/src/openssl/crypto/ml_kem/ml_kem.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <openssl/byteorder.h>  | 
11  |  | #include <openssl/rand.h>  | 
12  |  | #include "crypto/ml_kem.h"  | 
13  |  | #include "internal/common.h"  | 
14  |  | #include "internal/constant_time.h"  | 
15  |  | #include "internal/sha3.h"  | 
16  |  |  | 
17  |  | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)  | 
18  |  | #include <valgrind/memcheck.h>  | 
19  |  | #endif  | 
20  |  |  | 
21  |  | #if ML_KEM_SEED_BYTES != ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES  | 
22  |  | # error "ML-KEM keygen seed length != shared secret + random bytes length"  | 
23  |  | #endif  | 
24  |  | #if ML_KEM_SHARED_SECRET_BYTES != ML_KEM_RANDOM_BYTES  | 
25  |  | # error "Invalid unequal lengths of ML-KEM shared secret and random inputs"  | 
26  |  | #endif  | 
27  |  |  | 
28  |  | #if UINT_MAX < UINT32_MAX  | 
29  |  | # error "Unsupported compiler: sizeof(unsigned int) < sizeof(uint32_t)"  | 
30  |  | #endif  | 
31  |  |  | 
32  |  | /* Handy function-like bit-extraction macros */  | 
33  | 0  | #define bit0(b)     ((b) & 1)  | 
34  | 0  | #define bitn(n, b)  (((b) >> n) & 1)  | 
35  |  |  | 
36  |  | /*  | 
37  |  |  * 12 bits are sufficient to losslessly represent values in [0, q-1].  | 
38  |  |  * INVERSE_DEGREE is (n/2)^-1 mod q; used in inverse NTT.  | 
39  |  |  */  | 
40  | 0  | #define DEGREE          ML_KEM_DEGREE  | 
41  |  | #define INVERSE_DEGREE  (ML_KEM_PRIME - 2 * 13)  | 
42  |  | #define LOG2PRIME       12  | 
43  |  | #define BARRETT_SHIFT   (2 * LOG2PRIME)  | 
44  |  |  | 
45  |  | #ifdef SHA3_BLOCKSIZE  | 
46  |  | # define SHAKE128_BLOCKSIZE SHA3_BLOCKSIZE(128)  | 
47  |  | #endif  | 
48  |  |  | 
49  |  | /*  | 
50  |  |  * Return whether a value that can only be 0 or 1 is non-zero, in constant time  | 
51  |  |  * in practice!  The return value is a mask that is all ones if true, and all  | 
52  |  |  * zeros otherwise (twos-complement arithmentic assumed for unsigned values).  | 
53  |  |  *  | 
54  |  |  * Although this is used in constant-time selects, we omit a value barrier  | 
55  |  |  * here.  Value barriers impede auto-vectorization (likely because it forces  | 
56  |  |  * the value to transit through a general-purpose register). On AArch64, this  | 
57  |  |  * is a difference of 2x.  | 
58  |  |  *  | 
59  |  |  * We usually add value barriers to selects because Clang turns consecutive  | 
60  |  |  * selects with the same condition into a branch instead of CMOV/CSEL. This  | 
61  |  |  * condition does not occur in Kyber, so omitting it seems to be safe so far,  | 
62  |  |  * but see |cbd_2|, |cbd_3|, where reduction needs to be specialised to the  | 
63  |  |  * sign of the input, rather than adding |q| in advance, and using the generic  | 
64  |  |  * |reduce_once|.  (David Benjamin, Chromium)  | 
65  |  |  */  | 
66  |  | #if 0  | 
67  |  | # define constish_time_non_zero(b) (~constant_time_is_zero(b));  | 
68  |  | #else  | 
69  | 0  | # define constish_time_non_zero(b) (0u - (b))  | 
70  |  | #endif  | 
71  |  |  | 
72  |  | /*  | 
73  |  |  * The scalar rejection-sampling buffer size needs to be a multiple of 12, but  | 
74  |  |  * is otherwise arbitrary, the preferred block size matches the internal buffer  | 
75  |  |  * size of SHAKE128, avoiding internal buffering and copying in SHAKE128. That  | 
76  |  |  * block size of (1600 - 256)/8 bytes, or 168, just happens to divide by 12!  | 
77  |  |  *  | 
78  |  |  * If the blocksize is unknown, or is not divisible by 12, 168 is used as a  | 
79  |  |  * fallback.  | 
80  |  |  */  | 
81  |  | #if defined(SHAKE128_BLOCKSIZE) && (SHAKE128_BLOCKSIZE) % 12 == 0  | 
82  |  | # define SCALAR_SAMPLING_BUFSIZE (SHAKE128_BLOCKSIZE)  | 
83  |  | #else  | 
84  |  | # define SCALAR_SAMPLING_BUFSIZE 168  | 
85  |  | #endif  | 
86  |  |  | 
87  |  | /*  | 
88  |  |  * Structure of keys  | 
89  |  |  */  | 
90  |  | typedef struct ossl_ml_kem_scalar_st { | 
91  |  |     /* On every function entry and exit, 0 <= c[i] < ML_KEM_PRIME. */  | 
92  |  |     uint16_t c[ML_KEM_DEGREE];  | 
93  |  | } scalar;  | 
94  |  |  | 
95  |  | /* Key material allocation layout */  | 
96  |  | #define DECLARE_ML_KEM_KEYDATA(name, rank, private_sz) \  | 
97  |  |     struct name##_alloc { \ | 
98  |  |         /* Public vector |t| */ \  | 
99  |  |         scalar tbuf[(rank)]; \  | 
100  |  |         /* Pre-computed matrix |m| (FIPS 203 |A| transpose) */ \  | 
101  |  |         scalar mbuf[(rank)*(rank)] \  | 
102  |  |         /* optional private key data */ \  | 
103  |  |         private_sz \  | 
104  |  |     }  | 
105  |  |  | 
106  |  | /* Declare variant-specific public and private storage */  | 
107  |  | #define DECLARE_ML_KEM_VARIANT_KEYDATA(bits) \  | 
108  |  |     DECLARE_ML_KEM_KEYDATA(pubkey_##bits, ML_KEM_##bits##_RANK,;); \  | 
109  |  |     DECLARE_ML_KEM_KEYDATA(prvkey_##bits, ML_KEM_##bits##_RANK,;\  | 
110  |  |         scalar sbuf[ML_KEM_##bits##_RANK]; \  | 
111  |  |         uint8_t zbuf[2 * ML_KEM_RANDOM_BYTES];)  | 
112  |  | DECLARE_ML_KEM_VARIANT_KEYDATA(512);  | 
113  |  | DECLARE_ML_KEM_VARIANT_KEYDATA(768);  | 
114  |  | DECLARE_ML_KEM_VARIANT_KEYDATA(1024);  | 
115  |  | #undef DECLARE_ML_KEM_VARIANT_KEYDATA  | 
116  |  | #undef DECLARE_ML_KEM_KEYDATA  | 
117  |  |  | 
118  |  | typedef __owur  | 
119  |  | int (*CBD_FUNC)(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],  | 
120  |  |                 EVP_MD_CTX *mdctx, const ML_KEM_KEY *key);  | 
121  |  | static void scalar_encode(uint8_t *out, const scalar *s, int bits);  | 
122  |  |  | 
123  |  | /*  | 
124  |  |  * The wire-form of a losslessly encoded vector uses 12-bits per element.  | 
125  |  |  *  | 
126  |  |  * The wire-form public key consists of the lossless encoding of the public  | 
127  |  |  * vector |t|, followed by the public seed |rho|.  | 
128  |  |  *  | 
129  |  |  * Our serialised private key concatenates serialisations of the private vector  | 
130  |  |  * |s|, the public key, the public key hash, and the failure secret |z|.  | 
131  |  |  */  | 
132  |  | #define VECTOR_BYTES(b)     ((3 * DEGREE / 2) * ML_KEM_##b##_RANK)  | 
133  |  | #define PUBKEY_BYTES(b)     (VECTOR_BYTES(b) + ML_KEM_RANDOM_BYTES)  | 
134  |  | #define PRVKEY_BYTES(b)     (2 * PUBKEY_BYTES(b) + ML_KEM_PKHASH_BYTES)  | 
135  |  |  | 
136  |  | /*  | 
137  |  |  * Encapsulation produces a vector "u" and a scalar "v", whose coordinates  | 
138  |  |  * (numbers modulo the ML-KEM prime "q") are lossily encoded using as "du" and  | 
139  |  |  * "dv" bits, respectively.  This encoding is the ciphertext input for  | 
140  |  |  * decapsulation.  | 
141  |  |  */  | 
142  |  | #define U_VECTOR_BYTES(b)   ((DEGREE / 8) * ML_KEM_##b##_DU * ML_KEM_##b##_RANK)  | 
143  |  | #define V_SCALAR_BYTES(b)   ((DEGREE / 8) * ML_KEM_##b##_DV)  | 
144  |  | #define CTEXT_BYTES(b)      (U_VECTOR_BYTES(b) + V_SCALAR_BYTES(b))  | 
145  |  |  | 
146  |  | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)  | 
147  |  |  | 
148  |  | /*  | 
149  |  |  * CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region  | 
150  |  |  * of memory as secret. Secret data is tracked as it flows to registers and  | 
151  |  |  * other parts of a memory. If secret data is used as a condition for a branch,  | 
152  |  |  * or as a memory index, it will trigger warnings in valgrind.  | 
153  |  |  */  | 
154  |  | # define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)  | 
155  |  |  | 
156  |  | /*  | 
157  |  |  * CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that  | 
158  |  |  * region of memory as public. Public data is not subject to constant-time  | 
159  |  |  * rules.  | 
160  |  |  */  | 
161  |  | # define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)  | 
162  |  |  | 
163  |  | #else  | 
164  |  |  | 
165  |  | # define CONSTTIME_SECRET(ptr, len)  | 
166  |  | # define CONSTTIME_DECLASSIFY(ptr, len)  | 
167  |  |  | 
168  |  | #endif  | 
169  |  |  | 
170  |  | /*  | 
171  |  |  * Indices of slots in the vinfo tables below  | 
172  |  |  */  | 
173  | 0  | #define ML_KEM_512_VINFO    0  | 
174  | 0  | #define ML_KEM_768_VINFO    1  | 
175  | 0  | #define ML_KEM_1024_VINFO   2  | 
176  |  |  | 
177  |  | /*  | 
178  |  |  * Per-variant fixed parameters  | 
179  |  |  */  | 
180  |  | static const ML_KEM_VINFO vinfo_map[3] = { | 
181  |  |     { | 
182  |  |         "ML-KEM-512",  | 
183  |  |         PRVKEY_BYTES(512),  | 
184  |  |         sizeof(struct prvkey_512_alloc),  | 
185  |  |         PUBKEY_BYTES(512),  | 
186  |  |         sizeof(struct pubkey_512_alloc),  | 
187  |  |         CTEXT_BYTES(512),  | 
188  |  |         VECTOR_BYTES(512),  | 
189  |  |         U_VECTOR_BYTES(512),  | 
190  |  |         EVP_PKEY_ML_KEM_512,  | 
191  |  |         ML_KEM_512_BITS,  | 
192  |  |         ML_KEM_512_RANK,  | 
193  |  |         ML_KEM_512_DU,  | 
194  |  |         ML_KEM_512_DV,  | 
195  |  |         ML_KEM_512_SECBITS,  | 
196  |  |         ML_KEM_512_SECURITY_CATEGORY  | 
197  |  |     },  | 
198  |  |     { | 
199  |  |         "ML-KEM-768",  | 
200  |  |         PRVKEY_BYTES(768),  | 
201  |  |         sizeof(struct prvkey_768_alloc),  | 
202  |  |         PUBKEY_BYTES(768),  | 
203  |  |         sizeof(struct pubkey_768_alloc),  | 
204  |  |         CTEXT_BYTES(768),  | 
205  |  |         VECTOR_BYTES(768),  | 
206  |  |         U_VECTOR_BYTES(768),  | 
207  |  |         EVP_PKEY_ML_KEM_768,  | 
208  |  |         ML_KEM_768_BITS,  | 
209  |  |         ML_KEM_768_RANK,  | 
210  |  |         ML_KEM_768_DU,  | 
211  |  |         ML_KEM_768_DV,  | 
212  |  |         ML_KEM_768_SECBITS,  | 
213  |  |         ML_KEM_768_SECURITY_CATEGORY  | 
214  |  |     },  | 
215  |  |     { | 
216  |  |         "ML-KEM-1024",  | 
217  |  |         PRVKEY_BYTES(1024),  | 
218  |  |         sizeof(struct prvkey_1024_alloc),  | 
219  |  |         PUBKEY_BYTES(1024),  | 
220  |  |         sizeof(struct pubkey_1024_alloc),  | 
221  |  |         CTEXT_BYTES(1024),  | 
222  |  |         VECTOR_BYTES(1024),  | 
223  |  |         U_VECTOR_BYTES(1024),  | 
224  |  |         EVP_PKEY_ML_KEM_1024,  | 
225  |  |         ML_KEM_1024_BITS,  | 
226  |  |         ML_KEM_1024_RANK,  | 
227  |  |         ML_KEM_1024_DU,  | 
228  |  |         ML_KEM_1024_DV,  | 
229  |  |         ML_KEM_1024_SECBITS,  | 
230  |  |         ML_KEM_1024_SECURITY_CATEGORY  | 
231  |  |     }  | 
232  |  | };  | 
233  |  |  | 
234  |  | /*  | 
235  |  |  * Remainders modulo `kPrime`, for sufficiently small inputs, are computed in  | 
236  |  |  * constant time via Barrett reduction, and a final call to reduce_once(),  | 
237  |  |  * which reduces inputs that are at most 2*kPrime and is also constant-time.  | 
238  |  |  */  | 
239  |  | static const int kPrime = ML_KEM_PRIME;  | 
240  |  | static const unsigned int kBarrettShift = BARRETT_SHIFT;  | 
241  |  | static const size_t   kBarrettMultiplier = (1 << BARRETT_SHIFT) / ML_KEM_PRIME;  | 
242  |  | static const uint16_t kHalfPrime = (ML_KEM_PRIME - 1) / 2;  | 
243  |  | static const uint16_t kInverseDegree = INVERSE_DEGREE;  | 
244  |  |  | 
245  |  | /*  | 
246  |  |  * Python helper:  | 
247  |  |  *  | 
248  |  |  * p = 3329  | 
249  |  |  * def bitreverse(i):  | 
250  |  |  *     ret = 0  | 
251  |  |  *     for n in range(7):  | 
252  |  |  *         bit = i & 1  | 
253  |  |  *         ret <<= 1  | 
254  |  |  *         ret |= bit  | 
255  |  |  *         i >>= 1  | 
256  |  |  *     return ret  | 
257  |  |  */  | 
258  |  |  | 
259  |  | /*-  | 
260  |  |  * First precomputed array from Appendix A of FIPS 203, or else Python:  | 
261  |  |  * kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)]  | 
262  |  |  */  | 
263  |  | static const uint16_t kNTTRoots[128] = { | 
264  |  |     1,    1729, 2580, 3289, 2642, 630,  1897, 848,  | 
265  |  |     1062, 1919, 193,  797,  2786, 3260, 569,  1746,  | 
266  |  |     296,  2447, 1339, 1476, 3046, 56,   2240, 1333,  | 
267  |  |     1426, 2094, 535,  2882, 2393, 2879, 1974, 821,  | 
268  |  |     289,  331,  3253, 1756, 1197, 2304, 2277, 2055,  | 
269  |  |     650,  1977, 2513, 632,  2865, 33,   1320, 1915,  | 
270  |  |     2319, 1435, 807,  452,  1438, 2868, 1534, 2402,  | 
271  |  |     2647, 2617, 1481, 648,  2474, 3110, 1227, 910,  | 
272  |  |     17,   2761, 583,  2649, 1637, 723,  2288, 1100,  | 
273  |  |     1409, 2662, 3281, 233,  756,  2156, 3015, 3050,  | 
274  |  |     1703, 1651, 2789, 1789, 1847, 952,  1461, 2687,  | 
275  |  |     939,  2308, 2437, 2388, 733,  2337, 268,  641,  | 
276  |  |     1584, 2298, 2037, 3220, 375,  2549, 2090, 1645,  | 
277  |  |     1063, 319,  2773, 757,  2099, 561,  2466, 2594,  | 
278  |  |     2804, 1092, 403,  1026, 1143, 2150, 2775, 886,  | 
279  |  |     1722, 1212, 1874, 1029, 2110, 2935, 885,  2154,  | 
280  |  | };  | 
281  |  |  | 
282  |  | /*  | 
283  |  |  * InverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)]  | 
284  |  |  * Listed in order of use in the inverse NTT loop (index 0 is skipped):  | 
285  |  |  *  | 
286  |  |  *  0, 64, 65, ..., 127, 32, 33, ..., 63, 16, 17, ..., 31, 8, 9, ...  | 
287  |  |  */  | 
288  |  | static const uint16_t kInverseNTTRoots[128] = { | 
289  |  |     1,    1175, 2444, 394,  1219, 2300, 1455, 2117,  | 
290  |  |     1607, 2443, 554,  1179, 2186, 2303, 2926, 2237,  | 
291  |  |     525,  735,  863,  2768, 1230, 2572, 556,  3010,  | 
292  |  |     2266, 1684, 1239, 780,  2954, 109,  1292, 1031,  | 
293  |  |     1745, 2688, 3061, 992,  2596, 941,  892,  1021,  | 
294  |  |     2390, 642,  1868, 2377, 1482, 1540, 540,  1678,  | 
295  |  |     1626, 279,  314,  1173, 2573, 3096, 48,   667,  | 
296  |  |     1920, 2229, 1041, 2606, 1692, 680,  2746, 568,  | 
297  |  |     3312, 2419, 2102, 219,  855,  2681, 1848, 712,  | 
298  |  |     682,  927,  1795, 461,  1891, 2877, 2522, 1894,  | 
299  |  |     1010, 1414, 2009, 3296, 464,  2697, 816,  1352,  | 
300  |  |     2679, 1274, 1052, 1025, 2132, 1573, 76,   2998,  | 
301  |  |     3040, 2508, 1355, 450,  936,  447,  2794, 1235,  | 
302  |  |     1903, 1996, 1089, 3273, 283,  1853, 1990, 882,  | 
303  |  |     3033, 1583, 2760, 69,   543,  2532, 3136, 1410,  | 
304  |  |     2267, 2481, 1432, 2699, 687,  40,   749,  1600,  | 
305  |  | };  | 
306  |  |  | 
307  |  | /*  | 
308  |  |  * Second precomputed array from Appendix A of FIPS 203 (normalised positive),  | 
309  |  |  * or else Python:  | 
310  |  |  * ModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)]  | 
311  |  |  */  | 
312  |  | static const uint16_t kModRoots[128] = { | 
313  |  |     17,   3312, 2761, 568,  583,  2746, 2649, 680,  1637, 1692, 723,  2606,  | 
314  |  |     2288, 1041, 1100, 2229, 1409, 1920, 2662, 667,  3281, 48,   233,  3096,  | 
315  |  |     756,  2573, 2156, 1173, 3015, 314,  3050, 279,  1703, 1626, 1651, 1678,  | 
316  |  |     2789, 540,  1789, 1540, 1847, 1482, 952,  2377, 1461, 1868, 2687, 642,  | 
317  |  |     939,  2390, 2308, 1021, 2437, 892,  2388, 941,  733,  2596, 2337, 992,  | 
318  |  |     268,  3061, 641,  2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109,  | 
319  |  |     375,  2954, 2549, 780,  2090, 1239, 1645, 1684, 1063, 2266, 319,  3010,  | 
320  |  |     2773, 556,  757,  2572, 2099, 1230, 561,  2768, 2466, 863,  2594, 735,  | 
321  |  |     2804, 525,  1092, 2237, 403,  2926, 1026, 2303, 1143, 2186, 2150, 1179,  | 
322  |  |     2775, 554,  886,  2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300,  | 
323  |  |     2110, 1219, 2935, 394,  885,  2444, 2154, 1175,  | 
324  |  | };  | 
325  |  |  | 
326  |  | /*  | 
327  |  |  * single_keccak hashes |inlen| bytes from |in| and writes |outlen| bytes of  | 
328  |  |  * output to |out|. If the |md| specifies a fixed-output function, like  | 
329  |  |  * SHA3-256, then |outlen| must be the correct length for that function.  | 
330  |  |  */  | 
331  |  | static __owur  | 
332  |  | int single_keccak(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen,  | 
333  |  |                   EVP_MD_CTX *mdctx)  | 
334  | 0  | { | 
335  | 0  |     unsigned int sz = (unsigned int) outlen;  | 
336  |  | 
  | 
337  | 0  |     if (!EVP_DigestUpdate(mdctx, in, inlen))  | 
338  | 0  |         return 0;  | 
339  | 0  |     if (EVP_MD_xof(EVP_MD_CTX_get0_md(mdctx)))  | 
340  | 0  |         return EVP_DigestFinalXOF(mdctx, out, outlen);  | 
341  | 0  |     return EVP_DigestFinal_ex(mdctx, out, &sz)  | 
342  | 0  |         && ossl_assert((size_t) sz == outlen);  | 
343  | 0  | }  | 
344  |  |  | 
345  |  | /*  | 
346  |  |  * FIPS 203, Section 4.1, equation (4.3): PRF. Takes 32+1 input bytes, and uses  | 
347  |  |  * SHAKE256 to produce the input to SamplePolyCBD_eta: FIPS 203, algorithm 8.  | 
348  |  |  */  | 
349  |  | static __owur  | 
350  |  | int prf(uint8_t *out, size_t len, const uint8_t in[ML_KEM_RANDOM_BYTES + 1],  | 
351  |  |         EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
352  | 0  | { | 
353  | 0  |     return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL)  | 
354  | 0  |         && single_keccak(out, len, in, ML_KEM_RANDOM_BYTES + 1, mdctx);  | 
355  | 0  | }  | 
356  |  |  | 
357  |  | /*  | 
358  |  |  * FIPS 203, Section 4.1, equation (4.4): H.  SHA3-256 hash of a variable  | 
359  |  |  * length input, producing 32 bytes of output.  | 
360  |  |  */  | 
361  |  | static __owur  | 
362  |  | int hash_h(uint8_t out[ML_KEM_PKHASH_BYTES], const uint8_t *in, size_t len,  | 
363  |  |            EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
364  | 0  | { | 
365  | 0  |     return EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL)  | 
366  | 0  |         && single_keccak(out, ML_KEM_PKHASH_BYTES, in, len, mdctx);  | 
367  | 0  | }  | 
368  |  |  | 
369  |  | /* Incremental hash_h of expanded public key */  | 
370  |  | static int  | 
371  |  | hash_h_pubkey(uint8_t pkhash[ML_KEM_PKHASH_BYTES],  | 
372  |  |               EVP_MD_CTX *mdctx, ML_KEM_KEY *key)  | 
373  | 0  | { | 
374  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
375  | 0  |     const scalar *t = key->t, *end = t + vinfo->rank;  | 
376  | 0  |     unsigned int sz;  | 
377  |  | 
  | 
378  | 0  |     if (!EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL))  | 
379  | 0  |         return 0;  | 
380  |  |  | 
381  | 0  |     do { | 
382  | 0  |         uint8_t buf[3 * DEGREE / 2];  | 
383  |  | 
  | 
384  | 0  |         scalar_encode(buf, t++, 12);  | 
385  | 0  |         if (!EVP_DigestUpdate(mdctx, buf, sizeof(buf)))  | 
386  | 0  |             return 0;  | 
387  | 0  |     } while (t < end);  | 
388  |  |  | 
389  | 0  |     if (!EVP_DigestUpdate(mdctx, key->rho, ML_KEM_RANDOM_BYTES))  | 
390  | 0  |         return 0;  | 
391  | 0  |     return EVP_DigestFinal_ex(mdctx, pkhash, &sz)  | 
392  | 0  |         && ossl_assert(sz == ML_KEM_PKHASH_BYTES);  | 
393  | 0  | }  | 
394  |  |  | 
395  |  | /*  | 
396  |  |  * FIPS 203, Section 4.1, equation (4.5): G.  SHA3-512 hash of a variable  | 
397  |  |  * length input, producing 64 bytes of output, in particular the seeds  | 
398  |  |  * (d,z) for key generation.  | 
399  |  |  */  | 
400  |  | static __owur  | 
401  |  | int hash_g(uint8_t out[ML_KEM_SEED_BYTES], const uint8_t *in, size_t len,  | 
402  |  |            EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
403  | 0  | { | 
404  | 0  |     return EVP_DigestInit_ex(mdctx, key->sha3_512_md, NULL)  | 
405  | 0  |         && single_keccak(out, ML_KEM_SEED_BYTES, in, len, mdctx);  | 
406  | 0  | }  | 
407  |  |  | 
408  |  | /*  | 
409  |  |  * FIPS 203, Section 4.1, equation (4.4): J. SHAKE256 taking a variable length  | 
410  |  |  * input to compute a 32-byte implicit rejection shared secret, of the same  | 
411  |  |  * length as the expected shared secret.  (Computed even on success to avoid  | 
412  |  |  * side-channel leaks).  | 
413  |  |  */  | 
414  |  | static __owur  | 
415  |  | int kdf(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],  | 
416  |  |         const uint8_t z[ML_KEM_RANDOM_BYTES],  | 
417  |  |         const uint8_t *ctext, size_t len,  | 
418  |  |         EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
419  | 0  | { | 
420  | 0  |     return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL)  | 
421  | 0  |         && EVP_DigestUpdate(mdctx, z, ML_KEM_RANDOM_BYTES)  | 
422  | 0  |         && EVP_DigestUpdate(mdctx, ctext, len)  | 
423  | 0  |         && EVP_DigestFinalXOF(mdctx, out, ML_KEM_SHARED_SECRET_BYTES);  | 
424  | 0  | }  | 
425  |  |  | 
426  |  | /*  | 
427  |  |  * FIPS 203, Section 4.2.2, Algorithm 7: "SampleNTT" (steps 3-17, steps 1, 2  | 
428  |  |  * are performed by the caller). Rejection-samples a Keccak stream to get  | 
429  |  |  * uniformly distributed elements in the range [0,q). This is used for matrix  | 
430  |  |  * expansion and only operates on public inputs.  | 
431  |  |  */  | 
432  |  | static __owur  | 
433  |  | int sample_scalar(scalar *out, EVP_MD_CTX *mdctx)  | 
434  | 0  | { | 
435  | 0  |     uint16_t *curr = out->c, *endout = curr + DEGREE;  | 
436  | 0  |     uint8_t buf[SCALAR_SAMPLING_BUFSIZE], *in;  | 
437  | 0  |     uint8_t *endin = buf + sizeof(buf);  | 
438  | 0  |     uint16_t d;  | 
439  | 0  |     uint8_t b1, b2, b3;  | 
440  |  | 
  | 
441  | 0  |     do { | 
442  | 0  |         if (!EVP_DigestSqueeze(mdctx, in = buf, sizeof(buf)))  | 
443  | 0  |             return 0;  | 
444  | 0  |         do { | 
445  | 0  |             b1 = *in++;  | 
446  | 0  |             b2 = *in++;  | 
447  | 0  |             b3 = *in++;  | 
448  |  | 
  | 
449  | 0  |             if (curr >= endout)  | 
450  | 0  |                 break;  | 
451  | 0  |             if ((d = ((b2 & 0x0f) << 8) + b1) < kPrime)  | 
452  | 0  |                 *curr++ = d;  | 
453  | 0  |             if (curr >= endout)  | 
454  | 0  |                 break;  | 
455  | 0  |             if ((d = (b3 << 4) + (b2 >> 4)) < kPrime)  | 
456  | 0  |                 *curr++ = d;  | 
457  | 0  |         } while (in < endin);  | 
458  | 0  |     } while (curr < endout);  | 
459  | 0  |     return 1;  | 
460  | 0  | }  | 
461  |  |  | 
462  |  | /*-  | 
463  |  |  * reduce_once reduces 0 <= x < 2*kPrime, mod kPrime.  | 
464  |  |  *  | 
465  |  |  * Subtract |q| if the input is larger, without exposing a side-channel,  | 
466  |  |  * avoiding the "clangover" attack.  See |constish_time_non_zero| for a  | 
467  |  |  * discussion on why the value barrier is by default omitted.  | 
468  |  |  */  | 
469  |  | static __owur uint16_t reduce_once(uint16_t x)  | 
470  | 0  | { | 
471  | 0  |     const uint16_t subtracted = x - kPrime;  | 
472  | 0  |     uint16_t mask = constish_time_non_zero(subtracted >> 15);  | 
473  |  | 
  | 
474  | 0  |     return (mask & x) | (~mask & subtracted);  | 
475  | 0  | }  | 
476  |  |  | 
477  |  | /*  | 
478  |  |  * Constant-time reduce x mod kPrime using Barrett reduction. x must be less  | 
479  |  |  * than kPrime + 2 * kPrime^2.  This is sufficient to reduce a product of  | 
480  |  |  * two already reduced u_int16 values, in fact it is sufficient for each  | 
481  |  |  * to be less than 2^12, because (kPrime * (2 * kPrime + 1)) > 2^24.  | 
482  |  |  */  | 
483  |  | static __owur uint16_t reduce(uint32_t x)  | 
484  | 0  | { | 
485  | 0  |     uint64_t product = (uint64_t)x * kBarrettMultiplier;  | 
486  | 0  |     uint32_t quotient = (uint32_t)(product >> kBarrettShift);  | 
487  | 0  |     uint32_t remainder = x - quotient * kPrime;  | 
488  |  | 
  | 
489  | 0  |     return reduce_once(remainder);  | 
490  | 0  | }  | 
491  |  |  | 
492  |  | /* Multiply a scalar by a constant. */  | 
493  |  | static void scalar_mult_const(scalar *s, uint16_t a)  | 
494  | 0  | { | 
495  | 0  |     uint16_t *curr = s->c, *end = curr + DEGREE, tmp;  | 
496  |  | 
  | 
497  | 0  |     do { | 
498  | 0  |         tmp = reduce(*curr * a);  | 
499  | 0  |         *curr++ = tmp;  | 
500  | 0  |     } while (curr < end);  | 
501  | 0  | }  | 
502  |  |  | 
503  |  | /*-  | 
504  |  |  * FIPS 203, Section 4.3, Algoritm 9: "NTT".  | 
505  |  |  * In-place number theoretic transform of a given scalar.  Note that ML-KEM's  | 
506  |  |  * kPrime 3329 does not have a 512th root of unity, so this transform leaves  | 
507  |  |  * off the last iteration of the usual FFT code, with the 128 relevant roots of  | 
508  |  |  * unity being stored in NTTRoots.  This means the output should be seen as 128  | 
509  |  |  * elements in GF(3329^2), with the coefficients of the elements being  | 
510  |  |  * consecutive entries in |s->c|.  | 
511  |  |  */  | 
512  |  | static void scalar_ntt(scalar *s)  | 
513  | 0  | { | 
514  | 0  |     const uint16_t *roots = kNTTRoots;  | 
515  | 0  |     uint16_t *end = s->c + DEGREE;  | 
516  | 0  |     int offset = DEGREE / 2;  | 
517  |  | 
  | 
518  | 0  |     do { | 
519  | 0  |         uint16_t *curr = s->c, *peer;  | 
520  |  | 
  | 
521  | 0  |         do { | 
522  | 0  |             uint16_t *pause = curr + offset, even, odd;  | 
523  | 0  |             uint32_t zeta = *++roots;  | 
524  |  | 
  | 
525  | 0  |             peer = pause;  | 
526  | 0  |             do { | 
527  | 0  |                 even = *curr;  | 
528  | 0  |                 odd = reduce(*peer * zeta);  | 
529  | 0  |                 *peer++ = reduce_once(even - odd + kPrime);  | 
530  | 0  |                 *curr++ = reduce_once(odd + even);  | 
531  | 0  |             } while (curr < pause);  | 
532  | 0  |         } while ((curr = peer) < end);  | 
533  | 0  |     } while ((offset >>= 1) >= 2);  | 
534  | 0  | }  | 
535  |  |  | 
536  |  | /*-  | 
537  |  |  * FIPS 203, Section 4.3, Algoritm 10: "NTT^(-1)".  | 
538  |  |  * In-place inverse number theoretic transform of a given scalar, with pairs of  | 
539  |  |  * entries of s->v being interpreted as elements of GF(3329^2). Just as with  | 
540  |  |  * the number theoretic transform, this leaves off the first step of the normal  | 
541  |  |  * iFFT to account for the fact that 3329 does not have a 512th root of unity,  | 
542  |  |  * using the precomputed 128 roots of unity stored in InverseNTTRoots.  | 
543  |  |  */  | 
544  |  | static void scalar_inverse_ntt(scalar *s)  | 
545  | 0  | { | 
546  | 0  |     const uint16_t *roots = kInverseNTTRoots;  | 
547  | 0  |     uint16_t *end = s->c + DEGREE;  | 
548  | 0  |     int offset = 2;  | 
549  |  | 
  | 
550  | 0  |     do { | 
551  | 0  |         uint16_t *curr = s->c, *peer;  | 
552  |  | 
  | 
553  | 0  |         do { | 
554  | 0  |             uint16_t *pause = curr + offset, even, odd;  | 
555  | 0  |             uint32_t zeta = *++roots;  | 
556  |  | 
  | 
557  | 0  |             peer = pause;  | 
558  | 0  |             do { | 
559  | 0  |                 even = *curr;  | 
560  | 0  |                 odd = *peer;  | 
561  | 0  |                 *peer++ = reduce(zeta * (even - odd + kPrime));  | 
562  | 0  |                 *curr++ = reduce_once(odd + even);  | 
563  | 0  |             } while (curr < pause);  | 
564  | 0  |         } while ((curr = peer) < end);  | 
565  | 0  |     } while ((offset <<= 1) < DEGREE);  | 
566  | 0  |     scalar_mult_const(s, kInverseDegree);  | 
567  | 0  | }  | 
568  |  |  | 
569  |  | /* Addition updating the LHS scalar in-place. */  | 
570  |  | static void scalar_add(scalar *lhs, const scalar *rhs)  | 
571  | 0  | { | 
572  | 0  |     int i;  | 
573  |  | 
  | 
574  | 0  |     for (i = 0; i < DEGREE; i++)  | 
575  | 0  |         lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]);  | 
576  | 0  | }  | 
577  |  |  | 
578  |  | /* Subtraction updating the LHS scalar in-place. */  | 
579  |  | static void scalar_sub(scalar *lhs, const scalar *rhs)  | 
580  | 0  | { | 
581  | 0  |     int i;  | 
582  |  | 
  | 
583  | 0  |     for (i = 0; i < DEGREE; i++)  | 
584  | 0  |         lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime);  | 
585  | 0  | }  | 
586  |  |  | 
587  |  | /*  | 
588  |  |  * Multiplying two scalars in the number theoretically transformed state. Since  | 
589  |  |  * 3329 does not have a 512th root of unity, this means we have to interpret  | 
590  |  |  * the 2*ith and (2*i+1)th entries of the scalar as elements of  | 
591  |  |  * GF(3329)[X]/(X^2 - 17^(2*bitreverse(i)+1)).  | 
592  |  |  *  | 
593  |  |  * The value of 17^(2*bitreverse(i)+1) mod 3329 is stored in the precomputed  | 
594  |  |  * ModRoots table. Note that our Barrett transform only allows us to multipy  | 
595  |  |  * two reduced numbers together, so we need some intermediate reduction steps,  | 
596  |  |  * even if an uint64_t could hold 3 multiplied numbers.  | 
597  |  |  */  | 
598  |  | static void scalar_mult(scalar *out, const scalar *lhs,  | 
599  |  |                         const scalar *rhs)  | 
600  | 0  | { | 
601  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
602  | 0  |     const uint16_t *lc = lhs->c, *rc = rhs->c;  | 
603  | 0  |     const uint16_t *roots = kModRoots;  | 
604  |  | 
  | 
605  | 0  |     do { | 
606  | 0  |         uint32_t l0 = *lc++, r0 = *rc++;  | 
607  | 0  |         uint32_t l1 = *lc++, r1 = *rc++;  | 
608  | 0  |         uint32_t zetapow = *roots++;  | 
609  |  | 
  | 
610  | 0  |         *curr++ = reduce(l0 * r0 + reduce(l1 * r1) * zetapow);  | 
611  | 0  |         *curr++ = reduce(l0 * r1 + l1 * r0);  | 
612  | 0  |     } while (curr < end);  | 
613  | 0  | }  | 
614  |  |  | 
615  |  | /* Above, but add the result to an existing scalar */  | 
616  |  | static ossl_inline  | 
617  |  | void scalar_mult_add(scalar *out, const scalar *lhs,  | 
618  |  |                      const scalar *rhs)  | 
619  | 0  | { | 
620  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
621  | 0  |     const uint16_t *lc = lhs->c, *rc = rhs->c;  | 
622  | 0  |     const uint16_t *roots = kModRoots;  | 
623  |  | 
  | 
624  | 0  |     do { | 
625  | 0  |         uint32_t l0 = *lc++, r0 = *rc++;  | 
626  | 0  |         uint32_t l1 = *lc++, r1 = *rc++;  | 
627  | 0  |         uint16_t *c0 = curr++;  | 
628  | 0  |         uint16_t *c1 = curr++;  | 
629  | 0  |         uint32_t zetapow = *roots++;  | 
630  |  | 
  | 
631  | 0  |         *c0 = reduce(*c0 + l0 * r0 + reduce(l1 * r1) * zetapow);  | 
632  | 0  |         *c1 = reduce(*c1 + l0 * r1 + l1 * r0);  | 
633  | 0  |     } while (curr < end);  | 
634  | 0  | }  | 
635  |  |  | 
636  |  | /*-  | 
637  |  |  * FIPS 203, Section 4.2.1, Algorithm 5: "ByteEncode_d", for 2<=d<=12.  | 
638  |  |  * Here |bits| is |d|.  For efficiency, we handle the d=1 case separately.  | 
639  |  |  */  | 
640  |  | static void scalar_encode(uint8_t *out, const scalar *s, int bits)  | 
641  | 0  | { | 
642  | 0  |     const uint16_t *curr = s->c, *end = curr + DEGREE;  | 
643  | 0  |     uint64_t accum = 0, element;  | 
644  | 0  |     int used = 0;  | 
645  |  | 
  | 
646  | 0  |     do { | 
647  | 0  |         element = *curr++;  | 
648  | 0  |         if (used + bits < 64) { | 
649  | 0  |             accum |= element << used;  | 
650  | 0  |             used += bits;  | 
651  | 0  |         } else if (used + bits > 64) { | 
652  | 0  |             out = OPENSSL_store_u64_le(out, accum | (element << used));  | 
653  | 0  |             accum = element >> (64 - used);  | 
654  | 0  |             used = (used + bits) - 64;  | 
655  | 0  |         } else { | 
656  | 0  |             out = OPENSSL_store_u64_le(out, accum | (element << used));  | 
657  | 0  |             accum = 0;  | 
658  | 0  |             used = 0;  | 
659  | 0  |         }  | 
660  | 0  |     } while (curr < end);  | 
661  | 0  | }  | 
662  |  |  | 
663  |  | /*  | 
664  |  |  * scalar_encode_1 is |scalar_encode| specialised for |bits| == 1.  | 
665  |  |  */  | 
666  |  | static void scalar_encode_1(uint8_t out[DEGREE / 8], const scalar *s)  | 
667  | 0  | { | 
668  | 0  |     int i, j;  | 
669  | 0  |     uint8_t out_byte;  | 
670  |  | 
  | 
671  | 0  |     for (i = 0; i < DEGREE; i += 8) { | 
672  | 0  |         out_byte = 0;  | 
673  | 0  |         for (j = 0; j < 8; j++)  | 
674  | 0  |             out_byte |= bit0(s->c[i + j]) << j;  | 
675  | 0  |         *out = out_byte;  | 
676  | 0  |         out++;  | 
677  | 0  |     }  | 
678  | 0  | }  | 
679  |  |  | 
680  |  | /*-  | 
681  |  |  * FIPS 203, Section 4.2.1, Algorithm 6: "ByteDecode_d", for 2<=d<12.  | 
682  |  |  * Here |bits| is |d|.  For efficiency, we handle the d=1 and d=12 cases  | 
683  |  |  * separately.  | 
684  |  |  *  | 
685  |  |  * scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in  | 
686  |  |  * |out|.  | 
687  |  |  */  | 
688  |  | static void scalar_decode(scalar *out, const uint8_t *in, int bits)  | 
689  | 0  | { | 
690  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
691  | 0  |     uint64_t accum = 0;  | 
692  | 0  |     int accum_bits = 0, todo = bits;  | 
693  | 0  |     uint16_t bitmask = (((uint16_t) 1) << bits) - 1, mask = bitmask;  | 
694  | 0  |     uint16_t element = 0;  | 
695  |  | 
  | 
696  | 0  |     do { | 
697  | 0  |         if (accum_bits == 0) { | 
698  | 0  |             in = OPENSSL_load_u64_le(&accum, in);  | 
699  | 0  |             accum_bits = 64;  | 
700  | 0  |         }  | 
701  | 0  |         if (todo == bits && accum_bits >= bits) { | 
702  |  |             /* No partial "element", and all the required bits available */  | 
703  | 0  |             *curr++ = ((uint16_t) accum) & mask;  | 
704  | 0  |             accum >>= bits;  | 
705  | 0  |             accum_bits -= bits;  | 
706  | 0  |         } else if (accum_bits >= todo) { | 
707  |  |             /* A partial "element", and all the required bits available */  | 
708  | 0  |             *curr++ = element | ((((uint16_t) accum) & mask) << (bits - todo));  | 
709  | 0  |             accum >>= todo;  | 
710  | 0  |             accum_bits -= todo;  | 
711  | 0  |             element = 0;  | 
712  | 0  |             todo = bits;  | 
713  | 0  |             mask = bitmask;  | 
714  | 0  |         } else { | 
715  |  |             /*  | 
716  |  |              * Only some of the requisite bits accumulated, store |accum_bits|  | 
717  |  |              * of these in |element|.  The accumulated bitcount becomes 0, but  | 
718  |  |              * as soon as we have more bits we'll want to merge accum_bits  | 
719  |  |              * fewer of them into the final |element|.  | 
720  |  |              *  | 
721  |  |              * Note that with a 64-bit accumulator and |bits| always 12 or  | 
722  |  |              * less, if we're here, the previous iteration had all the  | 
723  |  |              * requisite bits, and so there are no kept bits in |element|.  | 
724  |  |              */  | 
725  | 0  |             element = ((uint16_t) accum) & mask;  | 
726  | 0  |             todo -= accum_bits;  | 
727  | 0  |             mask = bitmask >> accum_bits;  | 
728  | 0  |             accum_bits = 0;  | 
729  | 0  |         }  | 
730  | 0  |     } while (curr < end);  | 
731  | 0  | }  | 
732  |  |  | 
733  |  | static __owur  | 
734  |  | int scalar_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2])  | 
735  | 0  | { | 
736  | 0  |     int i;  | 
737  | 0  |     uint16_t *c = out->c;  | 
738  |  | 
  | 
739  | 0  |     for (i = 0; i < DEGREE / 2; ++i) { | 
740  | 0  |         uint8_t b1 = *in++;  | 
741  | 0  |         uint8_t b2 = *in++;  | 
742  | 0  |         uint8_t b3 = *in++;  | 
743  | 0  |         int outOfRange1 = (*c++ = b1 | ((b2 & 0x0f) << 8)) >= kPrime;  | 
744  | 0  |         int outOfRange2 = (*c++ = (b2 >> 4) | (b3 << 4)) >= kPrime;  | 
745  |  | 
  | 
746  | 0  |         if (outOfRange1 | outOfRange2)  | 
747  | 0  |             return 0;  | 
748  | 0  |     }  | 
749  | 0  |     return 1;  | 
750  | 0  | }  | 
751  |  |  | 
752  |  | /*-  | 
753  |  |  * scalar_decode_decompress_add is a combination of decoding and decompression  | 
754  |  |  * both specialised for |bits| == 1, with the result added (and sum reduced) to  | 
755  |  |  * the output scalar.  | 
756  |  |  *  | 
757  |  |  * NOTE: this function MUST not leak an input-data-depedennt timing signal.  | 
758  |  |  * A timing leak in a related function in the reference Kyber implementation  | 
759  |  |  * made the "clangover" attack (CVE-2024-37880) possible, giving key recovery  | 
760  |  |  * for ML-KEM-512 in minutes, provided the attacker has access to precise  | 
761  |  |  * timing of a CPU performing chosen-ciphertext decap.  Admittedly this is only  | 
762  |  |  * a risk when private keys are reused (perhaps KEMTLS servers).  | 
763  |  |  */  | 
764  |  | static void  | 
765  |  | scalar_decode_decompress_add(scalar *out, const uint8_t in[DEGREE / 8])  | 
766  | 0  | { | 
767  | 0  |     static const uint16_t half_q_plus_1 = (ML_KEM_PRIME >> 1) + 1;  | 
768  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
769  | 0  |     uint16_t mask;  | 
770  | 0  |     uint8_t b;  | 
771  |  |  | 
772  |  |     /*  | 
773  |  |      * Add |half_q_plus_1| if the bit is set, without exposing a side-channel,  | 
774  |  |      * avoiding the "clangover" attack.  See |constish_time_non_zero| for a  | 
775  |  |      * discussion on why the value barrier is by default omitted.  | 
776  |  |      */  | 
777  | 0  | #define decode_decompress_add_bit                               \  | 
778  | 0  |         mask = constish_time_non_zero(bit0(b));                 \  | 
779  | 0  |         *curr = reduce_once(*curr + (mask & half_q_plus_1));    \  | 
780  | 0  |         curr++;                                                 \  | 
781  | 0  |         b >>= 1  | 
782  |  |  | 
783  |  |     /* Unrolled to process each byte in one iteration */  | 
784  | 0  |     do { | 
785  | 0  |         b = *in++;  | 
786  | 0  |         decode_decompress_add_bit;  | 
787  | 0  |         decode_decompress_add_bit;  | 
788  | 0  |         decode_decompress_add_bit;  | 
789  | 0  |         decode_decompress_add_bit;  | 
790  |  | 
  | 
791  | 0  |         decode_decompress_add_bit;  | 
792  | 0  |         decode_decompress_add_bit;  | 
793  | 0  |         decode_decompress_add_bit;  | 
794  | 0  |         decode_decompress_add_bit;  | 
795  | 0  |     } while (curr < end);  | 
796  | 0  | #undef decode_decompress_add_bit  | 
797  | 0  | }  | 
798  |  |  | 
799  |  | /*  | 
800  |  |  * FIPS 203, Section 4.2.1, Equation (4.7): Compress_d.  | 
801  |  |  *  | 
802  |  |  * Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping  | 
803  |  |  * numbers close to each other together. The formula used is  | 
804  |  |  * round(2^|bits|/kPrime*x) mod 2^|bits|.  | 
805  |  |  * Uses Barrett reduction to achieve constant time. Since we need both the  | 
806  |  |  * remainder (for rounding) and the quotient (as the result), we cannot use  | 
807  |  |  * |reduce| here, but need to do the Barrett reduction directly.  | 
808  |  |  */  | 
809  |  | static __owur uint16_t compress(uint16_t x, int bits)  | 
810  | 0  | { | 
811  | 0  |     uint32_t shifted = (uint32_t)x << bits;  | 
812  | 0  |     uint64_t product = (uint64_t)shifted * kBarrettMultiplier;  | 
813  | 0  |     uint32_t quotient = (uint32_t)(product >> kBarrettShift);  | 
814  | 0  |     uint32_t remainder = shifted - quotient * kPrime;  | 
815  |  |  | 
816  |  |     /*  | 
817  |  |      * Adjust the quotient to round correctly:  | 
818  |  |      *   0 <= remainder <= kHalfPrime round to 0  | 
819  |  |      *   kHalfPrime < remainder <= kPrime + kHalfPrime round to 1  | 
820  |  |      *   kPrime + kHalfPrime < remainder < 2 * kPrime round to 2  | 
821  |  |      */  | 
822  | 0  |     quotient += 1 & constant_time_lt_32(kHalfPrime, remainder);  | 
823  | 0  |     quotient += 1 & constant_time_lt_32(kPrime + kHalfPrime, remainder);  | 
824  | 0  |     return quotient & ((1 << bits) - 1);  | 
825  | 0  | }  | 
826  |  |  | 
827  |  | /*  | 
828  |  |  * FIPS 203, Section 4.2.1, Equation (4.8): Decompress_d.  | 
829  |  |  | 
830  |  |  * Decompresses |x| by using a close equi-distant representative. The formula  | 
831  |  |  * is round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us  | 
832  |  |  * to implement this logic using only bit operations.  | 
833  |  |  */  | 
834  |  | static __owur uint16_t decompress(uint16_t x, int bits)  | 
835  | 0  | { | 
836  | 0  |     uint32_t product = (uint32_t)x * kPrime;  | 
837  | 0  |     uint32_t power = 1 << bits;  | 
838  |  |     /* This is |product| % power, since |power| is a power of 2. */  | 
839  | 0  |     uint32_t remainder = product & (power - 1);  | 
840  |  |     /* This is |product| / power, since |power| is a power of 2. */  | 
841  | 0  |     uint32_t lower = product >> bits;  | 
842  |  |  | 
843  |  |     /*  | 
844  |  |      * The rounding logic works since the first half of numbers mod |power|  | 
845  |  |      * have a 0 as first bit, and the second half has a 1 as first bit, since  | 
846  |  |      * |power| is a power of 2. As a 12 bit number, |remainder| is always  | 
847  |  |      * positive, so we will shift in 0s for a right shift.  | 
848  |  |      */  | 
849  | 0  |     return lower + (remainder >> (bits - 1));  | 
850  | 0  | }  | 
851  |  |  | 
852  |  | /*-  | 
853  |  |  * FIPS 203, Section 4.2.1, Equation (4.7): "Compress_d".  | 
854  |  |  * In-place lossy rounding of scalars to 2^d bits.  | 
855  |  |  */  | 
856  |  | static void scalar_compress(scalar *s, int bits)  | 
857  | 0  | { | 
858  | 0  |     int i;  | 
859  |  | 
  | 
860  | 0  |     for (i = 0; i < DEGREE; i++)  | 
861  | 0  |         s->c[i] = compress(s->c[i], bits);  | 
862  | 0  | }  | 
863  |  |  | 
864  |  | /*  | 
865  |  |  * FIPS 203, Section 4.2.1, Equation (4.8): "Decompress_d".  | 
866  |  |  * In-place approximate recovery of scalars from 2^d bit compression.  | 
867  |  |  */  | 
868  |  | static void scalar_decompress(scalar *s, int bits)  | 
869  | 0  | { | 
870  | 0  |     int i;  | 
871  |  | 
  | 
872  | 0  |     for (i = 0; i < DEGREE; i++)  | 
873  | 0  |         s->c[i] = decompress(s->c[i], bits);  | 
874  | 0  | }  | 
875  |  |  | 
876  |  | /* Addition updating the LHS vector in-place. */  | 
877  |  | static void vector_add(scalar *lhs, const scalar *rhs, int rank)  | 
878  | 0  | { | 
879  | 0  |     do { | 
880  | 0  |         scalar_add(lhs++, rhs++);  | 
881  | 0  |     } while (--rank > 0);  | 
882  | 0  | }  | 
883  |  |  | 
884  |  | /*  | 
885  |  |  * Encodes an entire vector into 32*|rank|*|bits| bytes. Note that since 256  | 
886  |  |  * (DEGREE) is divisible by 8, the individual vector entries will always fill a  | 
887  |  |  * whole number of bytes, so we do not need to worry about bit packing here.  | 
888  |  |  */  | 
889  |  | static void vector_encode(uint8_t *out, const scalar *a, int bits, int rank)  | 
890  | 0  | { | 
891  | 0  |     int stride = bits * DEGREE / 8;  | 
892  |  | 
  | 
893  | 0  |     for (; rank-- > 0; out += stride)  | 
894  | 0  |         scalar_encode(out, a++, bits);  | 
895  | 0  | }  | 
896  |  |  | 
897  |  | /*  | 
898  |  |  * Decodes 32*|rank|*|bits| bytes from |in| into |out|. It returns early  | 
899  |  |  * if any parsed value is >= |ML_KEM_PRIME|.  The resulting scalars are  | 
900  |  |  * then decompressed and transformed via the NTT.  | 
901  |  |  *  | 
902  |  |  * Note: Used only in decrypt_cpa(), which returns void and so does not check  | 
903  |  |  * the return value of this function.  Side-channels are fine when the input  | 
904  |  |  * ciphertext to decap() is simply syntactically invalid.  | 
905  |  |  */  | 
906  |  | static void  | 
907  |  | vector_decode_decompress_ntt(scalar *out, const uint8_t *in, int bits, int rank)  | 
908  | 0  | { | 
909  | 0  |     int stride = bits * DEGREE / 8;  | 
910  |  | 
  | 
911  | 0  |     for (; rank-- > 0; in += stride, ++out) { | 
912  | 0  |         scalar_decode(out, in, bits);  | 
913  | 0  |         scalar_decompress(out, bits);  | 
914  | 0  |         scalar_ntt(out);  | 
915  | 0  |     }  | 
916  | 0  | }  | 
917  |  |  | 
918  |  | /* vector_decode(), specialised to bits == 12. */  | 
919  |  | static __owur  | 
920  |  | int vector_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2], int rank)  | 
921  | 0  | { | 
922  | 0  |     int stride = 3 * DEGREE / 2;  | 
923  |  | 
  | 
924  | 0  |     for (; rank-- > 0; in += stride)  | 
925  | 0  |         if (!scalar_decode_12(out++, in))  | 
926  | 0  |             return 0;  | 
927  | 0  |     return 1;  | 
928  | 0  | }  | 
929  |  |  | 
930  |  | /* In-place compression of each scalar component */  | 
931  |  | static void vector_compress(scalar *a, int bits, int rank)  | 
932  | 0  | { | 
933  | 0  |     do { | 
934  | 0  |         scalar_compress(a++, bits);  | 
935  | 0  |     } while (--rank > 0);  | 
936  | 0  | }  | 
937  |  |  | 
938  |  | /* The output scalar must not overlap with the inputs */  | 
939  |  | static void inner_product(scalar *out, const scalar *lhs, const scalar *rhs,  | 
940  |  |                           int rank)  | 
941  | 0  | { | 
942  | 0  |     scalar_mult(out, lhs, rhs);  | 
943  | 0  |     while (--rank > 0)  | 
944  | 0  |         scalar_mult_add(out, ++lhs, ++rhs);  | 
945  | 0  | }  | 
946  |  |  | 
947  |  | /*  | 
948  |  |  * Here, the output vector must not overlap with the inputs, the result is  | 
949  |  |  * directly subjected to inverse NTT.  | 
950  |  |  */  | 
951  |  | static void  | 
952  |  | matrix_mult_intt(scalar *out, const scalar *m, const scalar *a, int rank)  | 
953  | 0  | { | 
954  | 0  |     const scalar *ar;  | 
955  | 0  |     int i, j;  | 
956  |  | 
  | 
957  | 0  |     for (i = rank; i-- > 0; ++out) { | 
958  | 0  |         scalar_mult(out, m++, ar = a);  | 
959  | 0  |         for (j = rank - 1; j > 0; --j)  | 
960  | 0  |             scalar_mult_add(out, m++, ++ar);  | 
961  | 0  |         scalar_inverse_ntt(out);  | 
962  | 0  |     }  | 
963  | 0  | }  | 
964  |  |  | 
965  |  | /* Here, the output vector must not overlap with the inputs */  | 
966  |  | static void  | 
967  |  | matrix_mult_transpose_add(scalar *out, const scalar *m, const scalar *a, int rank)  | 
968  | 0  | { | 
969  | 0  |     const scalar *mc = m, *mr, *ar;  | 
970  | 0  |     int i, j;  | 
971  |  | 
  | 
972  | 0  |     for (i = rank; i-- > 0; ++out) { | 
973  | 0  |         scalar_mult_add(out, mr = mc++, ar = a);  | 
974  | 0  |         for (j = rank; --j > 0; )  | 
975  | 0  |             scalar_mult_add(out, (mr += rank), ++ar);  | 
976  | 0  |     }  | 
977  | 0  | }  | 
978  |  |  | 
979  |  | /*-  | 
980  |  |  * Expands the matrix from a seed for key generation and for encaps-CPA.  | 
981  |  |  * NOTE: FIPS 203 matrix "A" is the transpose of this matrix, computed  | 
982  |  |  * by appending the (i,j) indices to the seed in the opposite order!  | 
983  |  |  *  | 
984  |  |  * Where FIPS 203 computes t = A * s + e, we use the transpose of "m".  | 
985  |  |  */  | 
986  |  | static __owur  | 
987  |  | int matrix_expand(EVP_MD_CTX *mdctx, ML_KEM_KEY *key)  | 
988  | 0  | { | 
989  | 0  |     scalar *out = key->m;  | 
990  | 0  |     uint8_t input[ML_KEM_RANDOM_BYTES + 2];  | 
991  | 0  |     int rank = key->vinfo->rank;  | 
992  | 0  |     int i, j;  | 
993  |  | 
  | 
994  | 0  |     memcpy(input, key->rho, ML_KEM_RANDOM_BYTES);  | 
995  | 0  |     for (i = 0; i < rank; i++) { | 
996  | 0  |         for (j = 0; j < rank; j++) { | 
997  | 0  |             input[ML_KEM_RANDOM_BYTES] = i;  | 
998  | 0  |             input[ML_KEM_RANDOM_BYTES + 1] = j;  | 
999  | 0  |             if (!EVP_DigestInit_ex(mdctx, key->shake128_md, NULL)  | 
1000  | 0  |                 || !EVP_DigestUpdate(mdctx, input, sizeof(input))  | 
1001  | 0  |                 || !sample_scalar(out++, mdctx))  | 
1002  | 0  |                 return 0;  | 
1003  | 0  |         }  | 
1004  | 0  |     }  | 
1005  | 0  |     return 1;  | 
1006  | 0  | }  | 
1007  |  |  | 
1008  |  | /*  | 
1009  |  |  * Algorithm 7 from the spec, with eta fixed to two and the PRF call  | 
1010  |  |  * included. Creates binominally distributed elements by sampling 2*|eta| bits,  | 
1011  |  |  * and setting the coefficient to the count of the first bits minus the count of  | 
1012  |  |  * the second bits, resulting in a centered binomial distribution. Since eta is  | 
1013  |  |  * two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4,  | 
1014  |  |  * and 0 with probability 3/8.  | 
1015  |  |  */  | 
1016  |  | static __owur  | 
1017  |  | int cbd_2(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],  | 
1018  |  |           EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1019  | 0  | { | 
1020  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
1021  | 0  |     uint8_t randbuf[4 * DEGREE / 8], *r = randbuf;  /* 64 * eta slots */  | 
1022  | 0  |     uint16_t value, mask;  | 
1023  | 0  |     uint8_t b;  | 
1024  |  | 
  | 
1025  | 0  |     if (!prf(randbuf, sizeof(randbuf), in, mdctx, key))  | 
1026  | 0  |         return 0;  | 
1027  |  |  | 
1028  | 0  |     do { | 
1029  | 0  |         b = *r++;  | 
1030  |  |  | 
1031  |  |         /*  | 
1032  |  |          * Add |kPrime| if |value| underflowed.  See |constish_time_non_zero|  | 
1033  |  |          * for a discussion on why the value barrier is by default omitted.  | 
1034  |  |          * While this could have been written reduce_once(value + kPrime), this  | 
1035  |  |          * is one extra addition and small range of |value| tempts some  | 
1036  |  |          * versions of Clang to emit a branch.  | 
1037  |  |          */  | 
1038  | 0  |         value = bit0(b) + bitn(1, b);  | 
1039  | 0  |         value -= bitn(2, b) + bitn(3, b);  | 
1040  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1041  | 0  |         *curr++ = value + (kPrime & mask);  | 
1042  |  | 
  | 
1043  | 0  |         value = bitn(4, b) + bitn(5, b);  | 
1044  | 0  |         value -= bitn(6, b) + bitn(7, b);  | 
1045  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1046  | 0  |         *curr++ = value + (kPrime & mask);  | 
1047  | 0  |     } while (curr < end);  | 
1048  | 0  |     return 1;  | 
1049  | 0  | }  | 
1050  |  |  | 
1051  |  | /*  | 
1052  |  |  * Algorithm 7 from the spec, with eta fixed to three and the PRF call  | 
1053  |  |  * included. Creates binominally distributed elements by sampling 3*|eta| bits,  | 
1054  |  |  * and setting the coefficient to the count of the first bits minus the count of  | 
1055  |  |  * the second bits, resulting in a centered binomial distribution.  | 
1056  |  |  */  | 
1057  |  | static __owur  | 
1058  |  | int cbd_3(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],  | 
1059  |  |           EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1060  | 0  | { | 
1061  | 0  |     uint16_t *curr = out->c, *end = curr + DEGREE;  | 
1062  | 0  |     uint8_t randbuf[6 * DEGREE / 8], *r = randbuf;  /* 64 * eta slots */  | 
1063  | 0  |     uint8_t b1, b2, b3;  | 
1064  | 0  |     uint16_t value, mask;  | 
1065  |  | 
  | 
1066  | 0  |     if (!prf(randbuf, sizeof(randbuf), in, mdctx, key))  | 
1067  | 0  |         return 0;  | 
1068  |  |  | 
1069  | 0  |     do { | 
1070  | 0  |         b1 = *r++;  | 
1071  | 0  |         b2 = *r++;  | 
1072  | 0  |         b3 = *r++;  | 
1073  |  |  | 
1074  |  |         /*  | 
1075  |  |          * Add |kPrime| if |value| underflowed.  See |constish_time_non_zero|  | 
1076  |  |          * for a discussion on why the value barrier is by default omitted.  | 
1077  |  |          * While this could have been written reduce_once(value + kPrime), this  | 
1078  |  |          * is one extra addition and small range of |value| tempts some  | 
1079  |  |          * versions of Clang to emit a branch.  | 
1080  |  |          */  | 
1081  | 0  |         value = bit0(b1) + bitn(1, b1) + bitn(2, b1);  | 
1082  | 0  |         value -= bitn(3, b1)  + bitn(4, b1) + bitn(5, b1);  | 
1083  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1084  | 0  |         *curr++ = value + (kPrime & mask);  | 
1085  |  | 
  | 
1086  | 0  |         value = bitn(6, b1) + bitn(7, b1) + bit0(b2);  | 
1087  | 0  |         value -= bitn(1, b2) + bitn(2, b2) + bitn(3, b2);  | 
1088  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1089  | 0  |         *curr++ = value + (kPrime & mask);  | 
1090  |  | 
  | 
1091  | 0  |         value = bitn(4, b2) + bitn(5, b2) + bitn(6, b2);  | 
1092  | 0  |         value -= bitn(7, b2) + bit0(b3) + bitn(1, b3);  | 
1093  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1094  | 0  |         *curr++ = value + (kPrime & mask);  | 
1095  |  | 
  | 
1096  | 0  |         value = bitn(2, b3) + bitn(3, b3) + bitn(4, b3);  | 
1097  | 0  |         value -= bitn(5, b3) + bitn(6, b3) + bitn(7, b3);  | 
1098  | 0  |         mask = constish_time_non_zero(value >> 15);  | 
1099  | 0  |         *curr++ = value + (kPrime & mask);  | 
1100  | 0  |     } while (curr < end);  | 
1101  | 0  |     return 1;  | 
1102  | 0  | }  | 
1103  |  |  | 
1104  |  | /*  | 
1105  |  |  * Generates a secret vector by using |cbd| with the given seed to generate  | 
1106  |  |  * scalar elements and incrementing |counter| for each slot of the vector.  | 
1107  |  |  */  | 
1108  |  | static __owur  | 
1109  |  | int gencbd_vector(scalar *out, CBD_FUNC cbd, uint8_t *counter,  | 
1110  |  |                   const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank,  | 
1111  |  |                   EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1112  | 0  | { | 
1113  | 0  |     uint8_t input[ML_KEM_RANDOM_BYTES + 1];  | 
1114  |  | 
  | 
1115  | 0  |     memcpy(input, seed, ML_KEM_RANDOM_BYTES);  | 
1116  | 0  |     do { | 
1117  | 0  |         input[ML_KEM_RANDOM_BYTES] = (*counter)++;  | 
1118  | 0  |         if (!cbd(out++, input, mdctx, key))  | 
1119  | 0  |             return 0;  | 
1120  | 0  |     } while (--rank > 0);  | 
1121  | 0  |     return 1;  | 
1122  | 0  | }  | 
1123  |  |  | 
1124  |  | /*  | 
1125  |  |  * As above plus NTT transform.  | 
1126  |  |  */  | 
1127  |  | static __owur  | 
1128  |  | int gencbd_vector_ntt(scalar *out, CBD_FUNC cbd, uint8_t *counter,  | 
1129  |  |                       const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank,  | 
1130  |  |                       EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1131  | 0  | { | 
1132  | 0  |     uint8_t input[ML_KEM_RANDOM_BYTES + 1];  | 
1133  |  | 
  | 
1134  | 0  |     memcpy(input, seed, ML_KEM_RANDOM_BYTES);  | 
1135  | 0  |     do { | 
1136  | 0  |         input[ML_KEM_RANDOM_BYTES] = (*counter)++;  | 
1137  | 0  |         if (!cbd(out, input, mdctx, key))  | 
1138  | 0  |             return 0;  | 
1139  | 0  |         scalar_ntt(out++);  | 
1140  | 0  |     } while (--rank > 0);  | 
1141  | 0  |     return 1;  | 
1142  | 0  | }  | 
1143  |  |  | 
1144  |  | /* The |ETA1| value for ML-KEM-512 is 3, the rest and all ETA2 values are 2. */  | 
1145  | 0  | #define CBD1(evp_type)  ((evp_type) == EVP_PKEY_ML_KEM_512 ? cbd_3 : cbd_2)  | 
1146  |  |  | 
1147  |  | /*  | 
1148  |  |  * FIPS 203, Section 5.2, Algorithm 14: K-PKE.Encrypt.  | 
1149  |  |  *  | 
1150  |  |  * Encrypts a message with given randomness to the ciphertext in |out|. Without  | 
1151  |  |  * applying the Fujisaki-Okamoto transform this would not result in a CCA  | 
1152  |  |  * secure scheme, since lattice schemes are vulnerable to decryption failure  | 
1153  |  |  * oracles.  | 
1154  |  |  *  | 
1155  |  |  * The steps are re-ordered to make more efficient/localised use of storage.  | 
1156  |  |  *  | 
1157  |  |  * Note also that the input public key is assumed to hold a precomputed matrix  | 
1158  |  |  * |A| (our key->m, with the public key holding an expanded (16-bit per scalar  | 
1159  |  |  * coefficient) key->t vector).  | 
1160  |  |  *  | 
1161  |  |  * Caller passes storage in |tmp| for for two temporary vectors.  | 
1162  |  |  */  | 
1163  |  | static __owur  | 
1164  |  | int encrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],  | 
1165  |  |                 const uint8_t message[DEGREE / 8],  | 
1166  |  |                 const uint8_t r[ML_KEM_RANDOM_BYTES], scalar *tmp,  | 
1167  |  |                 EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1168  | 0  | { | 
1169  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1170  | 0  |     CBD_FUNC cbd_1 = CBD1(vinfo->evp_type);  | 
1171  | 0  |     int rank = vinfo->rank;  | 
1172  |  |     /* We can use tmp[0..rank-1] as storage for |y|, then |e1|, ... */  | 
1173  | 0  |     scalar *y = &tmp[0], *e1 = y, *e2 = y;  | 
1174  |  |     /* We can use tmp[rank]..tmp[2*rank - 1] for |u| */  | 
1175  | 0  |     scalar *u = &tmp[rank];  | 
1176  | 0  |     scalar v;  | 
1177  | 0  |     uint8_t input[ML_KEM_RANDOM_BYTES + 1];  | 
1178  | 0  |     uint8_t counter = 0;  | 
1179  | 0  |     int du = vinfo->du;  | 
1180  | 0  |     int dv = vinfo->dv;  | 
1181  |  |  | 
1182  |  |     /* FIPS 203 "y" vector */  | 
1183  | 0  |     if (!gencbd_vector_ntt(y, cbd_1, &counter, r, rank, mdctx, key))  | 
1184  | 0  |         return 0;  | 
1185  |  |     /* FIPS 203 "v" scalar */  | 
1186  | 0  |     inner_product(&v, key->t, y, rank);  | 
1187  | 0  |     scalar_inverse_ntt(&v);  | 
1188  |  |     /* FIPS 203 "u" vector */  | 
1189  | 0  |     matrix_mult_intt(u, key->m, y, rank);  | 
1190  |  |  | 
1191  |  |     /* All done with |y|, now free to reuse tmp[0] for FIPS 203 |e1| */  | 
1192  | 0  |     if (!gencbd_vector(e1, cbd_2, &counter, r, rank, mdctx, key))  | 
1193  | 0  |         return 0;  | 
1194  | 0  |     vector_add(u, e1, rank);  | 
1195  | 0  |     vector_compress(u, du, rank);  | 
1196  | 0  |     vector_encode(out, u, du, rank);  | 
1197  |  |  | 
1198  |  |     /* All done with |e1|, now free to reuse tmp[0] for FIPS 203 |e2| */  | 
1199  | 0  |     memcpy(input, r, ML_KEM_RANDOM_BYTES);  | 
1200  | 0  |     input[ML_KEM_RANDOM_BYTES] = counter;  | 
1201  | 0  |     if (!cbd_2(e2, input, mdctx, key))  | 
1202  | 0  |         return 0;  | 
1203  | 0  |     scalar_add(&v, e2);  | 
1204  |  |  | 
1205  |  |     /* Combine message with |v| */  | 
1206  | 0  |     scalar_decode_decompress_add(&v, message);  | 
1207  | 0  |     scalar_compress(&v, dv);  | 
1208  | 0  |     scalar_encode(out + vinfo->u_vector_bytes, &v, dv);  | 
1209  | 0  |     return 1;  | 
1210  | 0  | }  | 
1211  |  |  | 
1212  |  | /*  | 
1213  |  |  * FIPS 203, Section 5.3, Algorithm 15: K-PKE.Decrypt.  | 
1214  |  |  */  | 
1215  |  | static void  | 
1216  |  | decrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],  | 
1217  |  |             const uint8_t *ctext, scalar *u, const ML_KEM_KEY *key)  | 
1218  | 0  | { | 
1219  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1220  | 0  |     scalar v, mask;  | 
1221  | 0  |     int rank = vinfo->rank;  | 
1222  | 0  |     int du = vinfo->du;  | 
1223  | 0  |     int dv = vinfo->dv;  | 
1224  |  | 
  | 
1225  | 0  |     vector_decode_decompress_ntt(u, ctext, du, rank);  | 
1226  | 0  |     scalar_decode(&v, ctext + vinfo->u_vector_bytes, dv);  | 
1227  | 0  |     scalar_decompress(&v, dv);  | 
1228  | 0  |     inner_product(&mask, key->s, u, rank);  | 
1229  | 0  |     scalar_inverse_ntt(&mask);  | 
1230  | 0  |     scalar_sub(&v, &mask);  | 
1231  | 0  |     scalar_compress(&v, 1);  | 
1232  | 0  |     scalar_encode_1(out, &v);  | 
1233  | 0  | }  | 
1234  |  |  | 
1235  |  | /*-  | 
1236  |  |  * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".  | 
1237  |  |  * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps".  | 
1238  |  |  *  | 
1239  |  |  * Fills the |out| buffer with the |ek| output of "ML-KEM.KeyGen", or,  | 
1240  |  |  * equivalently, the |ek| input of "ML-KEM.Encaps", i.e. returns the  | 
1241  |  |  * wire-format of an ML-KEM public key.  | 
1242  |  |  */  | 
1243  |  | static void encode_pubkey(uint8_t *out, const ML_KEM_KEY *key)  | 
1244  | 0  | { | 
1245  | 0  |     const uint8_t *rho = key->rho;  | 
1246  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1247  |  | 
  | 
1248  | 0  |     vector_encode(out, key->t, 12, vinfo->rank);  | 
1249  | 0  |     memcpy(out + vinfo->vector_bytes, rho, ML_KEM_RANDOM_BYTES);  | 
1250  | 0  | }  | 
1251  |  |  | 
1252  |  | /*-  | 
1253  |  |  * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".  | 
1254  |  |  *  | 
1255  |  |  * Fills the |out| buffer with the |dk| output of "ML-KEM.KeyGen".  | 
1256  |  |  * This matches the input format of parse_prvkey() below.  | 
1257  |  |  */  | 
1258  |  | static void encode_prvkey(uint8_t *out, const ML_KEM_KEY *key)  | 
1259  | 0  | { | 
1260  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1261  |  | 
  | 
1262  | 0  |     vector_encode(out, key->s, 12, vinfo->rank);  | 
1263  | 0  |     out += vinfo->vector_bytes;  | 
1264  | 0  |     encode_pubkey(out, key);  | 
1265  | 0  |     out += vinfo->pubkey_bytes;  | 
1266  | 0  |     memcpy(out, key->pkhash, ML_KEM_PKHASH_BYTES);  | 
1267  | 0  |     out += ML_KEM_PKHASH_BYTES;  | 
1268  | 0  |     memcpy(out, key->z, ML_KEM_RANDOM_BYTES);  | 
1269  | 0  | }  | 
1270  |  |  | 
1271  |  | /*-  | 
1272  |  |  * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".  | 
1273  |  |  * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps".  | 
1274  |  |  *  | 
1275  |  |  * This function parses the |in| buffer as the |ek| output of "ML-KEM.KeyGen",  | 
1276  |  |  * or, equivalently, the |ek| input of "ML-KEM.Encaps", i.e. decodes the  | 
1277  |  |  * wire-format of the ML-KEM public key.  | 
1278  |  |  */  | 
1279  |  | static int parse_pubkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key)  | 
1280  | 0  | { | 
1281  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1282  |  |  | 
1283  |  |     /* Decode and check |t| */  | 
1284  | 0  |     if (!vector_decode_12(key->t, in, vinfo->rank))  | 
1285  | 0  |         return 0;  | 
1286  |  |     /* Save the matrix |m| recovery seed |rho| */  | 
1287  | 0  |     memcpy(key->rho, in + vinfo->vector_bytes, ML_KEM_RANDOM_BYTES);  | 
1288  |  |     /*  | 
1289  |  |      * Pre-compute the public key hash, needed for both encap and decap.  | 
1290  |  |      * Also pre-compute the matrix expansion, stored with the public key.  | 
1291  |  |      */  | 
1292  | 0  |     return hash_h(key->pkhash, in, vinfo->pubkey_bytes, mdctx, key)  | 
1293  | 0  |         && matrix_expand(mdctx, key);  | 
1294  | 0  | }  | 
1295  |  |  | 
1296  |  | /*  | 
1297  |  |  * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".  | 
1298  |  |  *  | 
1299  |  |  * Parses the |in| buffer as a |dk| output of "ML-KEM.KeyGen".  | 
1300  |  |  * This matches the output format of encode_prvkey() above.  | 
1301  |  |  */  | 
1302  |  | static int parse_prvkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key)  | 
1303  | 0  | { | 
1304  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1305  |  |  | 
1306  |  |     /* Decode and check |s|. */  | 
1307  | 0  |     if (!vector_decode_12(key->s, in, vinfo->rank))  | 
1308  | 0  |         return 0;  | 
1309  | 0  |     in += vinfo->vector_bytes;  | 
1310  |  | 
  | 
1311  | 0  |     if (!parse_pubkey(in, mdctx, key))  | 
1312  | 0  |         return 0;  | 
1313  | 0  |     in += vinfo->pubkey_bytes;  | 
1314  |  |  | 
1315  |  |     /* Check public key hash. */  | 
1316  | 0  |     if (memcmp(key->pkhash, in, ML_KEM_PKHASH_BYTES) != 0)  | 
1317  | 0  |         return 0;  | 
1318  | 0  |     in += ML_KEM_PKHASH_BYTES;  | 
1319  |  | 
  | 
1320  | 0  |     memcpy(key->z, in, ML_KEM_RANDOM_BYTES);  | 
1321  | 0  |     return 1;  | 
1322  | 0  | }  | 
1323  |  |  | 
1324  |  | /*  | 
1325  |  |  * FIPS 203, Section 6.1, Algorithm 16: "ML-KEM.KeyGen_internal".  | 
1326  |  |  *  | 
1327  |  |  * The implementation of Section 5.1, Algorithm 13, "K-PKE.KeyGen(d)" is  | 
1328  |  |  * inlined.  | 
1329  |  |  *  | 
1330  |  |  * The caller MUST pass a pre-allocated digest context that is not shared with  | 
1331  |  |  * any concurrent computation.  | 
1332  |  |  *  | 
1333  |  |  * This function optionally outputs the serialised wire-form |ek| public key  | 
1334  |  |  * into the provided |pubenc| buffer, and generates the content of the |rho|,  | 
1335  |  |  * |pkhash|, |t|, |m|, |s| and |z| components of the private |key| (which must  | 
1336  |  |  * have preallocated space for these).  | 
1337  |  |  *  | 
1338  |  |  * Keys are computed from a 32-byte random |d| plus the 1 byte rank for  | 
1339  |  |  * domain separation.  These are concatenated and hashed to produce a pair of  | 
1340  |  |  * 32-byte seeds public "rho", used to generate the matrix, and private "sigma",  | 
1341  |  |  * used to generate the secret vector |s|.  | 
1342  |  |  *  | 
1343  |  |  * The second random input |z| is copied verbatim into the Fujisaki-Okamoto  | 
1344  |  |  * (FO) transform "implicit-rejection" secret (the |z| component of the private  | 
1345  |  |  * key), which thwarts chosen-ciphertext attacks, provided decap() runs in  | 
1346  |  |  * constant time, with no side channel leaks, on all well-formed (valid length,  | 
1347  |  |  * and correctly encoded) ciphertext inputs.  | 
1348  |  |  */  | 
1349  |  | static __owur  | 
1350  |  | int genkey(const uint8_t seed[ML_KEM_SEED_BYTES],  | 
1351  |  |            EVP_MD_CTX *mdctx, uint8_t *pubenc, ML_KEM_KEY *key)  | 
1352  | 0  | { | 
1353  | 0  |     uint8_t hashed[2 * ML_KEM_RANDOM_BYTES];  | 
1354  | 0  |     const uint8_t *const sigma = hashed + ML_KEM_RANDOM_BYTES;  | 
1355  | 0  |     uint8_t augmented_seed[ML_KEM_RANDOM_BYTES + 1];  | 
1356  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1357  | 0  |     CBD_FUNC cbd_1 = CBD1(vinfo->evp_type);  | 
1358  | 0  |     int rank = vinfo->rank;  | 
1359  | 0  |     uint8_t counter = 0;  | 
1360  | 0  |     int ret = 0;  | 
1361  |  |  | 
1362  |  |     /*  | 
1363  |  |      * Use the "d" seed salted with the rank to derive the public and private  | 
1364  |  |      * seeds rho and sigma.  | 
1365  |  |      */  | 
1366  | 0  |     memcpy(augmented_seed, seed, ML_KEM_RANDOM_BYTES);  | 
1367  | 0  |     augmented_seed[ML_KEM_RANDOM_BYTES] = (uint8_t) rank;  | 
1368  | 0  |     if (!hash_g(hashed, augmented_seed, sizeof(augmented_seed), mdctx, key))  | 
1369  | 0  |         goto end;  | 
1370  | 0  |     memcpy(key->rho, hashed, ML_KEM_RANDOM_BYTES);  | 
1371  |  |     /* The |rho| matrix seed is public */  | 
1372  | 0  |     CONSTTIME_DECLASSIFY(key->rho, ML_KEM_RANDOM_BYTES);  | 
1373  |  |  | 
1374  |  |     /* FIPS 203 |e| vector is initial value of key->t */  | 
1375  | 0  |     if (!matrix_expand(mdctx, key)  | 
1376  | 0  |         || !gencbd_vector_ntt(key->s, cbd_1, &counter, sigma, rank, mdctx, key)  | 
1377  | 0  |         || !gencbd_vector_ntt(key->t, cbd_1, &counter, sigma, rank, mdctx, key))  | 
1378  | 0  |         goto end;  | 
1379  |  |  | 
1380  |  |     /* To |e| we now add the product of transpose |m| and |s|, giving |t|. */  | 
1381  | 0  |     matrix_mult_transpose_add(key->t, key->m, key->s, rank);  | 
1382  |  |     /* The |t| vector is public */  | 
1383  | 0  |     CONSTTIME_DECLASSIFY(key->t, vinfo->rank * sizeof(scalar));  | 
1384  |  | 
  | 
1385  | 0  |     if (pubenc == NULL) { | 
1386  |  |         /* Incremental digest of public key without in-full serialisation. */  | 
1387  | 0  |         if (!hash_h_pubkey(key->pkhash, mdctx, key))  | 
1388  | 0  |             goto end;  | 
1389  | 0  |     } else { | 
1390  | 0  |         encode_pubkey(pubenc, key);  | 
1391  | 0  |         if (!hash_h(key->pkhash, pubenc, vinfo->pubkey_bytes, mdctx, key))  | 
1392  | 0  |             goto end;  | 
1393  | 0  |     }  | 
1394  |  |  | 
1395  |  |     /* Save |z| portion of seed for "implicit rejection" on failure. */  | 
1396  | 0  |     memcpy(key->z, seed + ML_KEM_RANDOM_BYTES, ML_KEM_RANDOM_BYTES);  | 
1397  |  |  | 
1398  |  |     /* Optionally save the |d| portion of the seed */  | 
1399  | 0  |     key->d = key->z + ML_KEM_RANDOM_BYTES;  | 
1400  | 0  |     if (key->prov_flags & ML_KEM_KEY_RETAIN_SEED) { | 
1401  | 0  |         memcpy(key->d, seed, ML_KEM_RANDOM_BYTES);  | 
1402  | 0  |     } else { | 
1403  | 0  |         OPENSSL_cleanse(key->d, ML_KEM_RANDOM_BYTES);  | 
1404  | 0  |         key->d = NULL;  | 
1405  | 0  |     }  | 
1406  |  | 
  | 
1407  | 0  |     ret = 1;  | 
1408  | 0  |  end:  | 
1409  | 0  |     OPENSSL_cleanse((void *)augmented_seed, ML_KEM_RANDOM_BYTES);  | 
1410  | 0  |     OPENSSL_cleanse((void *)sigma, ML_KEM_RANDOM_BYTES);  | 
1411  | 0  |     return ret;  | 
1412  | 0  | }  | 
1413  |  |  | 
1414  |  | /*-  | 
1415  |  |  * FIPS 203, Section 6.2, Algorithm 17: "ML-KEM.Encaps_internal".  | 
1416  |  |  * This is the deterministic version with randomness supplied externally.  | 
1417  |  |  *  | 
1418  |  |  * The caller must pass space for two vectors in |tmp|.  | 
1419  |  |  * The |ctext| buffer have space for the ciphertext of the ML-KEM variant  | 
1420  |  |  * of the provided key.  | 
1421  |  |  */  | 
1422  |  | static  | 
1423  |  | int encap(uint8_t *ctext, uint8_t secret[ML_KEM_SHARED_SECRET_BYTES],  | 
1424  |  |           const uint8_t entropy[ML_KEM_RANDOM_BYTES],  | 
1425  |  |           scalar *tmp, EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1426  | 0  | { | 
1427  | 0  |     uint8_t input[ML_KEM_RANDOM_BYTES + ML_KEM_PKHASH_BYTES];  | 
1428  | 0  |     uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES];  | 
1429  | 0  |     uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES;  | 
1430  | 0  |     int ret;  | 
1431  |  | 
  | 
1432  | 0  |     memcpy(input, entropy, ML_KEM_RANDOM_BYTES);  | 
1433  | 0  |     memcpy(input + ML_KEM_RANDOM_BYTES, key->pkhash, ML_KEM_PKHASH_BYTES);  | 
1434  | 0  |     ret = hash_g(Kr, input, sizeof(input), mdctx, key)  | 
1435  | 0  |         && encrypt_cpa(ctext, entropy, r, tmp, mdctx, key);  | 
1436  |  | 
  | 
1437  | 0  |     if (ret)  | 
1438  | 0  |         memcpy(secret, Kr, ML_KEM_SHARED_SECRET_BYTES);  | 
1439  | 0  |     OPENSSL_cleanse((void *)input, sizeof(input));  | 
1440  | 0  |     return ret;  | 
1441  | 0  | }  | 
1442  |  |  | 
1443  |  | /*  | 
1444  |  |  * FIPS 203, Section 6.3, Algorithm 18: ML-KEM.Decaps_internal  | 
1445  |  |  *  | 
1446  |  |  * Barring failure of the supporting SHA3/SHAKE primitives, this is fully  | 
1447  |  |  * deterministic, the randomness for the FO transform is extracted during  | 
1448  |  |  * private key generation.  | 
1449  |  |  *  | 
1450  |  |  * The caller must pass space for two vectors in |tmp|.  | 
1451  |  |  * The |ctext| and |tmp_ctext| buffers must each have space for the ciphertext  | 
1452  |  |  * of the key's ML-KEM variant.  | 
1453  |  |  */  | 
1454  |  | static  | 
1455  |  | int decap(uint8_t secret[ML_KEM_SHARED_SECRET_BYTES],  | 
1456  |  |           const uint8_t *ctext, uint8_t *tmp_ctext, scalar *tmp,  | 
1457  |  |           EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)  | 
1458  | 0  | { | 
1459  | 0  |     uint8_t decrypted[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_PKHASH_BYTES];  | 
1460  | 0  |     uint8_t failure_key[ML_KEM_RANDOM_BYTES];  | 
1461  | 0  |     uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES];  | 
1462  | 0  |     uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES;  | 
1463  | 0  |     const uint8_t *pkhash = key->pkhash;  | 
1464  | 0  |     const ML_KEM_VINFO *vinfo = key->vinfo;  | 
1465  | 0  |     int i;  | 
1466  | 0  |     uint8_t mask;  | 
1467  |  |  | 
1468  |  |     /*  | 
1469  |  |      * If our KDF is unavailable, fail early! Otherwise, keep going ignoring  | 
1470  |  |      * any further errors, returning success, and whatever we got for a shared  | 
1471  |  |      * secret.  The decrypt_cpa() function is just arithmetic on secret data,  | 
1472  |  |      * so should not be subject to failure that makes its output predictable.  | 
1473  |  |      *  | 
1474  |  |      * We guard against "should never happen" catastrophic failure of the  | 
1475  |  |      * "pure" function |hash_g| by overwriting the shared secret with the  | 
1476  |  |      * content of the failure key and returning early, if nevertheless hash_g  | 
1477  |  |      * fails.  This is not constant-time, but a failure of |hash_g| already  | 
1478  |  |      * implies loss of side-channel resistance.  | 
1479  |  |      *  | 
1480  |  |      * The same action is taken, if also |encrypt_cpa| should catastrophically  | 
1481  |  |      * fail, due to failure of the |PRF| underlying the CBD functions.  | 
1482  |  |      */  | 
1483  | 0  |     if (!kdf(failure_key, key->z, ctext, vinfo->ctext_bytes, mdctx, key))  | 
1484  | 0  |         return 0;  | 
1485  | 0  |     decrypt_cpa(decrypted, ctext, tmp, key);  | 
1486  | 0  |     memcpy(decrypted + ML_KEM_SHARED_SECRET_BYTES, pkhash, ML_KEM_PKHASH_BYTES);  | 
1487  | 0  |     if (!hash_g(Kr, decrypted, sizeof(decrypted), mdctx, key)  | 
1488  | 0  |         || !encrypt_cpa(tmp_ctext, decrypted, r, tmp, mdctx, key)) { | 
1489  | 0  |         memcpy(secret, failure_key, ML_KEM_SHARED_SECRET_BYTES);  | 
1490  | 0  |         OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES);  | 
1491  | 0  |         return 1;  | 
1492  | 0  |     }  | 
1493  | 0  |     mask = constant_time_eq_int_8(0,  | 
1494  | 0  |         CRYPTO_memcmp(ctext, tmp_ctext, vinfo->ctext_bytes));  | 
1495  | 0  |     for (i = 0; i < ML_KEM_SHARED_SECRET_BYTES; i++)  | 
1496  | 0  |         secret[i] = constant_time_select_8(mask, Kr[i], failure_key[i]);  | 
1497  | 0  |     OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES);  | 
1498  | 0  |     OPENSSL_cleanse(Kr, sizeof(Kr));  | 
1499  | 0  |     return 1;  | 
1500  | 0  | }  | 
1501  |  |  | 
1502  |  | /*  | 
1503  |  |  * After allocating storage for public or private key data, update the key  | 
1504  |  |  * component pointers to reference that storage.  | 
1505  |  |  */  | 
1506  |  | static __owur  | 
1507  |  | int add_storage(scalar *p, int private, ML_KEM_KEY *key)  | 
1508  | 0  | { | 
1509  | 0  |     int rank = key->vinfo->rank;  | 
1510  |  | 
  | 
1511  | 0  |     if (p == NULL)  | 
1512  | 0  |         return 0;  | 
1513  |  |  | 
1514  |  |     /*  | 
1515  |  |      * We're adding key material, the seed buffer will now hold |rho| and  | 
1516  |  |      * |pkhash|.  | 
1517  |  |      */  | 
1518  | 0  |     memset(key->seedbuf, 0, sizeof(key->seedbuf));  | 
1519  | 0  |     key->rho = key->seedbuf;  | 
1520  | 0  |     key->pkhash = key->seedbuf + ML_KEM_RANDOM_BYTES;  | 
1521  | 0  |     key->d = key->z = NULL;  | 
1522  |  |  | 
1523  |  |     /* A public key needs space for |t| and |m| */  | 
1524  | 0  |     key->m = (key->t = p) + rank;  | 
1525  |  |  | 
1526  |  |     /*  | 
1527  |  |      * A private key also needs space for |s| and |z|.  | 
1528  |  |      * The |z| buffer always includes additional space for |d|, but a key's |d|  | 
1529  |  |      * pointer is left NULL when parsed from the NIST format, which omits that  | 
1530  |  |      * information.  Only keys generated from a (d, z) seed pair will have a  | 
1531  |  |      * non-NULL |d| pointer.  | 
1532  |  |      */  | 
1533  | 0  |     if (private)  | 
1534  | 0  |         key->z = (uint8_t *)(rank + (key->s = key->m + rank * rank));  | 
1535  | 0  |     return 1;  | 
1536  | 0  | }  | 
1537  |  |  | 
1538  |  | /*  | 
1539  |  |  * After freeing the storage associated with a key that failed to be  | 
1540  |  |  * constructed, reset the internal pointers back to NULL.  | 
1541  |  |  */  | 
1542  |  | void  | 
1543  |  | ossl_ml_kem_key_reset(ML_KEM_KEY *key)  | 
1544  | 0  | { | 
1545  | 0  |     if (key->t == NULL)  | 
1546  | 0  |         return;  | 
1547  |  |     /*-  | 
1548  |  |      * Cleanse any sensitive data:  | 
1549  |  |      * - The private vector |s| is immediately followed by the FO failure  | 
1550  |  |      *   secret |z|, and seed |d|, we can cleanse all three in one call.  | 
1551  |  |      *  | 
1552  |  |      * - Otherwise, when key->d is set, cleanse the stashed seed.  | 
1553  |  |      */  | 
1554  | 0  |     if (ossl_ml_kem_have_prvkey(key))  | 
1555  | 0  |         OPENSSL_cleanse(key->s,  | 
1556  | 0  |                         key->vinfo->rank * sizeof(scalar) + 2 * ML_KEM_RANDOM_BYTES);  | 
1557  | 0  |     OPENSSL_free(key->t);  | 
1558  | 0  |     key->d = key->z = (uint8_t *)(key->s = key->m = key->t = NULL);  | 
1559  | 0  | }  | 
1560  |  |  | 
1561  |  | /*  | 
1562  |  |  * ----- API exported to the provider  | 
1563  |  |  *  | 
1564  |  |  * Parameters with an implicit fixed length in the internal static API of each  | 
1565  |  |  * variant have an explicit checked length argument at this layer.  | 
1566  |  |  */  | 
1567  |  |  | 
1568  |  | /* Retrieve the parameters of one of the ML-KEM variants */  | 
1569  |  | const ML_KEM_VINFO *ossl_ml_kem_get_vinfo(int evp_type)  | 
1570  | 0  | { | 
1571  | 0  |     switch (evp_type) { | 
1572  | 0  |     case EVP_PKEY_ML_KEM_512:  | 
1573  | 0  |         return &vinfo_map[ML_KEM_512_VINFO];  | 
1574  | 0  |     case EVP_PKEY_ML_KEM_768:  | 
1575  | 0  |         return &vinfo_map[ML_KEM_768_VINFO];  | 
1576  | 0  |     case EVP_PKEY_ML_KEM_1024:  | 
1577  | 0  |         return &vinfo_map[ML_KEM_1024_VINFO];  | 
1578  | 0  |     }  | 
1579  | 0  |     return NULL;  | 
1580  | 0  | }  | 
1581  |  |  | 
1582  |  | ML_KEM_KEY *ossl_ml_kem_key_new(OSSL_LIB_CTX *libctx, const char *properties,  | 
1583  |  |                                 int evp_type)  | 
1584  | 0  | { | 
1585  | 0  |     const ML_KEM_VINFO *vinfo = ossl_ml_kem_get_vinfo(evp_type);  | 
1586  | 0  |     ML_KEM_KEY *key;  | 
1587  |  | 
  | 
1588  | 0  |     if (vinfo == NULL)  | 
1589  | 0  |         return NULL;  | 
1590  |  |  | 
1591  | 0  |     if ((key = OPENSSL_malloc(sizeof(*key))) == NULL)  | 
1592  | 0  |         return NULL;  | 
1593  |  |  | 
1594  | 0  |     key->vinfo = vinfo;  | 
1595  | 0  |     key->libctx = libctx;  | 
1596  | 0  |     key->prov_flags = ML_KEM_KEY_PROV_FLAGS_DEFAULT;  | 
1597  | 0  |     key->shake128_md = EVP_MD_fetch(libctx, "SHAKE128", properties);  | 
1598  | 0  |     key->shake256_md = EVP_MD_fetch(libctx, "SHAKE256", properties);  | 
1599  | 0  |     key->sha3_256_md = EVP_MD_fetch(libctx, "SHA3-256", properties);  | 
1600  | 0  |     key->sha3_512_md = EVP_MD_fetch(libctx, "SHA3-512", properties);  | 
1601  | 0  |     key->d = key->z = key->rho = key->pkhash = key->encoded_dk = NULL;  | 
1602  | 0  |     key->s = key->m = key->t = NULL;  | 
1603  |  | 
  | 
1604  | 0  |     if (key->shake128_md != NULL  | 
1605  | 0  |         && key->shake256_md != NULL  | 
1606  | 0  |         && key->sha3_256_md != NULL  | 
1607  | 0  |         && key->sha3_512_md != NULL)  | 
1608  | 0  |     return key;  | 
1609  |  |  | 
1610  | 0  |     ossl_ml_kem_key_free(key);  | 
1611  | 0  |     return NULL;  | 
1612  | 0  | }  | 
1613  |  |  | 
1614  |  | ML_KEM_KEY *ossl_ml_kem_key_dup(const ML_KEM_KEY *key, int selection)  | 
1615  | 0  | { | 
1616  | 0  |     int ok = 0;  | 
1617  | 0  |     ML_KEM_KEY *ret;  | 
1618  |  |  | 
1619  |  |     /*  | 
1620  |  |      * Partially decoded keys, not yet imported or loaded, should never be  | 
1621  |  |      * duplicated.  | 
1622  |  |      */  | 
1623  | 0  |     if (ossl_ml_kem_decoded_key(key))  | 
1624  | 0  |         return NULL;  | 
1625  |  |  | 
1626  | 0  |     if (key == NULL  | 
1627  | 0  |         || (ret = OPENSSL_memdup(key, sizeof(*key))) == NULL)  | 
1628  | 0  |         return NULL;  | 
1629  | 0  |     ret->d = ret->z = ret->rho = ret->pkhash = NULL;  | 
1630  | 0  |     ret->s = ret->m = ret->t = NULL;  | 
1631  |  |  | 
1632  |  |     /* Clear selection bits we can't fulfill */  | 
1633  | 0  |     if (!ossl_ml_kem_have_pubkey(key))  | 
1634  | 0  |         selection = 0;  | 
1635  | 0  |     else if (!ossl_ml_kem_have_prvkey(key))  | 
1636  | 0  |         selection &= ~OSSL_KEYMGMT_SELECT_PRIVATE_KEY;  | 
1637  |  | 
  | 
1638  | 0  |     switch (selection & OSSL_KEYMGMT_SELECT_KEYPAIR) { | 
1639  | 0  |     case 0:  | 
1640  | 0  |         ok = 1;  | 
1641  | 0  |         break;  | 
1642  | 0  |     case OSSL_KEYMGMT_SELECT_PUBLIC_KEY:  | 
1643  | 0  |         ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->puballoc), 0, ret);  | 
1644  | 0  |         ret->rho = ret->seedbuf;  | 
1645  | 0  |         ret->pkhash = ret->rho + ML_KEM_RANDOM_BYTES;  | 
1646  | 0  |         break;  | 
1647  | 0  |     case OSSL_KEYMGMT_SELECT_PRIVATE_KEY:  | 
1648  | 0  |         ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->prvalloc), 1, ret);  | 
1649  |  |         /* Duplicated keys retain |d|, if available */  | 
1650  | 0  |         if (key->d != NULL)  | 
1651  | 0  |             ret->d = ret->z + ML_KEM_RANDOM_BYTES;  | 
1652  | 0  |         break;  | 
1653  | 0  |     }  | 
1654  |  |  | 
1655  | 0  |     if (!ok) { | 
1656  | 0  |         OPENSSL_free(ret);  | 
1657  | 0  |         return NULL;  | 
1658  | 0  |     }  | 
1659  |  |  | 
1660  | 0  |     EVP_MD_up_ref(ret->shake128_md);  | 
1661  | 0  |     EVP_MD_up_ref(ret->shake256_md);  | 
1662  | 0  |     EVP_MD_up_ref(ret->sha3_256_md);  | 
1663  | 0  |     EVP_MD_up_ref(ret->sha3_512_md);  | 
1664  |  | 
  | 
1665  | 0  |     return ret;  | 
1666  | 0  | }  | 
1667  |  |  | 
1668  |  | void ossl_ml_kem_key_free(ML_KEM_KEY *key)  | 
1669  | 0  | { | 
1670  | 0  |     if (key == NULL)  | 
1671  | 0  |         return;  | 
1672  |  |  | 
1673  | 0  |     EVP_MD_free(key->shake128_md);  | 
1674  | 0  |     EVP_MD_free(key->shake256_md);  | 
1675  | 0  |     EVP_MD_free(key->sha3_256_md);  | 
1676  | 0  |     EVP_MD_free(key->sha3_512_md);  | 
1677  |  | 
  | 
1678  | 0  |     if (ossl_ml_kem_decoded_key(key)) { | 
1679  | 0  |         OPENSSL_cleanse(key->seedbuf, sizeof(key->seedbuf));  | 
1680  | 0  |         if (ossl_ml_kem_have_dkenc(key)) { | 
1681  | 0  |             OPENSSL_cleanse(key->encoded_dk, key->vinfo->prvkey_bytes);  | 
1682  | 0  |             OPENSSL_free(key->encoded_dk);  | 
1683  | 0  |         }  | 
1684  | 0  |     }  | 
1685  | 0  |     ossl_ml_kem_key_reset(key);  | 
1686  | 0  |     OPENSSL_free(key);  | 
1687  | 0  | }  | 
1688  |  |  | 
1689  |  | /* Serialise the public component of an ML-KEM key */  | 
1690  |  | int ossl_ml_kem_encode_public_key(uint8_t *out, size_t len,  | 
1691  |  |                                   const ML_KEM_KEY *key)  | 
1692  | 0  | { | 
1693  | 0  |     if (!ossl_ml_kem_have_pubkey(key)  | 
1694  | 0  |         || len != key->vinfo->pubkey_bytes)  | 
1695  | 0  |         return 0;  | 
1696  | 0  |     encode_pubkey(out, key);  | 
1697  | 0  |     return 1;  | 
1698  | 0  | }  | 
1699  |  |  | 
1700  |  | /* Serialise an ML-KEM private key */  | 
1701  |  | int ossl_ml_kem_encode_private_key(uint8_t *out, size_t len,  | 
1702  |  |                                    const ML_KEM_KEY *key)  | 
1703  | 0  | { | 
1704  | 0  |     if (!ossl_ml_kem_have_prvkey(key)  | 
1705  | 0  |         || len != key->vinfo->prvkey_bytes)  | 
1706  | 0  |         return 0;  | 
1707  | 0  |     encode_prvkey(out, key);  | 
1708  | 0  |     return 1;  | 
1709  | 0  | }  | 
1710  |  |  | 
1711  |  | int ossl_ml_kem_encode_seed(uint8_t *out, size_t len,  | 
1712  |  |                             const ML_KEM_KEY *key)  | 
1713  | 0  | { | 
1714  | 0  |     if (key == NULL || key->d == NULL || len != ML_KEM_SEED_BYTES)  | 
1715  | 0  |         return 0;  | 
1716  |  |     /*  | 
1717  |  |      * Both in the seed buffer, and in the allocated storage, the |d| component  | 
1718  |  |      * of the seed is stored last, so we must copy each separately.  | 
1719  |  |      */  | 
1720  | 0  |     memcpy(out, key->d, ML_KEM_RANDOM_BYTES);  | 
1721  | 0  |     out += ML_KEM_RANDOM_BYTES;  | 
1722  | 0  |     memcpy(out, key->z, ML_KEM_RANDOM_BYTES);  | 
1723  | 0  |     return 1;  | 
1724  | 0  | }  | 
1725  |  |  | 
1726  |  | /*  | 
1727  |  |  * Stash the seed without (yet) performing a keygen, used during decoding, to  | 
1728  |  |  * avoid an extra keygen if we're only going to export the key again to load  | 
1729  |  |  * into another provider.  | 
1730  |  |  */  | 
1731  |  | ML_KEM_KEY *ossl_ml_kem_set_seed(const uint8_t *seed, size_t seedlen, ML_KEM_KEY *key)  | 
1732  | 0  | { | 
1733  | 0  |     if (key == NULL  | 
1734  | 0  |         || ossl_ml_kem_have_pubkey(key)  | 
1735  | 0  |         || ossl_ml_kem_have_seed(key)  | 
1736  | 0  |         || seedlen != ML_KEM_SEED_BYTES)  | 
1737  | 0  |         return NULL;  | 
1738  |  |     /*  | 
1739  |  |      * With no public or private key material on hand, we can use the seed  | 
1740  |  |      * buffer for |z| and |d|, in that order.  | 
1741  |  |      */  | 
1742  | 0  |     key->z = key->seedbuf;  | 
1743  | 0  |     key->d = key->z + ML_KEM_RANDOM_BYTES;  | 
1744  | 0  |     memcpy(key->d, seed, ML_KEM_RANDOM_BYTES);  | 
1745  | 0  |     seed += ML_KEM_RANDOM_BYTES;  | 
1746  | 0  |     memcpy(key->z, seed, ML_KEM_RANDOM_BYTES);  | 
1747  | 0  |     return key;  | 
1748  | 0  | }  | 
1749  |  |  | 
1750  |  | /* Parse input as a public key */  | 
1751  |  | int ossl_ml_kem_parse_public_key(const uint8_t *in, size_t len, ML_KEM_KEY *key)  | 
1752  | 0  | { | 
1753  | 0  |     EVP_MD_CTX *mdctx = NULL;  | 
1754  | 0  |     const ML_KEM_VINFO *vinfo;  | 
1755  | 0  |     int ret = 0;  | 
1756  |  |  | 
1757  |  |     /* Keys with key material are immutable */  | 
1758  | 0  |     if (key == NULL  | 
1759  | 0  |         || ossl_ml_kem_have_pubkey(key)  | 
1760  | 0  |         || ossl_ml_kem_have_dkenc(key))  | 
1761  | 0  |         return 0;  | 
1762  | 0  |     vinfo = key->vinfo;  | 
1763  |  | 
  | 
1764  | 0  |     if (len != vinfo->pubkey_bytes  | 
1765  | 0  |         || (mdctx = EVP_MD_CTX_new()) == NULL)  | 
1766  | 0  |         return 0;  | 
1767  |  |  | 
1768  | 0  |     if (add_storage(OPENSSL_malloc(vinfo->puballoc), 0, key))  | 
1769  | 0  |         ret = parse_pubkey(in, mdctx, key);  | 
1770  |  | 
  | 
1771  | 0  |     if (!ret)  | 
1772  | 0  |         ossl_ml_kem_key_reset(key);  | 
1773  | 0  |     EVP_MD_CTX_free(mdctx);  | 
1774  | 0  |     return ret;  | 
1775  | 0  | }  | 
1776  |  |  | 
1777  |  | /* Parse input as a new private key */  | 
1778  |  | int ossl_ml_kem_parse_private_key(const uint8_t *in, size_t len,  | 
1779  |  |                                   ML_KEM_KEY *key)  | 
1780  | 0  | { | 
1781  | 0  |     EVP_MD_CTX *mdctx = NULL;  | 
1782  | 0  |     const ML_KEM_VINFO *vinfo;  | 
1783  | 0  |     int ret = 0;  | 
1784  |  |  | 
1785  |  |     /* Keys with key material are immutable */  | 
1786  | 0  |     if (key == NULL  | 
1787  | 0  |         || ossl_ml_kem_have_pubkey(key)  | 
1788  | 0  |         || ossl_ml_kem_have_dkenc(key))  | 
1789  | 0  |         return 0;  | 
1790  | 0  |     vinfo = key->vinfo;  | 
1791  |  | 
  | 
1792  | 0  |     if (len != vinfo->prvkey_bytes  | 
1793  | 0  |         || (mdctx = EVP_MD_CTX_new()) == NULL)  | 
1794  | 0  |         return 0;  | 
1795  |  |  | 
1796  | 0  |     if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key))  | 
1797  | 0  |         ret = parse_prvkey(in, mdctx, key);  | 
1798  |  | 
  | 
1799  | 0  |     if (!ret)  | 
1800  | 0  |         ossl_ml_kem_key_reset(key);  | 
1801  | 0  |     EVP_MD_CTX_free(mdctx);  | 
1802  | 0  |     return ret;  | 
1803  | 0  | }  | 
1804  |  |  | 
1805  |  | /*  | 
1806  |  |  * Generate a new keypair, either from the saved seed (when non-null), or from  | 
1807  |  |  * the RNG.  | 
1808  |  |  */  | 
1809  |  | int ossl_ml_kem_genkey(uint8_t *pubenc, size_t publen, ML_KEM_KEY *key)  | 
1810  | 0  | { | 
1811  | 0  |     uint8_t seed[ML_KEM_SEED_BYTES];  | 
1812  | 0  |     EVP_MD_CTX *mdctx = NULL;  | 
1813  | 0  |     const ML_KEM_VINFO *vinfo;  | 
1814  | 0  |     int ret = 0;  | 
1815  |  | 
  | 
1816  | 0  |     if (key == NULL  | 
1817  | 0  |         || ossl_ml_kem_have_pubkey(key)  | 
1818  | 0  |         || ossl_ml_kem_have_dkenc(key))  | 
1819  | 0  |         return 0;  | 
1820  | 0  |     vinfo = key->vinfo;  | 
1821  |  | 
  | 
1822  | 0  |     if (pubenc != NULL && publen != vinfo->pubkey_bytes)  | 
1823  | 0  |         return 0;  | 
1824  |  |  | 
1825  | 0  |     if (ossl_ml_kem_have_seed(key)) { | 
1826  | 0  |         if (!ossl_ml_kem_encode_seed(seed, sizeof(seed), key))  | 
1827  | 0  |             return 0;  | 
1828  | 0  |         key->d = key->z = NULL;  | 
1829  | 0  |     } else if (RAND_priv_bytes_ex(key->libctx, seed, sizeof(seed),  | 
1830  | 0  |                                   key->vinfo->secbits) <= 0) { | 
1831  | 0  |         return 0;  | 
1832  | 0  |     }  | 
1833  |  |  | 
1834  | 0  |     if ((mdctx = EVP_MD_CTX_new()) == NULL)  | 
1835  | 0  |         return 0;  | 
1836  |  |  | 
1837  |  |     /*  | 
1838  |  |      * Data derived from (d, z) defaults secret, and to avoid side-channel  | 
1839  |  |      * leaks should not influence control flow.  | 
1840  |  |      */  | 
1841  | 0  |     CONSTTIME_SECRET(seed, ML_KEM_SEED_BYTES);  | 
1842  |  | 
  | 
1843  | 0  |     if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key))  | 
1844  | 0  |         ret = genkey(seed, mdctx, pubenc, key);  | 
1845  | 0  |     OPENSSL_cleanse(seed, sizeof(seed));  | 
1846  |  |  | 
1847  |  |     /* Declassify secret inputs and derived outputs before returning control */  | 
1848  | 0  |     CONSTTIME_DECLASSIFY(seed, ML_KEM_SEED_BYTES);  | 
1849  |  | 
  | 
1850  | 0  |     EVP_MD_CTX_free(mdctx);  | 
1851  | 0  |     if (!ret) { | 
1852  | 0  |         ossl_ml_kem_key_reset(key);  | 
1853  | 0  |         return 0;  | 
1854  | 0  |     }  | 
1855  |  |  | 
1856  |  |     /* The public components are already declassified */  | 
1857  | 0  |     CONSTTIME_DECLASSIFY(key->s, vinfo->rank * sizeof(scalar));  | 
1858  | 0  |     CONSTTIME_DECLASSIFY(key->z, 2 * ML_KEM_RANDOM_BYTES);  | 
1859  | 0  |     return 1;  | 
1860  | 0  | }  | 
1861  |  |  | 
1862  |  | /*  | 
1863  |  |  * FIPS 203, Section 6.2, Algorithm 17: ML-KEM.Encaps_internal  | 
1864  |  |  * This is the deterministic version with randomness supplied externally.  | 
1865  |  |  */  | 
1866  |  | int ossl_ml_kem_encap_seed(uint8_t *ctext, size_t clen,  | 
1867  |  |                            uint8_t *shared_secret, size_t slen,  | 
1868  |  |                            const uint8_t *entropy, size_t elen,  | 
1869  |  |                            const ML_KEM_KEY *key)  | 
1870  | 0  | { | 
1871  | 0  |     const ML_KEM_VINFO *vinfo;  | 
1872  | 0  |     EVP_MD_CTX *mdctx;  | 
1873  | 0  |     int ret = 0;  | 
1874  |  | 
  | 
1875  | 0  |     if (key == NULL || !ossl_ml_kem_have_pubkey(key))  | 
1876  | 0  |         return 0;  | 
1877  | 0  |     vinfo = key->vinfo;  | 
1878  |  | 
  | 
1879  | 0  |     if (ctext == NULL || clen != vinfo->ctext_bytes  | 
1880  | 0  |         || shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES  | 
1881  | 0  |         || entropy == NULL || elen != ML_KEM_RANDOM_BYTES  | 
1882  | 0  |         || (mdctx = EVP_MD_CTX_new()) == NULL)  | 
1883  | 0  |         return 0;  | 
1884  |  |     /*  | 
1885  |  |      * Data derived from the encap entropy defaults secret, and to avoid  | 
1886  |  |      * side-channel leaks should not influence control flow.  | 
1887  |  |      */  | 
1888  | 0  |     CONSTTIME_SECRET(entropy, elen);  | 
1889  |  |  | 
1890  |  |     /*-  | 
1891  |  |      * This avoids the need to handle allocation failures for two (max 2KB  | 
1892  |  |      * each) vectors, that are never retained on return from this function.  | 
1893  |  |      * We stack-allocate these.  | 
1894  |  |      */  | 
1895  | 0  | #   define case_encap_seed(bits)                                            \  | 
1896  | 0  |     case EVP_PKEY_ML_KEM_##bits:                                            \  | 
1897  | 0  |         {                                                                   \ | 
1898  | 0  |             scalar tmp[2 * ML_KEM_##bits##_RANK];                           \  | 
1899  | 0  |                                                                             \  | 
1900  | 0  |             ret = encap(ctext, shared_secret, entropy, tmp, mdctx, key);    \  | 
1901  | 0  |             OPENSSL_cleanse((void *)tmp, sizeof(tmp));                      \  | 
1902  | 0  |             break;                                                          \  | 
1903  | 0  |         }  | 
1904  | 0  |     switch (vinfo->evp_type) { | 
1905  | 0  |     case_encap_seed(512);  | 
1906  | 0  |     case_encap_seed(768);  | 
1907  | 0  |     case_encap_seed(1024);  | 
1908  | 0  |     }  | 
1909  | 0  | #   undef case_encap_seed  | 
1910  |  |  | 
1911  |  |     /* Declassify secret inputs and derived outputs before returning control */  | 
1912  | 0  |     CONSTTIME_DECLASSIFY(entropy, elen);  | 
1913  | 0  |     CONSTTIME_DECLASSIFY(ctext, clen);  | 
1914  | 0  |     CONSTTIME_DECLASSIFY(shared_secret, slen);  | 
1915  |  | 
  | 
1916  | 0  |     EVP_MD_CTX_free(mdctx);  | 
1917  | 0  |     return ret;  | 
1918  | 0  | }  | 
1919  |  |  | 
1920  |  | int ossl_ml_kem_encap_rand(uint8_t *ctext, size_t clen,  | 
1921  |  |                            uint8_t *shared_secret, size_t slen,  | 
1922  |  |                            const ML_KEM_KEY *key)  | 
1923  | 0  | { | 
1924  | 0  |     uint8_t r[ML_KEM_RANDOM_BYTES];  | 
1925  |  | 
  | 
1926  | 0  |     if (key == NULL)  | 
1927  | 0  |         return 0;  | 
1928  |  |  | 
1929  | 0  |     if (RAND_bytes_ex(key->libctx, r, ML_KEM_RANDOM_BYTES,  | 
1930  | 0  |                       key->vinfo->secbits) < 1)  | 
1931  | 0  |         return 0;  | 
1932  |  |  | 
1933  | 0  |     return ossl_ml_kem_encap_seed(ctext, clen, shared_secret, slen,  | 
1934  | 0  |                                   r, sizeof(r), key);  | 
1935  | 0  | }  | 
1936  |  |  | 
1937  |  | int ossl_ml_kem_decap(uint8_t *shared_secret, size_t slen,  | 
1938  |  |                       const uint8_t *ctext, size_t clen,  | 
1939  |  |                       const ML_KEM_KEY *key)  | 
1940  | 0  | { | 
1941  | 0  |     const ML_KEM_VINFO *vinfo;  | 
1942  | 0  |     EVP_MD_CTX *mdctx;  | 
1943  | 0  |     int ret = 0;  | 
1944  |  | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)  | 
1945  |  |     int classify_bytes;  | 
1946  |  | #endif  | 
1947  |  |  | 
1948  |  |     /* Need a private key here */  | 
1949  | 0  |     if (!ossl_ml_kem_have_prvkey(key))  | 
1950  | 0  |         return 0;  | 
1951  | 0  |     vinfo = key->vinfo;  | 
1952  |  | 
  | 
1953  | 0  |     if (shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES  | 
1954  | 0  |         || ctext == NULL || clen != vinfo->ctext_bytes  | 
1955  | 0  |         || (mdctx = EVP_MD_CTX_new()) == NULL) { | 
1956  | 0  |         (void)RAND_bytes_ex(key->libctx, shared_secret,  | 
1957  | 0  |                             ML_KEM_SHARED_SECRET_BYTES, vinfo->secbits);  | 
1958  | 0  |         return 0;  | 
1959  | 0  |     }  | 
1960  |  | #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)  | 
1961  |  |     /*  | 
1962  |  |      * Data derived from |s| and |z| defaults secret, and to avoid side-channel  | 
1963  |  |      * leaks should not influence control flow.  | 
1964  |  |      */  | 
1965  |  |     classify_bytes = 2 * sizeof(scalar) + ML_KEM_RANDOM_BYTES;  | 
1966  |  |     CONSTTIME_SECRET(key->s, classify_bytes);  | 
1967  |  | #endif  | 
1968  |  |  | 
1969  |  |     /*-  | 
1970  |  |      * This avoids the need to handle allocation failures for two (max 2KB  | 
1971  |  |      * each) vectors and an encoded ciphertext (max 1568 bytes), that are never  | 
1972  |  |      * retained on return from this function.  | 
1973  |  |      * We stack-allocate these.  | 
1974  |  |      */  | 
1975  | 0  | #   define case_decap(bits)                                             \  | 
1976  | 0  |     case EVP_PKEY_ML_KEM_##bits:                                        \  | 
1977  | 0  |         {                                                               \ | 
1978  | 0  |             uint8_t cbuf[CTEXT_BYTES(bits)];                            \  | 
1979  | 0  |             scalar tmp[2 * ML_KEM_##bits##_RANK];                       \  | 
1980  | 0  |                                                                         \  | 
1981  | 0  |             ret = decap(shared_secret, ctext, cbuf, tmp, mdctx, key);   \  | 
1982  | 0  |             OPENSSL_cleanse((void *)tmp, sizeof(tmp));                  \  | 
1983  | 0  |             break;                                                      \  | 
1984  | 0  |         }  | 
1985  | 0  |     switch (vinfo->evp_type) { | 
1986  | 0  |     case_decap(512);  | 
1987  | 0  |     case_decap(768);  | 
1988  | 0  |     case_decap(1024);  | 
1989  | 0  |     }  | 
1990  |  |  | 
1991  |  |     /* Declassify secret inputs and derived outputs before returning control */  | 
1992  | 0  |     CONSTTIME_DECLASSIFY(key->s, classify_bytes);  | 
1993  | 0  |     CONSTTIME_DECLASSIFY(shared_secret, slen);  | 
1994  | 0  |     EVP_MD_CTX_free(mdctx);  | 
1995  |  | 
  | 
1996  | 0  |     return ret;  | 
1997  | 0  | #   undef case_decap  | 
1998  | 0  | }  | 
1999  |  |  | 
2000  |  | int ossl_ml_kem_pubkey_cmp(const ML_KEM_KEY *key1, const ML_KEM_KEY *key2)  | 
2001  | 0  | { | 
2002  |  |     /*  | 
2003  |  |      * This handles any unexpected differences in the ML-KEM variant rank,  | 
2004  |  |      * giving different key component structures, barring SHA3-256 hash  | 
2005  |  |      * collisions, the keys are the same size.  | 
2006  |  |      */  | 
2007  | 0  |     if (ossl_ml_kem_have_pubkey(key1) && ossl_ml_kem_have_pubkey(key2))  | 
2008  | 0  |         return memcmp(key1->pkhash, key2->pkhash, ML_KEM_PKHASH_BYTES) == 0;  | 
2009  |  |  | 
2010  |  |     /*  | 
2011  |  |      * No match if just one of the public keys is not available, otherwise both  | 
2012  |  |      * are unavailable, and for now such keys are considered equal.  | 
2013  |  |      */  | 
2014  | 0  |     return (ossl_ml_kem_have_pubkey(key1) ^ ossl_ml_kem_have_pubkey(key2));  | 
2015  | 0  | }  |