/src/openssl/crypto/lhash/lhash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <string.h> |
12 | | #include <stdlib.h> |
13 | | #include <openssl/crypto.h> |
14 | | #include <openssl/lhash.h> |
15 | | #include <openssl/err.h> |
16 | | #include "crypto/ctype.h" |
17 | | #include "crypto/lhash.h" |
18 | | #include "lhash_local.h" |
19 | | |
20 | | /* |
21 | | * A hashing implementation that appears to be based on the linear hashing |
22 | | * algorithm: |
23 | | * https://en.wikipedia.org/wiki/Linear_hashing |
24 | | * |
25 | | * Litwin, Witold (1980), "Linear hashing: A new tool for file and table |
26 | | * addressing", Proc. 6th Conference on Very Large Databases: 212-223 |
27 | | * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf |
28 | | * |
29 | | * From the Wikipedia article "Linear hashing is used in the BDB Berkeley |
30 | | * database system, which in turn is used by many software systems such as |
31 | | * OpenLDAP, using a C implementation derived from the CACM article and first |
32 | | * published on the Usenet in 1988 by Esmond Pitt." |
33 | | * |
34 | | * The CACM paper is available here: |
35 | | * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf |
36 | | */ |
37 | | |
38 | | #undef MIN_NODES |
39 | 808 | #define MIN_NODES 16 |
40 | 108 | #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ |
41 | 108 | #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ |
42 | | |
43 | | static int expand(OPENSSL_LHASH *lh); |
44 | | static void contract(OPENSSL_LHASH *lh); |
45 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); |
46 | | |
47 | | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) |
48 | 108 | { |
49 | 108 | OPENSSL_LHASH *ret; |
50 | | |
51 | 108 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) |
52 | 0 | return NULL; |
53 | 108 | if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) |
54 | 0 | goto err; |
55 | 108 | ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); |
56 | 108 | ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); |
57 | 108 | ret->num_nodes = MIN_NODES / 2; |
58 | 108 | ret->num_alloc_nodes = MIN_NODES; |
59 | 108 | ret->pmax = MIN_NODES / 2; |
60 | 108 | ret->up_load = UP_LOAD; |
61 | 108 | ret->down_load = DOWN_LOAD; |
62 | 108 | return ret; |
63 | | |
64 | 0 | err: |
65 | 0 | OPENSSL_free(ret->b); |
66 | 0 | OPENSSL_free(ret); |
67 | 0 | return NULL; |
68 | 108 | } |
69 | | |
70 | | void OPENSSL_LH_free(OPENSSL_LHASH *lh) |
71 | 100 | { |
72 | 100 | if (lh == NULL) |
73 | 2 | return; |
74 | | |
75 | 98 | OPENSSL_LH_flush(lh); |
76 | 98 | OPENSSL_free(lh->b); |
77 | 98 | OPENSSL_free(lh); |
78 | 98 | } |
79 | | |
80 | | void OPENSSL_LH_flush(OPENSSL_LHASH *lh) |
81 | 232 | { |
82 | 232 | unsigned int i; |
83 | 232 | OPENSSL_LH_NODE *n, *nn; |
84 | | |
85 | 232 | if (lh == NULL) |
86 | 0 | return; |
87 | | |
88 | 4.34k | for (i = 0; i < lh->num_nodes; i++) { |
89 | 4.11k | n = lh->b[i]; |
90 | 8.30k | while (n != NULL) { |
91 | 4.19k | nn = n->next; |
92 | 4.19k | OPENSSL_free(n); |
93 | 4.19k | n = nn; |
94 | 4.19k | } |
95 | 4.11k | lh->b[i] = NULL; |
96 | 4.11k | } |
97 | | |
98 | 232 | lh->num_items = 0; |
99 | 232 | } |
100 | | |
101 | | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) |
102 | 10.6k | { |
103 | 10.6k | unsigned long hash; |
104 | 10.6k | OPENSSL_LH_NODE *nn, **rn; |
105 | 10.6k | void *ret; |
106 | | |
107 | 10.6k | lh->error = 0; |
108 | 10.6k | if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) |
109 | 0 | return NULL; /* 'lh->error++' already done in 'expand' */ |
110 | | |
111 | 10.6k | rn = getrn(lh, data, &hash); |
112 | | |
113 | 10.6k | if (*rn == NULL) { |
114 | 4.69k | if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { |
115 | 0 | lh->error++; |
116 | 0 | return NULL; |
117 | 0 | } |
118 | 4.69k | nn->data = data; |
119 | 4.69k | nn->next = NULL; |
120 | 4.69k | nn->hash = hash; |
121 | 4.69k | *rn = nn; |
122 | 4.69k | ret = NULL; |
123 | 4.69k | lh->num_items++; |
124 | 5.94k | } else { /* replace same key */ |
125 | 5.94k | ret = (*rn)->data; |
126 | 5.94k | (*rn)->data = data; |
127 | 5.94k | } |
128 | 10.6k | return ret; |
129 | 10.6k | } |
130 | | |
131 | | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) |
132 | 484 | { |
133 | 484 | unsigned long hash; |
134 | 484 | OPENSSL_LH_NODE *nn, **rn; |
135 | 484 | void *ret; |
136 | | |
137 | 484 | lh->error = 0; |
138 | 484 | rn = getrn(lh, data, &hash); |
139 | | |
140 | 484 | if (*rn == NULL) { |
141 | 0 | return NULL; |
142 | 484 | } else { |
143 | 484 | nn = *rn; |
144 | 484 | *rn = nn->next; |
145 | 484 | ret = nn->data; |
146 | 484 | OPENSSL_free(nn); |
147 | 484 | } |
148 | | |
149 | 484 | lh->num_items--; |
150 | 484 | if ((lh->num_nodes > MIN_NODES) && |
151 | 484 | (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) |
152 | 2 | contract(lh); |
153 | | |
154 | 484 | return ret; |
155 | 484 | } |
156 | | |
157 | | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) |
158 | 124k | { |
159 | 124k | unsigned long hash; |
160 | 124k | OPENSSL_LH_NODE **rn; |
161 | | |
162 | 124k | if (lh->error != 0) |
163 | 0 | lh->error = 0; |
164 | | |
165 | 124k | rn = getrn(lh, data, &hash); |
166 | | |
167 | 124k | return *rn == NULL ? NULL : (*rn)->data; |
168 | 124k | } |
169 | | |
170 | | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, |
171 | | OPENSSL_LH_DOALL_FUNC func, |
172 | | OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg) |
173 | 5.55k | { |
174 | 5.55k | int i; |
175 | 5.55k | OPENSSL_LH_NODE *a, *n; |
176 | | |
177 | 5.55k | if (lh == NULL) |
178 | 0 | return; |
179 | | |
180 | | /* |
181 | | * reverse the order so we search from 'top to bottom' We were having |
182 | | * memory leaks otherwise |
183 | | */ |
184 | 836k | for (i = lh->num_nodes - 1; i >= 0; i--) { |
185 | 830k | a = lh->b[i]; |
186 | 2.48M | while (a != NULL) { |
187 | 1.65M | n = a->next; |
188 | 1.65M | if (use_arg) |
189 | 1.65M | func_arg(a->data, arg); |
190 | 2.33k | else |
191 | 2.33k | func(a->data); |
192 | 1.65M | a = n; |
193 | 1.65M | } |
194 | 830k | } |
195 | 5.55k | } |
196 | | |
197 | | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) |
198 | 236 | { |
199 | 236 | doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL); |
200 | 236 | } |
201 | | |
202 | | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg) |
203 | 5.31k | { |
204 | 5.31k | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg); |
205 | 5.31k | } |
206 | | |
207 | | static int expand(OPENSSL_LHASH *lh) |
208 | 2.26k | { |
209 | 2.26k | OPENSSL_LH_NODE **n, **n1, **n2, *np; |
210 | 2.26k | unsigned int p, pmax, nni, j; |
211 | 2.26k | unsigned long hash; |
212 | | |
213 | 2.26k | nni = lh->num_alloc_nodes; |
214 | 2.26k | p = lh->p; |
215 | 2.26k | pmax = lh->pmax; |
216 | 2.26k | if (p + 1 >= pmax) { |
217 | 28 | j = nni * 2; |
218 | 28 | n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); |
219 | 28 | if (n == NULL) { |
220 | 0 | lh->error++; |
221 | 0 | return 0; |
222 | 0 | } |
223 | 28 | lh->b = n; |
224 | 28 | memset(n + nni, 0, sizeof(*n) * (j - nni)); |
225 | 28 | lh->pmax = nni; |
226 | 28 | lh->num_alloc_nodes = j; |
227 | 28 | lh->p = 0; |
228 | 2.23k | } else { |
229 | 2.23k | lh->p++; |
230 | 2.23k | } |
231 | | |
232 | 2.26k | lh->num_nodes++; |
233 | 2.26k | n1 = &(lh->b[p]); |
234 | 2.26k | n2 = &(lh->b[p + pmax]); |
235 | 2.26k | *n2 = NULL; |
236 | | |
237 | 9.72k | for (np = *n1; np != NULL;) { |
238 | 7.46k | hash = np->hash; |
239 | 7.46k | if ((hash % nni) != p) { /* move it */ |
240 | 1.93k | *n1 = (*n1)->next; |
241 | 1.93k | np->next = *n2; |
242 | 1.93k | *n2 = np; |
243 | 1.93k | } else |
244 | 5.53k | n1 = &((*n1)->next); |
245 | 7.46k | np = *n1; |
246 | 7.46k | } |
247 | | |
248 | 2.26k | return 1; |
249 | 2.26k | } |
250 | | |
251 | | static void contract(OPENSSL_LHASH *lh) |
252 | 2 | { |
253 | 2 | OPENSSL_LH_NODE **n, *n1, *np; |
254 | | |
255 | 2 | np = lh->b[lh->p + lh->pmax - 1]; |
256 | 2 | lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ |
257 | 2 | if (lh->p == 0) { |
258 | 0 | n = OPENSSL_realloc(lh->b, |
259 | 0 | (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); |
260 | 0 | if (n == NULL) { |
261 | | /* fputs("realloc error in lhash", stderr); */ |
262 | 0 | lh->error++; |
263 | 0 | } else { |
264 | 0 | lh->b = n; |
265 | 0 | } |
266 | 0 | lh->num_alloc_nodes /= 2; |
267 | 0 | lh->pmax /= 2; |
268 | 0 | lh->p = lh->pmax - 1; |
269 | 0 | } else |
270 | 2 | lh->p--; |
271 | | |
272 | 2 | lh->num_nodes--; |
273 | | |
274 | 2 | n1 = lh->b[(int)lh->p]; |
275 | 2 | if (n1 == NULL) |
276 | 2 | lh->b[(int)lh->p] = np; |
277 | 0 | else { |
278 | 0 | while (n1->next != NULL) |
279 | 0 | n1 = n1->next; |
280 | 0 | n1->next = np; |
281 | 0 | } |
282 | 2 | } |
283 | | |
284 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, |
285 | | const void *data, unsigned long *rhash) |
286 | 136k | { |
287 | 136k | OPENSSL_LH_NODE **ret, *n1; |
288 | 136k | unsigned long hash, nn; |
289 | 136k | OPENSSL_LH_COMPFUNC cf; |
290 | | |
291 | 136k | hash = (*(lh->hash)) (data); |
292 | 136k | *rhash = hash; |
293 | | |
294 | 136k | nn = hash % lh->pmax; |
295 | 136k | if (nn < lh->p) |
296 | 26.1k | nn = hash % lh->num_alloc_nodes; |
297 | | |
298 | 136k | cf = lh->comp; |
299 | 136k | ret = &(lh->b[(int)nn]); |
300 | 297k | for (n1 = *ret; n1 != NULL; n1 = n1->next) { |
301 | 285k | if (n1->hash != hash) { |
302 | 160k | ret = &(n1->next); |
303 | 160k | continue; |
304 | 160k | } |
305 | 124k | if (cf(n1->data, data) == 0) |
306 | 123k | break; |
307 | 309 | ret = &(n1->next); |
308 | 309 | } |
309 | 136k | return ret; |
310 | 136k | } |
311 | | |
312 | | /* |
313 | | * The following hash seems to work very well on normal text strings no |
314 | | * collisions on /usr/dict/words and it distributes on %2^n quite well, not |
315 | | * as good as MD5, but still good. |
316 | | */ |
317 | | unsigned long OPENSSL_LH_strhash(const char *c) |
318 | 37.8k | { |
319 | 37.8k | unsigned long ret = 0; |
320 | 37.8k | long n; |
321 | 37.8k | unsigned long v; |
322 | 37.8k | int r; |
323 | | |
324 | 37.8k | if ((c == NULL) || (*c == '\0')) |
325 | 13.1k | return ret; |
326 | | |
327 | 24.7k | n = 0x100; |
328 | 221k | while (*c) { |
329 | 196k | v = n | (*c); |
330 | 196k | n += 0x100; |
331 | 196k | r = (int)((v >> 2) ^ v) & 0x0f; |
332 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
333 | 196k | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
334 | 196k | ret &= 0xFFFFFFFFL; |
335 | 196k | ret ^= v * v; |
336 | 196k | c++; |
337 | 196k | } |
338 | 24.7k | return (ret >> 16) ^ ret; |
339 | 37.8k | } |
340 | | |
341 | | /* |
342 | | * Case insensitive string hashing. |
343 | | * |
344 | | * The lower/upper case bit is masked out (forcing all letters to be capitals). |
345 | | * The major side effect on non-alpha characters is mapping the symbols and |
346 | | * digits into the control character range (which should be harmless). |
347 | | * The duplication (with respect to the hash value) of printable characters |
348 | | * are that '`', '{', '|', '}' and '~' map to '@', '[', '\', ']' and '^' |
349 | | * respectively (which seems tolerable). |
350 | | * |
351 | | * For EBCDIC, the alpha mapping is to lower case, most symbols go to control |
352 | | * characters. The only duplication is '0' mapping to '^', which is better |
353 | | * than for ASCII. |
354 | | */ |
355 | | unsigned long ossl_lh_strcasehash(const char *c) |
356 | 105k | { |
357 | 105k | unsigned long ret = 0; |
358 | 105k | long n; |
359 | 105k | unsigned long v; |
360 | 105k | int r; |
361 | | #if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST) |
362 | | const long int case_adjust = ~0x40; |
363 | | #else |
364 | 105k | const long int case_adjust = ~0x20; |
365 | 105k | #endif |
366 | | |
367 | 105k | if (c == NULL || *c == '\0') |
368 | 0 | return ret; |
369 | | |
370 | 1.01M | for (n = 0x100; *c != '\0'; n += 0x100) { |
371 | 908k | v = n | (case_adjust & *c); |
372 | 908k | r = (int)((v >> 2) ^ v) & 0x0f; |
373 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
374 | 908k | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
375 | 908k | ret &= 0xFFFFFFFFL; |
376 | 908k | ret ^= v * v; |
377 | 908k | c++; |
378 | 908k | } |
379 | 105k | return (ret >> 16) ^ ret; |
380 | 105k | } |
381 | | |
382 | | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) |
383 | 5.44k | { |
384 | 5.44k | return lh ? lh->num_items : 0; |
385 | 5.44k | } |
386 | | |
387 | | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) |
388 | 8 | { |
389 | 8 | return lh->down_load; |
390 | 8 | } |
391 | | |
392 | | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) |
393 | 14 | { |
394 | 14 | lh->down_load = down_load; |
395 | 14 | } |
396 | | |
397 | | int OPENSSL_LH_error(OPENSSL_LHASH *lh) |
398 | 1.75k | { |
399 | 1.75k | return lh->error; |
400 | 1.75k | } |