Coverage Report

Created: 2024-07-27 06:36

/src/openssl/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
66.4k
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
3
{
145
3
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
3
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
3
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
3
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
3
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
3
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
3
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
3
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
3
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
3
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
8
{
162
8
    memset(out, 0, 66);
163
8
    (*((limb *) & out[0])) = in[0];
164
8
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
8
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
8
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
8
    (*((limb_aX *) & out[29])) = in[4];
168
8
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
8
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
8
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
8
    (*((limb_aX *) & out[58])) = in[8];
172
8
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
3
{
177
3
    felem_bytearray b_out;
178
3
    int num_bytes;
179
180
3
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
3
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
3
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
3
    bin66_to_felem(out, b_out);
190
3
    return 1;
191
3
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
8
{
196
8
    felem_bytearray b_out;
197
8
    felem_to_bin66(b_out, in);
198
8
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
8
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
1.96k
{
221
1.96k
    out[0] = in[0];
222
1.96k
    out[1] = in[1];
223
1.96k
    out[2] = in[2];
224
1.96k
    out[3] = in[3];
225
1.96k
    out[4] = in[4];
226
1.96k
    out[5] = in[5];
227
1.96k
    out[6] = in[6];
228
1.96k
    out[7] = in[7];
229
1.96k
    out[8] = in[8];
230
1.96k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
390
{
235
390
    out[0] += in[0];
236
390
    out[1] += in[1];
237
390
    out[2] += in[2];
238
390
    out[3] += in[3];
239
390
    out[4] += in[4];
240
390
    out[5] += in[5];
241
390
    out[6] += in[6];
242
390
    out[7] += in[7];
243
390
    out[8] += in[8];
244
390
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
4.70k
{
249
4.70k
    out[0] = in[0] * scalar;
250
4.70k
    out[1] = in[1] * scalar;
251
4.70k
    out[2] = in[2] * scalar;
252
4.70k
    out[3] = in[3] * scalar;
253
4.70k
    out[4] = in[4] * scalar;
254
4.70k
    out[5] = in[5] * scalar;
255
4.70k
    out[6] = in[6] * scalar;
256
4.70k
    out[7] = in[7] * scalar;
257
4.70k
    out[8] = in[8] * scalar;
258
4.70k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
780
{
263
780
    out[0] *= scalar;
264
780
    out[1] *= scalar;
265
780
    out[2] *= scalar;
266
780
    out[3] *= scalar;
267
780
    out[4] *= scalar;
268
780
    out[5] *= scalar;
269
780
    out[6] *= scalar;
270
780
    out[7] *= scalar;
271
780
    out[8] *= scalar;
272
780
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
260
{
277
260
    out[0] *= scalar;
278
260
    out[1] *= scalar;
279
260
    out[2] *= scalar;
280
260
    out[3] *= scalar;
281
260
    out[4] *= scalar;
282
260
    out[5] *= scalar;
283
260
    out[6] *= scalar;
284
260
    out[7] *= scalar;
285
260
    out[8] *= scalar;
286
260
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
390
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
390
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
390
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
390
    out[0] += two62m3 - in[0];
328
390
    out[1] += two62m2 - in[1];
329
390
    out[2] += two62m2 - in[2];
330
390
    out[3] += two62m2 - in[3];
331
390
    out[4] += two62m2 - in[4];
332
390
    out[5] += two62m2 - in[5];
333
390
    out[6] += two62m2 - in[6];
334
390
    out[7] += two62m2 - in[7];
335
390
    out[8] += two62m2 - in[8];
336
390
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
780
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
780
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
780
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
780
    out[0] += two63m6 - in[0];
359
780
    out[1] += two63m5 - in[1];
360
780
    out[2] += two63m5 - in[2];
361
780
    out[3] += two63m5 - in[3];
362
780
    out[4] += two63m5 - in[4];
363
780
    out[5] += two63m5 - in[5];
364
780
    out[6] += two63m5 - in[6];
365
780
    out[7] += two63m5 - in[7];
366
780
    out[8] += two63m5 - in[8];
367
780
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
260
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
260
    static const uint128_t two127m70 =
382
260
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
260
    static const uint128_t two127m69 =
384
260
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
260
    out[0] += (two127m70 - in[0]);
387
260
    out[1] += (two127m69 - in[1]);
388
260
    out[2] += (two127m69 - in[2]);
389
260
    out[3] += (two127m69 - in[3]);
390
260
    out[4] += (two127m69 - in[4]);
391
260
    out[5] += (two127m69 - in[5]);
392
260
    out[6] += (two127m69 - in[6]);
393
260
    out[7] += (two127m69 - in[7]);
394
260
    out[8] += (two127m69 - in[8]);
395
260
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
1.56k
{
406
1.56k
    felem inx2, inx4;
407
1.56k
    felem_scalar(inx2, in, 2);
408
1.56k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
1.56k
    out[0] = ((uint128_t) in[0]) * in[0];
422
1.56k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
1.56k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
1.56k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
1.56k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
1.56k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
1.56k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
1.56k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
1.56k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
1.56k
             ((uint128_t) in[1]) * inx2[5] +
431
1.56k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
1.56k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
1.56k
             ((uint128_t) in[1]) * inx2[6] +
434
1.56k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
1.56k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
1.56k
             ((uint128_t) in[1]) * inx2[7] +
437
1.56k
             ((uint128_t) in[2]) * inx2[6] +
438
1.56k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
1.56k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
1.56k
              ((uint128_t) in[2]) * inx4[7] +
452
1.56k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
1.56k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
1.56k
              ((uint128_t) in[3]) * inx4[7] +
457
1.56k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
1.56k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
1.56k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
1.56k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
1.56k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
1.56k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
1.56k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
1.56k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
1.56k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
1.56k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
1.44k
{
490
1.44k
    felem in2x2;
491
1.44k
    felem_scalar(in2x2, in2, 2);
492
493
1.44k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
1.44k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
1.44k
             ((uint128_t) in1[1]) * in2[0];
497
498
1.44k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
1.44k
             ((uint128_t) in1[1]) * in2[1] +
500
1.44k
             ((uint128_t) in1[2]) * in2[0];
501
502
1.44k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
1.44k
             ((uint128_t) in1[1]) * in2[2] +
504
1.44k
             ((uint128_t) in1[2]) * in2[1] +
505
1.44k
             ((uint128_t) in1[3]) * in2[0];
506
507
1.44k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
1.44k
             ((uint128_t) in1[1]) * in2[3] +
509
1.44k
             ((uint128_t) in1[2]) * in2[2] +
510
1.44k
             ((uint128_t) in1[3]) * in2[1] +
511
1.44k
             ((uint128_t) in1[4]) * in2[0];
512
513
1.44k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
1.44k
             ((uint128_t) in1[1]) * in2[4] +
515
1.44k
             ((uint128_t) in1[2]) * in2[3] +
516
1.44k
             ((uint128_t) in1[3]) * in2[2] +
517
1.44k
             ((uint128_t) in1[4]) * in2[1] +
518
1.44k
             ((uint128_t) in1[5]) * in2[0];
519
520
1.44k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
1.44k
             ((uint128_t) in1[1]) * in2[5] +
522
1.44k
             ((uint128_t) in1[2]) * in2[4] +
523
1.44k
             ((uint128_t) in1[3]) * in2[3] +
524
1.44k
             ((uint128_t) in1[4]) * in2[2] +
525
1.44k
             ((uint128_t) in1[5]) * in2[1] +
526
1.44k
             ((uint128_t) in1[6]) * in2[0];
527
528
1.44k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
1.44k
             ((uint128_t) in1[1]) * in2[6] +
530
1.44k
             ((uint128_t) in1[2]) * in2[5] +
531
1.44k
             ((uint128_t) in1[3]) * in2[4] +
532
1.44k
             ((uint128_t) in1[4]) * in2[3] +
533
1.44k
             ((uint128_t) in1[5]) * in2[2] +
534
1.44k
             ((uint128_t) in1[6]) * in2[1] +
535
1.44k
             ((uint128_t) in1[7]) * in2[0];
536
537
1.44k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
1.44k
             ((uint128_t) in1[1]) * in2[7] +
539
1.44k
             ((uint128_t) in1[2]) * in2[6] +
540
1.44k
             ((uint128_t) in1[3]) * in2[5] +
541
1.44k
             ((uint128_t) in1[4]) * in2[4] +
542
1.44k
             ((uint128_t) in1[5]) * in2[3] +
543
1.44k
             ((uint128_t) in1[6]) * in2[2] +
544
1.44k
             ((uint128_t) in1[7]) * in2[1] +
545
1.44k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
1.44k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
1.44k
              ((uint128_t) in1[2]) * in2x2[7] +
551
1.44k
              ((uint128_t) in1[3]) * in2x2[6] +
552
1.44k
              ((uint128_t) in1[4]) * in2x2[5] +
553
1.44k
              ((uint128_t) in1[5]) * in2x2[4] +
554
1.44k
              ((uint128_t) in1[6]) * in2x2[3] +
555
1.44k
              ((uint128_t) in1[7]) * in2x2[2] +
556
1.44k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
1.44k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
1.44k
              ((uint128_t) in1[3]) * in2x2[7] +
560
1.44k
              ((uint128_t) in1[4]) * in2x2[6] +
561
1.44k
              ((uint128_t) in1[5]) * in2x2[5] +
562
1.44k
              ((uint128_t) in1[6]) * in2x2[4] +
563
1.44k
              ((uint128_t) in1[7]) * in2x2[3] +
564
1.44k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
1.44k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
1.44k
              ((uint128_t) in1[4]) * in2x2[7] +
568
1.44k
              ((uint128_t) in1[5]) * in2x2[6] +
569
1.44k
              ((uint128_t) in1[6]) * in2x2[5] +
570
1.44k
              ((uint128_t) in1[7]) * in2x2[4] +
571
1.44k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
1.44k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
1.44k
              ((uint128_t) in1[5]) * in2x2[7] +
575
1.44k
              ((uint128_t) in1[6]) * in2x2[6] +
576
1.44k
              ((uint128_t) in1[7]) * in2x2[5] +
577
1.44k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
1.44k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
1.44k
              ((uint128_t) in1[6]) * in2x2[7] +
581
1.44k
              ((uint128_t) in1[7]) * in2x2[6] +
582
1.44k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
1.44k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
1.44k
              ((uint128_t) in1[7]) * in2x2[7] +
586
1.44k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
1.44k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
1.44k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
1.44k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
1.44k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
2.75k
{
605
2.75k
    u64 overflow1, overflow2;
606
607
2.75k
    out[0] = ((limb) in[0]) & bottom58bits;
608
2.75k
    out[1] = ((limb) in[1]) & bottom58bits;
609
2.75k
    out[2] = ((limb) in[2]) & bottom58bits;
610
2.75k
    out[3] = ((limb) in[3]) & bottom58bits;
611
2.75k
    out[4] = ((limb) in[4]) & bottom58bits;
612
2.75k
    out[5] = ((limb) in[5]) & bottom58bits;
613
2.75k
    out[6] = ((limb) in[6]) & bottom58bits;
614
2.75k
    out[7] = ((limb) in[7]) & bottom58bits;
615
2.75k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
2.75k
    out[1] += ((limb) in[0]) >> 58;
620
2.75k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
2.75k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
2.75k
    out[2] += ((limb) in[1]) >> 58;
628
2.75k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
2.75k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
2.75k
    out[3] += ((limb) in[2]) >> 58;
632
2.75k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
2.75k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
2.75k
    out[4] += ((limb) in[3]) >> 58;
636
2.75k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
2.75k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
2.75k
    out[5] += ((limb) in[4]) >> 58;
640
2.75k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
2.75k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
2.75k
    out[6] += ((limb) in[5]) >> 58;
644
2.75k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
2.75k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
2.75k
    out[7] += ((limb) in[6]) >> 58;
648
2.75k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
2.75k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
2.75k
    out[8] += ((limb) in[7]) >> 58;
652
2.75k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
2.75k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
2.75k
    overflow1 += ((limb) in[8]) >> 58;
660
2.75k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
2.75k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
2.75k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
2.75k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
2.75k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
2.75k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
2.75k
    out[1] += out[0] >> 58;
670
2.75k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
2.75k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
static void felem_square_wrapper(largefelem out, const felem in);
680
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
static void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
static void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
1.56k
# define felem_square felem_square_ref
726
1.44k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
1
{
753
1
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
1
    largefelem tmp;
755
1
    unsigned i;
756
757
1
    felem_square(tmp, in);
758
1
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
1
    felem_mul(tmp, in, ftmp);
760
1
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
1
    felem_assign(ftmp2, ftmp);
762
1
    felem_square(tmp, ftmp);
763
1
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
1
    felem_mul(tmp, in, ftmp);
765
1
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
1
    felem_square(tmp, ftmp);
767
1
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
1
    felem_square(tmp, ftmp2);
770
1
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
1
    felem_square(tmp, ftmp3);
772
1
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
1
    felem_mul(tmp, ftmp3, ftmp2);
774
1
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
1
    felem_assign(ftmp2, ftmp3);
777
1
    felem_square(tmp, ftmp3);
778
1
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
1
    felem_square(tmp, ftmp3);
780
1
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
1
    felem_square(tmp, ftmp3);
782
1
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
1
    felem_square(tmp, ftmp3);
784
1
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
1
    felem_mul(tmp, ftmp3, ftmp);
786
1
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
787
1
    felem_square(tmp, ftmp4);
788
1
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
789
1
    felem_mul(tmp, ftmp3, ftmp2);
790
1
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
791
1
    felem_assign(ftmp2, ftmp3);
792
793
9
    for (i = 0; i < 8; i++) {
794
8
        felem_square(tmp, ftmp3);
795
8
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
796
8
    }
797
1
    felem_mul(tmp, ftmp3, ftmp2);
798
1
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
799
1
    felem_assign(ftmp2, ftmp3);
800
801
17
    for (i = 0; i < 16; i++) {
802
16
        felem_square(tmp, ftmp3);
803
16
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
804
16
    }
805
1
    felem_mul(tmp, ftmp3, ftmp2);
806
1
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
807
1
    felem_assign(ftmp2, ftmp3);
808
809
33
    for (i = 0; i < 32; i++) {
810
32
        felem_square(tmp, ftmp3);
811
32
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
812
32
    }
813
1
    felem_mul(tmp, ftmp3, ftmp2);
814
1
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
815
1
    felem_assign(ftmp2, ftmp3);
816
817
65
    for (i = 0; i < 64; i++) {
818
64
        felem_square(tmp, ftmp3);
819
64
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
820
64
    }
821
1
    felem_mul(tmp, ftmp3, ftmp2);
822
1
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
823
1
    felem_assign(ftmp2, ftmp3);
824
825
129
    for (i = 0; i < 128; i++) {
826
128
        felem_square(tmp, ftmp3);
827
128
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
828
128
    }
829
1
    felem_mul(tmp, ftmp3, ftmp2);
830
1
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
831
1
    felem_assign(ftmp2, ftmp3);
832
833
257
    for (i = 0; i < 256; i++) {
834
256
        felem_square(tmp, ftmp3);
835
256
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
836
256
    }
837
1
    felem_mul(tmp, ftmp3, ftmp2);
838
1
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
839
840
10
    for (i = 0; i < 9; i++) {
841
9
        felem_square(tmp, ftmp3);
842
9
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
843
9
    }
844
1
    felem_mul(tmp, ftmp3, ftmp4);
845
1
    felem_reduce(ftmp3, tmp);   /* 2^521 - 2^2 */
846
1
    felem_mul(tmp, ftmp3, in);
847
1
    felem_reduce(out, tmp);     /* 2^521 - 3 */
848
1
}
849
850
/* This is 2^521-1, expressed as an felem */
851
static const felem kPrime = {
852
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
855
};
856
857
/*-
858
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
859
 * otherwise.
860
 * On entry:
861
 *   in[i] < 2^59 + 2^14
862
 */
863
static limb felem_is_zero(const felem in)
864
520
{
865
520
    felem ftmp;
866
520
    limb is_zero, is_p;
867
520
    felem_assign(ftmp, in);
868
869
520
    ftmp[0] += ftmp[8] >> 57;
870
520
    ftmp[8] &= bottom57bits;
871
    /* ftmp[8] < 2^57 */
872
520
    ftmp[1] += ftmp[0] >> 58;
873
520
    ftmp[0] &= bottom58bits;
874
520
    ftmp[2] += ftmp[1] >> 58;
875
520
    ftmp[1] &= bottom58bits;
876
520
    ftmp[3] += ftmp[2] >> 58;
877
520
    ftmp[2] &= bottom58bits;
878
520
    ftmp[4] += ftmp[3] >> 58;
879
520
    ftmp[3] &= bottom58bits;
880
520
    ftmp[5] += ftmp[4] >> 58;
881
520
    ftmp[4] &= bottom58bits;
882
520
    ftmp[6] += ftmp[5] >> 58;
883
520
    ftmp[5] &= bottom58bits;
884
520
    ftmp[7] += ftmp[6] >> 58;
885
520
    ftmp[6] &= bottom58bits;
886
520
    ftmp[8] += ftmp[7] >> 58;
887
520
    ftmp[7] &= bottom58bits;
888
    /* ftmp[8] < 2^57 + 4 */
889
890
    /*
891
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
892
     * than our bound for ftmp[8]. Therefore we only have to check if the
893
     * zero is zero or 2^521-1.
894
     */
895
896
520
    is_zero = 0;
897
520
    is_zero |= ftmp[0];
898
520
    is_zero |= ftmp[1];
899
520
    is_zero |= ftmp[2];
900
520
    is_zero |= ftmp[3];
901
520
    is_zero |= ftmp[4];
902
520
    is_zero |= ftmp[5];
903
520
    is_zero |= ftmp[6];
904
520
    is_zero |= ftmp[7];
905
520
    is_zero |= ftmp[8];
906
907
520
    is_zero--;
908
    /*
909
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
910
     * can be set is if is_zero was 0 before the decrement.
911
     */
912
520
    is_zero = 0 - (is_zero >> 63);
913
914
520
    is_p = ftmp[0] ^ kPrime[0];
915
520
    is_p |= ftmp[1] ^ kPrime[1];
916
520
    is_p |= ftmp[2] ^ kPrime[2];
917
520
    is_p |= ftmp[3] ^ kPrime[3];
918
520
    is_p |= ftmp[4] ^ kPrime[4];
919
520
    is_p |= ftmp[5] ^ kPrime[5];
920
520
    is_p |= ftmp[6] ^ kPrime[6];
921
520
    is_p |= ftmp[7] ^ kPrime[7];
922
520
    is_p |= ftmp[8] ^ kPrime[8];
923
924
520
    is_p--;
925
520
    is_p = 0 - (is_p >> 63);
926
927
520
    is_zero |= is_p;
928
520
    return is_zero;
929
520
}
930
931
static int felem_is_zero_int(const void *in)
932
0
{
933
0
    return (int)(felem_is_zero(in) & ((limb) 1));
934
0
}
935
936
/*-
937
 * felem_contract converts |in| to its unique, minimal representation.
938
 * On entry:
939
 *   in[i] < 2^59 + 2^14
940
 */
941
static void felem_contract(felem out, const felem in)
942
5
{
943
5
    limb is_p, is_greater, sign;
944
5
    static const limb two58 = ((limb) 1) << 58;
945
946
5
    felem_assign(out, in);
947
948
5
    out[0] += out[8] >> 57;
949
5
    out[8] &= bottom57bits;
950
    /* out[8] < 2^57 */
951
5
    out[1] += out[0] >> 58;
952
5
    out[0] &= bottom58bits;
953
5
    out[2] += out[1] >> 58;
954
5
    out[1] &= bottom58bits;
955
5
    out[3] += out[2] >> 58;
956
5
    out[2] &= bottom58bits;
957
5
    out[4] += out[3] >> 58;
958
5
    out[3] &= bottom58bits;
959
5
    out[5] += out[4] >> 58;
960
5
    out[4] &= bottom58bits;
961
5
    out[6] += out[5] >> 58;
962
5
    out[5] &= bottom58bits;
963
5
    out[7] += out[6] >> 58;
964
5
    out[6] &= bottom58bits;
965
5
    out[8] += out[7] >> 58;
966
5
    out[7] &= bottom58bits;
967
    /* out[8] < 2^57 + 4 */
968
969
    /*
970
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
971
     * out. See the comments in felem_is_zero regarding why we don't test for
972
     * other multiples of the prime.
973
     */
974
975
    /*
976
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
977
     */
978
979
5
    is_p = out[0] ^ kPrime[0];
980
5
    is_p |= out[1] ^ kPrime[1];
981
5
    is_p |= out[2] ^ kPrime[2];
982
5
    is_p |= out[3] ^ kPrime[3];
983
5
    is_p |= out[4] ^ kPrime[4];
984
5
    is_p |= out[5] ^ kPrime[5];
985
5
    is_p |= out[6] ^ kPrime[6];
986
5
    is_p |= out[7] ^ kPrime[7];
987
5
    is_p |= out[8] ^ kPrime[8];
988
989
5
    is_p--;
990
5
    is_p &= is_p << 32;
991
5
    is_p &= is_p << 16;
992
5
    is_p &= is_p << 8;
993
5
    is_p &= is_p << 4;
994
5
    is_p &= is_p << 2;
995
5
    is_p &= is_p << 1;
996
5
    is_p = 0 - (is_p >> 63);
997
5
    is_p = ~is_p;
998
999
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1000
1001
5
    out[0] &= is_p;
1002
5
    out[1] &= is_p;
1003
5
    out[2] &= is_p;
1004
5
    out[3] &= is_p;
1005
5
    out[4] &= is_p;
1006
5
    out[5] &= is_p;
1007
5
    out[6] &= is_p;
1008
5
    out[7] &= is_p;
1009
5
    out[8] &= is_p;
1010
1011
    /*
1012
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1013
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1014
     */
1015
5
    is_greater = out[8] >> 57;
1016
5
    is_greater |= is_greater << 32;
1017
5
    is_greater |= is_greater << 16;
1018
5
    is_greater |= is_greater << 8;
1019
5
    is_greater |= is_greater << 4;
1020
5
    is_greater |= is_greater << 2;
1021
5
    is_greater |= is_greater << 1;
1022
5
    is_greater = 0 - (is_greater >> 63);
1023
1024
5
    out[0] -= kPrime[0] & is_greater;
1025
5
    out[1] -= kPrime[1] & is_greater;
1026
5
    out[2] -= kPrime[2] & is_greater;
1027
5
    out[3] -= kPrime[3] & is_greater;
1028
5
    out[4] -= kPrime[4] & is_greater;
1029
5
    out[5] -= kPrime[5] & is_greater;
1030
5
    out[6] -= kPrime[6] & is_greater;
1031
5
    out[7] -= kPrime[7] & is_greater;
1032
5
    out[8] -= kPrime[8] & is_greater;
1033
1034
    /* Eliminate negative coefficients */
1035
5
    sign = -(out[0] >> 63);
1036
5
    out[0] += (two58 & sign);
1037
5
    out[1] -= (1 & sign);
1038
5
    sign = -(out[1] >> 63);
1039
5
    out[1] += (two58 & sign);
1040
5
    out[2] -= (1 & sign);
1041
5
    sign = -(out[2] >> 63);
1042
5
    out[2] += (two58 & sign);
1043
5
    out[3] -= (1 & sign);
1044
5
    sign = -(out[3] >> 63);
1045
5
    out[3] += (two58 & sign);
1046
5
    out[4] -= (1 & sign);
1047
5
    sign = -(out[4] >> 63);
1048
5
    out[4] += (two58 & sign);
1049
5
    out[5] -= (1 & sign);
1050
5
    sign = -(out[0] >> 63);
1051
5
    out[5] += (two58 & sign);
1052
5
    out[6] -= (1 & sign);
1053
5
    sign = -(out[6] >> 63);
1054
5
    out[6] += (two58 & sign);
1055
5
    out[7] -= (1 & sign);
1056
5
    sign = -(out[7] >> 63);
1057
5
    out[7] += (two58 & sign);
1058
5
    out[8] -= (1 & sign);
1059
5
    sign = -(out[5] >> 63);
1060
5
    out[5] += (two58 & sign);
1061
5
    out[6] -= (1 & sign);
1062
5
    sign = -(out[6] >> 63);
1063
5
    out[6] += (two58 & sign);
1064
5
    out[7] -= (1 & sign);
1065
5
    sign = -(out[7] >> 63);
1066
5
    out[7] += (two58 & sign);
1067
5
    out[8] -= (1 & sign);
1068
5
}
1069
1070
/*-
1071
 * Group operations
1072
 * ----------------
1073
 *
1074
 * Building on top of the field operations we have the operations on the
1075
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1076
 * coordinates */
1077
1078
/*-
1079
 * point_double calculates 2*(x_in, y_in, z_in)
1080
 *
1081
 * The method is taken from:
1082
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1083
 *
1084
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1085
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1086
static void
1087
point_double(felem x_out, felem y_out, felem z_out,
1088
             const felem x_in, const felem y_in, const felem z_in)
1089
130
{
1090
130
    largefelem tmp, tmp2;
1091
130
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1092
1093
130
    felem_assign(ftmp, x_in);
1094
130
    felem_assign(ftmp2, x_in);
1095
1096
    /* delta = z^2 */
1097
130
    felem_square(tmp, z_in);
1098
130
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1099
1100
    /* gamma = y^2 */
1101
130
    felem_square(tmp, y_in);
1102
130
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1103
1104
    /* beta = x*gamma */
1105
130
    felem_mul(tmp, x_in, gamma);
1106
130
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1107
1108
    /* alpha = 3*(x-delta)*(x+delta) */
1109
130
    felem_diff64(ftmp, delta);
1110
    /* ftmp[i] < 2^61 */
1111
130
    felem_sum64(ftmp2, delta);
1112
    /* ftmp2[i] < 2^60 + 2^15 */
1113
130
    felem_scalar64(ftmp2, 3);
1114
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1115
130
    felem_mul(tmp, ftmp, ftmp2);
1116
    /*-
1117
     * tmp[i] < 17(3*2^121 + 3*2^76)
1118
     *        = 61*2^121 + 61*2^76
1119
     *        < 64*2^121 + 64*2^76
1120
     *        = 2^127 + 2^82
1121
     *        < 2^128
1122
     */
1123
130
    felem_reduce(alpha, tmp);
1124
1125
    /* x' = alpha^2 - 8*beta */
1126
130
    felem_square(tmp, alpha);
1127
    /*
1128
     * tmp[i] < 17*2^120 < 2^125
1129
     */
1130
130
    felem_assign(ftmp, beta);
1131
130
    felem_scalar64(ftmp, 8);
1132
    /* ftmp[i] < 2^62 + 2^17 */
1133
130
    felem_diff_128_64(tmp, ftmp);
1134
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1135
130
    felem_reduce(x_out, tmp);
1136
1137
    /* z' = (y + z)^2 - gamma - delta */
1138
130
    felem_sum64(delta, gamma);
1139
    /* delta[i] < 2^60 + 2^15 */
1140
130
    felem_assign(ftmp, y_in);
1141
130
    felem_sum64(ftmp, z_in);
1142
    /* ftmp[i] < 2^60 + 2^15 */
1143
130
    felem_square(tmp, ftmp);
1144
    /*
1145
     * tmp[i] < 17(2^122) < 2^127
1146
     */
1147
130
    felem_diff_128_64(tmp, delta);
1148
    /* tmp[i] < 2^127 + 2^63 */
1149
130
    felem_reduce(z_out, tmp);
1150
1151
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1152
130
    felem_scalar64(beta, 4);
1153
    /* beta[i] < 2^61 + 2^16 */
1154
130
    felem_diff64(beta, x_out);
1155
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1156
130
    felem_mul(tmp, alpha, beta);
1157
    /*-
1158
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1159
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1160
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1161
     *        < 2^128
1162
     */
1163
130
    felem_square(tmp2, gamma);
1164
    /*-
1165
     * tmp2[i] < 17*(2^59 + 2^14)^2
1166
     *         = 17*(2^118 + 2^74 + 2^28)
1167
     */
1168
130
    felem_scalar128(tmp2, 8);
1169
    /*-
1170
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1171
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1172
     *         < 2^126
1173
     */
1174
130
    felem_diff128(tmp, tmp2);
1175
    /*-
1176
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1177
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1178
     *          2^74 + 2^69 + 2^34 + 2^30
1179
     *        < 2^128
1180
     */
1181
130
    felem_reduce(y_out, tmp);
1182
130
}
1183
1184
/* copy_conditional copies in to out iff mask is all ones. */
1185
static void copy_conditional(felem out, const felem in, limb mask)
1186
780
{
1187
780
    unsigned i;
1188
7.80k
    for (i = 0; i < NLIMBS; ++i) {
1189
7.02k
        const limb tmp = mask & (in[i] ^ out[i]);
1190
7.02k
        out[i] ^= tmp;
1191
7.02k
    }
1192
780
}
1193
1194
/*-
1195
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1196
 *
1197
 * The method is taken from
1198
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1199
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1200
 *
1201
 * This function includes a branch for checking whether the two input points
1202
 * are equal (while not equal to the point at infinity). See comment below
1203
 * on constant-time.
1204
 */
1205
static void point_add(felem x3, felem y3, felem z3,
1206
                      const felem x1, const felem y1, const felem z1,
1207
                      const int mixed, const felem x2, const felem y2,
1208
                      const felem z2)
1209
130
{
1210
130
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1211
130
    largefelem tmp, tmp2;
1212
130
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1213
130
    limb points_equal;
1214
1215
130
    z1_is_zero = felem_is_zero(z1);
1216
130
    z2_is_zero = felem_is_zero(z2);
1217
1218
    /* ftmp = z1z1 = z1**2 */
1219
130
    felem_square(tmp, z1);
1220
130
    felem_reduce(ftmp, tmp);
1221
1222
130
    if (!mixed) {
1223
        /* ftmp2 = z2z2 = z2**2 */
1224
0
        felem_square(tmp, z2);
1225
0
        felem_reduce(ftmp2, tmp);
1226
1227
        /* u1 = ftmp3 = x1*z2z2 */
1228
0
        felem_mul(tmp, x1, ftmp2);
1229
0
        felem_reduce(ftmp3, tmp);
1230
1231
        /* ftmp5 = z1 + z2 */
1232
0
        felem_assign(ftmp5, z1);
1233
0
        felem_sum64(ftmp5, z2);
1234
        /* ftmp5[i] < 2^61 */
1235
1236
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1237
0
        felem_square(tmp, ftmp5);
1238
        /* tmp[i] < 17*2^122 */
1239
0
        felem_diff_128_64(tmp, ftmp);
1240
        /* tmp[i] < 17*2^122 + 2^63 */
1241
0
        felem_diff_128_64(tmp, ftmp2);
1242
        /* tmp[i] < 17*2^122 + 2^64 */
1243
0
        felem_reduce(ftmp5, tmp);
1244
1245
        /* ftmp2 = z2 * z2z2 */
1246
0
        felem_mul(tmp, ftmp2, z2);
1247
0
        felem_reduce(ftmp2, tmp);
1248
1249
        /* s1 = ftmp6 = y1 * z2**3 */
1250
0
        felem_mul(tmp, y1, ftmp2);
1251
0
        felem_reduce(ftmp6, tmp);
1252
130
    } else {
1253
        /*
1254
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1255
         */
1256
1257
        /* u1 = ftmp3 = x1*z2z2 */
1258
130
        felem_assign(ftmp3, x1);
1259
1260
        /* ftmp5 = 2*z1z2 */
1261
130
        felem_scalar(ftmp5, z1, 2);
1262
1263
        /* s1 = ftmp6 = y1 * z2**3 */
1264
130
        felem_assign(ftmp6, y1);
1265
130
    }
1266
1267
    /* u2 = x2*z1z1 */
1268
130
    felem_mul(tmp, x2, ftmp);
1269
    /* tmp[i] < 17*2^120 */
1270
1271
    /* h = ftmp4 = u2 - u1 */
1272
130
    felem_diff_128_64(tmp, ftmp3);
1273
    /* tmp[i] < 17*2^120 + 2^63 */
1274
130
    felem_reduce(ftmp4, tmp);
1275
1276
130
    x_equal = felem_is_zero(ftmp4);
1277
1278
    /* z_out = ftmp5 * h */
1279
130
    felem_mul(tmp, ftmp5, ftmp4);
1280
130
    felem_reduce(z_out, tmp);
1281
1282
    /* ftmp = z1 * z1z1 */
1283
130
    felem_mul(tmp, ftmp, z1);
1284
130
    felem_reduce(ftmp, tmp);
1285
1286
    /* s2 = tmp = y2 * z1**3 */
1287
130
    felem_mul(tmp, y2, ftmp);
1288
    /* tmp[i] < 17*2^120 */
1289
1290
    /* r = ftmp5 = (s2 - s1)*2 */
1291
130
    felem_diff_128_64(tmp, ftmp6);
1292
    /* tmp[i] < 17*2^120 + 2^63 */
1293
130
    felem_reduce(ftmp5, tmp);
1294
130
    y_equal = felem_is_zero(ftmp5);
1295
130
    felem_scalar64(ftmp5, 2);
1296
    /* ftmp5[i] < 2^61 */
1297
1298
    /*
1299
     * The formulae are incorrect if the points are equal, in affine coordinates
1300
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1301
     * happens.
1302
     *
1303
     * We use bitwise operations to avoid potential side-channels introduced by
1304
     * the short-circuiting behaviour of boolean operators.
1305
     *
1306
     * The special case of either point being the point at infinity (z1 and/or
1307
     * z2 are zero), is handled separately later on in this function, so we
1308
     * avoid jumping to point_double here in those special cases.
1309
     *
1310
     * Notice the comment below on the implications of this branching for timing
1311
     * leaks and why it is considered practically irrelevant.
1312
     */
1313
130
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1314
1315
130
    if (points_equal) {
1316
        /*
1317
         * This is obviously not constant-time but it will almost-never happen
1318
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1319
         * where the intermediate value gets very close to the group order.
1320
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1321
         * for the scalar, it's possible for the intermediate value to be a small
1322
         * negative multiple of the base point, and for the final signed digit
1323
         * to be the same value. We believe that this only occurs for the scalar
1324
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1325
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1326
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1327
         * the final digit is also -9G. Since this only happens for a single
1328
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1329
         * check whether a secret scalar was that exact value, can already do
1330
         * so.)
1331
         */
1332
0
        point_double(x3, y3, z3, x1, y1, z1);
1333
0
        return;
1334
0
    }
1335
1336
    /* I = ftmp = (2h)**2 */
1337
130
    felem_assign(ftmp, ftmp4);
1338
130
    felem_scalar64(ftmp, 2);
1339
    /* ftmp[i] < 2^61 */
1340
130
    felem_square(tmp, ftmp);
1341
    /* tmp[i] < 17*2^122 */
1342
130
    felem_reduce(ftmp, tmp);
1343
1344
    /* J = ftmp2 = h * I */
1345
130
    felem_mul(tmp, ftmp4, ftmp);
1346
130
    felem_reduce(ftmp2, tmp);
1347
1348
    /* V = ftmp4 = U1 * I */
1349
130
    felem_mul(tmp, ftmp3, ftmp);
1350
130
    felem_reduce(ftmp4, tmp);
1351
1352
    /* x_out = r**2 - J - 2V */
1353
130
    felem_square(tmp, ftmp5);
1354
    /* tmp[i] < 17*2^122 */
1355
130
    felem_diff_128_64(tmp, ftmp2);
1356
    /* tmp[i] < 17*2^122 + 2^63 */
1357
130
    felem_assign(ftmp3, ftmp4);
1358
130
    felem_scalar64(ftmp4, 2);
1359
    /* ftmp4[i] < 2^61 */
1360
130
    felem_diff_128_64(tmp, ftmp4);
1361
    /* tmp[i] < 17*2^122 + 2^64 */
1362
130
    felem_reduce(x_out, tmp);
1363
1364
    /* y_out = r(V-x_out) - 2 * s1 * J */
1365
130
    felem_diff64(ftmp3, x_out);
1366
    /*
1367
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1368
     */
1369
130
    felem_mul(tmp, ftmp5, ftmp3);
1370
    /* tmp[i] < 17*2^122 */
1371
130
    felem_mul(tmp2, ftmp6, ftmp2);
1372
    /* tmp2[i] < 17*2^120 */
1373
130
    felem_scalar128(tmp2, 2);
1374
    /* tmp2[i] < 17*2^121 */
1375
130
    felem_diff128(tmp, tmp2);
1376
        /*-
1377
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1378
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1379
         *        < 2^127
1380
         */
1381
130
    felem_reduce(y_out, tmp);
1382
1383
130
    copy_conditional(x_out, x2, z1_is_zero);
1384
130
    copy_conditional(x_out, x1, z2_is_zero);
1385
130
    copy_conditional(y_out, y2, z1_is_zero);
1386
130
    copy_conditional(y_out, y1, z2_is_zero);
1387
130
    copy_conditional(z_out, z2, z1_is_zero);
1388
130
    copy_conditional(z_out, z1, z2_is_zero);
1389
130
    felem_assign(x3, x_out);
1390
130
    felem_assign(y3, y_out);
1391
130
    felem_assign(z3, z_out);
1392
130
}
1393
1394
/*-
1395
 * Base point pre computation
1396
 * --------------------------
1397
 *
1398
 * Two different sorts of precomputed tables are used in the following code.
1399
 * Each contain various points on the curve, where each point is three field
1400
 * elements (x, y, z).
1401
 *
1402
 * For the base point table, z is usually 1 (0 for the point at infinity).
1403
 * This table has 16 elements:
1404
 * index | bits    | point
1405
 * ------+---------+------------------------------
1406
 *     0 | 0 0 0 0 | 0G
1407
 *     1 | 0 0 0 1 | 1G
1408
 *     2 | 0 0 1 0 | 2^130G
1409
 *     3 | 0 0 1 1 | (2^130 + 1)G
1410
 *     4 | 0 1 0 0 | 2^260G
1411
 *     5 | 0 1 0 1 | (2^260 + 1)G
1412
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1413
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1414
 *     8 | 1 0 0 0 | 2^390G
1415
 *     9 | 1 0 0 1 | (2^390 + 1)G
1416
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1417
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1418
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1419
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1420
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1421
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1422
 *
1423
 * The reason for this is so that we can clock bits into four different
1424
 * locations when doing simple scalar multiplies against the base point.
1425
 *
1426
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1427
1428
/* gmul is the table of precomputed base points */
1429
static const felem gmul[16][3] = {
1430
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1431
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1433
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1434
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1435
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1436
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1437
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1438
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1439
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1440
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1441
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1442
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1443
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1444
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1445
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1446
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1447
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1448
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1449
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1450
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1451
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1452
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1453
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1454
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1455
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1456
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1457
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1458
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1459
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1460
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1461
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1462
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1463
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1464
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1465
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1466
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1467
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1468
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1469
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1470
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1471
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1472
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1473
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1474
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1475
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1476
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1477
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1478
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1479
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1480
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1481
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1482
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1483
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1484
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1485
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1486
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1487
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1488
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1489
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1490
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1491
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1492
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1493
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1494
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1495
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1496
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1497
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1498
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1499
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1500
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1501
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1502
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1503
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1504
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1505
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1506
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1507
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1508
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1509
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1510
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1511
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1512
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1513
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1514
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1515
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1516
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1517
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1518
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1519
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1520
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1521
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1522
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1523
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1524
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1525
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1526
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1527
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1528
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1529
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1530
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1531
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1532
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1533
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1534
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1535
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1536
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1537
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1538
};
1539
1540
/*
1541
 * select_point selects the |idx|th point from a precomputation table and
1542
 * copies it to out.
1543
 */
1544
 /* pre_comp below is of the size provided in |size| */
1545
static void select_point(const limb idx, unsigned int size,
1546
                         const felem pre_comp[][3], felem out[3])
1547
131
{
1548
131
    unsigned i, j;
1549
131
    limb *outlimbs = &out[0][0];
1550
1551
131
    memset(out, 0, sizeof(*out) * 3);
1552
1553
2.22k
    for (i = 0; i < size; i++) {
1554
2.09k
        const limb *inlimbs = &pre_comp[i][0][0];
1555
2.09k
        limb mask = i ^ idx;
1556
2.09k
        mask |= mask >> 4;
1557
2.09k
        mask |= mask >> 2;
1558
2.09k
        mask |= mask >> 1;
1559
2.09k
        mask &= 1;
1560
2.09k
        mask--;
1561
58.6k
        for (j = 0; j < NLIMBS * 3; j++)
1562
56.5k
            outlimbs[j] |= inlimbs[j] & mask;
1563
2.09k
    }
1564
131
}
1565
1566
/* get_bit returns the |i|th bit in |in| */
1567
static char get_bit(const felem_bytearray in, int i)
1568
521
{
1569
521
    if (i < 0)
1570
0
        return 0;
1571
521
    return (in[i >> 3] >> (i & 7)) & 1;
1572
521
}
1573
1574
/*
1575
 * Interleaved point multiplication using precomputed point multiples: The
1576
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1577
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1578
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1579
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1580
 */
1581
static void batch_mul(felem x_out, felem y_out, felem z_out,
1582
                      const felem_bytearray scalars[],
1583
                      const unsigned num_points, const u8 *g_scalar,
1584
                      const int mixed, const felem pre_comp[][17][3],
1585
                      const felem g_pre_comp[16][3])
1586
1
{
1587
1
    int i, skip;
1588
1
    unsigned num, gen_mul = (g_scalar != NULL);
1589
1
    felem nq[3], tmp[4];
1590
1
    limb bits;
1591
1
    u8 sign, digit;
1592
1593
    /* set nq to the point at infinity */
1594
1
    memset(nq, 0, sizeof(nq));
1595
1596
    /*
1597
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1598
     * of the generator (last quarter of rounds) and additions of other
1599
     * points multiples (every 5th round).
1600
     */
1601
1
    skip = 1;                   /* save two point operations in the first
1602
                                 * round */
1603
132
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1604
        /* double */
1605
131
        if (!skip)
1606
130
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1607
1608
        /* add multiples of the generator */
1609
131
        if (gen_mul && (i <= 130)) {
1610
131
            bits = get_bit(g_scalar, i + 390) << 3;
1611
131
            if (i < 130) {
1612
130
                bits |= get_bit(g_scalar, i + 260) << 2;
1613
130
                bits |= get_bit(g_scalar, i + 130) << 1;
1614
130
                bits |= get_bit(g_scalar, i);
1615
130
            }
1616
            /* select the point to add, in constant time */
1617
131
            select_point(bits, 16, g_pre_comp, tmp);
1618
131
            if (!skip) {
1619
                /* The 1 argument below is for "mixed" */
1620
130
                point_add(nq[0], nq[1], nq[2],
1621
130
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1622
130
            } else {
1623
1
                memcpy(nq, tmp, 3 * sizeof(felem));
1624
1
                skip = 0;
1625
1
            }
1626
131
        }
1627
1628
        /* do other additions every 5 doublings */
1629
131
        if (num_points && (i % 5 == 0)) {
1630
            /* loop over all scalars */
1631
0
            for (num = 0; num < num_points; ++num) {
1632
0
                bits = get_bit(scalars[num], i + 4) << 5;
1633
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1634
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1635
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1636
0
                bits |= get_bit(scalars[num], i) << 1;
1637
0
                bits |= get_bit(scalars[num], i - 1);
1638
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1639
1640
                /*
1641
                 * select the point to add or subtract, in constant time
1642
                 */
1643
0
                select_point(digit, 17, pre_comp[num], tmp);
1644
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1645
                                            * point */
1646
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1647
1648
0
                if (!skip) {
1649
0
                    point_add(nq[0], nq[1], nq[2],
1650
0
                              nq[0], nq[1], nq[2],
1651
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1652
0
                } else {
1653
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1654
0
                    skip = 0;
1655
0
                }
1656
0
            }
1657
0
        }
1658
131
    }
1659
1
    felem_assign(x_out, nq[0]);
1660
1
    felem_assign(y_out, nq[1]);
1661
1
    felem_assign(z_out, nq[2]);
1662
1
}
1663
1664
/* Precomputation for the group generator. */
1665
struct nistp521_pre_comp_st {
1666
    felem g_pre_comp[16][3];
1667
    CRYPTO_REF_COUNT references;
1668
};
1669
1670
const EC_METHOD *EC_GFp_nistp521_method(void)
1671
1
{
1672
1
    static const EC_METHOD ret = {
1673
1
        EC_FLAGS_DEFAULT_OCT,
1674
1
        NID_X9_62_prime_field,
1675
1
        ossl_ec_GFp_nistp521_group_init,
1676
1
        ossl_ec_GFp_simple_group_finish,
1677
1
        ossl_ec_GFp_simple_group_clear_finish,
1678
1
        ossl_ec_GFp_nist_group_copy,
1679
1
        ossl_ec_GFp_nistp521_group_set_curve,
1680
1
        ossl_ec_GFp_simple_group_get_curve,
1681
1
        ossl_ec_GFp_simple_group_get_degree,
1682
1
        ossl_ec_group_simple_order_bits,
1683
1
        ossl_ec_GFp_simple_group_check_discriminant,
1684
1
        ossl_ec_GFp_simple_point_init,
1685
1
        ossl_ec_GFp_simple_point_finish,
1686
1
        ossl_ec_GFp_simple_point_clear_finish,
1687
1
        ossl_ec_GFp_simple_point_copy,
1688
1
        ossl_ec_GFp_simple_point_set_to_infinity,
1689
1
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1690
1
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1691
1
        0 /* point_set_compressed_coordinates */ ,
1692
1
        0 /* point2oct */ ,
1693
1
        0 /* oct2point */ ,
1694
1
        ossl_ec_GFp_simple_add,
1695
1
        ossl_ec_GFp_simple_dbl,
1696
1
        ossl_ec_GFp_simple_invert,
1697
1
        ossl_ec_GFp_simple_is_at_infinity,
1698
1
        ossl_ec_GFp_simple_is_on_curve,
1699
1
        ossl_ec_GFp_simple_cmp,
1700
1
        ossl_ec_GFp_simple_make_affine,
1701
1
        ossl_ec_GFp_simple_points_make_affine,
1702
1
        ossl_ec_GFp_nistp521_points_mul,
1703
1
        ossl_ec_GFp_nistp521_precompute_mult,
1704
1
        ossl_ec_GFp_nistp521_have_precompute_mult,
1705
1
        ossl_ec_GFp_nist_field_mul,
1706
1
        ossl_ec_GFp_nist_field_sqr,
1707
1
        0 /* field_div */ ,
1708
1
        ossl_ec_GFp_simple_field_inv,
1709
1
        0 /* field_encode */ ,
1710
1
        0 /* field_decode */ ,
1711
1
        0,                      /* field_set_to_one */
1712
1
        ossl_ec_key_simple_priv2oct,
1713
1
        ossl_ec_key_simple_oct2priv,
1714
1
        0, /* set private */
1715
1
        ossl_ec_key_simple_generate_key,
1716
1
        ossl_ec_key_simple_check_key,
1717
1
        ossl_ec_key_simple_generate_public_key,
1718
1
        0, /* keycopy */
1719
1
        0, /* keyfinish */
1720
1
        ossl_ecdh_simple_compute_key,
1721
1
        ossl_ecdsa_simple_sign_setup,
1722
1
        ossl_ecdsa_simple_sign_sig,
1723
1
        ossl_ecdsa_simple_verify_sig,
1724
1
        0, /* field_inverse_mod_ord */
1725
1
        0, /* blind_coordinates */
1726
1
        0, /* ladder_pre */
1727
1
        0, /* ladder_step */
1728
1
        0  /* ladder_post */
1729
1
    };
1730
1731
1
    return &ret;
1732
1
}
1733
1734
/******************************************************************************/
1735
/*
1736
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1737
 */
1738
1739
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1740
0
{
1741
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1742
1743
0
    if (ret == NULL)
1744
0
        return ret;
1745
1746
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1747
0
        OPENSSL_free(ret);
1748
0
        return NULL;
1749
0
    }
1750
0
    return ret;
1751
0
}
1752
1753
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1754
0
{
1755
0
    int i;
1756
0
    if (p != NULL)
1757
0
        CRYPTO_UP_REF(&p->references, &i);
1758
0
    return p;
1759
0
}
1760
1761
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
1765
0
    if (p == NULL)
1766
0
        return;
1767
1768
0
    CRYPTO_DOWN_REF(&p->references, &i);
1769
0
    REF_PRINT_COUNT("EC_nistp521", p);
1770
0
    if (i > 0)
1771
0
        return;
1772
0
    REF_ASSERT_ISNT(i < 0);
1773
1774
0
    CRYPTO_FREE_REF(&p->references);
1775
0
    OPENSSL_free(p);
1776
0
}
1777
1778
/******************************************************************************/
1779
/*
1780
 * OPENSSL EC_METHOD FUNCTIONS
1781
 */
1782
1783
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1784
2
{
1785
2
    int ret;
1786
2
    ret = ossl_ec_GFp_simple_group_init(group);
1787
2
    group->a_is_minus3 = 1;
1788
2
    return ret;
1789
2
}
1790
1791
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1792
                                         const BIGNUM *a, const BIGNUM *b,
1793
                                         BN_CTX *ctx)
1794
1
{
1795
1
    int ret = 0;
1796
1
    BIGNUM *curve_p, *curve_a, *curve_b;
1797
1
#ifndef FIPS_MODULE
1798
1
    BN_CTX *new_ctx = NULL;
1799
1800
1
    if (ctx == NULL)
1801
0
        ctx = new_ctx = BN_CTX_new();
1802
1
#endif
1803
1
    if (ctx == NULL)
1804
0
        return 0;
1805
1806
1
    BN_CTX_start(ctx);
1807
1
    curve_p = BN_CTX_get(ctx);
1808
1
    curve_a = BN_CTX_get(ctx);
1809
1
    curve_b = BN_CTX_get(ctx);
1810
1
    if (curve_b == NULL)
1811
0
        goto err;
1812
1
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1813
1
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1814
1
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1815
1
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1816
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1817
0
        goto err;
1818
0
    }
1819
1
    group->field_mod_func = BN_nist_mod_521;
1820
1
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1821
1
 err:
1822
1
    BN_CTX_end(ctx);
1823
1
#ifndef FIPS_MODULE
1824
1
    BN_CTX_free(new_ctx);
1825
1
#endif
1826
1
    return ret;
1827
1
}
1828
1829
/*
1830
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1831
 * (X/Z^2, Y/Z^3)
1832
 */
1833
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1834
                                                      const EC_POINT *point,
1835
                                                      BIGNUM *x, BIGNUM *y,
1836
                                                      BN_CTX *ctx)
1837
1
{
1838
1
    felem z1, z2, x_in, y_in, x_out, y_out;
1839
1
    largefelem tmp;
1840
1841
1
    if (EC_POINT_is_at_infinity(group, point)) {
1842
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1843
0
        return 0;
1844
0
    }
1845
1
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1846
1
        (!BN_to_felem(z1, point->Z)))
1847
0
        return 0;
1848
1
    felem_inv(z2, z1);
1849
1
    felem_square(tmp, z2);
1850
1
    felem_reduce(z1, tmp);
1851
1
    felem_mul(tmp, x_in, z1);
1852
1
    felem_reduce(x_in, tmp);
1853
1
    felem_contract(x_out, x_in);
1854
1
    if (x != NULL) {
1855
1
        if (!felem_to_BN(x, x_out)) {
1856
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1857
0
            return 0;
1858
0
        }
1859
1
    }
1860
1
    felem_mul(tmp, z1, z2);
1861
1
    felem_reduce(z1, tmp);
1862
1
    felem_mul(tmp, y_in, z1);
1863
1
    felem_reduce(y_in, tmp);
1864
1
    felem_contract(y_out, y_in);
1865
1
    if (y != NULL) {
1866
1
        if (!felem_to_BN(y, y_out)) {
1867
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1868
0
            return 0;
1869
0
        }
1870
1
    }
1871
1
    return 1;
1872
1
}
1873
1874
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1875
static void make_points_affine(size_t num, felem points[][3],
1876
                               felem tmp_felems[])
1877
0
{
1878
    /*
1879
     * Runs in constant time, unless an input is the point at infinity (which
1880
     * normally shouldn't happen).
1881
     */
1882
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1883
0
                                                  points,
1884
0
                                                  sizeof(felem),
1885
0
                                                  tmp_felems,
1886
0
                                                  (void (*)(void *))felem_one,
1887
0
                                                  felem_is_zero_int,
1888
0
                                                  (void (*)(void *, const void *))
1889
0
                                                  felem_assign,
1890
0
                                                  (void (*)(void *, const void *))
1891
0
                                                  felem_square_reduce, (void (*)
1892
0
                                                                        (void *,
1893
0
                                                                         const void
1894
0
                                                                         *,
1895
0
                                                                         const void
1896
0
                                                                         *))
1897
0
                                                  felem_mul_reduce,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_inv,
1900
0
                                                  (void (*)(void *, const void *))
1901
0
                                                  felem_contract);
1902
0
}
1903
1904
/*
1905
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1906
 * values Result is stored in r (r can equal one of the inputs).
1907
 */
1908
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1909
                                    const BIGNUM *scalar, size_t num,
1910
                                    const EC_POINT *points[],
1911
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1912
1
{
1913
1
    int ret = 0;
1914
1
    int j;
1915
1
    int mixed = 0;
1916
1
    BIGNUM *x, *y, *z, *tmp_scalar;
1917
1
    felem_bytearray g_secret;
1918
1
    felem_bytearray *secrets = NULL;
1919
1
    felem (*pre_comp)[17][3] = NULL;
1920
1
    felem *tmp_felems = NULL;
1921
1
    unsigned i;
1922
1
    int num_bytes;
1923
1
    int have_pre_comp = 0;
1924
1
    size_t num_points = num;
1925
1
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1926
1
    NISTP521_PRE_COMP *pre = NULL;
1927
1
    felem(*g_pre_comp)[3] = NULL;
1928
1
    EC_POINT *generator = NULL;
1929
1
    const EC_POINT *p = NULL;
1930
1
    const BIGNUM *p_scalar = NULL;
1931
1932
1
    BN_CTX_start(ctx);
1933
1
    x = BN_CTX_get(ctx);
1934
1
    y = BN_CTX_get(ctx);
1935
1
    z = BN_CTX_get(ctx);
1936
1
    tmp_scalar = BN_CTX_get(ctx);
1937
1
    if (tmp_scalar == NULL)
1938
0
        goto err;
1939
1940
1
    if (scalar != NULL) {
1941
1
        pre = group->pre_comp.nistp521;
1942
1
        if (pre)
1943
            /* we have precomputation, try to use it */
1944
0
            g_pre_comp = &pre->g_pre_comp[0];
1945
1
        else
1946
            /* try to use the standard precomputation */
1947
1
            g_pre_comp = (felem(*)[3]) gmul;
1948
1
        generator = EC_POINT_new(group);
1949
1
        if (generator == NULL)
1950
0
            goto err;
1951
        /* get the generator from precomputation */
1952
1
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1953
1
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1954
1
            !felem_to_BN(z, g_pre_comp[1][2])) {
1955
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1956
0
            goto err;
1957
0
        }
1958
1
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1959
1
                                                                generator,
1960
1
                                                                x, y, z, ctx))
1961
0
            goto err;
1962
1
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1963
            /* precomputation matches generator */
1964
1
            have_pre_comp = 1;
1965
0
        else
1966
            /*
1967
             * we don't have valid precomputation: treat the generator as a
1968
             * random point
1969
             */
1970
0
            num_points++;
1971
1
    }
1972
1973
1
    if (num_points > 0) {
1974
0
        if (num_points >= 2) {
1975
            /*
1976
             * unless we precompute multiples for just one point, converting
1977
             * those into affine form is time well spent
1978
             */
1979
0
            mixed = 1;
1980
0
        }
1981
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1982
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1983
0
        if (mixed)
1984
0
            tmp_felems =
1985
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1986
0
        if ((secrets == NULL) || (pre_comp == NULL)
1987
0
            || (mixed && (tmp_felems == NULL)))
1988
0
            goto err;
1989
1990
        /*
1991
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1992
         * i.e., they contribute nothing to the linear combination
1993
         */
1994
0
        for (i = 0; i < num_points; ++i) {
1995
0
            if (i == num) {
1996
                /*
1997
                 * we didn't have a valid precomputation, so we pick the
1998
                 * generator
1999
                 */
2000
0
                p = EC_GROUP_get0_generator(group);
2001
0
                p_scalar = scalar;
2002
0
            } else {
2003
                /* the i^th point */
2004
0
                p = points[i];
2005
0
                p_scalar = scalars[i];
2006
0
            }
2007
0
            if ((p_scalar != NULL) && (p != NULL)) {
2008
                /* reduce scalar to 0 <= scalar < 2^521 */
2009
0
                if ((BN_num_bits(p_scalar) > 521)
2010
0
                    || (BN_is_negative(p_scalar))) {
2011
                    /*
2012
                     * this is an unusual input, and we don't guarantee
2013
                     * constant-timeness
2014
                     */
2015
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2016
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2017
0
                        goto err;
2018
0
                    }
2019
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2020
0
                                               secrets[i], sizeof(secrets[i]));
2021
0
                } else {
2022
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2023
0
                                               secrets[i], sizeof(secrets[i]));
2024
0
                }
2025
0
                if (num_bytes < 0) {
2026
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                    goto err;
2028
0
                }
2029
                /* precompute multiples */
2030
0
                if ((!BN_to_felem(x_out, p->X)) ||
2031
0
                    (!BN_to_felem(y_out, p->Y)) ||
2032
0
                    (!BN_to_felem(z_out, p->Z)))
2033
0
                    goto err;
2034
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2035
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2036
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2037
0
                for (j = 2; j <= 16; ++j) {
2038
0
                    if (j & 1) {
2039
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2040
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2041
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2042
0
                                  pre_comp[i][j - 1][0],
2043
0
                                  pre_comp[i][j - 1][1],
2044
0
                                  pre_comp[i][j - 1][2]);
2045
0
                    } else {
2046
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2047
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2048
0
                                     pre_comp[i][j / 2][1],
2049
0
                                     pre_comp[i][j / 2][2]);
2050
0
                    }
2051
0
                }
2052
0
            }
2053
0
        }
2054
0
        if (mixed)
2055
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2056
0
    }
2057
2058
    /* the scalar for the generator */
2059
1
    if ((scalar != NULL) && (have_pre_comp)) {
2060
1
        memset(g_secret, 0, sizeof(g_secret));
2061
        /* reduce scalar to 0 <= scalar < 2^521 */
2062
1
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2063
            /*
2064
             * this is an unusual input, and we don't guarantee
2065
             * constant-timeness
2066
             */
2067
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2068
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2069
0
                goto err;
2070
0
            }
2071
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2072
1
        } else {
2073
1
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2074
1
        }
2075
        /* do the multiplication with generator precomputation */
2076
1
        batch_mul(x_out, y_out, z_out,
2077
1
                  (const felem_bytearray(*))secrets, num_points,
2078
1
                  g_secret,
2079
1
                  mixed, (const felem(*)[17][3])pre_comp,
2080
1
                  (const felem(*)[3])g_pre_comp);
2081
1
    } else {
2082
        /* do the multiplication without generator precomputation */
2083
0
        batch_mul(x_out, y_out, z_out,
2084
0
                  (const felem_bytearray(*))secrets, num_points,
2085
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2086
0
    }
2087
    /* reduce the output to its unique minimal representation */
2088
1
    felem_contract(x_in, x_out);
2089
1
    felem_contract(y_in, y_out);
2090
1
    felem_contract(z_in, z_out);
2091
1
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2092
1
        (!felem_to_BN(z, z_in))) {
2093
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2094
0
        goto err;
2095
0
    }
2096
1
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2097
1
                                                             ctx);
2098
2099
1
 err:
2100
1
    BN_CTX_end(ctx);
2101
1
    EC_POINT_free(generator);
2102
1
    OPENSSL_free(secrets);
2103
1
    OPENSSL_free(pre_comp);
2104
1
    OPENSSL_free(tmp_felems);
2105
1
    return ret;
2106
1
}
2107
2108
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2109
0
{
2110
0
    int ret = 0;
2111
0
    NISTP521_PRE_COMP *pre = NULL;
2112
0
    int i, j;
2113
0
    BIGNUM *x, *y;
2114
0
    EC_POINT *generator = NULL;
2115
0
    felem tmp_felems[16];
2116
0
#ifndef FIPS_MODULE
2117
0
    BN_CTX *new_ctx = NULL;
2118
0
#endif
2119
2120
    /* throw away old precomputation */
2121
0
    EC_pre_comp_free(group);
2122
2123
0
#ifndef FIPS_MODULE
2124
0
    if (ctx == NULL)
2125
0
        ctx = new_ctx = BN_CTX_new();
2126
0
#endif
2127
0
    if (ctx == NULL)
2128
0
        return 0;
2129
2130
0
    BN_CTX_start(ctx);
2131
0
    x = BN_CTX_get(ctx);
2132
0
    y = BN_CTX_get(ctx);
2133
0
    if (y == NULL)
2134
0
        goto err;
2135
    /* get the generator */
2136
0
    if (group->generator == NULL)
2137
0
        goto err;
2138
0
    generator = EC_POINT_new(group);
2139
0
    if (generator == NULL)
2140
0
        goto err;
2141
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2142
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2143
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2144
0
        goto err;
2145
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2146
0
        goto err;
2147
    /*
2148
     * if the generator is the standard one, use built-in precomputation
2149
     */
2150
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2151
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2152
0
        goto done;
2153
0
    }
2154
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2155
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2156
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2157
0
        goto err;
2158
    /* compute 2^130*G, 2^260*G, 2^390*G */
2159
0
    for (i = 1; i <= 4; i <<= 1) {
2160
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2161
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2162
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2163
0
        for (j = 0; j < 129; ++j) {
2164
0
            point_double(pre->g_pre_comp[2 * i][0],
2165
0
                         pre->g_pre_comp[2 * i][1],
2166
0
                         pre->g_pre_comp[2 * i][2],
2167
0
                         pre->g_pre_comp[2 * i][0],
2168
0
                         pre->g_pre_comp[2 * i][1],
2169
0
                         pre->g_pre_comp[2 * i][2]);
2170
0
        }
2171
0
    }
2172
    /* g_pre_comp[0] is the point at infinity */
2173
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2174
    /* the remaining multiples */
2175
    /* 2^130*G + 2^260*G */
2176
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2177
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2178
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2179
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2180
0
              pre->g_pre_comp[2][2]);
2181
    /* 2^130*G + 2^390*G */
2182
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2183
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2184
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2185
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2186
0
              pre->g_pre_comp[2][2]);
2187
    /* 2^260*G + 2^390*G */
2188
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2189
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2190
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2191
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2192
0
              pre->g_pre_comp[4][2]);
2193
    /* 2^130*G + 2^260*G + 2^390*G */
2194
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2195
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2196
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2197
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2198
0
              pre->g_pre_comp[2][2]);
2199
0
    for (i = 1; i < 8; ++i) {
2200
        /* odd multiples: add G */
2201
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2202
0
                  pre->g_pre_comp[2 * i + 1][1],
2203
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2204
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2205
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2206
0
                  pre->g_pre_comp[1][2]);
2207
0
    }
2208
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2209
2210
0
 done:
2211
0
    SETPRECOMP(group, nistp521, pre);
2212
0
    ret = 1;
2213
0
    pre = NULL;
2214
0
 err:
2215
0
    BN_CTX_end(ctx);
2216
0
    EC_POINT_free(generator);
2217
0
#ifndef FIPS_MODULE
2218
0
    BN_CTX_free(new_ctx);
2219
0
#endif
2220
0
    EC_nistp521_pre_comp_free(pre);
2221
0
    return ret;
2222
0
}
2223
2224
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2225
0
{
2226
0
    return HAVEPRECOMP(group, nistp521);
2227
0
}