/src/openssl/ssl/statem/statem_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <limits.h> |
12 | | #include <string.h> |
13 | | #include <stdio.h> |
14 | | #include "../ssl_local.h" |
15 | | #include "statem_local.h" |
16 | | #include "internal/cryptlib.h" |
17 | | #include "internal/ssl_unwrap.h" |
18 | | #include <openssl/buffer.h> |
19 | | #include <openssl/objects.h> |
20 | | #include <openssl/evp.h> |
21 | | #include <openssl/rsa.h> |
22 | | #include <openssl/x509.h> |
23 | | #include <openssl/trace.h> |
24 | | #include <openssl/encoder.h> |
25 | | |
26 | | /* |
27 | | * Map error codes to TLS/SSL alart types. |
28 | | */ |
29 | | typedef struct x509err2alert_st { |
30 | | int x509err; |
31 | | int alert; |
32 | | } X509ERR2ALERT; |
33 | | |
34 | | /* Fixed value used in the ServerHello random field to identify an HRR */ |
35 | | const unsigned char hrrrandom[] = { |
36 | | 0xcf, 0x21, 0xad, 0x74, 0xe5, 0x9a, 0x61, 0x11, 0xbe, 0x1d, 0x8c, 0x02, |
37 | | 0x1e, 0x65, 0xb8, 0x91, 0xc2, 0xa2, 0x11, 0x16, 0x7a, 0xbb, 0x8c, 0x5e, |
38 | | 0x07, 0x9e, 0x09, 0xe2, 0xc8, 0xa8, 0x33, 0x9c |
39 | | }; |
40 | | |
41 | | int ossl_statem_set_mutator(SSL *s, |
42 | | ossl_statem_mutate_handshake_cb mutate_handshake_cb, |
43 | | ossl_statem_finish_mutate_handshake_cb finish_mutate_handshake_cb, |
44 | | void *mutatearg) |
45 | 0 | { |
46 | 0 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); |
47 | |
|
48 | 0 | if (sc == NULL) |
49 | 0 | return 0; |
50 | | |
51 | 0 | sc->statem.mutate_handshake_cb = mutate_handshake_cb; |
52 | 0 | sc->statem.mutatearg = mutatearg; |
53 | 0 | sc->statem.finish_mutate_handshake_cb = finish_mutate_handshake_cb; |
54 | |
|
55 | 0 | return 1; |
56 | 0 | } |
57 | | |
58 | | /* |
59 | | * send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or |
60 | | * SSL3_RT_CHANGE_CIPHER_SPEC) |
61 | | */ |
62 | | int ssl3_do_write(SSL_CONNECTION *s, uint8_t type) |
63 | 0 | { |
64 | 0 | int ret; |
65 | 0 | size_t written = 0; |
66 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
67 | 0 | SSL *ussl = SSL_CONNECTION_GET_USER_SSL(s); |
68 | | |
69 | | /* |
70 | | * If we're running the test suite then we may need to mutate the message |
71 | | * we've been asked to write. Does not happen in normal operation. |
72 | | */ |
73 | 0 | if (s->statem.mutate_handshake_cb != NULL |
74 | 0 | && !s->statem.write_in_progress |
75 | 0 | && type == SSL3_RT_HANDSHAKE |
76 | 0 | && s->init_num >= SSL3_HM_HEADER_LENGTH) { |
77 | 0 | unsigned char *msg; |
78 | 0 | size_t msglen; |
79 | |
|
80 | 0 | if (!s->statem.mutate_handshake_cb((unsigned char *)s->init_buf->data, |
81 | 0 | s->init_num, |
82 | 0 | &msg, &msglen, |
83 | 0 | s->statem.mutatearg)) |
84 | 0 | return -1; |
85 | 0 | if (msglen < SSL3_HM_HEADER_LENGTH |
86 | 0 | || !BUF_MEM_grow(s->init_buf, msglen)) |
87 | 0 | return -1; |
88 | 0 | memcpy(s->init_buf->data, msg, msglen); |
89 | 0 | s->init_num = msglen; |
90 | 0 | s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH; |
91 | 0 | s->statem.finish_mutate_handshake_cb(s->statem.mutatearg); |
92 | 0 | s->statem.write_in_progress = 1; |
93 | 0 | } |
94 | | |
95 | 0 | ret = ssl3_write_bytes(ssl, type, &s->init_buf->data[s->init_off], |
96 | 0 | s->init_num, &written); |
97 | 0 | if (ret <= 0) |
98 | 0 | return -1; |
99 | 0 | if (type == SSL3_RT_HANDSHAKE) |
100 | | /* |
101 | | * should not be done for 'Hello Request's, but in that case we'll |
102 | | * ignore the result anyway |
103 | | * TLS1.3 KeyUpdate and NewSessionTicket do not need to be added |
104 | | */ |
105 | 0 | if (!SSL_CONNECTION_IS_TLS13(s) |
106 | 0 | || (s->statem.hand_state != TLS_ST_SW_SESSION_TICKET |
107 | 0 | && s->statem.hand_state != TLS_ST_CW_KEY_UPDATE |
108 | 0 | && s->statem.hand_state != TLS_ST_SW_KEY_UPDATE)) |
109 | 0 | if (!ssl3_finish_mac(s, |
110 | 0 | (unsigned char *)&s->init_buf->data[s->init_off], |
111 | 0 | written)) |
112 | 0 | return -1; |
113 | 0 | if (written == s->init_num) { |
114 | 0 | s->statem.write_in_progress = 0; |
115 | 0 | if (s->msg_callback) |
116 | 0 | s->msg_callback(1, s->version, type, s->init_buf->data, |
117 | 0 | (size_t)(s->init_off + s->init_num), ussl, |
118 | 0 | s->msg_callback_arg); |
119 | 0 | return 1; |
120 | 0 | } |
121 | 0 | s->init_off += written; |
122 | 0 | s->init_num -= written; |
123 | 0 | return 0; |
124 | 0 | } |
125 | | |
126 | | int tls_close_construct_packet(SSL_CONNECTION *s, WPACKET *pkt, int htype) |
127 | 0 | { |
128 | 0 | size_t msglen; |
129 | |
|
130 | 0 | if ((htype != SSL3_MT_CHANGE_CIPHER_SPEC && !WPACKET_close(pkt)) |
131 | 0 | || !WPACKET_get_length(pkt, &msglen) |
132 | 0 | || msglen > INT_MAX) |
133 | 0 | return 0; |
134 | 0 | s->init_num = (int)msglen; |
135 | 0 | s->init_off = 0; |
136 | |
|
137 | 0 | return 1; |
138 | 0 | } |
139 | | |
140 | | int tls_setup_handshake(SSL_CONNECTION *s) |
141 | 0 | { |
142 | 0 | int ver_min, ver_max, ok; |
143 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
144 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
145 | |
|
146 | 0 | if (!ssl3_init_finished_mac(s)) { |
147 | | /* SSLfatal() already called */ |
148 | 0 | return 0; |
149 | 0 | } |
150 | | |
151 | | /* Reset any extension flags */ |
152 | 0 | memset(s->ext.extflags, 0, sizeof(s->ext.extflags)); |
153 | |
|
154 | 0 | if (ssl_get_min_max_version(s, &ver_min, &ver_max, NULL) != 0) { |
155 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_NO_PROTOCOLS_AVAILABLE); |
156 | 0 | return 0; |
157 | 0 | } |
158 | | |
159 | | /* Sanity check that we have MD5-SHA1 if we need it */ |
160 | 0 | if (sctx->ssl_digest_methods[SSL_MD_MD5_SHA1_IDX] == NULL) { |
161 | 0 | int negotiated_minversion; |
162 | 0 | int md5sha1_needed_maxversion = SSL_CONNECTION_IS_DTLS(s) |
163 | 0 | ? DTLS1_VERSION : TLS1_1_VERSION; |
164 | | |
165 | | /* We don't have MD5-SHA1 - do we need it? */ |
166 | 0 | if (ssl_version_cmp(s, ver_max, md5sha1_needed_maxversion) <= 0) { |
167 | 0 | SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE, |
168 | 0 | SSL_R_NO_SUITABLE_DIGEST_ALGORITHM, |
169 | 0 | "The max supported SSL/TLS version needs the" |
170 | 0 | " MD5-SHA1 digest but it is not available" |
171 | 0 | " in the loaded providers. Use (D)TLSv1.2 or" |
172 | 0 | " above, or load different providers"); |
173 | 0 | return 0; |
174 | 0 | } |
175 | | |
176 | 0 | ok = 1; |
177 | | |
178 | | /* Don't allow TLSv1.1 or below to be negotiated */ |
179 | 0 | negotiated_minversion = SSL_CONNECTION_IS_DTLS(s) ? |
180 | 0 | DTLS1_2_VERSION : TLS1_2_VERSION; |
181 | 0 | if (ssl_version_cmp(s, ver_min, negotiated_minversion) < 0) |
182 | 0 | ok = SSL_set_min_proto_version(ssl, negotiated_minversion); |
183 | 0 | if (!ok) { |
184 | | /* Shouldn't happen */ |
185 | 0 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, ERR_R_INTERNAL_ERROR); |
186 | 0 | return 0; |
187 | 0 | } |
188 | 0 | } |
189 | | |
190 | 0 | ok = 0; |
191 | 0 | if (s->server) { |
192 | 0 | STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl); |
193 | 0 | int i; |
194 | | |
195 | | /* |
196 | | * Sanity check that the maximum version we accept has ciphers |
197 | | * enabled. For clients we do this check during construction of the |
198 | | * ClientHello. |
199 | | */ |
200 | 0 | for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { |
201 | 0 | const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); |
202 | 0 | int cipher_minprotover = SSL_CONNECTION_IS_DTLS(s) |
203 | 0 | ? c->min_dtls : c->min_tls; |
204 | 0 | int cipher_maxprotover = SSL_CONNECTION_IS_DTLS(s) |
205 | 0 | ? c->max_dtls : c->max_tls; |
206 | |
|
207 | 0 | if (ssl_version_cmp(s, ver_max, cipher_minprotover) >= 0 |
208 | 0 | && ssl_version_cmp(s, ver_max, cipher_maxprotover) <= 0) { |
209 | 0 | ok = 1; |
210 | 0 | break; |
211 | 0 | } |
212 | 0 | } |
213 | 0 | if (!ok) { |
214 | 0 | SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE, |
215 | 0 | SSL_R_NO_CIPHERS_AVAILABLE, |
216 | 0 | "No ciphers enabled for max supported " |
217 | 0 | "SSL/TLS version"); |
218 | 0 | return 0; |
219 | 0 | } |
220 | 0 | if (SSL_IS_FIRST_HANDSHAKE(s)) { |
221 | | /* N.B. s->session_ctx == s->ctx here */ |
222 | 0 | ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_accept); |
223 | 0 | } else { |
224 | | /* N.B. s->ctx may not equal s->session_ctx */ |
225 | 0 | ssl_tsan_counter(sctx, &sctx->stats.sess_accept_renegotiate); |
226 | |
|
227 | 0 | s->s3.tmp.cert_request = 0; |
228 | 0 | } |
229 | 0 | } else { |
230 | 0 | if (SSL_IS_FIRST_HANDSHAKE(s)) |
231 | 0 | ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_connect); |
232 | 0 | else |
233 | 0 | ssl_tsan_counter(s->session_ctx, |
234 | 0 | &s->session_ctx->stats.sess_connect_renegotiate); |
235 | | |
236 | | /* mark client_random uninitialized */ |
237 | 0 | memset(s->s3.client_random, 0, sizeof(s->s3.client_random)); |
238 | 0 | s->hit = 0; |
239 | |
|
240 | 0 | s->s3.tmp.cert_req = 0; |
241 | |
|
242 | 0 | if (SSL_CONNECTION_IS_DTLS(s)) |
243 | 0 | s->statem.use_timer = 1; |
244 | 0 | } |
245 | | |
246 | 0 | return 1; |
247 | 0 | } |
248 | | |
249 | | /* |
250 | | * Size of the to-be-signed TLS13 data, without the hash size itself: |
251 | | * 64 bytes of value 32, 33 context bytes, 1 byte separator |
252 | | */ |
253 | 0 | #define TLS13_TBS_START_SIZE 64 |
254 | 0 | #define TLS13_TBS_PREAMBLE_SIZE (TLS13_TBS_START_SIZE + 33 + 1) |
255 | | |
256 | | static int get_cert_verify_tbs_data(SSL_CONNECTION *s, unsigned char *tls13tbs, |
257 | | void **hdata, size_t *hdatalen) |
258 | 0 | { |
259 | | /* ASCII: "TLS 1.3, server CertificateVerify", in hex for EBCDIC compatibility */ |
260 | 0 | static const char servercontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x73\x65\x72" |
261 | 0 | "\x76\x65\x72\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79"; |
262 | | /* ASCII: "TLS 1.3, client CertificateVerify", in hex for EBCDIC compatibility */ |
263 | 0 | static const char clientcontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x63\x6c\x69" |
264 | 0 | "\x65\x6e\x74\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79"; |
265 | |
|
266 | 0 | if (SSL_CONNECTION_IS_TLS13(s)) { |
267 | 0 | size_t hashlen; |
268 | | |
269 | | /* Set the first 64 bytes of to-be-signed data to octet 32 */ |
270 | 0 | memset(tls13tbs, 32, TLS13_TBS_START_SIZE); |
271 | | /* This copies the 33 bytes of context plus the 0 separator byte */ |
272 | 0 | if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY |
273 | 0 | || s->statem.hand_state == TLS_ST_SW_CERT_VRFY) |
274 | 0 | strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, servercontext); |
275 | 0 | else |
276 | 0 | strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, clientcontext); |
277 | | |
278 | | /* |
279 | | * If we're currently reading then we need to use the saved handshake |
280 | | * hash value. We can't use the current handshake hash state because |
281 | | * that includes the CertVerify itself. |
282 | | */ |
283 | 0 | if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY |
284 | 0 | || s->statem.hand_state == TLS_ST_SR_CERT_VRFY) { |
285 | 0 | memcpy(tls13tbs + TLS13_TBS_PREAMBLE_SIZE, s->cert_verify_hash, |
286 | 0 | s->cert_verify_hash_len); |
287 | 0 | hashlen = s->cert_verify_hash_len; |
288 | 0 | } else if (!ssl_handshake_hash(s, tls13tbs + TLS13_TBS_PREAMBLE_SIZE, |
289 | 0 | EVP_MAX_MD_SIZE, &hashlen)) { |
290 | | /* SSLfatal() already called */ |
291 | 0 | return 0; |
292 | 0 | } |
293 | | |
294 | 0 | *hdata = tls13tbs; |
295 | 0 | *hdatalen = TLS13_TBS_PREAMBLE_SIZE + hashlen; |
296 | 0 | } else { |
297 | 0 | size_t retlen; |
298 | 0 | long retlen_l; |
299 | |
|
300 | 0 | retlen = retlen_l = BIO_get_mem_data(s->s3.handshake_buffer, hdata); |
301 | 0 | if (retlen_l <= 0) { |
302 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
303 | 0 | return 0; |
304 | 0 | } |
305 | 0 | *hdatalen = retlen; |
306 | 0 | } |
307 | | |
308 | 0 | return 1; |
309 | 0 | } |
310 | | |
311 | | CON_FUNC_RETURN tls_construct_cert_verify(SSL_CONNECTION *s, WPACKET *pkt) |
312 | 0 | { |
313 | 0 | EVP_PKEY *pkey = NULL; |
314 | 0 | const EVP_MD *md = NULL; |
315 | 0 | EVP_MD_CTX *mctx = NULL; |
316 | 0 | EVP_PKEY_CTX *pctx = NULL; |
317 | 0 | size_t hdatalen = 0, siglen = 0; |
318 | 0 | void *hdata; |
319 | 0 | unsigned char *sig = NULL; |
320 | 0 | unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE]; |
321 | 0 | const SIGALG_LOOKUP *lu = s->s3.tmp.sigalg; |
322 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
323 | |
|
324 | 0 | if (lu == NULL || s->s3.tmp.cert == NULL) { |
325 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
326 | 0 | goto err; |
327 | 0 | } |
328 | 0 | pkey = s->s3.tmp.cert->privatekey; |
329 | |
|
330 | 0 | if (pkey == NULL || !tls1_lookup_md(sctx, lu, &md)) { |
331 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
332 | 0 | goto err; |
333 | 0 | } |
334 | | |
335 | 0 | mctx = EVP_MD_CTX_new(); |
336 | 0 | if (mctx == NULL) { |
337 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
338 | 0 | goto err; |
339 | 0 | } |
340 | | |
341 | | /* Get the data to be signed */ |
342 | 0 | if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) { |
343 | | /* SSLfatal() already called */ |
344 | 0 | goto err; |
345 | 0 | } |
346 | | |
347 | 0 | if (SSL_USE_SIGALGS(s) && !WPACKET_put_bytes_u16(pkt, lu->sigalg)) { |
348 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
349 | 0 | goto err; |
350 | 0 | } |
351 | | |
352 | 0 | if (EVP_DigestSignInit_ex(mctx, &pctx, |
353 | 0 | md == NULL ? NULL : EVP_MD_get0_name(md), |
354 | 0 | sctx->libctx, sctx->propq, pkey, |
355 | 0 | NULL) <= 0) { |
356 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
357 | 0 | goto err; |
358 | 0 | } |
359 | | |
360 | 0 | if (lu->sig == EVP_PKEY_RSA_PSS) { |
361 | 0 | if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0 |
362 | 0 | || EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, |
363 | 0 | RSA_PSS_SALTLEN_DIGEST) <= 0) { |
364 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
365 | 0 | goto err; |
366 | 0 | } |
367 | 0 | } |
368 | 0 | if (s->version == SSL3_VERSION) { |
369 | | /* |
370 | | * Here we use EVP_DigestSignUpdate followed by EVP_DigestSignFinal |
371 | | * in order to add the EVP_CTRL_SSL3_MASTER_SECRET call between them. |
372 | | */ |
373 | 0 | if (EVP_DigestSignUpdate(mctx, hdata, hdatalen) <= 0 |
374 | 0 | || EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET, |
375 | 0 | (int)s->session->master_key_length, |
376 | 0 | s->session->master_key) <= 0 |
377 | 0 | || EVP_DigestSignFinal(mctx, NULL, &siglen) <= 0) { |
378 | |
|
379 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
380 | 0 | goto err; |
381 | 0 | } |
382 | 0 | sig = OPENSSL_malloc(siglen); |
383 | 0 | if (sig == NULL |
384 | 0 | || EVP_DigestSignFinal(mctx, sig, &siglen) <= 0) { |
385 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
386 | 0 | goto err; |
387 | 0 | } |
388 | 0 | } else { |
389 | | /* |
390 | | * Here we *must* use EVP_DigestSign() because Ed25519/Ed448 does not |
391 | | * support streaming via EVP_DigestSignUpdate/EVP_DigestSignFinal |
392 | | */ |
393 | 0 | if (EVP_DigestSign(mctx, NULL, &siglen, hdata, hdatalen) <= 0) { |
394 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
395 | 0 | goto err; |
396 | 0 | } |
397 | 0 | sig = OPENSSL_malloc(siglen); |
398 | 0 | if (sig == NULL |
399 | 0 | || EVP_DigestSign(mctx, sig, &siglen, hdata, hdatalen) <= 0) { |
400 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
401 | 0 | goto err; |
402 | 0 | } |
403 | 0 | } |
404 | | |
405 | 0 | #ifndef OPENSSL_NO_GOST |
406 | 0 | { |
407 | 0 | int pktype = lu->sig; |
408 | |
|
409 | 0 | if (pktype == NID_id_GostR3410_2001 |
410 | 0 | || pktype == NID_id_GostR3410_2012_256 |
411 | 0 | || pktype == NID_id_GostR3410_2012_512) |
412 | 0 | BUF_reverse(sig, NULL, siglen); |
413 | 0 | } |
414 | 0 | #endif |
415 | |
|
416 | 0 | if (!WPACKET_sub_memcpy_u16(pkt, sig, siglen)) { |
417 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
418 | 0 | goto err; |
419 | 0 | } |
420 | | |
421 | | /* Digest cached records and discard handshake buffer */ |
422 | 0 | if (!ssl3_digest_cached_records(s, 0)) { |
423 | | /* SSLfatal() already called */ |
424 | 0 | goto err; |
425 | 0 | } |
426 | | |
427 | 0 | OPENSSL_free(sig); |
428 | 0 | EVP_MD_CTX_free(mctx); |
429 | 0 | return CON_FUNC_SUCCESS; |
430 | 0 | err: |
431 | 0 | OPENSSL_free(sig); |
432 | 0 | EVP_MD_CTX_free(mctx); |
433 | 0 | return CON_FUNC_ERROR; |
434 | 0 | } |
435 | | |
436 | | MSG_PROCESS_RETURN tls_process_cert_verify(SSL_CONNECTION *s, PACKET *pkt) |
437 | 0 | { |
438 | 0 | EVP_PKEY *pkey = NULL; |
439 | 0 | const unsigned char *data; |
440 | 0 | #ifndef OPENSSL_NO_GOST |
441 | 0 | unsigned char *gost_data = NULL; |
442 | 0 | #endif |
443 | 0 | MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR; |
444 | 0 | int j; |
445 | 0 | unsigned int len; |
446 | 0 | const EVP_MD *md = NULL; |
447 | 0 | size_t hdatalen = 0; |
448 | 0 | void *hdata; |
449 | 0 | unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE]; |
450 | 0 | EVP_MD_CTX *mctx = EVP_MD_CTX_new(); |
451 | 0 | EVP_PKEY_CTX *pctx = NULL; |
452 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
453 | |
|
454 | 0 | if (mctx == NULL) { |
455 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
456 | 0 | goto err; |
457 | 0 | } |
458 | | |
459 | 0 | pkey = tls_get_peer_pkey(s); |
460 | 0 | if (pkey == NULL) { |
461 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
462 | 0 | goto err; |
463 | 0 | } |
464 | | |
465 | 0 | if (ssl_cert_lookup_by_pkey(pkey, NULL, sctx) == NULL) { |
466 | 0 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
467 | 0 | SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE); |
468 | 0 | goto err; |
469 | 0 | } |
470 | | |
471 | 0 | if (SSL_USE_SIGALGS(s)) { |
472 | 0 | unsigned int sigalg; |
473 | |
|
474 | 0 | if (!PACKET_get_net_2(pkt, &sigalg)) { |
475 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET); |
476 | 0 | goto err; |
477 | 0 | } |
478 | 0 | if (tls12_check_peer_sigalg(s, sigalg, pkey) <= 0) { |
479 | | /* SSLfatal() already called */ |
480 | 0 | goto err; |
481 | 0 | } |
482 | 0 | } else if (!tls1_set_peer_legacy_sigalg(s, pkey)) { |
483 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, |
484 | 0 | SSL_R_LEGACY_SIGALG_DISALLOWED_OR_UNSUPPORTED); |
485 | 0 | goto err; |
486 | 0 | } |
487 | | |
488 | 0 | if (!tls1_lookup_md(sctx, s->s3.tmp.peer_sigalg, &md)) { |
489 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
490 | 0 | goto err; |
491 | 0 | } |
492 | | |
493 | 0 | if (SSL_USE_SIGALGS(s)) |
494 | 0 | OSSL_TRACE1(TLS, "USING TLSv1.2 HASH %s\n", |
495 | 0 | md == NULL ? "n/a" : EVP_MD_get0_name(md)); |
496 | | |
497 | | /* Check for broken implementations of GOST ciphersuites */ |
498 | | /* |
499 | | * If key is GOST and len is exactly 64 or 128, it is signature without |
500 | | * length field (CryptoPro implementations at least till TLS 1.2) |
501 | | */ |
502 | 0 | #ifndef OPENSSL_NO_GOST |
503 | 0 | if (!SSL_USE_SIGALGS(s) |
504 | 0 | && ((PACKET_remaining(pkt) == 64 |
505 | 0 | && (EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2001 |
506 | 0 | || EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_256)) |
507 | 0 | || (PACKET_remaining(pkt) == 128 |
508 | 0 | && EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_512))) { |
509 | 0 | len = PACKET_remaining(pkt); |
510 | 0 | } else |
511 | 0 | #endif |
512 | 0 | if (!PACKET_get_net_2(pkt, &len)) { |
513 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
514 | 0 | goto err; |
515 | 0 | } |
516 | | |
517 | 0 | if (!PACKET_get_bytes(pkt, &data, len)) { |
518 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
519 | 0 | goto err; |
520 | 0 | } |
521 | 0 | if (PACKET_remaining(pkt) != 0) { |
522 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
523 | 0 | goto err; |
524 | 0 | } |
525 | | |
526 | 0 | if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) { |
527 | | /* SSLfatal() already called */ |
528 | 0 | goto err; |
529 | 0 | } |
530 | | |
531 | 0 | OSSL_TRACE1(TLS, "Using client verify alg %s\n", |
532 | 0 | md == NULL ? "n/a" : EVP_MD_get0_name(md)); |
533 | |
|
534 | 0 | if (EVP_DigestVerifyInit_ex(mctx, &pctx, |
535 | 0 | md == NULL ? NULL : EVP_MD_get0_name(md), |
536 | 0 | sctx->libctx, sctx->propq, pkey, |
537 | 0 | NULL) <= 0) { |
538 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
539 | 0 | goto err; |
540 | 0 | } |
541 | 0 | #ifndef OPENSSL_NO_GOST |
542 | 0 | { |
543 | 0 | int pktype = EVP_PKEY_get_id(pkey); |
544 | 0 | if (pktype == NID_id_GostR3410_2001 |
545 | 0 | || pktype == NID_id_GostR3410_2012_256 |
546 | 0 | || pktype == NID_id_GostR3410_2012_512) { |
547 | 0 | if ((gost_data = OPENSSL_malloc(len)) == NULL) |
548 | 0 | goto err; |
549 | 0 | BUF_reverse(gost_data, data, len); |
550 | 0 | data = gost_data; |
551 | 0 | } |
552 | 0 | } |
553 | 0 | #endif |
554 | | |
555 | 0 | if (SSL_USE_PSS(s)) { |
556 | 0 | if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0 |
557 | 0 | || EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, |
558 | 0 | RSA_PSS_SALTLEN_DIGEST) <= 0) { |
559 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
560 | 0 | goto err; |
561 | 0 | } |
562 | 0 | } |
563 | 0 | if (s->version == SSL3_VERSION) { |
564 | 0 | if (EVP_DigestVerifyUpdate(mctx, hdata, hdatalen) <= 0 |
565 | 0 | || EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET, |
566 | 0 | (int)s->session->master_key_length, |
567 | 0 | s->session->master_key) <= 0) { |
568 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); |
569 | 0 | goto err; |
570 | 0 | } |
571 | 0 | if (EVP_DigestVerifyFinal(mctx, data, len) <= 0) { |
572 | 0 | SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE); |
573 | 0 | goto err; |
574 | 0 | } |
575 | 0 | } else { |
576 | 0 | j = EVP_DigestVerify(mctx, data, len, hdata, hdatalen); |
577 | 0 | #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
578 | | /* Ignore bad signatures when fuzzing */ |
579 | 0 | if (SSL_IS_QUIC_HANDSHAKE(s)) |
580 | 0 | j = 1; |
581 | 0 | #endif |
582 | 0 | if (j <= 0) { |
583 | 0 | SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE); |
584 | 0 | goto err; |
585 | 0 | } |
586 | 0 | } |
587 | | |
588 | | /* |
589 | | * In TLSv1.3 on the client side we make sure we prepare the client |
590 | | * certificate after the CertVerify instead of when we get the |
591 | | * CertificateRequest. This is because in TLSv1.3 the CertificateRequest |
592 | | * comes *before* the Certificate message. In TLSv1.2 it comes after. We |
593 | | * want to make sure that SSL_get1_peer_certificate() will return the actual |
594 | | * server certificate from the client_cert_cb callback. |
595 | | */ |
596 | 0 | if (!s->server && SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.cert_req == 1) |
597 | 0 | ret = MSG_PROCESS_CONTINUE_PROCESSING; |
598 | 0 | else |
599 | 0 | ret = MSG_PROCESS_CONTINUE_READING; |
600 | 0 | err: |
601 | 0 | BIO_free(s->s3.handshake_buffer); |
602 | 0 | s->s3.handshake_buffer = NULL; |
603 | 0 | EVP_MD_CTX_free(mctx); |
604 | 0 | #ifndef OPENSSL_NO_GOST |
605 | 0 | OPENSSL_free(gost_data); |
606 | 0 | #endif |
607 | 0 | return ret; |
608 | 0 | } |
609 | | |
610 | | CON_FUNC_RETURN tls_construct_finished(SSL_CONNECTION *s, WPACKET *pkt) |
611 | 0 | { |
612 | 0 | size_t finish_md_len; |
613 | 0 | const char *sender; |
614 | 0 | size_t slen; |
615 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
616 | | |
617 | | /* This is a real handshake so make sure we clean it up at the end */ |
618 | 0 | if (!s->server && s->post_handshake_auth != SSL_PHA_REQUESTED) |
619 | 0 | s->statem.cleanuphand = 1; |
620 | | |
621 | | /* |
622 | | * If we attempted to write early data or we're in middlebox compat mode |
623 | | * then we deferred changing the handshake write keys to the last possible |
624 | | * moment. If we didn't already do this when we sent the client certificate |
625 | | * then we need to do it now. |
626 | | */ |
627 | 0 | if (SSL_CONNECTION_IS_TLS13(s) |
628 | 0 | && !s->server |
629 | 0 | && !SSL_IS_QUIC_HANDSHAKE(s) |
630 | 0 | && (s->early_data_state != SSL_EARLY_DATA_NONE |
631 | 0 | || (s->options & SSL_OP_ENABLE_MIDDLEBOX_COMPAT) != 0) |
632 | 0 | && s->s3.tmp.cert_req == 0 |
633 | 0 | && (!ssl->method->ssl3_enc->change_cipher_state(s, |
634 | 0 | SSL3_CC_HANDSHAKE | SSL3_CHANGE_CIPHER_CLIENT_WRITE))) {; |
635 | | /* SSLfatal() already called */ |
636 | 0 | return CON_FUNC_ERROR; |
637 | 0 | } |
638 | | |
639 | 0 | if (s->server) { |
640 | 0 | sender = ssl->method->ssl3_enc->server_finished_label; |
641 | 0 | slen = ssl->method->ssl3_enc->server_finished_label_len; |
642 | 0 | } else { |
643 | 0 | sender = ssl->method->ssl3_enc->client_finished_label; |
644 | 0 | slen = ssl->method->ssl3_enc->client_finished_label_len; |
645 | 0 | } |
646 | |
|
647 | 0 | finish_md_len = ssl->method->ssl3_enc->final_finish_mac(s, |
648 | 0 | sender, slen, |
649 | 0 | s->s3.tmp.finish_md); |
650 | 0 | if (finish_md_len == 0) { |
651 | | /* SSLfatal() already called */ |
652 | 0 | return CON_FUNC_ERROR; |
653 | 0 | } |
654 | | |
655 | 0 | s->s3.tmp.finish_md_len = finish_md_len; |
656 | |
|
657 | 0 | if (!WPACKET_memcpy(pkt, s->s3.tmp.finish_md, finish_md_len)) { |
658 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
659 | 0 | return CON_FUNC_ERROR; |
660 | 0 | } |
661 | | |
662 | | /* |
663 | | * Log the master secret, if logging is enabled. We don't log it for |
664 | | * TLSv1.3: there's a different key schedule for that. |
665 | | */ |
666 | 0 | if (!SSL_CONNECTION_IS_TLS13(s) |
667 | 0 | && !ssl_log_secret(s, MASTER_SECRET_LABEL, s->session->master_key, |
668 | 0 | s->session->master_key_length)) { |
669 | | /* SSLfatal() already called */ |
670 | 0 | return CON_FUNC_ERROR; |
671 | 0 | } |
672 | | |
673 | | /* |
674 | | * Copy the finished so we can use it for renegotiation checks |
675 | | */ |
676 | 0 | if (!ossl_assert(finish_md_len <= EVP_MAX_MD_SIZE)) { |
677 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
678 | 0 | return CON_FUNC_ERROR; |
679 | 0 | } |
680 | 0 | if (!s->server) { |
681 | 0 | memcpy(s->s3.previous_client_finished, s->s3.tmp.finish_md, |
682 | 0 | finish_md_len); |
683 | 0 | s->s3.previous_client_finished_len = finish_md_len; |
684 | 0 | } else { |
685 | 0 | memcpy(s->s3.previous_server_finished, s->s3.tmp.finish_md, |
686 | 0 | finish_md_len); |
687 | 0 | s->s3.previous_server_finished_len = finish_md_len; |
688 | 0 | } |
689 | |
|
690 | 0 | return CON_FUNC_SUCCESS; |
691 | 0 | } |
692 | | |
693 | | CON_FUNC_RETURN tls_construct_key_update(SSL_CONNECTION *s, WPACKET *pkt) |
694 | 0 | { |
695 | 0 | if (!WPACKET_put_bytes_u8(pkt, s->key_update)) { |
696 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
697 | 0 | return CON_FUNC_ERROR; |
698 | 0 | } |
699 | | |
700 | 0 | s->key_update = SSL_KEY_UPDATE_NONE; |
701 | 0 | return CON_FUNC_SUCCESS; |
702 | 0 | } |
703 | | |
704 | | MSG_PROCESS_RETURN tls_process_key_update(SSL_CONNECTION *s, PACKET *pkt) |
705 | 0 | { |
706 | 0 | unsigned int updatetype; |
707 | | |
708 | | /* |
709 | | * A KeyUpdate message signals a key change so the end of the message must |
710 | | * be on a record boundary. |
711 | | */ |
712 | 0 | if (RECORD_LAYER_processed_read_pending(&s->rlayer)) { |
713 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY); |
714 | 0 | return MSG_PROCESS_ERROR; |
715 | 0 | } |
716 | | |
717 | 0 | if (!PACKET_get_1(pkt, &updatetype) |
718 | 0 | || PACKET_remaining(pkt) != 0) { |
719 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_KEY_UPDATE); |
720 | 0 | return MSG_PROCESS_ERROR; |
721 | 0 | } |
722 | | |
723 | | /* |
724 | | * There are only two defined key update types. Fail if we get a value we |
725 | | * didn't recognise. |
726 | | */ |
727 | 0 | if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED |
728 | 0 | && updatetype != SSL_KEY_UPDATE_REQUESTED) { |
729 | 0 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_BAD_KEY_UPDATE); |
730 | 0 | return MSG_PROCESS_ERROR; |
731 | 0 | } |
732 | | |
733 | | /* |
734 | | * If we get a request for us to update our sending keys too then, we need |
735 | | * to additionally send a KeyUpdate message. However that message should |
736 | | * not also request an update (otherwise we get into an infinite loop). |
737 | | */ |
738 | 0 | if (updatetype == SSL_KEY_UPDATE_REQUESTED) |
739 | 0 | s->key_update = SSL_KEY_UPDATE_NOT_REQUESTED; |
740 | |
|
741 | 0 | if (!tls13_update_key(s, 0)) { |
742 | | /* SSLfatal() already called */ |
743 | 0 | return MSG_PROCESS_ERROR; |
744 | 0 | } |
745 | | |
746 | 0 | return MSG_PROCESS_FINISHED_READING; |
747 | 0 | } |
748 | | |
749 | | /* |
750 | | * ssl3_take_mac calculates the Finished MAC for the handshakes messages seen |
751 | | * to far. |
752 | | */ |
753 | | int ssl3_take_mac(SSL_CONNECTION *s) |
754 | 0 | { |
755 | 0 | const char *sender; |
756 | 0 | size_t slen; |
757 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
758 | |
|
759 | 0 | if (!s->server) { |
760 | 0 | sender = ssl->method->ssl3_enc->server_finished_label; |
761 | 0 | slen = ssl->method->ssl3_enc->server_finished_label_len; |
762 | 0 | } else { |
763 | 0 | sender = ssl->method->ssl3_enc->client_finished_label; |
764 | 0 | slen = ssl->method->ssl3_enc->client_finished_label_len; |
765 | 0 | } |
766 | |
|
767 | 0 | s->s3.tmp.peer_finish_md_len = |
768 | 0 | ssl->method->ssl3_enc->final_finish_mac(s, sender, slen, |
769 | 0 | s->s3.tmp.peer_finish_md); |
770 | |
|
771 | 0 | if (s->s3.tmp.peer_finish_md_len == 0) { |
772 | | /* SSLfatal() already called */ |
773 | 0 | return 0; |
774 | 0 | } |
775 | | |
776 | 0 | return 1; |
777 | 0 | } |
778 | | |
779 | | MSG_PROCESS_RETURN tls_process_change_cipher_spec(SSL_CONNECTION *s, |
780 | | PACKET *pkt) |
781 | 0 | { |
782 | 0 | size_t remain; |
783 | |
|
784 | 0 | remain = PACKET_remaining(pkt); |
785 | | /* |
786 | | * 'Change Cipher Spec' is just a single byte, which should already have |
787 | | * been consumed by ssl_get_message() so there should be no bytes left, |
788 | | * unless we're using DTLS1_BAD_VER, which has an extra 2 bytes |
789 | | */ |
790 | 0 | if (SSL_CONNECTION_IS_DTLS(s)) { |
791 | 0 | if ((s->version == DTLS1_BAD_VER |
792 | 0 | && remain != DTLS1_CCS_HEADER_LENGTH + 1) |
793 | 0 | || (s->version != DTLS1_BAD_VER |
794 | 0 | && remain != DTLS1_CCS_HEADER_LENGTH - 1)) { |
795 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
796 | 0 | return MSG_PROCESS_ERROR; |
797 | 0 | } |
798 | 0 | } else { |
799 | 0 | if (remain != 0) { |
800 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
801 | 0 | return MSG_PROCESS_ERROR; |
802 | 0 | } |
803 | 0 | } |
804 | | |
805 | | /* Check we have a cipher to change to */ |
806 | 0 | if (s->s3.tmp.new_cipher == NULL) { |
807 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY); |
808 | 0 | return MSG_PROCESS_ERROR; |
809 | 0 | } |
810 | | |
811 | 0 | s->s3.change_cipher_spec = 1; |
812 | 0 | if (!ssl3_do_change_cipher_spec(s)) { |
813 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
814 | 0 | return MSG_PROCESS_ERROR; |
815 | 0 | } |
816 | | |
817 | 0 | if (SSL_CONNECTION_IS_DTLS(s)) { |
818 | 0 | if (s->version == DTLS1_BAD_VER) |
819 | 0 | s->d1->handshake_read_seq++; |
820 | |
|
821 | | #ifndef OPENSSL_NO_SCTP |
822 | | /* |
823 | | * Remember that a CCS has been received, so that an old key of |
824 | | * SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no |
825 | | * SCTP is used |
826 | | */ |
827 | | BIO_ctrl(SSL_get_wbio(SSL_CONNECTION_GET_SSL(s)), |
828 | | BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL); |
829 | | #endif |
830 | 0 | } |
831 | |
|
832 | 0 | return MSG_PROCESS_CONTINUE_READING; |
833 | 0 | } |
834 | | |
835 | | MSG_PROCESS_RETURN tls_process_finished(SSL_CONNECTION *s, PACKET *pkt) |
836 | 0 | { |
837 | 0 | size_t md_len; |
838 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
839 | 0 | int was_first = SSL_IS_FIRST_HANDSHAKE(s); |
840 | 0 | int ok; |
841 | | |
842 | | |
843 | | /* This is a real handshake so make sure we clean it up at the end */ |
844 | 0 | if (s->server) { |
845 | | /* |
846 | | * To get this far we must have read encrypted data from the client. We |
847 | | * no longer tolerate unencrypted alerts. This is ignored if less than |
848 | | * TLSv1.3 |
849 | | */ |
850 | 0 | if (s->rlayer.rrlmethod->set_plain_alerts != NULL) |
851 | 0 | s->rlayer.rrlmethod->set_plain_alerts(s->rlayer.rrl, 0); |
852 | 0 | if (s->post_handshake_auth != SSL_PHA_REQUESTED) |
853 | 0 | s->statem.cleanuphand = 1; |
854 | 0 | if (SSL_CONNECTION_IS_TLS13(s) |
855 | 0 | && !tls13_save_handshake_digest_for_pha(s)) { |
856 | | /* SSLfatal() already called */ |
857 | 0 | return MSG_PROCESS_ERROR; |
858 | 0 | } |
859 | 0 | } |
860 | | |
861 | | /* |
862 | | * In TLSv1.3 a Finished message signals a key change so the end of the |
863 | | * message must be on a record boundary. |
864 | | */ |
865 | 0 | if (SSL_CONNECTION_IS_TLS13(s) |
866 | 0 | && RECORD_LAYER_processed_read_pending(&s->rlayer)) { |
867 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY); |
868 | 0 | return MSG_PROCESS_ERROR; |
869 | 0 | } |
870 | | |
871 | | /* If this occurs, we have missed a message */ |
872 | 0 | if (!SSL_CONNECTION_IS_TLS13(s) && !s->s3.change_cipher_spec) { |
873 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_GOT_A_FIN_BEFORE_A_CCS); |
874 | 0 | return MSG_PROCESS_ERROR; |
875 | 0 | } |
876 | 0 | s->s3.change_cipher_spec = 0; |
877 | |
|
878 | 0 | md_len = s->s3.tmp.peer_finish_md_len; |
879 | |
|
880 | 0 | if (md_len != PACKET_remaining(pkt)) { |
881 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_DIGEST_LENGTH); |
882 | 0 | return MSG_PROCESS_ERROR; |
883 | 0 | } |
884 | | |
885 | 0 | ok = CRYPTO_memcmp(PACKET_data(pkt), s->s3.tmp.peer_finish_md, |
886 | 0 | md_len); |
887 | 0 | #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
888 | 0 | if (ok != 0) { |
889 | 0 | if ((PACKET_data(pkt)[0] ^ s->s3.tmp.peer_finish_md[0]) != 0xFF) { |
890 | 0 | ok = 0; |
891 | 0 | } |
892 | 0 | } |
893 | 0 | #endif |
894 | 0 | if (ok != 0) { |
895 | 0 | SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_DIGEST_CHECK_FAILED); |
896 | 0 | return MSG_PROCESS_ERROR; |
897 | 0 | } |
898 | | |
899 | | /* |
900 | | * Copy the finished so we can use it for renegotiation checks |
901 | | */ |
902 | 0 | if (!ossl_assert(md_len <= EVP_MAX_MD_SIZE)) { |
903 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
904 | 0 | return MSG_PROCESS_ERROR; |
905 | 0 | } |
906 | 0 | if (s->server) { |
907 | 0 | memcpy(s->s3.previous_client_finished, s->s3.tmp.peer_finish_md, |
908 | 0 | md_len); |
909 | 0 | s->s3.previous_client_finished_len = md_len; |
910 | 0 | } else { |
911 | 0 | memcpy(s->s3.previous_server_finished, s->s3.tmp.peer_finish_md, |
912 | 0 | md_len); |
913 | 0 | s->s3.previous_server_finished_len = md_len; |
914 | 0 | } |
915 | | |
916 | | /* |
917 | | * In TLS1.3 we also have to change cipher state and do any final processing |
918 | | * of the initial server flight (if we are a client) |
919 | | */ |
920 | 0 | if (SSL_CONNECTION_IS_TLS13(s)) { |
921 | 0 | if (s->server) { |
922 | 0 | if (s->post_handshake_auth != SSL_PHA_REQUESTED && |
923 | 0 | !ssl->method->ssl3_enc->change_cipher_state(s, |
924 | 0 | SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_SERVER_READ)) { |
925 | | /* SSLfatal() already called */ |
926 | 0 | return MSG_PROCESS_ERROR; |
927 | 0 | } |
928 | 0 | } else { |
929 | | /* TLS 1.3 gets the secret size from the handshake md */ |
930 | 0 | size_t dummy; |
931 | 0 | if (!ssl->method->ssl3_enc->generate_master_secret(s, |
932 | 0 | s->master_secret, s->handshake_secret, 0, |
933 | 0 | &dummy)) { |
934 | | /* SSLfatal() already called */ |
935 | 0 | return MSG_PROCESS_ERROR; |
936 | 0 | } |
937 | 0 | if (!tls13_store_server_finished_hash(s)) { |
938 | | /* SSLfatal() already called */ |
939 | 0 | return MSG_PROCESS_ERROR; |
940 | 0 | } |
941 | | |
942 | | /* |
943 | | * For non-QUIC we set up the client's app data read keys now, so |
944 | | * that we can go straight into reading 0.5RTT data from the server. |
945 | | * For QUIC we don't do that, and instead defer setting up the keys |
946 | | * until after we have set up the write keys in order to ensure that |
947 | | * write keys are always set up before read keys (so that if we read |
948 | | * a message we have the correct keys in place to ack it) |
949 | | */ |
950 | 0 | if (!SSL_IS_QUIC_HANDSHAKE(s) |
951 | 0 | && !ssl->method->ssl3_enc->change_cipher_state(s, |
952 | 0 | SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_CLIENT_READ)) { |
953 | | /* SSLfatal() already called */ |
954 | 0 | return MSG_PROCESS_ERROR; |
955 | 0 | } |
956 | 0 | if (!tls_process_initial_server_flight(s)) { |
957 | | /* SSLfatal() already called */ |
958 | 0 | return MSG_PROCESS_ERROR; |
959 | 0 | } |
960 | 0 | } |
961 | 0 | } |
962 | | |
963 | 0 | if (was_first |
964 | 0 | && !SSL_IS_FIRST_HANDSHAKE(s) |
965 | 0 | && s->rlayer.rrlmethod->set_first_handshake != NULL) |
966 | 0 | s->rlayer.rrlmethod->set_first_handshake(s->rlayer.rrl, 0); |
967 | |
|
968 | 0 | return MSG_PROCESS_FINISHED_READING; |
969 | 0 | } |
970 | | |
971 | | CON_FUNC_RETURN tls_construct_change_cipher_spec(SSL_CONNECTION *s, WPACKET *pkt) |
972 | 0 | { |
973 | 0 | if (!WPACKET_put_bytes_u8(pkt, SSL3_MT_CCS)) { |
974 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
975 | 0 | return CON_FUNC_ERROR; |
976 | 0 | } |
977 | | |
978 | 0 | return CON_FUNC_SUCCESS; |
979 | 0 | } |
980 | | |
981 | | /* Add a certificate to the WPACKET */ |
982 | | static int ssl_add_cert_to_wpacket(SSL_CONNECTION *s, WPACKET *pkt, |
983 | | X509 *x, int chain, int for_comp) |
984 | 0 | { |
985 | 0 | int len; |
986 | 0 | unsigned char *outbytes; |
987 | 0 | int context = SSL_EXT_TLS1_3_CERTIFICATE; |
988 | |
|
989 | 0 | if (for_comp) |
990 | 0 | context |= SSL_EXT_TLS1_3_CERTIFICATE_COMPRESSION; |
991 | |
|
992 | 0 | len = i2d_X509(x, NULL); |
993 | 0 | if (len < 0) { |
994 | 0 | if (!for_comp) |
995 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_BUF_LIB); |
996 | 0 | return 0; |
997 | 0 | } |
998 | 0 | if (!WPACKET_sub_allocate_bytes_u24(pkt, len, &outbytes) |
999 | 0 | || i2d_X509(x, &outbytes) != len) { |
1000 | 0 | if (!for_comp) |
1001 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1002 | 0 | return 0; |
1003 | 0 | } |
1004 | | |
1005 | 0 | if ((SSL_CONNECTION_IS_TLS13(s) || for_comp) |
1006 | 0 | && !tls_construct_extensions(s, pkt, context, x, chain)) { |
1007 | | /* SSLfatal() already called */ |
1008 | 0 | return 0; |
1009 | 0 | } |
1010 | | |
1011 | 0 | return 1; |
1012 | 0 | } |
1013 | | |
1014 | | /* Add certificate chain to provided WPACKET */ |
1015 | | static int ssl_add_cert_chain(SSL_CONNECTION *s, WPACKET *pkt, CERT_PKEY *cpk, int for_comp) |
1016 | 0 | { |
1017 | 0 | int i, chain_count; |
1018 | 0 | X509 *x; |
1019 | 0 | STACK_OF(X509) *extra_certs; |
1020 | 0 | STACK_OF(X509) *chain = NULL; |
1021 | 0 | X509_STORE *chain_store; |
1022 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
1023 | |
|
1024 | 0 | if (cpk == NULL || cpk->x509 == NULL) |
1025 | 0 | return 1; |
1026 | | |
1027 | 0 | x = cpk->x509; |
1028 | | |
1029 | | /* |
1030 | | * If we have a certificate specific chain use it, else use parent ctx. |
1031 | | */ |
1032 | 0 | if (cpk->chain != NULL) |
1033 | 0 | extra_certs = cpk->chain; |
1034 | 0 | else |
1035 | 0 | extra_certs = sctx->extra_certs; |
1036 | |
|
1037 | 0 | if ((s->mode & SSL_MODE_NO_AUTO_CHAIN) || extra_certs) |
1038 | 0 | chain_store = NULL; |
1039 | 0 | else if (s->cert->chain_store) |
1040 | 0 | chain_store = s->cert->chain_store; |
1041 | 0 | else |
1042 | 0 | chain_store = sctx->cert_store; |
1043 | |
|
1044 | 0 | if (chain_store != NULL) { |
1045 | 0 | X509_STORE_CTX *xs_ctx = X509_STORE_CTX_new_ex(sctx->libctx, |
1046 | 0 | sctx->propq); |
1047 | |
|
1048 | 0 | if (xs_ctx == NULL) { |
1049 | 0 | if (!for_comp) |
1050 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB); |
1051 | 0 | return 0; |
1052 | 0 | } |
1053 | 0 | if (!X509_STORE_CTX_init(xs_ctx, chain_store, x, NULL)) { |
1054 | 0 | X509_STORE_CTX_free(xs_ctx); |
1055 | 0 | if (!for_comp) |
1056 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB); |
1057 | 0 | return 0; |
1058 | 0 | } |
1059 | | /* |
1060 | | * It is valid for the chain not to be complete (because normally we |
1061 | | * don't include the root cert in the chain). Therefore we deliberately |
1062 | | * ignore the error return from this call. We're not actually verifying |
1063 | | * the cert - we're just building as much of the chain as we can |
1064 | | */ |
1065 | 0 | (void)X509_verify_cert(xs_ctx); |
1066 | | /* Don't leave errors in the queue */ |
1067 | 0 | ERR_clear_error(); |
1068 | 0 | chain = X509_STORE_CTX_get0_chain(xs_ctx); |
1069 | 0 | i = ssl_security_cert_chain(s, chain, NULL, 0); |
1070 | 0 | if (i != 1) { |
1071 | | #if 0 |
1072 | | /* Dummy error calls so mkerr generates them */ |
1073 | | ERR_raise(ERR_LIB_SSL, SSL_R_EE_KEY_TOO_SMALL); |
1074 | | ERR_raise(ERR_LIB_SSL, SSL_R_CA_KEY_TOO_SMALL); |
1075 | | ERR_raise(ERR_LIB_SSL, SSL_R_CA_MD_TOO_WEAK); |
1076 | | #endif |
1077 | 0 | X509_STORE_CTX_free(xs_ctx); |
1078 | 0 | if (!for_comp) |
1079 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, i); |
1080 | 0 | return 0; |
1081 | 0 | } |
1082 | 0 | chain_count = sk_X509_num(chain); |
1083 | 0 | for (i = 0; i < chain_count; i++) { |
1084 | 0 | x = sk_X509_value(chain, i); |
1085 | |
|
1086 | 0 | if (!ssl_add_cert_to_wpacket(s, pkt, x, i, for_comp)) { |
1087 | | /* SSLfatal() already called */ |
1088 | 0 | X509_STORE_CTX_free(xs_ctx); |
1089 | 0 | return 0; |
1090 | 0 | } |
1091 | 0 | } |
1092 | 0 | X509_STORE_CTX_free(xs_ctx); |
1093 | 0 | } else { |
1094 | 0 | i = ssl_security_cert_chain(s, extra_certs, x, 0); |
1095 | 0 | if (i != 1) { |
1096 | 0 | if (!for_comp) |
1097 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, i); |
1098 | 0 | return 0; |
1099 | 0 | } |
1100 | 0 | if (!ssl_add_cert_to_wpacket(s, pkt, x, 0, for_comp)) { |
1101 | | /* SSLfatal() already called */ |
1102 | 0 | return 0; |
1103 | 0 | } |
1104 | 0 | for (i = 0; i < sk_X509_num(extra_certs); i++) { |
1105 | 0 | x = sk_X509_value(extra_certs, i); |
1106 | 0 | if (!ssl_add_cert_to_wpacket(s, pkt, x, i + 1, for_comp)) { |
1107 | | /* SSLfatal() already called */ |
1108 | 0 | return 0; |
1109 | 0 | } |
1110 | 0 | } |
1111 | 0 | } |
1112 | 0 | return 1; |
1113 | 0 | } |
1114 | | |
1115 | | EVP_PKEY* tls_get_peer_pkey(const SSL_CONNECTION *sc) |
1116 | 0 | { |
1117 | 0 | if (sc->session->peer_rpk != NULL) |
1118 | 0 | return sc->session->peer_rpk; |
1119 | 0 | if (sc->session->peer != NULL) |
1120 | 0 | return X509_get0_pubkey(sc->session->peer); |
1121 | 0 | return NULL; |
1122 | 0 | } |
1123 | | |
1124 | | int tls_process_rpk(SSL_CONNECTION *sc, PACKET *pkt, EVP_PKEY **peer_rpk) |
1125 | 0 | { |
1126 | 0 | EVP_PKEY *pkey = NULL; |
1127 | 0 | int ret = 0; |
1128 | 0 | RAW_EXTENSION *rawexts = NULL; |
1129 | 0 | PACKET extensions; |
1130 | 0 | PACKET context; |
1131 | 0 | unsigned long cert_len = 0, spki_len = 0; |
1132 | 0 | const unsigned char *spki, *spkistart; |
1133 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(sc); |
1134 | | |
1135 | | /*- |
1136 | | * ---------------------------- |
1137 | | * TLS 1.3 Certificate message: |
1138 | | * ---------------------------- |
1139 | | * https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2 |
1140 | | * |
1141 | | * enum { |
1142 | | * X509(0), |
1143 | | * RawPublicKey(2), |
1144 | | * (255) |
1145 | | * } CertificateType; |
1146 | | * |
1147 | | * struct { |
1148 | | * select (certificate_type) { |
1149 | | * case RawPublicKey: |
1150 | | * // From RFC 7250 ASN.1_subjectPublicKeyInfo |
1151 | | * opaque ASN1_subjectPublicKeyInfo<1..2^24-1>; |
1152 | | * |
1153 | | * case X509: |
1154 | | * opaque cert_data<1..2^24-1>; |
1155 | | * }; |
1156 | | * Extension extensions<0..2^16-1>; |
1157 | | * } CertificateEntry; |
1158 | | * |
1159 | | * struct { |
1160 | | * opaque certificate_request_context<0..2^8-1>; |
1161 | | * CertificateEntry certificate_list<0..2^24-1>; |
1162 | | * } Certificate; |
1163 | | * |
1164 | | * The client MUST send a Certificate message if and only if the server |
1165 | | * has requested client authentication via a CertificateRequest message |
1166 | | * (Section 4.3.2). If the server requests client authentication but no |
1167 | | * suitable certificate is available, the client MUST send a Certificate |
1168 | | * message containing no certificates (i.e., with the "certificate_list" |
1169 | | * field having length 0). |
1170 | | * |
1171 | | * ---------------------------- |
1172 | | * TLS 1.2 Certificate message: |
1173 | | * ---------------------------- |
1174 | | * https://datatracker.ietf.org/doc/html/rfc7250#section-3 |
1175 | | * |
1176 | | * opaque ASN.1Cert<1..2^24-1>; |
1177 | | * |
1178 | | * struct { |
1179 | | * select(certificate_type){ |
1180 | | * |
1181 | | * // certificate type defined in this document. |
1182 | | * case RawPublicKey: |
1183 | | * opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>; |
1184 | | * |
1185 | | * // X.509 certificate defined in RFC 5246 |
1186 | | * case X.509: |
1187 | | * ASN.1Cert certificate_list<0..2^24-1>; |
1188 | | * |
1189 | | * // Additional certificate type based on |
1190 | | * // "TLS Certificate Types" subregistry |
1191 | | * }; |
1192 | | * } Certificate; |
1193 | | * |
1194 | | * ------------- |
1195 | | * Consequently: |
1196 | | * ------------- |
1197 | | * After the (TLS 1.3 only) context octet string (1 byte length + data) the |
1198 | | * Certificate message has a 3-byte length that is zero in the client to |
1199 | | * server message when the client has no RPK to send. In that case, there |
1200 | | * are no (TLS 1.3 only) per-certificate extensions either, because the |
1201 | | * [CertificateEntry] list is empty. |
1202 | | * |
1203 | | * In the server to client direction, or when the client had an RPK to send, |
1204 | | * the TLS 1.3 message just prepends the length of the RPK+extensions, |
1205 | | * while TLS <= 1.2 sends just the RPK (octet-string). |
1206 | | * |
1207 | | * The context must be zero-length in the server to client direction, and |
1208 | | * must match the value recorded in the certificate request in the client |
1209 | | * to server direction. |
1210 | | */ |
1211 | 0 | if (SSL_CONNECTION_IS_TLS13(sc)) { |
1212 | 0 | if (!PACKET_get_length_prefixed_1(pkt, &context)) { |
1213 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); |
1214 | 0 | goto err; |
1215 | 0 | } |
1216 | 0 | if (sc->server) { |
1217 | 0 | if (sc->pha_context == NULL) { |
1218 | 0 | if (PACKET_remaining(&context) != 0) { |
1219 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); |
1220 | 0 | goto err; |
1221 | 0 | } |
1222 | 0 | } else { |
1223 | 0 | if (!PACKET_equal(&context, sc->pha_context, sc->pha_context_len)) { |
1224 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); |
1225 | 0 | goto err; |
1226 | 0 | } |
1227 | 0 | } |
1228 | 0 | } else { |
1229 | 0 | if (PACKET_remaining(&context) != 0) { |
1230 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); |
1231 | 0 | goto err; |
1232 | 0 | } |
1233 | 0 | } |
1234 | 0 | } |
1235 | | |
1236 | 0 | if (!PACKET_get_net_3(pkt, &cert_len) |
1237 | 0 | || PACKET_remaining(pkt) != cert_len) { |
1238 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
1239 | 0 | goto err; |
1240 | 0 | } |
1241 | | |
1242 | | /* |
1243 | | * The list length may be zero when there is no RPK. In the case of TLS |
1244 | | * 1.2 this is actually the RPK length, which cannot be zero as specified, |
1245 | | * but that breaks the ability of the client to decline client auth. We |
1246 | | * overload the 0 RPK length to mean "no RPK". This interpretation is |
1247 | | * also used some other (reference?) implementations, but is not supported |
1248 | | * by the verbatim RFC7250 text. |
1249 | | */ |
1250 | 0 | if (cert_len == 0) |
1251 | 0 | return 1; |
1252 | | |
1253 | 0 | if (SSL_CONNECTION_IS_TLS13(sc)) { |
1254 | | /* |
1255 | | * With TLS 1.3, a non-empty explicit-length RPK octet-string followed |
1256 | | * by a possibly empty extension block. |
1257 | | */ |
1258 | 0 | if (!PACKET_get_net_3(pkt, &spki_len)) { |
1259 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
1260 | 0 | goto err; |
1261 | 0 | } |
1262 | 0 | if (spki_len == 0) { |
1263 | | /* empty RPK */ |
1264 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_EMPTY_RAW_PUBLIC_KEY); |
1265 | 0 | goto err; |
1266 | 0 | } |
1267 | 0 | } else { |
1268 | 0 | spki_len = cert_len; |
1269 | 0 | } |
1270 | | |
1271 | 0 | if (!PACKET_get_bytes(pkt, &spki, spki_len)) { |
1272 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
1273 | 0 | goto err; |
1274 | 0 | } |
1275 | 0 | spkistart = spki; |
1276 | 0 | if ((pkey = d2i_PUBKEY_ex(NULL, &spki, spki_len, sctx->libctx, sctx->propq)) == NULL |
1277 | 0 | || spki != (spkistart + spki_len)) { |
1278 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
1279 | 0 | goto err; |
1280 | 0 | } |
1281 | 0 | if (EVP_PKEY_missing_parameters(pkey)) { |
1282 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, |
1283 | 0 | SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS); |
1284 | 0 | goto err; |
1285 | 0 | } |
1286 | | |
1287 | | /* Process the Extensions block */ |
1288 | 0 | if (SSL_CONNECTION_IS_TLS13(sc)) { |
1289 | 0 | if (PACKET_remaining(pkt) != (cert_len - 3 - spki_len)) { |
1290 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH); |
1291 | 0 | goto err; |
1292 | 0 | } |
1293 | 0 | if (!PACKET_as_length_prefixed_2(pkt, &extensions) |
1294 | 0 | || PACKET_remaining(pkt) != 0) { |
1295 | 0 | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
1296 | 0 | goto err; |
1297 | 0 | } |
1298 | 0 | if (!tls_collect_extensions(sc, &extensions, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, |
1299 | 0 | &rawexts, NULL, 1)) { |
1300 | | /* SSLfatal already called */ |
1301 | 0 | goto err; |
1302 | 0 | } |
1303 | | /* chain index is always zero and fin always 1 for RPK */ |
1304 | 0 | if (!tls_parse_all_extensions(sc, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, |
1305 | 0 | rawexts, NULL, 0, 1)) { |
1306 | | /* SSLfatal already called */ |
1307 | 0 | goto err; |
1308 | 0 | } |
1309 | 0 | } |
1310 | 0 | ret = 1; |
1311 | 0 | if (peer_rpk != NULL) { |
1312 | 0 | *peer_rpk = pkey; |
1313 | 0 | pkey = NULL; |
1314 | 0 | } |
1315 | |
|
1316 | 0 | err: |
1317 | 0 | OPENSSL_free(rawexts); |
1318 | 0 | EVP_PKEY_free(pkey); |
1319 | 0 | return ret; |
1320 | 0 | } |
1321 | | |
1322 | | unsigned long tls_output_rpk(SSL_CONNECTION *sc, WPACKET *pkt, CERT_PKEY *cpk) |
1323 | 0 | { |
1324 | 0 | int pdata_len = 0; |
1325 | 0 | unsigned char *pdata = NULL; |
1326 | 0 | X509_PUBKEY *xpk = NULL; |
1327 | 0 | unsigned long ret = 0; |
1328 | 0 | X509 *x509 = NULL; |
1329 | |
|
1330 | 0 | if (cpk != NULL && cpk->x509 != NULL) { |
1331 | 0 | x509 = cpk->x509; |
1332 | | /* Get the RPK from the certificate */ |
1333 | 0 | xpk = X509_get_X509_PUBKEY(cpk->x509); |
1334 | 0 | if (xpk == NULL) { |
1335 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1336 | 0 | goto err; |
1337 | 0 | } |
1338 | 0 | pdata_len = i2d_X509_PUBKEY(xpk, &pdata); |
1339 | 0 | } else if (cpk != NULL && cpk->privatekey != NULL) { |
1340 | | /* Get the RPK from the private key */ |
1341 | 0 | pdata_len = i2d_PUBKEY(cpk->privatekey, &pdata); |
1342 | 0 | } else { |
1343 | | /* The server RPK is not optional */ |
1344 | 0 | if (sc->server) { |
1345 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1346 | 0 | goto err; |
1347 | 0 | } |
1348 | | /* The client can send a zero length certificate list */ |
1349 | 0 | if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) { |
1350 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1351 | 0 | goto err; |
1352 | 0 | } |
1353 | 0 | return 1; |
1354 | 0 | } |
1355 | | |
1356 | 0 | if (pdata_len <= 0) { |
1357 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1358 | 0 | goto err; |
1359 | 0 | } |
1360 | | |
1361 | | /* |
1362 | | * TLSv1.2 is _just_ the raw public key |
1363 | | * TLSv1.3 includes extensions, so there's a length wrapper |
1364 | | */ |
1365 | 0 | if (SSL_CONNECTION_IS_TLS13(sc)) { |
1366 | 0 | if (!WPACKET_start_sub_packet_u24(pkt)) { |
1367 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1368 | 0 | goto err; |
1369 | 0 | } |
1370 | 0 | } |
1371 | | |
1372 | 0 | if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) { |
1373 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1374 | 0 | goto err; |
1375 | 0 | } |
1376 | | |
1377 | 0 | if (SSL_CONNECTION_IS_TLS13(sc)) { |
1378 | | /* |
1379 | | * Only send extensions relevant to raw public keys. Until such |
1380 | | * extensions are defined, this will be an empty set of extensions. |
1381 | | * |x509| may be NULL, which raw public-key extensions need to handle. |
1382 | | */ |
1383 | 0 | if (!tls_construct_extensions(sc, pkt, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, |
1384 | 0 | x509, 0)) { |
1385 | | /* SSLfatal() already called */ |
1386 | 0 | goto err; |
1387 | 0 | } |
1388 | 0 | if (!WPACKET_close(pkt)) { |
1389 | 0 | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1390 | 0 | goto err; |
1391 | 0 | } |
1392 | 0 | } |
1393 | | |
1394 | 0 | ret = 1; |
1395 | 0 | err: |
1396 | 0 | OPENSSL_free(pdata); |
1397 | 0 | return ret; |
1398 | 0 | } |
1399 | | |
1400 | | unsigned long ssl3_output_cert_chain(SSL_CONNECTION *s, WPACKET *pkt, |
1401 | | CERT_PKEY *cpk, int for_comp) |
1402 | 0 | { |
1403 | 0 | if (!WPACKET_start_sub_packet_u24(pkt)) { |
1404 | 0 | if (!for_comp) |
1405 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1406 | 0 | return 0; |
1407 | 0 | } |
1408 | | |
1409 | 0 | if (!ssl_add_cert_chain(s, pkt, cpk, for_comp)) |
1410 | 0 | return 0; |
1411 | | |
1412 | 0 | if (!WPACKET_close(pkt)) { |
1413 | 0 | if (!for_comp) |
1414 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1415 | 0 | return 0; |
1416 | 0 | } |
1417 | | |
1418 | 0 | return 1; |
1419 | 0 | } |
1420 | | |
1421 | | /* |
1422 | | * Tidy up after the end of a handshake. In the case of SCTP this may result |
1423 | | * in NBIO events. If |clearbufs| is set then init_buf and the wbio buffer is |
1424 | | * freed up as well. |
1425 | | */ |
1426 | | WORK_STATE tls_finish_handshake(SSL_CONNECTION *s, ossl_unused WORK_STATE wst, |
1427 | | int clearbufs, int stop) |
1428 | 0 | { |
1429 | 0 | void (*cb) (const SSL *ssl, int type, int val) = NULL; |
1430 | 0 | int cleanuphand = s->statem.cleanuphand; |
1431 | 0 | SSL *ssl = SSL_CONNECTION_GET_USER_SSL(s); |
1432 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
1433 | |
|
1434 | 0 | if (clearbufs) { |
1435 | 0 | if (!SSL_CONNECTION_IS_DTLS(s) |
1436 | | #ifndef OPENSSL_NO_SCTP |
1437 | | /* |
1438 | | * RFC6083: SCTP provides a reliable and in-sequence transport service for DTLS |
1439 | | * messages that require it. Therefore, DTLS procedures for retransmissions |
1440 | | * MUST NOT be used. |
1441 | | * Hence the init_buf can be cleared when DTLS over SCTP as transport is used. |
1442 | | */ |
1443 | | || BIO_dgram_is_sctp(SSL_get_wbio(SSL_CONNECTION_GET_SSL(s))) |
1444 | | #endif |
1445 | 0 | ) { |
1446 | | /* |
1447 | | * We don't do this in DTLS over UDP because we may still need the init_buf |
1448 | | * in case there are any unexpected retransmits |
1449 | | */ |
1450 | 0 | BUF_MEM_free(s->init_buf); |
1451 | 0 | s->init_buf = NULL; |
1452 | 0 | } |
1453 | |
|
1454 | 0 | if (!ssl_free_wbio_buffer(s)) { |
1455 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
1456 | 0 | return WORK_ERROR; |
1457 | 0 | } |
1458 | 0 | s->init_num = 0; |
1459 | 0 | } |
1460 | | |
1461 | 0 | if (SSL_CONNECTION_IS_TLS13(s) && !s->server |
1462 | 0 | && s->post_handshake_auth == SSL_PHA_REQUESTED) |
1463 | 0 | s->post_handshake_auth = SSL_PHA_EXT_SENT; |
1464 | | |
1465 | | /* |
1466 | | * Only set if there was a Finished message and this isn't after a TLSv1.3 |
1467 | | * post handshake exchange |
1468 | | */ |
1469 | 0 | if (cleanuphand) { |
1470 | | /* skipped if we just sent a HelloRequest */ |
1471 | 0 | s->renegotiate = 0; |
1472 | 0 | s->new_session = 0; |
1473 | 0 | s->statem.cleanuphand = 0; |
1474 | 0 | s->ext.ticket_expected = 0; |
1475 | |
|
1476 | 0 | ssl3_cleanup_key_block(s); |
1477 | |
|
1478 | 0 | if (s->server) { |
1479 | | /* |
1480 | | * In TLSv1.3 we update the cache as part of constructing the |
1481 | | * NewSessionTicket |
1482 | | */ |
1483 | 0 | if (!SSL_CONNECTION_IS_TLS13(s)) |
1484 | 0 | ssl_update_cache(s, SSL_SESS_CACHE_SERVER); |
1485 | | |
1486 | | /* N.B. s->ctx may not equal s->session_ctx */ |
1487 | 0 | ssl_tsan_counter(sctx, &sctx->stats.sess_accept_good); |
1488 | 0 | s->handshake_func = ossl_statem_accept; |
1489 | 0 | } else { |
1490 | 0 | if (SSL_CONNECTION_IS_TLS13(s)) { |
1491 | | /* |
1492 | | * We encourage applications to only use TLSv1.3 tickets once, |
1493 | | * so we remove this one from the cache. |
1494 | | */ |
1495 | 0 | if ((s->session_ctx->session_cache_mode |
1496 | 0 | & SSL_SESS_CACHE_CLIENT) != 0) |
1497 | 0 | SSL_CTX_remove_session(s->session_ctx, s->session); |
1498 | 0 | } else { |
1499 | | /* |
1500 | | * In TLSv1.3 we update the cache as part of processing the |
1501 | | * NewSessionTicket |
1502 | | */ |
1503 | 0 | ssl_update_cache(s, SSL_SESS_CACHE_CLIENT); |
1504 | 0 | } |
1505 | 0 | if (s->hit) |
1506 | 0 | ssl_tsan_counter(s->session_ctx, |
1507 | 0 | &s->session_ctx->stats.sess_hit); |
1508 | |
|
1509 | 0 | s->handshake_func = ossl_statem_connect; |
1510 | 0 | ssl_tsan_counter(s->session_ctx, |
1511 | 0 | &s->session_ctx->stats.sess_connect_good); |
1512 | 0 | } |
1513 | |
|
1514 | 0 | if (SSL_CONNECTION_IS_DTLS(s)) { |
1515 | | /* done with handshaking */ |
1516 | 0 | s->d1->handshake_read_seq = 0; |
1517 | 0 | s->d1->handshake_write_seq = 0; |
1518 | 0 | s->d1->next_handshake_write_seq = 0; |
1519 | 0 | dtls1_clear_received_buffer(s); |
1520 | 0 | } |
1521 | 0 | } |
1522 | |
|
1523 | 0 | if (s->info_callback != NULL) |
1524 | 0 | cb = s->info_callback; |
1525 | 0 | else if (sctx->info_callback != NULL) |
1526 | 0 | cb = sctx->info_callback; |
1527 | | |
1528 | | /* The callback may expect us to not be in init at handshake done */ |
1529 | 0 | ossl_statem_set_in_init(s, 0); |
1530 | |
|
1531 | 0 | if (cb != NULL) { |
1532 | 0 | if (cleanuphand |
1533 | 0 | || !SSL_CONNECTION_IS_TLS13(s) |
1534 | 0 | || SSL_IS_FIRST_HANDSHAKE(s)) |
1535 | 0 | cb(ssl, SSL_CB_HANDSHAKE_DONE, 1); |
1536 | 0 | } |
1537 | |
|
1538 | 0 | if (!stop) { |
1539 | | /* If we've got more work to do we go back into init */ |
1540 | 0 | ossl_statem_set_in_init(s, 1); |
1541 | 0 | return WORK_FINISHED_CONTINUE; |
1542 | 0 | } |
1543 | | |
1544 | 0 | return WORK_FINISHED_STOP; |
1545 | 0 | } |
1546 | | |
1547 | | int tls_get_message_header(SSL_CONNECTION *s, int *mt) |
1548 | 0 | { |
1549 | | /* s->init_num < SSL3_HM_HEADER_LENGTH */ |
1550 | 0 | int skip_message, i; |
1551 | 0 | uint8_t recvd_type; |
1552 | 0 | unsigned char *p; |
1553 | 0 | size_t l, readbytes; |
1554 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
1555 | 0 | SSL *ussl = SSL_CONNECTION_GET_USER_SSL(s); |
1556 | |
|
1557 | 0 | p = (unsigned char *)s->init_buf->data; |
1558 | |
|
1559 | 0 | do { |
1560 | 0 | while (s->init_num < SSL3_HM_HEADER_LENGTH) { |
1561 | 0 | i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, &recvd_type, |
1562 | 0 | &p[s->init_num], |
1563 | 0 | SSL3_HM_HEADER_LENGTH - s->init_num, |
1564 | 0 | 0, &readbytes); |
1565 | 0 | if (i <= 0) { |
1566 | 0 | s->rwstate = SSL_READING; |
1567 | 0 | return 0; |
1568 | 0 | } |
1569 | 0 | if (recvd_type == SSL3_RT_CHANGE_CIPHER_SPEC) { |
1570 | | /* |
1571 | | * A ChangeCipherSpec must be a single byte and may not occur |
1572 | | * in the middle of a handshake message. |
1573 | | */ |
1574 | 0 | if (s->init_num != 0 || readbytes != 1 || p[0] != SSL3_MT_CCS) { |
1575 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, |
1576 | 0 | SSL_R_BAD_CHANGE_CIPHER_SPEC); |
1577 | 0 | return 0; |
1578 | 0 | } |
1579 | 0 | if (s->statem.hand_state == TLS_ST_BEFORE |
1580 | 0 | && (s->s3.flags & TLS1_FLAGS_STATELESS) != 0) { |
1581 | | /* |
1582 | | * We are stateless and we received a CCS. Probably this is |
1583 | | * from a client between the first and second ClientHellos. |
1584 | | * We should ignore this, but return an error because we do |
1585 | | * not return success until we see the second ClientHello |
1586 | | * with a valid cookie. |
1587 | | */ |
1588 | 0 | return 0; |
1589 | 0 | } |
1590 | 0 | s->s3.tmp.message_type = *mt = SSL3_MT_CHANGE_CIPHER_SPEC; |
1591 | 0 | s->init_num = readbytes - 1; |
1592 | 0 | s->init_msg = s->init_buf->data; |
1593 | 0 | s->s3.tmp.message_size = readbytes; |
1594 | 0 | return 1; |
1595 | 0 | } else if (recvd_type != SSL3_RT_HANDSHAKE) { |
1596 | 0 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, |
1597 | 0 | SSL_R_CCS_RECEIVED_EARLY); |
1598 | 0 | return 0; |
1599 | 0 | } |
1600 | 0 | s->init_num += readbytes; |
1601 | 0 | } |
1602 | | |
1603 | 0 | skip_message = 0; |
1604 | 0 | if (!s->server) |
1605 | 0 | if (s->statem.hand_state != TLS_ST_OK |
1606 | 0 | && p[0] == SSL3_MT_HELLO_REQUEST) |
1607 | | /* |
1608 | | * The server may always send 'Hello Request' messages -- |
1609 | | * we are doing a handshake anyway now, so ignore them if |
1610 | | * their format is correct. Does not count for 'Finished' |
1611 | | * MAC. |
1612 | | */ |
1613 | 0 | if (p[1] == 0 && p[2] == 0 && p[3] == 0) { |
1614 | 0 | s->init_num = 0; |
1615 | 0 | skip_message = 1; |
1616 | |
|
1617 | 0 | if (s->msg_callback) |
1618 | 0 | s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, |
1619 | 0 | p, SSL3_HM_HEADER_LENGTH, ussl, |
1620 | 0 | s->msg_callback_arg); |
1621 | 0 | } |
1622 | 0 | } while (skip_message); |
1623 | | /* s->init_num == SSL3_HM_HEADER_LENGTH */ |
1624 | | |
1625 | 0 | *mt = *p; |
1626 | 0 | s->s3.tmp.message_type = *(p++); |
1627 | |
|
1628 | 0 | if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) { |
1629 | | /* |
1630 | | * Only happens with SSLv3+ in an SSLv2 backward compatible |
1631 | | * ClientHello |
1632 | | * |
1633 | | * Total message size is the remaining record bytes to read |
1634 | | * plus the SSL3_HM_HEADER_LENGTH bytes that we already read |
1635 | | */ |
1636 | 0 | l = s->rlayer.tlsrecs[0].length + SSL3_HM_HEADER_LENGTH; |
1637 | 0 | s->s3.tmp.message_size = l; |
1638 | |
|
1639 | 0 | s->init_msg = s->init_buf->data; |
1640 | 0 | s->init_num = SSL3_HM_HEADER_LENGTH; |
1641 | 0 | } else { |
1642 | 0 | n2l3(p, l); |
1643 | | /* BUF_MEM_grow takes an 'int' parameter */ |
1644 | 0 | if (l > (INT_MAX - SSL3_HM_HEADER_LENGTH)) { |
1645 | 0 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
1646 | 0 | SSL_R_EXCESSIVE_MESSAGE_SIZE); |
1647 | 0 | return 0; |
1648 | 0 | } |
1649 | 0 | s->s3.tmp.message_size = l; |
1650 | |
|
1651 | 0 | s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH; |
1652 | 0 | s->init_num = 0; |
1653 | 0 | } |
1654 | | |
1655 | 0 | return 1; |
1656 | 0 | } |
1657 | | |
1658 | | int tls_get_message_body(SSL_CONNECTION *s, size_t *len) |
1659 | 0 | { |
1660 | 0 | size_t n, readbytes; |
1661 | 0 | unsigned char *p; |
1662 | 0 | int i; |
1663 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
1664 | 0 | SSL *ussl = SSL_CONNECTION_GET_USER_SSL(s); |
1665 | |
|
1666 | 0 | if (s->s3.tmp.message_type == SSL3_MT_CHANGE_CIPHER_SPEC) { |
1667 | | /* We've already read everything in */ |
1668 | 0 | *len = (unsigned long)s->init_num; |
1669 | 0 | return 1; |
1670 | 0 | } |
1671 | | |
1672 | 0 | p = s->init_msg; |
1673 | 0 | n = s->s3.tmp.message_size - s->init_num; |
1674 | 0 | while (n > 0) { |
1675 | 0 | i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, NULL, |
1676 | 0 | &p[s->init_num], n, 0, &readbytes); |
1677 | 0 | if (i <= 0) { |
1678 | 0 | s->rwstate = SSL_READING; |
1679 | 0 | *len = 0; |
1680 | 0 | return 0; |
1681 | 0 | } |
1682 | 0 | s->init_num += readbytes; |
1683 | 0 | n -= readbytes; |
1684 | 0 | } |
1685 | | |
1686 | | /* |
1687 | | * If receiving Finished, record MAC of prior handshake messages for |
1688 | | * Finished verification. |
1689 | | */ |
1690 | 0 | if (*(s->init_buf->data) == SSL3_MT_FINISHED && !ssl3_take_mac(s)) { |
1691 | | /* SSLfatal() already called */ |
1692 | 0 | *len = 0; |
1693 | 0 | return 0; |
1694 | 0 | } |
1695 | | |
1696 | | /* Feed this message into MAC computation. */ |
1697 | 0 | if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) { |
1698 | 0 | if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, |
1699 | 0 | s->init_num)) { |
1700 | | /* SSLfatal() already called */ |
1701 | 0 | *len = 0; |
1702 | 0 | return 0; |
1703 | 0 | } |
1704 | 0 | if (s->msg_callback) |
1705 | 0 | s->msg_callback(0, SSL2_VERSION, 0, s->init_buf->data, |
1706 | 0 | (size_t)s->init_num, ussl, s->msg_callback_arg); |
1707 | 0 | } else { |
1708 | | /* |
1709 | | * We defer feeding in the HRR until later. We'll do it as part of |
1710 | | * processing the message |
1711 | | * The TLsv1.3 handshake transcript stops at the ClientFinished |
1712 | | * message. |
1713 | | */ |
1714 | 0 | #define SERVER_HELLO_RANDOM_OFFSET (SSL3_HM_HEADER_LENGTH + 2) |
1715 | | /* KeyUpdate and NewSessionTicket do not need to be added */ |
1716 | 0 | if (!SSL_CONNECTION_IS_TLS13(s) |
1717 | 0 | || (s->s3.tmp.message_type != SSL3_MT_NEWSESSION_TICKET |
1718 | 0 | && s->s3.tmp.message_type != SSL3_MT_KEY_UPDATE)) { |
1719 | 0 | if (s->s3.tmp.message_type != SSL3_MT_SERVER_HELLO |
1720 | 0 | || s->init_num < SERVER_HELLO_RANDOM_OFFSET + SSL3_RANDOM_SIZE |
1721 | 0 | || memcmp(hrrrandom, |
1722 | 0 | s->init_buf->data + SERVER_HELLO_RANDOM_OFFSET, |
1723 | 0 | SSL3_RANDOM_SIZE) != 0) { |
1724 | 0 | if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, |
1725 | 0 | s->init_num + SSL3_HM_HEADER_LENGTH)) { |
1726 | | /* SSLfatal() already called */ |
1727 | 0 | *len = 0; |
1728 | 0 | return 0; |
1729 | 0 | } |
1730 | 0 | } |
1731 | 0 | } |
1732 | 0 | if (s->msg_callback) |
1733 | 0 | s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data, |
1734 | 0 | (size_t)s->init_num + SSL3_HM_HEADER_LENGTH, ussl, |
1735 | 0 | s->msg_callback_arg); |
1736 | 0 | } |
1737 | | |
1738 | 0 | *len = s->init_num; |
1739 | 0 | return 1; |
1740 | 0 | } |
1741 | | |
1742 | | static const X509ERR2ALERT x509table[] = { |
1743 | | {X509_V_ERR_APPLICATION_VERIFICATION, SSL_AD_HANDSHAKE_FAILURE}, |
1744 | | {X509_V_ERR_CA_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE}, |
1745 | | {X509_V_ERR_EC_KEY_EXPLICIT_PARAMS, SSL_AD_BAD_CERTIFICATE}, |
1746 | | {X509_V_ERR_CA_MD_TOO_WEAK, SSL_AD_BAD_CERTIFICATE}, |
1747 | | {X509_V_ERR_CERT_CHAIN_TOO_LONG, SSL_AD_UNKNOWN_CA}, |
1748 | | {X509_V_ERR_CERT_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED}, |
1749 | | {X509_V_ERR_CERT_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE}, |
1750 | | {X509_V_ERR_CERT_REJECTED, SSL_AD_BAD_CERTIFICATE}, |
1751 | | {X509_V_ERR_CERT_REVOKED, SSL_AD_CERTIFICATE_REVOKED}, |
1752 | | {X509_V_ERR_CERT_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR}, |
1753 | | {X509_V_ERR_CERT_UNTRUSTED, SSL_AD_BAD_CERTIFICATE}, |
1754 | | {X509_V_ERR_CRL_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED}, |
1755 | | {X509_V_ERR_CRL_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE}, |
1756 | | {X509_V_ERR_CRL_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR}, |
1757 | | {X509_V_ERR_DANE_NO_MATCH, SSL_AD_BAD_CERTIFICATE}, |
1758 | | {X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT, SSL_AD_UNKNOWN_CA}, |
1759 | | {X509_V_ERR_EE_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE}, |
1760 | | {X509_V_ERR_EMAIL_MISMATCH, SSL_AD_BAD_CERTIFICATE}, |
1761 | | {X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD, SSL_AD_BAD_CERTIFICATE}, |
1762 | | {X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD, SSL_AD_BAD_CERTIFICATE}, |
1763 | | {X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE}, |
1764 | | {X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE}, |
1765 | | {X509_V_ERR_HOSTNAME_MISMATCH, SSL_AD_BAD_CERTIFICATE}, |
1766 | | {X509_V_ERR_INVALID_CA, SSL_AD_UNKNOWN_CA}, |
1767 | | {X509_V_ERR_INVALID_CALL, SSL_AD_INTERNAL_ERROR}, |
1768 | | {X509_V_ERR_INVALID_PURPOSE, SSL_AD_UNSUPPORTED_CERTIFICATE}, |
1769 | | {X509_V_ERR_IP_ADDRESS_MISMATCH, SSL_AD_BAD_CERTIFICATE}, |
1770 | | {X509_V_ERR_OUT_OF_MEM, SSL_AD_INTERNAL_ERROR}, |
1771 | | {X509_V_ERR_PATH_LENGTH_EXCEEDED, SSL_AD_UNKNOWN_CA}, |
1772 | | {X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN, SSL_AD_UNKNOWN_CA}, |
1773 | | {X509_V_ERR_STORE_LOOKUP, SSL_AD_INTERNAL_ERROR}, |
1774 | | {X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, SSL_AD_BAD_CERTIFICATE}, |
1775 | | {X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE, SSL_AD_BAD_CERTIFICATE}, |
1776 | | {X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE, SSL_AD_BAD_CERTIFICATE}, |
1777 | | {X509_V_ERR_UNABLE_TO_GET_CRL, SSL_AD_UNKNOWN_CA}, |
1778 | | {X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER, SSL_AD_UNKNOWN_CA}, |
1779 | | {X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT, SSL_AD_UNKNOWN_CA}, |
1780 | | {X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY, SSL_AD_UNKNOWN_CA}, |
1781 | | {X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE, SSL_AD_UNKNOWN_CA}, |
1782 | | {X509_V_ERR_UNSPECIFIED, SSL_AD_INTERNAL_ERROR}, |
1783 | | |
1784 | | /* Last entry; return this if we don't find the value above. */ |
1785 | | {X509_V_OK, SSL_AD_CERTIFICATE_UNKNOWN} |
1786 | | }; |
1787 | | |
1788 | | int ssl_x509err2alert(int x509err) |
1789 | 0 | { |
1790 | 0 | const X509ERR2ALERT *tp; |
1791 | |
|
1792 | 0 | for (tp = x509table; tp->x509err != X509_V_OK; ++tp) |
1793 | 0 | if (tp->x509err == x509err) |
1794 | 0 | break; |
1795 | 0 | return tp->alert; |
1796 | 0 | } |
1797 | | |
1798 | | int ssl_allow_compression(SSL_CONNECTION *s) |
1799 | 0 | { |
1800 | 0 | if (s->options & SSL_OP_NO_COMPRESSION) |
1801 | 0 | return 0; |
1802 | 0 | return ssl_security(s, SSL_SECOP_COMPRESSION, 0, 0, NULL); |
1803 | 0 | } |
1804 | | |
1805 | | /* |
1806 | | * SSL/TLS/DTLS version comparison |
1807 | | * |
1808 | | * Returns |
1809 | | * 0 if versiona is equal to versionb |
1810 | | * 1 if versiona is greater than versionb |
1811 | | * -1 if versiona is less than versionb |
1812 | | */ |
1813 | | int ssl_version_cmp(const SSL_CONNECTION *s, int versiona, int versionb) |
1814 | 0 | { |
1815 | 0 | int dtls = SSL_CONNECTION_IS_DTLS(s); |
1816 | |
|
1817 | 0 | if (versiona == versionb) |
1818 | 0 | return 0; |
1819 | 0 | if (!dtls) |
1820 | 0 | return versiona < versionb ? -1 : 1; |
1821 | 0 | return DTLS_VERSION_LT(versiona, versionb) ? -1 : 1; |
1822 | 0 | } |
1823 | | |
1824 | | typedef struct { |
1825 | | int version; |
1826 | | const SSL_METHOD *(*cmeth) (void); |
1827 | | const SSL_METHOD *(*smeth) (void); |
1828 | | } version_info; |
1829 | | |
1830 | | #if TLS_MAX_VERSION_INTERNAL != TLS1_3_VERSION |
1831 | | # error Code needs update for TLS_method() support beyond TLS1_3_VERSION. |
1832 | | #endif |
1833 | | |
1834 | | /* Must be in order high to low */ |
1835 | | static const version_info tls_version_table[] = { |
1836 | | #ifndef OPENSSL_NO_TLS1_3 |
1837 | | {TLS1_3_VERSION, tlsv1_3_client_method, tlsv1_3_server_method}, |
1838 | | #else |
1839 | | {TLS1_3_VERSION, NULL, NULL}, |
1840 | | #endif |
1841 | | #ifndef OPENSSL_NO_TLS1_2 |
1842 | | {TLS1_2_VERSION, tlsv1_2_client_method, tlsv1_2_server_method}, |
1843 | | #else |
1844 | | {TLS1_2_VERSION, NULL, NULL}, |
1845 | | #endif |
1846 | | #ifndef OPENSSL_NO_TLS1_1 |
1847 | | {TLS1_1_VERSION, tlsv1_1_client_method, tlsv1_1_server_method}, |
1848 | | #else |
1849 | | {TLS1_1_VERSION, NULL, NULL}, |
1850 | | #endif |
1851 | | #ifndef OPENSSL_NO_TLS1 |
1852 | | {TLS1_VERSION, tlsv1_client_method, tlsv1_server_method}, |
1853 | | #else |
1854 | | {TLS1_VERSION, NULL, NULL}, |
1855 | | #endif |
1856 | | #ifndef OPENSSL_NO_SSL3 |
1857 | | {SSL3_VERSION, sslv3_client_method, sslv3_server_method}, |
1858 | | #else |
1859 | | {SSL3_VERSION, NULL, NULL}, |
1860 | | #endif |
1861 | | {0, NULL, NULL}, |
1862 | | }; |
1863 | | |
1864 | | #if DTLS_MAX_VERSION_INTERNAL != DTLS1_2_VERSION |
1865 | | # error Code needs update for DTLS_method() support beyond DTLS1_2_VERSION. |
1866 | | #endif |
1867 | | |
1868 | | /* Must be in order high to low */ |
1869 | | static const version_info dtls_version_table[] = { |
1870 | | #ifndef OPENSSL_NO_DTLS1_2 |
1871 | | {DTLS1_2_VERSION, dtlsv1_2_client_method, dtlsv1_2_server_method}, |
1872 | | #else |
1873 | | {DTLS1_2_VERSION, NULL, NULL}, |
1874 | | #endif |
1875 | | #ifndef OPENSSL_NO_DTLS1 |
1876 | | {DTLS1_VERSION, dtlsv1_client_method, dtlsv1_server_method}, |
1877 | | {DTLS1_BAD_VER, dtls_bad_ver_client_method, NULL}, |
1878 | | #else |
1879 | | {DTLS1_VERSION, NULL, NULL}, |
1880 | | {DTLS1_BAD_VER, NULL, NULL}, |
1881 | | #endif |
1882 | | {0, NULL, NULL}, |
1883 | | }; |
1884 | | |
1885 | | /* |
1886 | | * ssl_method_error - Check whether an SSL_METHOD is enabled. |
1887 | | * |
1888 | | * @s: The SSL handle for the candidate method |
1889 | | * @method: the intended method. |
1890 | | * |
1891 | | * Returns 0 on success, or an SSL error reason on failure. |
1892 | | */ |
1893 | | static int ssl_method_error(const SSL_CONNECTION *s, const SSL_METHOD *method) |
1894 | 0 | { |
1895 | 0 | int version = method->version; |
1896 | |
|
1897 | 0 | if ((s->min_proto_version != 0 && |
1898 | 0 | ssl_version_cmp(s, version, s->min_proto_version) < 0) || |
1899 | 0 | ssl_security(s, SSL_SECOP_VERSION, 0, version, NULL) == 0) |
1900 | 0 | return SSL_R_VERSION_TOO_LOW; |
1901 | | |
1902 | 0 | if (s->max_proto_version != 0 && |
1903 | 0 | ssl_version_cmp(s, version, s->max_proto_version) > 0) |
1904 | 0 | return SSL_R_VERSION_TOO_HIGH; |
1905 | | |
1906 | 0 | if ((s->options & method->mask) != 0) |
1907 | 0 | return SSL_R_UNSUPPORTED_PROTOCOL; |
1908 | 0 | if ((method->flags & SSL_METHOD_NO_SUITEB) != 0 && tls1_suiteb(s)) |
1909 | 0 | return SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE; |
1910 | | |
1911 | 0 | return 0; |
1912 | 0 | } |
1913 | | |
1914 | | /* |
1915 | | * Only called by servers. Returns 1 if the server has a TLSv1.3 capable |
1916 | | * certificate type, or has PSK or a certificate callback configured, or has |
1917 | | * a servername callback configure. Otherwise returns 0. |
1918 | | */ |
1919 | | static int is_tls13_capable(const SSL_CONNECTION *s) |
1920 | 0 | { |
1921 | 0 | size_t i; |
1922 | 0 | int curve; |
1923 | 0 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); |
1924 | |
|
1925 | 0 | if (!ossl_assert(sctx != NULL) || !ossl_assert(s->session_ctx != NULL)) |
1926 | 0 | return 0; |
1927 | | |
1928 | | /* |
1929 | | * A servername callback can change the available certs, so if a servername |
1930 | | * cb is set then we just assume TLSv1.3 will be ok |
1931 | | */ |
1932 | 0 | if (sctx->ext.servername_cb != NULL |
1933 | 0 | || s->session_ctx->ext.servername_cb != NULL) |
1934 | 0 | return 1; |
1935 | | |
1936 | 0 | #ifndef OPENSSL_NO_PSK |
1937 | 0 | if (s->psk_server_callback != NULL) |
1938 | 0 | return 1; |
1939 | 0 | #endif |
1940 | | |
1941 | 0 | if (s->psk_find_session_cb != NULL || s->cert->cert_cb != NULL) |
1942 | 0 | return 1; |
1943 | | |
1944 | | /* All provider-based sig algs are required to support at least TLS1.3 */ |
1945 | 0 | for (i = 0; i < s->ssl_pkey_num; i++) { |
1946 | | /* Skip over certs disallowed for TLSv1.3 */ |
1947 | 0 | switch (i) { |
1948 | 0 | case SSL_PKEY_DSA_SIGN: |
1949 | 0 | case SSL_PKEY_GOST01: |
1950 | 0 | case SSL_PKEY_GOST12_256: |
1951 | 0 | case SSL_PKEY_GOST12_512: |
1952 | 0 | continue; |
1953 | 0 | default: |
1954 | 0 | break; |
1955 | 0 | } |
1956 | 0 | if (!ssl_has_cert(s, i)) |
1957 | 0 | continue; |
1958 | 0 | if (i != SSL_PKEY_ECC) |
1959 | 0 | return 1; |
1960 | | /* |
1961 | | * Prior to TLSv1.3 sig algs allowed any curve to be used. TLSv1.3 is |
1962 | | * more restrictive so check that our sig algs are consistent with this |
1963 | | * EC cert. See section 4.2.3 of RFC8446. |
1964 | | */ |
1965 | 0 | curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC].privatekey); |
1966 | 0 | if (tls_check_sigalg_curve(s, curve)) |
1967 | 0 | return 1; |
1968 | 0 | } |
1969 | | |
1970 | 0 | return 0; |
1971 | 0 | } |
1972 | | |
1973 | | /* |
1974 | | * ssl_version_supported - Check that the specified `version` is supported by |
1975 | | * `SSL *` instance |
1976 | | * |
1977 | | * @s: The SSL handle for the candidate method |
1978 | | * @version: Protocol version to test against |
1979 | | * |
1980 | | * Returns 1 when supported, otherwise 0 |
1981 | | */ |
1982 | | int ssl_version_supported(const SSL_CONNECTION *s, int version, |
1983 | | const SSL_METHOD **meth) |
1984 | 0 | { |
1985 | 0 | const version_info *vent; |
1986 | 0 | const version_info *table; |
1987 | |
|
1988 | 0 | switch (SSL_CONNECTION_GET_SSL(s)->method->version) { |
1989 | 0 | default: |
1990 | | /* Version should match method version for non-ANY method */ |
1991 | 0 | return ssl_version_cmp(s, version, s->version) == 0; |
1992 | 0 | case TLS_ANY_VERSION: |
1993 | 0 | table = tls_version_table; |
1994 | 0 | break; |
1995 | 0 | case DTLS_ANY_VERSION: |
1996 | 0 | table = dtls_version_table; |
1997 | 0 | break; |
1998 | 0 | } |
1999 | | |
2000 | 0 | for (vent = table; |
2001 | 0 | vent->version != 0 && ssl_version_cmp(s, version, vent->version) <= 0; |
2002 | 0 | ++vent) { |
2003 | 0 | const SSL_METHOD *(*thismeth)(void) = s->server ? vent->smeth |
2004 | 0 | : vent->cmeth; |
2005 | |
|
2006 | 0 | if (thismeth != NULL |
2007 | 0 | && ssl_version_cmp(s, version, vent->version) == 0 |
2008 | 0 | && ssl_method_error(s, thismeth()) == 0 |
2009 | 0 | && (!s->server |
2010 | 0 | || version != TLS1_3_VERSION |
2011 | 0 | || is_tls13_capable(s))) { |
2012 | 0 | if (meth != NULL) |
2013 | 0 | *meth = thismeth(); |
2014 | 0 | return 1; |
2015 | 0 | } |
2016 | 0 | } |
2017 | 0 | return 0; |
2018 | 0 | } |
2019 | | |
2020 | | /* |
2021 | | * ssl_check_version_downgrade - In response to RFC7507 SCSV version |
2022 | | * fallback indication from a client check whether we're using the highest |
2023 | | * supported protocol version. |
2024 | | * |
2025 | | * @s server SSL handle. |
2026 | | * |
2027 | | * Returns 1 when using the highest enabled version, 0 otherwise. |
2028 | | */ |
2029 | | int ssl_check_version_downgrade(SSL_CONNECTION *s) |
2030 | 0 | { |
2031 | 0 | const version_info *vent; |
2032 | 0 | const version_info *table; |
2033 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
2034 | | |
2035 | | /* |
2036 | | * Check that the current protocol is the highest enabled version |
2037 | | * (according to ssl->defltmethod, as version negotiation may have changed |
2038 | | * s->method). |
2039 | | */ |
2040 | 0 | if (s->version == ssl->defltmeth->version) |
2041 | 0 | return 1; |
2042 | | |
2043 | | /* |
2044 | | * Apparently we're using a version-flexible SSL_METHOD (not at its |
2045 | | * highest protocol version). |
2046 | | */ |
2047 | 0 | if (ssl->defltmeth->version == TLS_method()->version) |
2048 | 0 | table = tls_version_table; |
2049 | 0 | else if (ssl->defltmeth->version == DTLS_method()->version) |
2050 | 0 | table = dtls_version_table; |
2051 | 0 | else { |
2052 | | /* Unexpected state; fail closed. */ |
2053 | 0 | return 0; |
2054 | 0 | } |
2055 | | |
2056 | 0 | for (vent = table; vent->version != 0; ++vent) { |
2057 | 0 | if (vent->smeth != NULL && ssl_method_error(s, vent->smeth()) == 0) |
2058 | 0 | return s->version == vent->version; |
2059 | 0 | } |
2060 | 0 | return 0; |
2061 | 0 | } |
2062 | | |
2063 | | /* |
2064 | | * ssl_set_version_bound - set an upper or lower bound on the supported (D)TLS |
2065 | | * protocols, provided the initial (D)TLS method is version-flexible. This |
2066 | | * function sanity-checks the proposed value and makes sure the method is |
2067 | | * version-flexible, then sets the limit if all is well. |
2068 | | * |
2069 | | * @method_version: The version of the current SSL_METHOD. |
2070 | | * @version: the intended limit. |
2071 | | * @bound: pointer to limit to be updated. |
2072 | | * |
2073 | | * Returns 1 on success, 0 on failure. |
2074 | | */ |
2075 | | int ssl_set_version_bound(int method_version, int version, int *bound) |
2076 | 0 | { |
2077 | 0 | int valid_tls; |
2078 | 0 | int valid_dtls; |
2079 | |
|
2080 | 0 | if (version == 0) { |
2081 | 0 | *bound = version; |
2082 | 0 | return 1; |
2083 | 0 | } |
2084 | | |
2085 | 0 | valid_tls = version >= SSL3_VERSION && version <= TLS_MAX_VERSION_INTERNAL; |
2086 | 0 | valid_dtls = |
2087 | | /* We support client side pre-standardisation version of DTLS */ |
2088 | 0 | (version == DTLS1_BAD_VER) |
2089 | 0 | || (DTLS_VERSION_LE(version, DTLS_MAX_VERSION_INTERNAL) |
2090 | 0 | && DTLS_VERSION_GE(version, DTLS1_VERSION)); |
2091 | |
|
2092 | 0 | if (!valid_tls && !valid_dtls) |
2093 | 0 | return 0; |
2094 | | |
2095 | | /*- |
2096 | | * Restrict TLS methods to TLS protocol versions. |
2097 | | * Restrict DTLS methods to DTLS protocol versions. |
2098 | | * Note, DTLS version numbers are decreasing, use comparison macros. |
2099 | | * |
2100 | | * Note that for both lower-bounds we use explicit versions, not |
2101 | | * (D)TLS_MIN_VERSION. This is because we don't want to break user |
2102 | | * configurations. If the MIN (supported) version ever rises, the user's |
2103 | | * "floor" remains valid even if no longer available. We don't expect the |
2104 | | * MAX ceiling to ever get lower, so making that variable makes sense. |
2105 | | * |
2106 | | * We ignore attempts to set bounds on version-inflexible methods, |
2107 | | * returning success. |
2108 | | */ |
2109 | 0 | switch (method_version) { |
2110 | 0 | default: |
2111 | 0 | break; |
2112 | | |
2113 | 0 | case TLS_ANY_VERSION: |
2114 | 0 | if (valid_tls) |
2115 | 0 | *bound = version; |
2116 | 0 | break; |
2117 | | |
2118 | 0 | case DTLS_ANY_VERSION: |
2119 | 0 | if (valid_dtls) |
2120 | 0 | *bound = version; |
2121 | 0 | break; |
2122 | 0 | } |
2123 | 0 | return 1; |
2124 | 0 | } |
2125 | | |
2126 | | static void check_for_downgrade(SSL_CONNECTION *s, int vers, DOWNGRADE *dgrd) |
2127 | 0 | { |
2128 | 0 | if (vers == TLS1_2_VERSION |
2129 | 0 | && ssl_version_supported(s, TLS1_3_VERSION, NULL)) { |
2130 | 0 | *dgrd = DOWNGRADE_TO_1_2; |
2131 | 0 | } else if (!SSL_CONNECTION_IS_DTLS(s) |
2132 | 0 | && vers < TLS1_2_VERSION |
2133 | | /* |
2134 | | * We need to ensure that a server that disables TLSv1.2 |
2135 | | * (creating a hole between TLSv1.3 and TLSv1.1) can still |
2136 | | * complete handshakes with clients that support TLSv1.2 and |
2137 | | * below. Therefore we do not enable the sentinel if TLSv1.3 is |
2138 | | * enabled and TLSv1.2 is not. |
2139 | | */ |
2140 | 0 | && ssl_version_supported(s, TLS1_2_VERSION, NULL)) { |
2141 | 0 | *dgrd = DOWNGRADE_TO_1_1; |
2142 | 0 | } else { |
2143 | 0 | *dgrd = DOWNGRADE_NONE; |
2144 | 0 | } |
2145 | 0 | } |
2146 | | |
2147 | | /* |
2148 | | * ssl_choose_server_version - Choose server (D)TLS version. Called when the |
2149 | | * client HELLO is received to select the final server protocol version and |
2150 | | * the version specific method. |
2151 | | * |
2152 | | * @s: server SSL handle. |
2153 | | * |
2154 | | * Returns 0 on success or an SSL error reason number on failure. |
2155 | | */ |
2156 | | int ssl_choose_server_version(SSL_CONNECTION *s, CLIENTHELLO_MSG *hello, |
2157 | | DOWNGRADE *dgrd) |
2158 | 0 | { |
2159 | | /*- |
2160 | | * With version-flexible methods we have an initial state with: |
2161 | | * |
2162 | | * s->method->version == (D)TLS_ANY_VERSION, |
2163 | | * s->version == (D)TLS_MAX_VERSION_INTERNAL. |
2164 | | * |
2165 | | * So we detect version-flexible methods via the method version, not the |
2166 | | * handle version. |
2167 | | */ |
2168 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
2169 | 0 | int server_version = ssl->method->version; |
2170 | 0 | int client_version = hello->legacy_version; |
2171 | 0 | const version_info *vent; |
2172 | 0 | const version_info *table; |
2173 | 0 | int disabled = 0; |
2174 | 0 | RAW_EXTENSION *suppversions; |
2175 | |
|
2176 | 0 | s->client_version = client_version; |
2177 | |
|
2178 | 0 | switch (server_version) { |
2179 | 0 | default: |
2180 | 0 | if (!SSL_CONNECTION_IS_TLS13(s)) { |
2181 | 0 | if (ssl_version_cmp(s, client_version, s->version) < 0) |
2182 | 0 | return SSL_R_WRONG_SSL_VERSION; |
2183 | 0 | *dgrd = DOWNGRADE_NONE; |
2184 | | /* |
2185 | | * If this SSL handle is not from a version flexible method we don't |
2186 | | * (and never did) check min/max FIPS or Suite B constraints. Hope |
2187 | | * that's OK. It is up to the caller to not choose fixed protocol |
2188 | | * versions they don't want. If not, then easy to fix, just return |
2189 | | * ssl_method_error(s, s->method) |
2190 | | */ |
2191 | 0 | return 0; |
2192 | 0 | } |
2193 | | /* |
2194 | | * Fall through if we are TLSv1.3 already (this means we must be after |
2195 | | * a HelloRetryRequest |
2196 | | */ |
2197 | | /* fall thru */ |
2198 | 0 | case TLS_ANY_VERSION: |
2199 | 0 | table = tls_version_table; |
2200 | 0 | break; |
2201 | 0 | case DTLS_ANY_VERSION: |
2202 | 0 | table = dtls_version_table; |
2203 | 0 | break; |
2204 | 0 | } |
2205 | | |
2206 | 0 | suppversions = &hello->pre_proc_exts[TLSEXT_IDX_supported_versions]; |
2207 | | |
2208 | | /* If we did an HRR then supported versions is mandatory */ |
2209 | 0 | if (!suppversions->present && s->hello_retry_request != SSL_HRR_NONE) |
2210 | 0 | return SSL_R_UNSUPPORTED_PROTOCOL; |
2211 | | |
2212 | 0 | if (suppversions->present && !SSL_CONNECTION_IS_DTLS(s)) { |
2213 | 0 | unsigned int candidate_vers = 0; |
2214 | 0 | unsigned int best_vers = 0; |
2215 | 0 | const SSL_METHOD *best_method = NULL; |
2216 | 0 | PACKET versionslist; |
2217 | |
|
2218 | 0 | suppversions->parsed = 1; |
2219 | |
|
2220 | 0 | if (!PACKET_as_length_prefixed_1(&suppversions->data, &versionslist)) { |
2221 | | /* Trailing or invalid data? */ |
2222 | 0 | return SSL_R_LENGTH_MISMATCH; |
2223 | 0 | } |
2224 | | |
2225 | | /* |
2226 | | * The TLSv1.3 spec says the client MUST set this to TLS1_2_VERSION. |
2227 | | * The spec only requires servers to check that it isn't SSLv3: |
2228 | | * "Any endpoint receiving a Hello message with |
2229 | | * ClientHello.legacy_version or ServerHello.legacy_version set to |
2230 | | * 0x0300 MUST abort the handshake with a "protocol_version" alert." |
2231 | | * We are slightly stricter and require that it isn't SSLv3 or lower. |
2232 | | * We tolerate TLSv1 and TLSv1.1. |
2233 | | */ |
2234 | 0 | if (client_version <= SSL3_VERSION) |
2235 | 0 | return SSL_R_BAD_LEGACY_VERSION; |
2236 | | |
2237 | 0 | while (PACKET_get_net_2(&versionslist, &candidate_vers)) { |
2238 | 0 | if (ssl_version_cmp(s, candidate_vers, best_vers) <= 0) |
2239 | 0 | continue; |
2240 | 0 | if (ssl_version_supported(s, candidate_vers, &best_method)) |
2241 | 0 | best_vers = candidate_vers; |
2242 | 0 | } |
2243 | 0 | if (PACKET_remaining(&versionslist) != 0) { |
2244 | | /* Trailing data? */ |
2245 | 0 | return SSL_R_LENGTH_MISMATCH; |
2246 | 0 | } |
2247 | | |
2248 | 0 | if (best_vers > 0) { |
2249 | 0 | if (s->hello_retry_request != SSL_HRR_NONE) { |
2250 | | /* |
2251 | | * This is after a HelloRetryRequest so we better check that we |
2252 | | * negotiated TLSv1.3 |
2253 | | */ |
2254 | 0 | if (best_vers != TLS1_3_VERSION) |
2255 | 0 | return SSL_R_UNSUPPORTED_PROTOCOL; |
2256 | 0 | return 0; |
2257 | 0 | } |
2258 | 0 | check_for_downgrade(s, best_vers, dgrd); |
2259 | 0 | s->version = best_vers; |
2260 | 0 | ssl->method = best_method; |
2261 | 0 | if (!ssl_set_record_protocol_version(s, best_vers)) |
2262 | 0 | return ERR_R_INTERNAL_ERROR; |
2263 | | |
2264 | 0 | return 0; |
2265 | 0 | } |
2266 | 0 | return SSL_R_UNSUPPORTED_PROTOCOL; |
2267 | 0 | } |
2268 | | |
2269 | | /* |
2270 | | * If the supported versions extension isn't present, then the highest |
2271 | | * version we can negotiate is TLSv1.2 |
2272 | | */ |
2273 | 0 | if (ssl_version_cmp(s, client_version, TLS1_3_VERSION) >= 0) |
2274 | 0 | client_version = TLS1_2_VERSION; |
2275 | | |
2276 | | /* |
2277 | | * No supported versions extension, so we just use the version supplied in |
2278 | | * the ClientHello. |
2279 | | */ |
2280 | 0 | for (vent = table; vent->version != 0; ++vent) { |
2281 | 0 | const SSL_METHOD *method; |
2282 | |
|
2283 | 0 | if (vent->smeth == NULL || |
2284 | 0 | ssl_version_cmp(s, client_version, vent->version) < 0) |
2285 | 0 | continue; |
2286 | 0 | method = vent->smeth(); |
2287 | 0 | if (ssl_method_error(s, method) == 0) { |
2288 | 0 | check_for_downgrade(s, vent->version, dgrd); |
2289 | 0 | s->version = vent->version; |
2290 | 0 | ssl->method = method; |
2291 | 0 | if (!ssl_set_record_protocol_version(s, s->version)) |
2292 | 0 | return ERR_R_INTERNAL_ERROR; |
2293 | | |
2294 | 0 | return 0; |
2295 | 0 | } |
2296 | 0 | disabled = 1; |
2297 | 0 | } |
2298 | 0 | return disabled ? SSL_R_UNSUPPORTED_PROTOCOL : SSL_R_VERSION_TOO_LOW; |
2299 | 0 | } |
2300 | | |
2301 | | /* |
2302 | | * ssl_choose_client_version - Choose client (D)TLS version. Called when the |
2303 | | * server HELLO is received to select the final client protocol version and |
2304 | | * the version specific method. |
2305 | | * |
2306 | | * @s: client SSL handle. |
2307 | | * @version: The proposed version from the server's HELLO. |
2308 | | * @extensions: The extensions received |
2309 | | * |
2310 | | * Returns 1 on success or 0 on error. |
2311 | | */ |
2312 | | int ssl_choose_client_version(SSL_CONNECTION *s, int version, |
2313 | | RAW_EXTENSION *extensions) |
2314 | 0 | { |
2315 | 0 | const version_info *vent; |
2316 | 0 | const version_info *table; |
2317 | 0 | int ret, ver_min, ver_max, real_max, origv; |
2318 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
2319 | |
|
2320 | 0 | origv = s->version; |
2321 | 0 | s->version = version; |
2322 | | |
2323 | | /* This will overwrite s->version if the extension is present */ |
2324 | 0 | if (!tls_parse_extension(s, TLSEXT_IDX_supported_versions, |
2325 | 0 | SSL_EXT_TLS1_2_SERVER_HELLO |
2326 | 0 | | SSL_EXT_TLS1_3_SERVER_HELLO, extensions, |
2327 | 0 | NULL, 0)) { |
2328 | 0 | s->version = origv; |
2329 | 0 | return 0; |
2330 | 0 | } |
2331 | | |
2332 | 0 | if (s->hello_retry_request != SSL_HRR_NONE |
2333 | 0 | && s->version != TLS1_3_VERSION) { |
2334 | 0 | s->version = origv; |
2335 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION); |
2336 | 0 | return 0; |
2337 | 0 | } |
2338 | | |
2339 | 0 | switch (ssl->method->version) { |
2340 | 0 | default: |
2341 | 0 | if (s->version != ssl->method->version) { |
2342 | 0 | s->version = origv; |
2343 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION); |
2344 | 0 | return 0; |
2345 | 0 | } |
2346 | | /* |
2347 | | * If this SSL handle is not from a version flexible method we don't |
2348 | | * (and never did) check min/max, FIPS or Suite B constraints. Hope |
2349 | | * that's OK. It is up to the caller to not choose fixed protocol |
2350 | | * versions they don't want. If not, then easy to fix, just return |
2351 | | * ssl_method_error(s, s->method) |
2352 | | */ |
2353 | 0 | if (!ssl_set_record_protocol_version(s, s->version)) { |
2354 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2355 | 0 | return 0; |
2356 | 0 | } |
2357 | 0 | return 1; |
2358 | 0 | case TLS_ANY_VERSION: |
2359 | 0 | table = tls_version_table; |
2360 | 0 | break; |
2361 | 0 | case DTLS_ANY_VERSION: |
2362 | 0 | table = dtls_version_table; |
2363 | 0 | break; |
2364 | 0 | } |
2365 | | |
2366 | 0 | ret = ssl_get_min_max_version(s, &ver_min, &ver_max, &real_max); |
2367 | 0 | if (ret != 0) { |
2368 | 0 | s->version = origv; |
2369 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, ret); |
2370 | 0 | return 0; |
2371 | 0 | } |
2372 | 0 | if (ssl_version_cmp(s, s->version, ver_min) < 0 |
2373 | 0 | || ssl_version_cmp(s, s->version, ver_max) > 0) { |
2374 | 0 | s->version = origv; |
2375 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL); |
2376 | 0 | return 0; |
2377 | 0 | } |
2378 | | |
2379 | 0 | if ((s->mode & SSL_MODE_SEND_FALLBACK_SCSV) == 0) |
2380 | 0 | real_max = ver_max; |
2381 | | |
2382 | | /* Check for downgrades */ |
2383 | | /* TODO(DTLSv1.3): Update this code for DTLSv1.3 */ |
2384 | 0 | if (!SSL_CONNECTION_IS_DTLS(s) && real_max > s->version) { |
2385 | | /* Signal applies to all versions */ |
2386 | 0 | if (memcmp(tls11downgrade, |
2387 | 0 | s->s3.server_random + SSL3_RANDOM_SIZE |
2388 | 0 | - sizeof(tls11downgrade), |
2389 | 0 | sizeof(tls11downgrade)) == 0) { |
2390 | 0 | s->version = origv; |
2391 | 0 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
2392 | 0 | SSL_R_INAPPROPRIATE_FALLBACK); |
2393 | 0 | return 0; |
2394 | 0 | } |
2395 | | /* Only when accepting TLS1.3 */ |
2396 | 0 | if (real_max == TLS1_3_VERSION |
2397 | 0 | && memcmp(tls12downgrade, |
2398 | 0 | s->s3.server_random + SSL3_RANDOM_SIZE |
2399 | 0 | - sizeof(tls12downgrade), |
2400 | 0 | sizeof(tls12downgrade)) == 0) { |
2401 | 0 | s->version = origv; |
2402 | 0 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
2403 | 0 | SSL_R_INAPPROPRIATE_FALLBACK); |
2404 | 0 | return 0; |
2405 | 0 | } |
2406 | 0 | } |
2407 | | |
2408 | 0 | for (vent = table; vent->version != 0; ++vent) { |
2409 | 0 | if (vent->cmeth == NULL || s->version != vent->version) |
2410 | 0 | continue; |
2411 | | |
2412 | 0 | ssl->method = vent->cmeth(); |
2413 | 0 | if (!ssl_set_record_protocol_version(s, s->version)) { |
2414 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2415 | 0 | return 0; |
2416 | 0 | } |
2417 | 0 | return 1; |
2418 | 0 | } |
2419 | | |
2420 | 0 | s->version = origv; |
2421 | 0 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL); |
2422 | 0 | return 0; |
2423 | 0 | } |
2424 | | |
2425 | | /* |
2426 | | * ssl_get_min_max_version - get minimum and maximum protocol version |
2427 | | * @s: The SSL connection |
2428 | | * @min_version: The minimum supported version |
2429 | | * @max_version: The maximum supported version |
2430 | | * @real_max: The highest version below the lowest compile time version hole |
2431 | | * where that hole lies above at least one run-time enabled |
2432 | | * protocol. |
2433 | | * |
2434 | | * Work out what version we should be using for the initial ClientHello if the |
2435 | | * version is initially (D)TLS_ANY_VERSION. We apply any explicit SSL_OP_NO_xxx |
2436 | | * options, the MinProtocol and MaxProtocol configuration commands, any Suite B |
2437 | | * constraints and any floor imposed by the security level here, |
2438 | | * so we don't advertise the wrong protocol version to only reject the outcome later. |
2439 | | * |
2440 | | * Computing the right floor matters. If, e.g., TLS 1.0 and 1.2 are enabled, |
2441 | | * TLS 1.1 is disabled, but the security level, Suite-B and/or MinProtocol |
2442 | | * only allow TLS 1.2, we want to advertise TLS1.2, *not* TLS1. |
2443 | | * |
2444 | | * Returns 0 on success or an SSL error reason number on failure. On failure |
2445 | | * min_version and max_version will also be set to 0. |
2446 | | */ |
2447 | | int ssl_get_min_max_version(const SSL_CONNECTION *s, int *min_version, |
2448 | | int *max_version, int *real_max) |
2449 | 0 | { |
2450 | 0 | int version, tmp_real_max; |
2451 | 0 | int hole; |
2452 | 0 | const SSL_METHOD *method; |
2453 | 0 | const version_info *table; |
2454 | 0 | const version_info *vent; |
2455 | 0 | const SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
2456 | |
|
2457 | 0 | switch (ssl->method->version) { |
2458 | 0 | default: |
2459 | | /* |
2460 | | * If this SSL handle is not from a version flexible method we don't |
2461 | | * (and never did) check min/max FIPS or Suite B constraints. Hope |
2462 | | * that's OK. It is up to the caller to not choose fixed protocol |
2463 | | * versions they don't want. If not, then easy to fix, just return |
2464 | | * ssl_method_error(s, s->method) |
2465 | | */ |
2466 | 0 | *min_version = *max_version = s->version; |
2467 | | /* |
2468 | | * Providing a real_max only makes sense where we're using a version |
2469 | | * flexible method. |
2470 | | */ |
2471 | 0 | if (!ossl_assert(real_max == NULL)) |
2472 | 0 | return ERR_R_INTERNAL_ERROR; |
2473 | 0 | return 0; |
2474 | 0 | case TLS_ANY_VERSION: |
2475 | 0 | table = tls_version_table; |
2476 | 0 | break; |
2477 | 0 | case DTLS_ANY_VERSION: |
2478 | 0 | table = dtls_version_table; |
2479 | 0 | break; |
2480 | 0 | } |
2481 | | |
2482 | | /* |
2483 | | * SSL_OP_NO_X disables all protocols above X *if* there are some protocols |
2484 | | * below X enabled. This is required in order to maintain the "version |
2485 | | * capability" vector contiguous. Any versions with a NULL client method |
2486 | | * (protocol version client is disabled at compile-time) is also a "hole". |
2487 | | * |
2488 | | * Our initial state is hole == 1, version == 0. That is, versions above |
2489 | | * the first version in the method table are disabled (a "hole" above |
2490 | | * the valid protocol entries) and we don't have a selected version yet. |
2491 | | * |
2492 | | * Whenever "hole == 1", and we hit an enabled method, its version becomes |
2493 | | * the selected version. We're no longer in a hole, so "hole" becomes 0. |
2494 | | * |
2495 | | * If "hole == 0" and we hit an enabled method, we support a contiguous |
2496 | | * range of at least two methods. If we hit a disabled method, |
2497 | | * then hole becomes true again, but nothing else changes yet, |
2498 | | * because all the remaining methods may be disabled too. |
2499 | | * If we again hit an enabled method after the new hole, it becomes |
2500 | | * selected, as we start from scratch. |
2501 | | */ |
2502 | 0 | *min_version = version = 0; |
2503 | 0 | hole = 1; |
2504 | 0 | if (real_max != NULL) |
2505 | 0 | *real_max = 0; |
2506 | 0 | tmp_real_max = 0; |
2507 | 0 | for (vent = table; vent->version != 0; ++vent) { |
2508 | | /* |
2509 | | * A table entry with a NULL client method is still a hole in the |
2510 | | * "version capability" vector. |
2511 | | */ |
2512 | 0 | if (vent->cmeth == NULL) { |
2513 | 0 | hole = 1; |
2514 | 0 | tmp_real_max = 0; |
2515 | 0 | continue; |
2516 | 0 | } |
2517 | 0 | method = vent->cmeth(); |
2518 | |
|
2519 | 0 | if (hole == 1 && tmp_real_max == 0) |
2520 | 0 | tmp_real_max = vent->version; |
2521 | |
|
2522 | 0 | if (ssl_method_error(s, method) != 0) { |
2523 | 0 | hole = 1; |
2524 | 0 | } else if (!hole) { |
2525 | 0 | *min_version = method->version; |
2526 | 0 | } else { |
2527 | 0 | if (real_max != NULL && tmp_real_max != 0) |
2528 | 0 | *real_max = tmp_real_max; |
2529 | 0 | version = method->version; |
2530 | 0 | *min_version = version; |
2531 | 0 | hole = 0; |
2532 | 0 | } |
2533 | 0 | } |
2534 | |
|
2535 | 0 | *max_version = version; |
2536 | | |
2537 | | /* Fail if everything is disabled */ |
2538 | 0 | if (version == 0) |
2539 | 0 | return SSL_R_NO_PROTOCOLS_AVAILABLE; |
2540 | | |
2541 | 0 | return 0; |
2542 | 0 | } |
2543 | | |
2544 | | /* |
2545 | | * ssl_set_client_hello_version - Work out what version we should be using for |
2546 | | * the initial ClientHello.legacy_version field. |
2547 | | * |
2548 | | * @s: client SSL handle. |
2549 | | * |
2550 | | * Returns 0 on success or an SSL error reason number on failure. |
2551 | | */ |
2552 | | int ssl_set_client_hello_version(SSL_CONNECTION *s) |
2553 | 0 | { |
2554 | 0 | int ver_min, ver_max, ret; |
2555 | | |
2556 | | /* |
2557 | | * In a renegotiation we always send the same client_version that we sent |
2558 | | * last time, regardless of which version we eventually negotiated. |
2559 | | */ |
2560 | 0 | if (!SSL_IS_FIRST_HANDSHAKE(s)) |
2561 | 0 | return 0; |
2562 | | |
2563 | 0 | ret = ssl_get_min_max_version(s, &ver_min, &ver_max, NULL); |
2564 | |
|
2565 | 0 | if (ret != 0) |
2566 | 0 | return ret; |
2567 | | |
2568 | 0 | s->version = ver_max; |
2569 | |
|
2570 | 0 | if (SSL_CONNECTION_IS_DTLS(s)) { |
2571 | 0 | if (ver_max == DTLS1_BAD_VER) { |
2572 | | /* |
2573 | | * Even though this is technically before version negotiation, |
2574 | | * because we have asked for DTLS1_BAD_VER we will never negotiate |
2575 | | * anything else, and this has impacts on the record layer for when |
2576 | | * we read the ServerHello. So we need to tell the record layer |
2577 | | * about this immediately. |
2578 | | */ |
2579 | 0 | if (!ssl_set_record_protocol_version(s, ver_max)) |
2580 | 0 | return 0; |
2581 | 0 | } |
2582 | 0 | } else if (ver_max > TLS1_2_VERSION) { |
2583 | | /* TLS1.3 always uses TLS1.2 in the legacy_version field */ |
2584 | 0 | ver_max = TLS1_2_VERSION; |
2585 | 0 | } |
2586 | | |
2587 | 0 | s->client_version = ver_max; |
2588 | 0 | return 0; |
2589 | 0 | } |
2590 | | |
2591 | | /* |
2592 | | * Checks a list of |groups| to determine if the |group_id| is in it. If it is |
2593 | | * and |checkallow| is 1 then additionally check if the group is allowed to be |
2594 | | * used. Returns 1 if the group is in the list (and allowed if |checkallow| is |
2595 | | * 1) or 0 otherwise. If provided a pointer it will also return the position |
2596 | | * where the group was found. |
2597 | | */ |
2598 | | int check_in_list(SSL_CONNECTION *s, uint16_t group_id, const uint16_t *groups, |
2599 | | size_t num_groups, int checkallow, size_t *pos) |
2600 | 0 | { |
2601 | 0 | size_t i; |
2602 | |
|
2603 | 0 | if (groups == NULL || num_groups == 0) |
2604 | 0 | return 0; |
2605 | | |
2606 | 0 | for (i = 0; i < num_groups; i++) { |
2607 | 0 | uint16_t group = groups[i]; |
2608 | |
|
2609 | 0 | if (group_id == group |
2610 | 0 | && (!checkallow |
2611 | 0 | || tls_group_allowed(s, group, SSL_SECOP_CURVE_CHECK))) { |
2612 | 0 | if (pos != NULL) |
2613 | 0 | *pos = i; |
2614 | 0 | return 1; |
2615 | 0 | } |
2616 | 0 | } |
2617 | | |
2618 | 0 | return 0; |
2619 | 0 | } |
2620 | | |
2621 | | /* Replace ClientHello1 in the transcript hash with a synthetic message */ |
2622 | | int create_synthetic_message_hash(SSL_CONNECTION *s, |
2623 | | const unsigned char *hashval, |
2624 | | size_t hashlen, const unsigned char *hrr, |
2625 | | size_t hrrlen) |
2626 | 0 | { |
2627 | 0 | unsigned char hashvaltmp[EVP_MAX_MD_SIZE]; |
2628 | 0 | unsigned char msghdr[SSL3_HM_HEADER_LENGTH]; |
2629 | |
|
2630 | 0 | memset(msghdr, 0, sizeof(msghdr)); |
2631 | |
|
2632 | 0 | if (hashval == NULL) { |
2633 | 0 | hashval = hashvaltmp; |
2634 | 0 | hashlen = 0; |
2635 | | /* Get the hash of the initial ClientHello */ |
2636 | 0 | if (!ssl3_digest_cached_records(s, 0) |
2637 | 0 | || !ssl_handshake_hash(s, hashvaltmp, sizeof(hashvaltmp), |
2638 | 0 | &hashlen)) { |
2639 | | /* SSLfatal() already called */ |
2640 | 0 | return 0; |
2641 | 0 | } |
2642 | 0 | } |
2643 | | |
2644 | | /* Reinitialise the transcript hash */ |
2645 | 0 | if (!ssl3_init_finished_mac(s)) { |
2646 | | /* SSLfatal() already called */ |
2647 | 0 | return 0; |
2648 | 0 | } |
2649 | | |
2650 | | /* Inject the synthetic message_hash message */ |
2651 | 0 | msghdr[0] = SSL3_MT_MESSAGE_HASH; |
2652 | 0 | msghdr[SSL3_HM_HEADER_LENGTH - 1] = (unsigned char)hashlen; |
2653 | 0 | if (!ssl3_finish_mac(s, msghdr, SSL3_HM_HEADER_LENGTH) |
2654 | 0 | || !ssl3_finish_mac(s, hashval, hashlen)) { |
2655 | | /* SSLfatal() already called */ |
2656 | 0 | return 0; |
2657 | 0 | } |
2658 | | |
2659 | | /* |
2660 | | * Now re-inject the HRR and current message if appropriate (we just deleted |
2661 | | * it when we reinitialised the transcript hash above). Only necessary after |
2662 | | * receiving a ClientHello2 with a cookie. |
2663 | | */ |
2664 | 0 | if (hrr != NULL |
2665 | 0 | && (!ssl3_finish_mac(s, hrr, hrrlen) |
2666 | 0 | || !ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, |
2667 | 0 | s->s3.tmp.message_size |
2668 | 0 | + SSL3_HM_HEADER_LENGTH))) { |
2669 | | /* SSLfatal() already called */ |
2670 | 0 | return 0; |
2671 | 0 | } |
2672 | | |
2673 | 0 | return 1; |
2674 | 0 | } |
2675 | | |
2676 | | static int ca_dn_cmp(const X509_NAME *const *a, const X509_NAME *const *b) |
2677 | 0 | { |
2678 | 0 | return X509_NAME_cmp(*a, *b); |
2679 | 0 | } |
2680 | | |
2681 | | int parse_ca_names(SSL_CONNECTION *s, PACKET *pkt) |
2682 | 0 | { |
2683 | 0 | STACK_OF(X509_NAME) *ca_sk = sk_X509_NAME_new(ca_dn_cmp); |
2684 | 0 | X509_NAME *xn = NULL; |
2685 | 0 | PACKET cadns; |
2686 | |
|
2687 | 0 | if (ca_sk == NULL) { |
2688 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); |
2689 | 0 | goto err; |
2690 | 0 | } |
2691 | | /* get the CA RDNs */ |
2692 | 0 | if (!PACKET_get_length_prefixed_2(pkt, &cadns)) { |
2693 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
2694 | 0 | goto err; |
2695 | 0 | } |
2696 | | |
2697 | 0 | while (PACKET_remaining(&cadns)) { |
2698 | 0 | const unsigned char *namestart, *namebytes; |
2699 | 0 | unsigned int name_len; |
2700 | |
|
2701 | 0 | if (!PACKET_get_net_2(&cadns, &name_len) |
2702 | 0 | || !PACKET_get_bytes(&cadns, &namebytes, name_len)) { |
2703 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); |
2704 | 0 | goto err; |
2705 | 0 | } |
2706 | | |
2707 | 0 | namestart = namebytes; |
2708 | 0 | if ((xn = d2i_X509_NAME(NULL, &namebytes, name_len)) == NULL) { |
2709 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, ERR_R_ASN1_LIB); |
2710 | 0 | goto err; |
2711 | 0 | } |
2712 | 0 | if (namebytes != (namestart + name_len)) { |
2713 | 0 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_CA_DN_LENGTH_MISMATCH); |
2714 | 0 | goto err; |
2715 | 0 | } |
2716 | | |
2717 | 0 | if (!sk_X509_NAME_push(ca_sk, xn)) { |
2718 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); |
2719 | 0 | goto err; |
2720 | 0 | } |
2721 | 0 | xn = NULL; |
2722 | 0 | } |
2723 | | |
2724 | 0 | sk_X509_NAME_pop_free(s->s3.tmp.peer_ca_names, X509_NAME_free); |
2725 | 0 | s->s3.tmp.peer_ca_names = ca_sk; |
2726 | |
|
2727 | 0 | return 1; |
2728 | | |
2729 | 0 | err: |
2730 | 0 | sk_X509_NAME_pop_free(ca_sk, X509_NAME_free); |
2731 | 0 | X509_NAME_free(xn); |
2732 | 0 | return 0; |
2733 | 0 | } |
2734 | | |
2735 | | const STACK_OF(X509_NAME) *get_ca_names(SSL_CONNECTION *s) |
2736 | 0 | { |
2737 | 0 | const STACK_OF(X509_NAME) *ca_sk = NULL; |
2738 | 0 | SSL *ssl = SSL_CONNECTION_GET_SSL(s); |
2739 | |
|
2740 | 0 | if (s->server) { |
2741 | 0 | ca_sk = SSL_get_client_CA_list(ssl); |
2742 | 0 | if (ca_sk != NULL && sk_X509_NAME_num(ca_sk) == 0) |
2743 | 0 | ca_sk = NULL; |
2744 | 0 | } |
2745 | |
|
2746 | 0 | if (ca_sk == NULL) |
2747 | 0 | ca_sk = SSL_get0_CA_list(ssl); |
2748 | |
|
2749 | 0 | return ca_sk; |
2750 | 0 | } |
2751 | | |
2752 | | int construct_ca_names(SSL_CONNECTION *s, const STACK_OF(X509_NAME) *ca_sk, |
2753 | | WPACKET *pkt) |
2754 | 0 | { |
2755 | | /* Start sub-packet for client CA list */ |
2756 | 0 | if (!WPACKET_start_sub_packet_u16(pkt)) { |
2757 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2758 | 0 | return 0; |
2759 | 0 | } |
2760 | | |
2761 | 0 | if ((ca_sk != NULL) && !(s->options & SSL_OP_DISABLE_TLSEXT_CA_NAMES)) { |
2762 | 0 | int i; |
2763 | |
|
2764 | 0 | for (i = 0; i < sk_X509_NAME_num(ca_sk); i++) { |
2765 | 0 | unsigned char *namebytes; |
2766 | 0 | X509_NAME *name = sk_X509_NAME_value(ca_sk, i); |
2767 | 0 | int namelen; |
2768 | |
|
2769 | 0 | if (name == NULL |
2770 | 0 | || (namelen = i2d_X509_NAME(name, NULL)) < 0 |
2771 | 0 | || !WPACKET_sub_allocate_bytes_u16(pkt, namelen, |
2772 | 0 | &namebytes) |
2773 | 0 | || i2d_X509_NAME(name, &namebytes) != namelen) { |
2774 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2775 | 0 | return 0; |
2776 | 0 | } |
2777 | 0 | } |
2778 | 0 | } |
2779 | | |
2780 | 0 | if (!WPACKET_close(pkt)) { |
2781 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2782 | 0 | return 0; |
2783 | 0 | } |
2784 | | |
2785 | 0 | return 1; |
2786 | 0 | } |
2787 | | |
2788 | | /* Create a buffer containing data to be signed for server key exchange */ |
2789 | | size_t construct_key_exchange_tbs(SSL_CONNECTION *s, unsigned char **ptbs, |
2790 | | const void *param, size_t paramlen) |
2791 | 0 | { |
2792 | 0 | size_t tbslen = 2 * SSL3_RANDOM_SIZE + paramlen; |
2793 | 0 | unsigned char *tbs = OPENSSL_malloc(tbslen); |
2794 | |
|
2795 | 0 | if (tbs == NULL) { |
2796 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); |
2797 | 0 | return 0; |
2798 | 0 | } |
2799 | 0 | memcpy(tbs, s->s3.client_random, SSL3_RANDOM_SIZE); |
2800 | 0 | memcpy(tbs + SSL3_RANDOM_SIZE, s->s3.server_random, SSL3_RANDOM_SIZE); |
2801 | |
|
2802 | 0 | memcpy(tbs + SSL3_RANDOM_SIZE * 2, param, paramlen); |
2803 | |
|
2804 | 0 | *ptbs = tbs; |
2805 | 0 | return tbslen; |
2806 | 0 | } |
2807 | | |
2808 | | /* |
2809 | | * Saves the current handshake digest for Post-Handshake Auth, |
2810 | | * Done after ClientFinished is processed, done exactly once |
2811 | | */ |
2812 | | int tls13_save_handshake_digest_for_pha(SSL_CONNECTION *s) |
2813 | 0 | { |
2814 | 0 | if (s->pha_dgst == NULL) { |
2815 | 0 | if (!ssl3_digest_cached_records(s, 1)) |
2816 | | /* SSLfatal() already called */ |
2817 | 0 | return 0; |
2818 | | |
2819 | 0 | s->pha_dgst = EVP_MD_CTX_new(); |
2820 | 0 | if (s->pha_dgst == NULL) { |
2821 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2822 | 0 | return 0; |
2823 | 0 | } |
2824 | 0 | if (!EVP_MD_CTX_copy_ex(s->pha_dgst, |
2825 | 0 | s->s3.handshake_dgst)) { |
2826 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2827 | 0 | EVP_MD_CTX_free(s->pha_dgst); |
2828 | 0 | s->pha_dgst = NULL; |
2829 | 0 | return 0; |
2830 | 0 | } |
2831 | 0 | } |
2832 | 0 | return 1; |
2833 | 0 | } |
2834 | | |
2835 | | /* |
2836 | | * Restores the Post-Handshake Auth handshake digest |
2837 | | * Done just before sending/processing the Cert Request |
2838 | | */ |
2839 | | int tls13_restore_handshake_digest_for_pha(SSL_CONNECTION *s) |
2840 | 0 | { |
2841 | 0 | if (s->pha_dgst == NULL) { |
2842 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2843 | 0 | return 0; |
2844 | 0 | } |
2845 | 0 | if (!EVP_MD_CTX_copy_ex(s->s3.handshake_dgst, |
2846 | 0 | s->pha_dgst)) { |
2847 | 0 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2848 | 0 | return 0; |
2849 | 0 | } |
2850 | 0 | return 1; |
2851 | 0 | } |
2852 | | |
2853 | | #ifndef OPENSSL_NO_COMP_ALG |
2854 | | MSG_PROCESS_RETURN tls13_process_compressed_certificate(SSL_CONNECTION *sc, |
2855 | | PACKET *pkt, |
2856 | | PACKET *tmppkt, |
2857 | | BUF_MEM *buf) |
2858 | | { |
2859 | | MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR; |
2860 | | int comp_alg; |
2861 | | COMP_METHOD *method = NULL; |
2862 | | COMP_CTX *comp = NULL; |
2863 | | size_t expected_length; |
2864 | | size_t comp_length; |
2865 | | int i; |
2866 | | int found = 0; |
2867 | | |
2868 | | if (buf == NULL) { |
2869 | | SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
2870 | | goto err; |
2871 | | } |
2872 | | if (!PACKET_get_net_2(pkt, (unsigned int*)&comp_alg)) { |
2873 | | SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, ERR_R_INTERNAL_ERROR); |
2874 | | goto err; |
2875 | | } |
2876 | | /* If we have a prefs list, make sure the algorithm is in it */ |
2877 | | if (sc->cert_comp_prefs[0] != TLSEXT_comp_cert_none) { |
2878 | | for (i = 0; sc->cert_comp_prefs[i] != TLSEXT_comp_cert_none; i++) { |
2879 | | if (sc->cert_comp_prefs[i] == comp_alg) { |
2880 | | found = 1; |
2881 | | break; |
2882 | | } |
2883 | | } |
2884 | | if (!found) { |
2885 | | SSLfatal(sc, SSL_AD_ILLEGAL_PARAMETER, SSL_R_BAD_COMPRESSION_ALGORITHM); |
2886 | | goto err; |
2887 | | } |
2888 | | } |
2889 | | if (!ossl_comp_has_alg(comp_alg)) { |
2890 | | SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM); |
2891 | | goto err; |
2892 | | } |
2893 | | switch (comp_alg) { |
2894 | | case TLSEXT_comp_cert_zlib: |
2895 | | method = COMP_zlib_oneshot(); |
2896 | | break; |
2897 | | case TLSEXT_comp_cert_brotli: |
2898 | | method = COMP_brotli_oneshot(); |
2899 | | break; |
2900 | | case TLSEXT_comp_cert_zstd: |
2901 | | method = COMP_zstd_oneshot(); |
2902 | | break; |
2903 | | default: |
2904 | | SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM); |
2905 | | goto err; |
2906 | | } |
2907 | | |
2908 | | if ((comp = COMP_CTX_new(method)) == NULL |
2909 | | || !PACKET_get_net_3_len(pkt, &expected_length) |
2910 | | || !PACKET_get_net_3_len(pkt, &comp_length)) { |
2911 | | SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_DECOMPRESSION); |
2912 | | goto err; |
2913 | | } |
2914 | | |
2915 | | if (PACKET_remaining(pkt) != comp_length || comp_length == 0) { |
2916 | | SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_BAD_DECOMPRESSION); |
2917 | | goto err; |
2918 | | } |
2919 | | |
2920 | | if (!BUF_MEM_grow(buf, expected_length) |
2921 | | || !PACKET_buf_init(tmppkt, (unsigned char *)buf->data, expected_length) |
2922 | | || COMP_expand_block(comp, (unsigned char *)buf->data, expected_length, |
2923 | | (unsigned char*)PACKET_data(pkt), comp_length) != (int)expected_length) { |
2924 | | SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_DECOMPRESSION); |
2925 | | goto err; |
2926 | | } |
2927 | | ret = MSG_PROCESS_CONTINUE_PROCESSING; |
2928 | | err: |
2929 | | COMP_CTX_free(comp); |
2930 | | return ret; |
2931 | | } |
2932 | | #endif |