1);
1857
36
    felem_square(tmp, z2);
1858
36
    felem_reduce(z1, tmp);
1859
36
    felem_mul(tmp, x_in, z1);
1860
36
    felem_reduce(x_in, tmp);
1861
36
    felem_contract(x_out, x_in);
1862
36
    if (x != NULL) {
1863
36
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
36
    }
1868
36
    felem_mul(tmp, z1, z2);
1869
36
    felem_reduce(z1, tmp);
1870
36
    felem_mul(tmp, y_in, z1);
1871
36
    felem_reduce(y_in, tmp);
1872
36
    felem_contract(y_out, y_in);
1873
36
    if (y != NULL) {
1874
36
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
36
    }
1879
36
    return 1;
1880
36
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
0
{
1921
0
    int ret = 0;
1922
0
    int j;
1923
0
    int mixed = 0;
1924
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
0
    felem_bytearray g_secret;
1926
0
    felem_bytearray *secrets = NULL;
1927
0
    felem (*pre_comp)[17][3] = NULL;
1928
0
    felem *tmp_felems = NULL;
1929
0
    unsigned i;
1930
0
    int num_bytes;
1931
0
    int have_pre_comp = 0;
1932
0
    size_t num_points = num;
1933
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
0
    NISTP521_PRE_COMP *pre = NULL;
1935
0
    felem(*g_pre_comp)[3] = NULL;
1936
0
    EC_POINT *generator = NULL;
1937
0
    const EC_POINT *p = NULL;
1938
0
    const BIGNUM *p_scalar = NULL;
1939
1940
0
    BN_CTX_start(ctx);
1941
0
    x = BN_CTX_get(ctx);
1942
0
    y = BN_CTX_get(ctx);
1943
0
    z = BN_CTX_get(ctx);
1944
0
    tmp_scalar = BN_CTX_get(ctx);
1945
0
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
0
    if (scalar != NULL) {
1949
0
        pre = group->pre_comp.nistp521;
1950
0
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
0
        else
1954
            /* try to use the standard precomputation */
1955
0
            g_pre_comp = (felem(*)[3]) gmul;
1956
0
        generator = EC_POINT_new(group);
1957
0
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
0
                                                                generator,
1968
0
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
0
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
0
    }
1980
1981
0
    if (num_points > 0) {
1982
0
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
0
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
0
        if ((secrets == NULL) || (pre_comp == NULL)
1995
0
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
0
        for (i = 0; i < num_points; ++i) {
2005
0
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
0
            } else {
2013
                /* the i^th point */
2014
0
                p = points[i];
2015
0
                p_scalar = scalars[i];
2016
0
            }
2017
0
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
0
                if ((BN_num_bits(p_scalar) > 521)
2020
0
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
0
                } else {
2032
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
0
                                               secrets[i], sizeof(secrets[i]));
2034
0
                }
2035
0
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
0
                if ((!BN_to_felem(x_out, p->X)) ||
2041
0
                    (!BN_to_felem(y_out, p->Y)) ||
2042
0
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
0
                for (j = 2; j <= 16; ++j) {
2048
0
                    if (j & 1) {
2049
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
0
                                  pre_comp[i][j - 1][0],
2053
0
                                  pre_comp[i][j - 1][1],
2054
0
                                  pre_comp[i][j - 1][2]);
2055
0
                    } else {
2056
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
0
                                     pre_comp[i][j / 2][1],
2059
0
                                     pre_comp[i][j / 2][2]);
2060
0
                    }
2061
0
                }
2062
0
            }
2063
0
        }
2064
0
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
0
    }
2067
2068
    /* the scalar for the generator */
2069
0
    if ((scalar != NULL) && (have_pre_comp)) {
2070
0
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
0
        } else {
2083
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
0
        }
2085
        /* do the multiplication with generator precomputation */
2086
0
        batch_mul(x_out, y_out, z_out,
2087
0
                  (const felem_bytearray(*))secrets, num_points,
2088
0
                  g_secret,
2089
0
                  mixed, (const felem(*)[17][3])pre_comp,
2090
0
                  (const felem(*)[3])g_pre_comp);
2091
0
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
0
    felem_contract(x_in, x_out);
2099
0
    felem_contract(y_in, y_out);
2100
0
    felem_contract(z_in, z_out);
2101
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
0
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
0
                                                             ctx);
2108
2109
0
 err:
2110
0
    BN_CTX_end(ctx);
2111
0
    EC_POINT_free(generator);
2112
0
    OPENSSL_free(secrets);
2113
0
    OPENSSL_free(pre_comp);
2114
0
    OPENSSL_free(tmp_felems);
2115
0
    return ret;
2116
0
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}