Coverage Report

Created: 2025-06-13 06:57

/src/openssl/crypto/ec/curve448/curve448.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright 2015-2016 Cryptography Research, Inc.
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 *
10
 * Originally written by Mike Hamburg
11
 */
12
#include <openssl/crypto.h>
13
#include "word.h"
14
#include "field.h"
15
16
#include "point_448.h"
17
#include "ed448.h"
18
#include "crypto/ecx.h"
19
#include "curve448_local.h"
20
21
0
#define COFACTOR 4
22
23
0
#define C448_WNAF_FIXED_TABLE_BITS 5
24
0
#define C448_WNAF_VAR_TABLE_BITS 3
25
26
0
#define EDWARDS_D       (-39081)
27
28
static const curve448_scalar_t precomputed_scalarmul_adjustment = {
29
    {
30
        {
31
            SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
32
            SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL)
33
        }
34
    }
35
};
36
37
0
#define TWISTED_D (EDWARDS_D - 1)
38
39
0
#define WBITS C448_WORD_BITS   /* NB this may be different from ARCH_WORD_BITS */
40
41
/* Inverse. */
42
static void gf_invert(gf y, const gf x, int assert_nonzero)
43
0
{
44
0
    mask_t ret;
45
0
    gf t1, t2;
46
47
0
    ossl_gf_sqr(t1, x);              /* o^2 */
48
0
    ret = gf_isr(t2, t1);       /* +-1/sqrt(o^2) = +-1/o */
49
0
    (void)ret;
50
0
    if (assert_nonzero)
51
0
        assert(ret);
52
0
    ossl_gf_sqr(t1, t2);
53
0
    ossl_gf_mul(t2, t1, x);          /* not direct to y in case of alias. */
54
0
    gf_copy(y, t2);
55
0
}
56
57
/** identity = (0,1) */
58
const curve448_point_t ossl_curve448_point_identity = {
59
    {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}}
60
};
61
62
static void point_double_internal(curve448_point_t p, const curve448_point_t q,
63
                                  int before_double)
64
0
{
65
0
    gf a, b, c, d;
66
67
0
    ossl_gf_sqr(c, q->x);
68
0
    ossl_gf_sqr(a, q->y);
69
0
    gf_add_nr(d, c, a);         /* 2+e */
70
0
    gf_add_nr(p->t, q->y, q->x); /* 2+e */
71
0
    ossl_gf_sqr(b, p->t);
72
0
    gf_subx_nr(b, b, d, 3);     /* 4+e */
73
0
    gf_sub_nr(p->t, a, c);      /* 3+e */
74
0
    ossl_gf_sqr(p->x, q->z);
75
0
    gf_add_nr(p->z, p->x, p->x); /* 2+e */
76
0
    gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
77
0
    if (GF_HEADROOM == 5)
78
0
        gf_weak_reduce(a);      /* or 1+e */
79
0
    ossl_gf_mul(p->x, a, b);
80
0
    ossl_gf_mul(p->z, p->t, a);
81
0
    ossl_gf_mul(p->y, p->t, d);
82
0
    if (!before_double)
83
0
        ossl_gf_mul(p->t, b, d);
84
0
}
85
86
void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
87
0
{
88
0
    point_double_internal(p, q, 0);
89
0
}
90
91
/* Operations on [p]niels */
92
static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
93
0
{
94
0
    gf_cond_swap(n->a, n->b, neg);
95
0
    gf_cond_neg(n->c, neg);
96
0
}
97
98
static void pt_to_pniels(pniels_t b, const curve448_point_t a)
99
0
{
100
0
    gf_sub(b->n->a, a->y, a->x);
101
0
    gf_add(b->n->b, a->x, a->y);
102
0
    gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
103
0
    gf_add(b->z, a->z, a->z);
104
0
}
105
106
static void pniels_to_pt(curve448_point_t e, const pniels_t d)
107
0
{
108
0
    gf eu;
109
110
0
    gf_add(eu, d->n->b, d->n->a);
111
0
    gf_sub(e->y, d->n->b, d->n->a);
112
0
    ossl_gf_mul(e->t, e->y, eu);
113
0
    ossl_gf_mul(e->x, d->z, e->y);
114
0
    ossl_gf_mul(e->y, d->z, eu);
115
0
    ossl_gf_sqr(e->z, d->z);
116
0
}
117
118
static void niels_to_pt(curve448_point_t e, const niels_t n)
119
0
{
120
0
    gf_add(e->y, n->b, n->a);
121
0
    gf_sub(e->x, n->b, n->a);
122
0
    ossl_gf_mul(e->t, e->y, e->x);
123
0
    gf_copy(e->z, ONE);
124
0
}
125
126
static void add_niels_to_pt(curve448_point_t d, const niels_t e,
127
                            int before_double)
128
0
{
129
0
    gf a, b, c;
130
131
0
    gf_sub_nr(b, d->y, d->x);   /* 3+e */
132
0
    ossl_gf_mul(a, e->a, b);
133
0
    gf_add_nr(b, d->x, d->y);   /* 2+e */
134
0
    ossl_gf_mul(d->y, e->b, b);
135
0
    ossl_gf_mul(d->x, e->c, d->t);
136
0
    gf_add_nr(c, a, d->y);      /* 2+e */
137
0
    gf_sub_nr(b, d->y, a);      /* 3+e */
138
0
    gf_sub_nr(d->y, d->z, d->x); /* 3+e */
139
0
    gf_add_nr(a, d->x, d->z);   /* 2+e */
140
0
    ossl_gf_mul(d->z, a, d->y);
141
0
    ossl_gf_mul(d->x, d->y, b);
142
0
    ossl_gf_mul(d->y, a, c);
143
0
    if (!before_double)
144
0
        ossl_gf_mul(d->t, b, c);
145
0
}
146
147
static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
148
                              int before_double)
149
0
{
150
0
    gf a, b, c;
151
152
0
    gf_sub_nr(b, d->y, d->x);   /* 3+e */
153
0
    ossl_gf_mul(a, e->b, b);
154
0
    gf_add_nr(b, d->x, d->y);   /* 2+e */
155
0
    ossl_gf_mul(d->y, e->a, b);
156
0
    ossl_gf_mul(d->x, e->c, d->t);
157
0
    gf_add_nr(c, a, d->y);      /* 2+e */
158
0
    gf_sub_nr(b, d->y, a);      /* 3+e */
159
0
    gf_add_nr(d->y, d->z, d->x); /* 2+e */
160
0
    gf_sub_nr(a, d->z, d->x);   /* 3+e */
161
0
    ossl_gf_mul(d->z, a, d->y);
162
0
    ossl_gf_mul(d->x, d->y, b);
163
0
    ossl_gf_mul(d->y, a, c);
164
0
    if (!before_double)
165
0
        ossl_gf_mul(d->t, b, c);
166
0
}
167
168
static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
169
                             int before_double)
170
0
{
171
0
    gf L0;
172
173
0
    ossl_gf_mul(L0, p->z, pn->z);
174
0
    gf_copy(p->z, L0);
175
0
    add_niels_to_pt(p, pn->n, before_double);
176
0
}
177
178
static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
179
                               int before_double)
180
0
{
181
0
    gf L0;
182
183
0
    ossl_gf_mul(L0, p->z, pn->z);
184
0
    gf_copy(p->z, L0);
185
0
    sub_niels_from_pt(p, pn->n, before_double);
186
0
}
187
188
c448_bool_t
189
ossl_curve448_point_eq(const curve448_point_t p,
190
                       const curve448_point_t q)
191
0
{
192
0
    mask_t succ;
193
0
    gf a, b;
194
195
    /* equality mod 2-torsion compares x/y */
196
0
    ossl_gf_mul(a, p->y, q->x);
197
0
    ossl_gf_mul(b, q->y, p->x);
198
0
    succ = gf_eq(a, b);
199
200
0
    return mask_to_bool(succ);
201
0
}
202
203
c448_bool_t
204
ossl_curve448_point_valid(const curve448_point_t p)
205
0
{
206
0
    mask_t out;
207
0
    gf a, b, c;
208
209
0
    ossl_gf_mul(a, p->x, p->y);
210
0
    ossl_gf_mul(b, p->z, p->t);
211
0
    out = gf_eq(a, b);
212
0
    ossl_gf_sqr(a, p->x);
213
0
    ossl_gf_sqr(b, p->y);
214
0
    gf_sub(a, b, a);
215
0
    ossl_gf_sqr(b, p->t);
216
0
    gf_mulw(c, b, TWISTED_D);
217
0
    ossl_gf_sqr(b, p->z);
218
0
    gf_add(b, b, c);
219
0
    out &= gf_eq(a, b);
220
0
    out &= ~gf_eq(p->z, ZERO);
221
0
    return mask_to_bool(out);
222
0
}
223
224
static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
225
                                                   const niels_t *table,
226
                                                   int nelts, int idx)
227
0
{
228
0
    constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
229
0
}
230
231
void
232
ossl_curve448_precomputed_scalarmul(curve448_point_t out,
233
                                    const curve448_precomputed_s *table,
234
                                    const curve448_scalar_t scalar)
235
0
{
236
0
    unsigned int i, j, k;
237
0
    const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
238
0
    niels_t ni;
239
0
    curve448_scalar_t scalar1x;
240
241
0
    ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
242
0
    ossl_curve448_scalar_halve(scalar1x, scalar1x);
243
244
0
    for (i = s; i > 0; i--) {
245
0
        if (i != s)
246
0
            point_double_internal(out, out, 0);
247
248
0
        for (j = 0; j < n; j++) {
249
0
            int tab = 0;
250
0
            mask_t invert;
251
252
0
            for (k = 0; k < t; k++) {
253
0
                unsigned int bit = (i - 1) + s * (k + j * t);
254
255
0
                if (bit < C448_SCALAR_BITS)
256
0
                    tab |=
257
0
                        (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
258
0
            }
259
260
0
            invert = (tab >> (t - 1)) - 1;
261
0
            tab ^= invert;
262
0
            tab &= (1 << (t - 1)) - 1;
263
264
0
            constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
265
0
                                       1 << (t - 1), tab);
266
267
0
            cond_neg_niels(ni, invert);
268
0
            if ((i != s) || j != 0)
269
0
                add_niels_to_pt(out, ni, j == n - 1 && i != 1);
270
0
            else
271
0
                niels_to_pt(out, ni);
272
0
        }
273
0
    }
274
275
0
    OPENSSL_cleanse(ni, sizeof(ni));
276
0
    OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
277
0
}
278
279
void
280
ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
281
                                    uint8_t enc[EDDSA_448_PUBLIC_BYTES],
282
                                    const curve448_point_t p)
283
0
{
284
0
    gf x, y, z, t;
285
0
    curve448_point_t q;
286
287
    /* The point is now on the twisted curve.  Move it to untwisted. */
288
0
    curve448_point_copy(q, p);
289
290
0
    {
291
        /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
292
0
        gf u;
293
294
0
        ossl_gf_sqr(x, q->x);
295
0
        ossl_gf_sqr(t, q->y);
296
0
        gf_add(u, x, t);
297
0
        gf_add(z, q->y, q->x);
298
0
        ossl_gf_sqr(y, z);
299
0
        gf_sub(y, y, u);
300
0
        gf_sub(z, t, x);
301
0
        ossl_gf_sqr(x, q->z);
302
0
        gf_add(t, x, x);
303
0
        gf_sub(t, t, z);
304
0
        ossl_gf_mul(x, t, y);
305
0
        ossl_gf_mul(y, z, u);
306
0
        ossl_gf_mul(z, u, t);
307
0
        OPENSSL_cleanse(u, sizeof(u));
308
0
    }
309
310
    /* Affinize */
311
0
    gf_invert(z, z, 1);
312
0
    ossl_gf_mul(t, x, z);
313
0
    ossl_gf_mul(x, y, z);
314
315
    /* Encode */
316
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
317
0
    gf_serialize(enc, x, 1);
318
0
    enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
319
320
0
    OPENSSL_cleanse(x, sizeof(x));
321
0
    OPENSSL_cleanse(y, sizeof(y));
322
0
    OPENSSL_cleanse(z, sizeof(z));
323
0
    OPENSSL_cleanse(t, sizeof(t));
324
0
    ossl_curve448_point_destroy(q);
325
0
}
326
327
c448_error_t
328
ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
329
                                curve448_point_t p,
330
                                const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
331
0
{
332
0
    uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
333
0
    mask_t low;
334
0
    mask_t succ;
335
336
0
    memcpy(enc2, enc, sizeof(enc2));
337
338
0
    low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
339
0
    enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
340
341
0
    succ = gf_deserialize(p->y, enc2, 1, 0);
342
0
    succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
343
344
0
    ossl_gf_sqr(p->x, p->y);
345
0
    gf_sub(p->z, ONE, p->x);    /* num = 1-y^2 */
346
0
    gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
347
0
    gf_sub(p->t, ONE, p->t);    /* denom = 1-dy^2 or 1-d + dy^2 */
348
349
0
    ossl_gf_mul(p->x, p->z, p->t);
350
0
    succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
351
352
0
    ossl_gf_mul(p->x, p->t, p->z);   /* sqrt(num / denom) */
353
0
    gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
354
0
    gf_copy(p->z, ONE);
355
356
0
    {
357
0
        gf a, b, c, d;
358
359
        /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
360
0
        ossl_gf_sqr(c, p->x);
361
0
        ossl_gf_sqr(a, p->y);
362
0
        gf_add(d, c, a);
363
0
        gf_add(p->t, p->y, p->x);
364
0
        ossl_gf_sqr(b, p->t);
365
0
        gf_sub(b, b, d);
366
0
        gf_sub(p->t, a, c);
367
0
        ossl_gf_sqr(p->x, p->z);
368
0
        gf_add(p->z, p->x, p->x);
369
0
        gf_sub(a, p->z, d);
370
0
        ossl_gf_mul(p->x, a, b);
371
0
        ossl_gf_mul(p->z, p->t, a);
372
0
        ossl_gf_mul(p->y, p->t, d);
373
0
        ossl_gf_mul(p->t, b, d);
374
0
        OPENSSL_cleanse(a, sizeof(a));
375
0
        OPENSSL_cleanse(b, sizeof(b));
376
0
        OPENSSL_cleanse(c, sizeof(c));
377
0
        OPENSSL_cleanse(d, sizeof(d));
378
0
    }
379
380
0
    OPENSSL_cleanse(enc2, sizeof(enc2));
381
0
    assert(ossl_curve448_point_valid(p) || ~succ);
382
383
0
    return c448_succeed_if(mask_to_bool(succ));
384
0
}
385
386
c448_error_t
387
ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
388
              const uint8_t base[X_PUBLIC_BYTES],
389
              const uint8_t scalar[X_PRIVATE_BYTES])
390
0
{
391
0
    gf x1, x2, z2, x3, z3, t1, t2;
392
0
    int t;
393
0
    mask_t swap = 0;
394
0
    mask_t nz;
395
396
0
    (void)gf_deserialize(x1, base, 1, 0);
397
0
    gf_copy(x2, ONE);
398
0
    gf_copy(z2, ZERO);
399
0
    gf_copy(x3, x1);
400
0
    gf_copy(z3, ONE);
401
402
0
    for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
403
0
        uint8_t sb = scalar[t / 8];
404
0
        mask_t k_t;
405
406
        /* Scalar conditioning */
407
0
        if (t / 8 == 0)
408
0
            sb &= -(uint8_t)COFACTOR;
409
0
        else if (t == X_PRIVATE_BITS - 1)
410
0
            sb = -1;
411
412
0
        k_t = (sb >> (t % 8)) & 1;
413
0
        k_t = 0 - k_t;             /* set to all 0s or all 1s */
414
415
0
        swap ^= k_t;
416
0
        gf_cond_swap(x2, x3, swap);
417
0
        gf_cond_swap(z2, z3, swap);
418
0
        swap = k_t;
419
420
        /*
421
         * The "_nr" below skips coefficient reduction. In the following
422
         * comments, "2+e" is saying that the coefficients are at most 2+epsilon
423
         * times the reduction limit.
424
         */
425
0
        gf_add_nr(t1, x2, z2);  /* A = x2 + z2 */ /* 2+e */
426
0
        gf_sub_nr(t2, x2, z2);  /* B = x2 - z2 */ /* 3+e */
427
0
        gf_sub_nr(z2, x3, z3);  /* D = x3 - z3 */ /* 3+e */
428
0
        ossl_gf_mul(x2, t1, z2);     /* DA */
429
0
        gf_add_nr(z2, z3, x3);  /* C = x3 + z3 */ /* 2+e */
430
0
        ossl_gf_mul(x3, t2, z2);     /* CB */
431
0
        gf_sub_nr(z3, x2, x3);  /* DA-CB */ /* 3+e */
432
0
        ossl_gf_sqr(z2, z3);         /* (DA-CB)^2 */
433
0
        ossl_gf_mul(z3, x1, z2);     /* z3 = x1(DA-CB)^2 */
434
0
        gf_add_nr(z2, x2, x3);  /* (DA+CB) */ /* 2+e */
435
0
        ossl_gf_sqr(x3, z2);         /* x3 = (DA+CB)^2 */
436
437
0
        ossl_gf_sqr(z2, t1);         /* AA = A^2 */
438
0
        ossl_gf_sqr(t1, t2);         /* BB = B^2 */
439
0
        ossl_gf_mul(x2, z2, t1);     /* x2 = AA*BB */
440
0
        gf_sub_nr(t2, z2, t1);  /* E = AA-BB */ /* 3+e */
441
442
0
        gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
443
0
        gf_add_nr(t1, t1, z2);  /* AA + a24*E */ /* 2+e */
444
0
        ossl_gf_mul(z2, t2, t1);     /* z2 = E(AA+a24*E) */
445
0
    }
446
447
    /* Finish */
448
0
    gf_cond_swap(x2, x3, swap);
449
0
    gf_cond_swap(z2, z3, swap);
450
0
    gf_invert(z2, z2, 0);
451
0
    ossl_gf_mul(x1, x2, z2);
452
0
    gf_serialize(out, x1, 1);
453
0
    nz = ~gf_eq(x1, ZERO);
454
455
0
    OPENSSL_cleanse(x1, sizeof(x1));
456
0
    OPENSSL_cleanse(x2, sizeof(x2));
457
0
    OPENSSL_cleanse(z2, sizeof(z2));
458
0
    OPENSSL_cleanse(x3, sizeof(x3));
459
0
    OPENSSL_cleanse(z3, sizeof(z3));
460
0
    OPENSSL_cleanse(t1, sizeof(t1));
461
0
    OPENSSL_cleanse(t2, sizeof(t2));
462
463
0
    return c448_succeed_if(mask_to_bool(nz));
464
0
}
465
466
void
467
ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
468
                                                      out[X_PUBLIC_BYTES],
469
                                                      const curve448_point_t p)
470
0
{
471
0
    curve448_point_t q;
472
473
0
    curve448_point_copy(q, p);
474
0
    gf_invert(q->t, q->x, 0);   /* 1/x */
475
0
    ossl_gf_mul(q->z, q->t, q->y);   /* y/x */
476
0
    ossl_gf_sqr(q->y, q->z);         /* (y/x)^2 */
477
0
    gf_serialize(out, q->y, 1);
478
0
    ossl_curve448_point_destroy(q);
479
0
}
480
481
void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
482
                                 const uint8_t scalar[X_PRIVATE_BYTES])
483
0
{
484
    /* Scalar conditioning */
485
0
    uint8_t scalar2[X_PRIVATE_BYTES];
486
0
    curve448_scalar_t the_scalar;
487
0
    curve448_point_t p;
488
0
    unsigned int i;
489
490
0
    memcpy(scalar2, scalar, sizeof(scalar2));
491
0
    scalar2[0] &= -(uint8_t)COFACTOR;
492
493
0
    scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
494
0
    scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
495
496
0
    ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
497
498
    /* Compensate for the encoding ratio */
499
0
    for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
500
0
        ossl_curve448_scalar_halve(the_scalar, the_scalar);
501
502
0
    ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
503
0
                                        the_scalar);
504
0
    ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
505
0
    ossl_curve448_point_destroy(p);
506
0
}
507
508
/* Control for variable-time scalar multiply algorithms. */
509
struct smvt_control {
510
    int power, addend;
511
};
512
513
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
514
0
# define NUMTRAILINGZEROS       __builtin_ctz
515
#else
516
# define NUMTRAILINGZEROS       numtrailingzeros
517
static uint32_t numtrailingzeros(uint32_t i)
518
{
519
    uint32_t tmp;
520
    uint32_t num = 31;
521
522
    if (i == 0)
523
        return 32;
524
525
    tmp = i << 16;
526
    if (tmp != 0) {
527
        i = tmp;
528
        num -= 16;
529
    }
530
    tmp = i << 8;
531
    if (tmp != 0) {
532
        i = tmp;
533
        num -= 8;
534
    }
535
    tmp = i << 4;
536
    if (tmp != 0) {
537
        i = tmp;
538
        num -= 4;
539
    }
540
    tmp = i << 2;
541
    if (tmp != 0) {
542
        i = tmp;
543
        num -= 2;
544
    }
545
    tmp = i << 1;
546
    if (tmp != 0)
547
        num--;
548
549
    return num;
550
}
551
#endif
552
553
static int recode_wnaf(struct smvt_control *control,
554
                       /* [nbits/(table_bits + 1) + 3] */
555
                       const curve448_scalar_t scalar,
556
                       unsigned int table_bits)
557
0
{
558
0
    unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
559
0
    int position = table_size - 1; /* at the end */
560
0
    uint64_t current = scalar->limb[0] & 0xFFFF;
561
0
    uint32_t mask = (1 << (table_bits + 1)) - 1;
562
0
    unsigned int w;
563
0
    const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
564
0
    unsigned int n, i;
565
566
    /* place the end marker */
567
0
    control[position].power = -1;
568
0
    control[position].addend = 0;
569
0
    position--;
570
571
    /*
572
     * PERF: Could negate scalar if it's large.  But then would need more cases
573
     * in the actual code that uses it, all for an expected reduction of like
574
     * 1/5 op. Probably not worth it.
575
     */
576
577
0
    for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
578
0
        if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
579
            /* Refill the 16 high bits of current */
580
0
            current += (uint32_t)((scalar->limb[w / B_OVER_16]
581
0
                       >> (16 * (w % B_OVER_16))) << 16);
582
0
        }
583
584
0
        while (current & 0xFFFF) {
585
0
            uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
586
0
            uint32_t odd = (uint32_t)current >> pos;
587
0
            int32_t delta = odd & mask;
588
589
0
            assert(position >= 0);
590
0
            if (odd & (1 << (table_bits + 1)))
591
0
                delta -= (1 << (table_bits + 1));
592
            /*
593
             * Coverity gets confused by the value of pos, thinking it might be
594
             * 32.  This would require current & 0xFFFF to be zero which isn't
595
             * possible.  Suppress this false positive, since adding a check
596
             * isn't desirable.
597
             */
598
            /* coverity[overflow_before_widen] */
599
0
            current -= delta * (1 << pos);
600
0
            control[position].power = pos + 16 * (w - 1);
601
0
            control[position].addend = delta;
602
0
            position--;
603
0
        }
604
0
        current >>= 16;
605
0
    }
606
0
    assert(current == 0);
607
608
0
    position++;
609
0
    n = table_size - position;
610
0
    for (i = 0; i < n; i++)
611
0
        control[i] = control[i + position];
612
613
0
    return n - 1;
614
0
}
615
616
static void prepare_wnaf_table(pniels_t *output,
617
                               const curve448_point_t working,
618
                               unsigned int tbits)
619
0
{
620
0
    curve448_point_t tmp;
621
0
    int i;
622
0
    pniels_t twop;
623
624
0
    pt_to_pniels(output[0], working);
625
626
0
    if (tbits == 0)
627
0
        return;
628
629
0
    ossl_curve448_point_double(tmp, working);
630
0
    pt_to_pniels(twop, tmp);
631
632
0
    add_pniels_to_pt(tmp, output[0], 0);
633
0
    pt_to_pniels(output[1], tmp);
634
635
0
    for (i = 2; i < 1 << tbits; i++) {
636
0
        add_pniels_to_pt(tmp, twop, 0);
637
0
        pt_to_pniels(output[i], tmp);
638
0
    }
639
640
0
    ossl_curve448_point_destroy(tmp);
641
0
    OPENSSL_cleanse(twop, sizeof(twop));
642
0
}
643
644
void
645
ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
646
                                               const curve448_scalar_t scalar1,
647
                                               const curve448_point_t base2,
648
                                               const curve448_scalar_t scalar2)
649
0
{
650
0
    const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
651
0
    const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
652
0
    struct smvt_control control_var[C448_SCALAR_BITS /
653
0
                                    (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
654
0
    struct smvt_control control_pre[C448_SCALAR_BITS /
655
0
                                    (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
656
0
    int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
657
0
    int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
658
0
    pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
659
0
    int contp = 0, contv = 0, i;
660
661
0
    prepare_wnaf_table(precmp_var, base2, table_bits_var);
662
0
    i = control_var[0].power;
663
664
0
    if (i < 0) {
665
0
        curve448_point_copy(combo, ossl_curve448_point_identity);
666
0
        return;
667
0
    }
668
0
    if (i > control_pre[0].power) {
669
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
670
0
        contv++;
671
0
    } else if (i == control_pre[0].power && i >= 0) {
672
0
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
673
0
        add_niels_to_pt(combo,
674
0
                        ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
675
0
                        i);
676
0
        contv++;
677
0
        contp++;
678
0
    } else {
679
0
        i = control_pre[0].power;
680
0
        niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
681
0
        contp++;
682
0
    }
683
684
0
    for (i--; i >= 0; i--) {
685
0
        int cv = (i == control_var[contv].power);
686
0
        int cp = (i == control_pre[contp].power);
687
688
0
        point_double_internal(combo, combo, i && !(cv || cp));
689
690
0
        if (cv) {
691
0
            assert(control_var[contv].addend);
692
693
0
            if (control_var[contv].addend > 0)
694
0
                add_pniels_to_pt(combo,
695
0
                                 precmp_var[control_var[contv].addend >> 1],
696
0
                                 i && !cp);
697
0
            else
698
0
                sub_pniels_from_pt(combo,
699
0
                                   precmp_var[(-control_var[contv].addend)
700
0
                                              >> 1], i && !cp);
701
0
            contv++;
702
0
        }
703
704
0
        if (cp) {
705
0
            assert(control_pre[contp].addend);
706
707
0
            if (control_pre[contp].addend > 0)
708
0
                add_niels_to_pt(combo,
709
0
                                ossl_curve448_wnaf_base[control_pre[contp].addend
710
0
                                                   >> 1], i);
711
0
            else
712
0
                sub_niels_from_pt(combo,
713
0
                                  ossl_curve448_wnaf_base[(-control_pre
714
0
                                                      [contp].addend) >> 1], i);
715
0
            contp++;
716
0
        }
717
0
    }
718
719
    /* This function is non-secret, but whatever this is cheap. */
720
0
    OPENSSL_cleanse(control_var, sizeof(control_var));
721
0
    OPENSSL_cleanse(control_pre, sizeof(control_pre));
722
0
    OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
723
724
0
    assert(contv == ncb_var);
725
0
    (void)ncb_var;
726
0
    assert(contp == ncb_pre);
727
0
    (void)ncb_pre;
728
0
}
729
730
void ossl_curve448_point_destroy(curve448_point_t point)
731
0
{
732
0
    OPENSSL_cleanse(point, sizeof(curve448_point_t));
733
0
}
734
735
int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
736
              const uint8_t peer_public_value[56])
737
0
{
738
0
    return ossl_x448_int(out_shared_key, peer_public_value, private_key)
739
0
           == C448_SUCCESS;
740
0
}
741
742
void ossl_x448_public_from_private(uint8_t out_public_value[56],
743
                                   const uint8_t private_key[56])
744
0
{
745
0
    ossl_x448_derive_public_key(out_public_value, private_key);
746
0
}