Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/bn/rsaz_exp_x2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
4
 *
5
 * Licensed under the Apache License 2.0 (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 *
10
 *
11
 * Originally written by Sergey Kirillov and Andrey Matyukov.
12
 * Special thanks to Ilya Albrekht for his valuable hints.
13
 * Intel Corporation
14
 *
15
 */
16
17
#include <openssl/opensslconf.h>
18
#include <openssl/crypto.h>
19
#include "rsaz_exp.h"
20
21
#ifndef RSAZ_ENABLED
22
NON_EMPTY_TRANSLATION_UNIT
23
#else
24
# include <assert.h>
25
# include <string.h>
26
27
# define ALIGN_OF(ptr, boundary) \
28
0
    ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
29
30
/* Internal radix */
31
0
# define DIGIT_SIZE (52)
32
/* 52-bit mask */
33
0
# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
34
35
0
# define BITS2WORD8_SIZE(x)  (((x) + 7) >> 3)
36
0
# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
37
38
/* Number of registers required to hold |digits_num| amount of qword digits */
39
# define NUMBER_OF_REGISTERS(digits_num, register_size)            \
40
0
    (((digits_num) * 64 + (register_size) - 1) / (register_size))
41
42
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
43
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
44
static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
45
                       int in_bitsize);
46
static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
47
static ossl_inline void set_bit(BN_ULONG *a, int idx);
48
49
/* Number of |digit_size|-bit digits in |bitsize|-bit value */
50
static ossl_inline int number_of_digits(int bitsize, int digit_size)
51
0
{
52
0
    return (bitsize + digit_size - 1) / digit_size;
53
0
}
54
55
/*
56
 * For details of the methods declared below please refer to
57
 *    crypto/bn/asm/rsaz-avx512.pl
58
 *
59
 * Naming conventions:
60
 *  amm = Almost Montgomery Multiplication
61
 *  ams = Almost Montgomery Squaring
62
 *  52xZZ - data represented as array of ZZ digits in 52-bit radix
63
 *  _x1_/_x2_ - 1 or 2 independent inputs/outputs
64
 *  _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
65
 *  _avxifma256 - uses 256-bit wide AVXIFMA ISA (AVX_IFMA256)
66
 */
67
68
void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
69
                                   const BN_ULONG *b, const BN_ULONG *m,
70
                                   BN_ULONG k0);
71
void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
72
                                   const BN_ULONG *b, const BN_ULONG *m,
73
                                   const BN_ULONG k0[2]);
74
void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
75
                                       const BN_ULONG *red_table,
76
                                       int red_table_idx1, int red_table_idx2);
77
78
void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
79
                                   const BN_ULONG *b, const BN_ULONG *m,
80
                                   BN_ULONG k0);
81
void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
82
                                   const BN_ULONG *b, const BN_ULONG *m,
83
                                   const BN_ULONG k0[2]);
84
void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
85
                                       const BN_ULONG *red_table,
86
                                       int red_table_idx1, int red_table_idx2);
87
88
void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
89
                                   const BN_ULONG *b, const BN_ULONG *m,
90
                                   BN_ULONG k0);
91
void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
92
                                   const BN_ULONG *b, const BN_ULONG *m,
93
                                   const BN_ULONG k0[2]);
94
void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
95
                                       const BN_ULONG *red_table,
96
                                       int red_table_idx1, int red_table_idx2);
97
98
void ossl_rsaz_amm52x20_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
99
                                      const BN_ULONG *b, const BN_ULONG *m,
100
                                      BN_ULONG k0);
101
void ossl_rsaz_amm52x20_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
102
                                      const BN_ULONG *b, const BN_ULONG *m,
103
                                      const BN_ULONG k0[2]);
104
void ossl_extract_multiplier_2x20_win5_avx(BN_ULONG *red_Y,
105
                                           const BN_ULONG *red_table,
106
                                           int red_table_idx1,
107
                                           int red_table_idx2);
108
109
void ossl_rsaz_amm52x30_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
110
                                      const BN_ULONG *b, const BN_ULONG *m,
111
                                      BN_ULONG k0);
112
void ossl_rsaz_amm52x30_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
113
                                      const BN_ULONG *b, const BN_ULONG *m,
114
                                      const BN_ULONG k0[2]);
115
void ossl_extract_multiplier_2x30_win5_avx(BN_ULONG *red_Y,
116
                                           const BN_ULONG *red_table,
117
                                           int red_table_idx1,
118
                                           int red_table_idx2);
119
120
void ossl_rsaz_amm52x40_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
121
                                      const BN_ULONG *b, const BN_ULONG *m,
122
                                      BN_ULONG k0);
123
void ossl_rsaz_amm52x40_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
124
                                      const BN_ULONG *b, const BN_ULONG *m,
125
                                      const BN_ULONG k0[2]);
126
void ossl_extract_multiplier_2x40_win5_avx(BN_ULONG *red_Y,
127
                                           const BN_ULONG *red_table,
128
                                           int red_table_idx1,
129
                                           int red_table_idx2);
130
131
typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
132
                    const BN_ULONG *m, BN_ULONG k0);
133
134
static AMM ossl_rsaz_amm52_x1[] = {
135
    ossl_rsaz_amm52x20_x1_avxifma256, ossl_rsaz_amm52x20_x1_ifma256,
136
    ossl_rsaz_amm52x30_x1_avxifma256, ossl_rsaz_amm52x30_x1_ifma256,
137
    ossl_rsaz_amm52x40_x1_avxifma256, ossl_rsaz_amm52x40_x1_ifma256,
138
};
139
140
typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
141
                     const BN_ULONG *m, const BN_ULONG k0[2]);
142
143
static DAMM ossl_rsaz_amm52_x2[] = {
144
    ossl_rsaz_amm52x20_x2_avxifma256, ossl_rsaz_amm52x20_x2_ifma256,
145
    ossl_rsaz_amm52x30_x2_avxifma256, ossl_rsaz_amm52x30_x2_ifma256,
146
    ossl_rsaz_amm52x40_x2_avxifma256, ossl_rsaz_amm52x40_x2_ifma256,
147
};
148
149
typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
150
                         int red_table_idx, int tbl_idx);
151
152
static DEXTRACT ossl_extract_multiplier_win5[] = {
153
    ossl_extract_multiplier_2x20_win5_avx, ossl_extract_multiplier_2x20_win5,
154
    ossl_extract_multiplier_2x30_win5_avx, ossl_extract_multiplier_2x30_win5,
155
    ossl_extract_multiplier_2x40_win5_avx, ossl_extract_multiplier_2x40_win5,
156
};
157
158
static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
159
                                   const BN_ULONG *exp[2], const BN_ULONG *m,
160
                                   const BN_ULONG *rr, const BN_ULONG k0[2],
161
                                   int modulus_bitsize);
162
163
/*
164
 * Dual Montgomery modular exponentiation using prime moduli of the
165
 * same bit size, optimized with AVX512 ISA or AVXIFMA ISA.
166
 *
167
 * Input and output parameters for each exponentiation are independent and
168
 * denoted here by index |i|, i = 1..2.
169
 *
170
 * Input and output are all in regular 2^64 radix.
171
 *
172
 * Each moduli shall be |factor_size| bit size.
173
 *
174
 * Supported cases:
175
 *   - 2x1024
176
 *   - 2x1536
177
 *   - 2x2048
178
 *
179
 *  [out] res|i|      - result of modular exponentiation: array of qword values
180
 *                      in regular (2^64) radix. Size of array shall be enough
181
 *                      to hold |factor_size| bits.
182
 *  [in]  base|i|     - base
183
 *  [in]  exp|i|      - exponent
184
 *  [in]  m|i|        - moduli
185
 *  [in]  rr|i|       - Montgomery parameter RR = R^2 mod m|i|
186
 *  [in]  k0_|i|      - Montgomery parameter k0 = -1/m|i| mod 2^64
187
 *  [in]  factor_size - moduli bit size
188
 *
189
 * \return 0 in case of failure,
190
 *         1 in case of success.
191
 */
192
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
193
                                const BN_ULONG *base1,
194
                                const BN_ULONG *exp1,
195
                                const BN_ULONG *m1,
196
                                const BN_ULONG *rr1,
197
                                BN_ULONG k0_1,
198
                                BN_ULONG *res2,
199
                                const BN_ULONG *base2,
200
                                const BN_ULONG *exp2,
201
                                const BN_ULONG *m2,
202
                                const BN_ULONG *rr2,
203
                                BN_ULONG k0_2,
204
                                int factor_size)
205
0
{
206
0
    int ret = 0;
207
208
    /*
209
     * Number of word-size (BN_ULONG) digits to store exponent in redundant
210
     * representation.
211
     */
212
0
    int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
213
0
    int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
214
215
    /*  Number of YMM registers required to store exponent's digits */
216
0
    int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
217
    /* Capacity of the register set (in qwords) to store exponent */
218
0
    int regs_capacity = ymm_regs_num * 4;
219
220
0
    BN_ULONG *base1_red, *m1_red, *rr1_red;
221
0
    BN_ULONG *base2_red, *m2_red, *rr2_red;
222
0
    BN_ULONG *coeff_red;
223
0
    BN_ULONG *storage = NULL;
224
0
    BN_ULONG *storage_aligned = NULL;
225
0
    int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
226
0
                           + 64 /* alignment */;
227
228
0
    const BN_ULONG *exp[2] = {0};
229
0
    BN_ULONG k0[2] = {0};
230
    /* AMM = Almost Montgomery Multiplication */
231
0
    AMM amm = NULL;
232
0
    int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
233
234
0
    if (factor_size != 1024 && factor_size != 1536 && factor_size != 2048)
235
0
        goto err;
236
237
0
    amm = ossl_rsaz_amm52_x1[(factor_size / 512 - 2) * 2 + avx512ifma];
238
239
0
    storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
240
0
    if (storage == NULL)
241
0
        goto err;
242
0
    storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
243
244
    /* Memory layout for red(undant) representations */
245
0
    base1_red = storage_aligned;
246
0
    base2_red = storage_aligned + 1 * regs_capacity;
247
0
    m1_red    = storage_aligned + 2 * regs_capacity;
248
0
    m2_red    = storage_aligned + 3 * regs_capacity;
249
0
    rr1_red   = storage_aligned + 4 * regs_capacity;
250
0
    rr2_red   = storage_aligned + 5 * regs_capacity;
251
0
    coeff_red = storage_aligned + 6 * regs_capacity;
252
253
    /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
254
0
    to_words52(base1_red, regs_capacity, base1, factor_size);
255
0
    to_words52(base2_red, regs_capacity, base2, factor_size);
256
0
    to_words52(m1_red,    regs_capacity, m1,    factor_size);
257
0
    to_words52(m2_red,    regs_capacity, m2,    factor_size);
258
0
    to_words52(rr1_red,   regs_capacity, rr1,   factor_size);
259
0
    to_words52(rr2_red,   regs_capacity, rr2,   factor_size);
260
261
    /*
262
     * Compute target domain Montgomery converters RR' for each modulus
263
     * based on precomputed original domain's RR.
264
     *
265
     * RR -> RR' transformation steps:
266
     *  (1) coeff = 2^k
267
     *  (2) t = AMM(RR,RR) = RR^2 / R' mod m
268
     *  (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
269
     * where
270
     *  k = 4 * (52 * digits52 - modlen)
271
     *  R  = 2^(64 * ceil(modlen/64)) mod m
272
     *  RR = R^2 mod m
273
     *  R' = 2^(52 * ceil(modlen/52)) mod m
274
     *
275
     *  EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
276
     */
277
0
    memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
278
    /* (1) in reduced domain representation */
279
0
    set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
280
281
0
    amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1);     /* (2) for m1 */
282
0
    amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1);   /* (3) for m1 */
283
284
0
    amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2);     /* (2) for m2 */
285
0
    amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2);   /* (3) for m2 */
286
287
0
    exp[0] = exp1;
288
0
    exp[1] = exp2;
289
290
0
    k0[0] = k0_1;
291
0
    k0[1] = k0_2;
292
293
    /* Dual (2-exps in parallel) exponentiation */
294
0
    ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
295
0
                                  k0, factor_size);
296
0
    if (!ret)
297
0
        goto err;
298
299
    /* Convert rr_i back to regular radix */
300
0
    from_words52(res1, factor_size, rr1_red);
301
0
    from_words52(res2, factor_size, rr2_red);
302
303
    /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
304
0
    factor_size /= sizeof(BN_ULONG) * 8;
305
306
0
    bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
307
0
    bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
308
309
0
err:
310
0
    if (storage != NULL) {
311
0
        OPENSSL_cleanse(storage, storage_len_bytes);
312
0
        OPENSSL_free(storage);
313
0
    }
314
0
    return ret;
315
0
}
316
317
/*
318
 * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
319
 * the same bit size using Almost Montgomery Multiplication, optimized with
320
 * AVX512_IFMA256 ISA.
321
 *
322
 * The parameter w (window size) = 5.
323
 *
324
 *  [out] res      - result of modular exponentiation: 2x{20,30,40} qword
325
 *                   values in 2^52 radix.
326
 *  [in]  base     - base (2x{20,30,40} qword values in 2^52 radix)
327
 *  [in]  exp      - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
328
 *                   Exponent is not converted to redundant representation.
329
 *  [in]  m        - moduli (2x{20,30,40} qword values in 2^52 radix)
330
 *  [in]  rr       - Montgomery parameter for 2 moduli:
331
 *                     RR(1024) = 2^2080 mod m.
332
 *                     RR(1536) = 2^3120 mod m.
333
 *                     RR(2048) = 2^4160 mod m.
334
 *                   (2x{20,30,40} qword values in 2^52 radix)
335
 *  [in]  k0       - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
336
 *
337
 * \return (void).
338
 */
339
int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
340
                            const BN_ULONG *base,
341
                            const BN_ULONG *exp[2],
342
                            const BN_ULONG *m,
343
                            const BN_ULONG *rr,
344
                            const BN_ULONG k0[2],
345
                            int modulus_bitsize)
346
0
{
347
0
    int ret = 0;
348
0
    int idx;
349
350
    /* Exponent window size */
351
0
    int exp_win_size = 5;
352
0
    int exp_win_mask = (1U << exp_win_size) - 1;
353
354
    /*
355
    * Number of digits (64-bit words) in redundant representation to handle
356
    * modulus bits
357
    */
358
0
    int red_digits = 0;
359
0
    int exp_digits = 0;
360
361
0
    BN_ULONG *storage = NULL;
362
0
    BN_ULONG *storage_aligned = NULL;
363
0
    int storage_len_bytes = 0;
364
365
    /* Red(undant) result Y and multiplier X */
366
0
    BN_ULONG *red_Y = NULL;     /* [2][red_digits] */
367
0
    BN_ULONG *red_X = NULL;     /* [2][red_digits] */
368
    /* Pre-computed table of base powers */
369
0
    BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
370
    /* Expanded exponent */
371
0
    BN_ULONG *expz = NULL;      /* [2][exp_digits + 1] */
372
373
    /* Dual AMM */
374
0
    DAMM damm = NULL;
375
    /* Extractor from red_table */
376
0
    DEXTRACT extract = NULL;
377
0
    int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
378
379
/*
380
 * Squaring is done using multiplication now. That can be a subject of
381
 * optimization in future.
382
 */
383
0
# define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
384
385
0
    if (modulus_bitsize != 1024 && modulus_bitsize != 1536 && modulus_bitsize != 2048)
386
0
        goto err;
387
388
0
    damm = ossl_rsaz_amm52_x2[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
389
0
    extract = ossl_extract_multiplier_win5[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
390
391
0
    switch (modulus_bitsize) {
392
0
    case 1024:
393
0
        red_digits = 20;
394
0
        exp_digits = 16;
395
0
        break;
396
0
    case 1536:
397
        /* Extended with 2 digits padding to avoid mask ops in high YMM register */
398
0
        red_digits = 30 + 2;
399
0
        exp_digits = 24;
400
0
        break;
401
0
    case 2048:
402
0
        red_digits = 40;
403
0
        exp_digits = 32;
404
0
        break;
405
0
    default:
406
0
        goto err;
407
0
    }
408
409
0
    storage_len_bytes = (2 * red_digits                         /* red_Y     */
410
0
                       + 2 * red_digits                         /* red_X     */
411
0
                       + 2 * red_digits * (1U << exp_win_size)  /* red_table */
412
0
                       + 2 * (exp_digits + 1))                  /* expz      */
413
0
                       * sizeof(BN_ULONG)
414
0
                       + 64;                                    /* alignment */
415
416
0
    storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
417
0
    if (storage == NULL)
418
0
        goto err;
419
0
    storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
420
421
0
    red_Y     = storage_aligned;
422
0
    red_X     = red_Y + 2 * red_digits;
423
0
    red_table = red_X + 2 * red_digits;
424
0
    expz      = red_table + 2 * red_digits * (1U << exp_win_size);
425
426
    /*
427
     * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
428
     *   table[0] = mont(x^0) = mont(1)
429
     *   table[1] = mont(x^1) = mont(x)
430
     */
431
0
    red_X[0 * red_digits] = 1;
432
0
    red_X[1 * red_digits] = 1;
433
0
    damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
434
0
    damm(&red_table[1 * 2 * red_digits], base,  rr, m, k0);
435
436
0
    for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
437
0
        DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
438
0
             &red_table[(1 * idx)     * 2 * red_digits], m, k0);
439
0
        damm(&red_table[(2 * idx + 1) * 2 * red_digits],
440
0
             &red_table[(2 * idx)     * 2 * red_digits],
441
0
             &red_table[1 * 2 * red_digits], m, k0);
442
0
    }
443
444
    /* Copy and expand exponents */
445
0
    memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
446
0
    expz[1 * (exp_digits + 1) - 1] = 0;
447
0
    memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
448
0
    expz[2 * (exp_digits + 1) - 1] = 0;
449
450
    /* Exponentiation */
451
0
    {
452
0
        const int rem = modulus_bitsize % exp_win_size;
453
0
        const BN_ULONG table_idx_mask = exp_win_mask;
454
455
0
        int exp_bit_no = modulus_bitsize - rem;
456
0
        int exp_chunk_no = exp_bit_no / 64;
457
0
        int exp_chunk_shift = exp_bit_no % 64;
458
459
0
        BN_ULONG red_table_idx_0, red_table_idx_1;
460
461
        /*
462
         * If rem == 0, then
463
         *      exp_bit_no = modulus_bitsize - exp_win_size
464
         * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
465
         * which is { 4, 1, 3 } respectively.
466
         *
467
         * If this assertion ever fails the fix above is easy.
468
         */
469
0
        OPENSSL_assert(rem != 0);
470
471
        /* Process 1-st exp window - just init result */
472
0
        red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
473
0
        red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
474
475
        /*
476
         * The function operates with fixed moduli sizes divisible by 64,
477
         * thus table index here is always in supported range [0, EXP_WIN_SIZE).
478
         */
479
0
        red_table_idx_0 >>= exp_chunk_shift;
480
0
        red_table_idx_1 >>= exp_chunk_shift;
481
482
0
        extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
483
484
        /* Process other exp windows */
485
0
        for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
486
            /* Extract pre-computed multiplier from the table */
487
0
            {
488
0
                BN_ULONG T;
489
490
0
                exp_chunk_no = exp_bit_no / 64;
491
0
                exp_chunk_shift = exp_bit_no % 64;
492
0
                {
493
0
                    red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
494
0
                    T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
495
496
0
                    red_table_idx_0 >>= exp_chunk_shift;
497
                    /*
498
                     * Get additional bits from then next quadword
499
                     * when 64-bit boundaries are crossed.
500
                     */
501
0
                    if (exp_chunk_shift > 64 - exp_win_size) {
502
0
                        T <<= (64 - exp_chunk_shift);
503
0
                        red_table_idx_0 ^= T;
504
0
                    }
505
0
                    red_table_idx_0 &= table_idx_mask;
506
0
                }
507
0
                {
508
0
                    red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
509
0
                    T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
510
511
0
                    red_table_idx_1 >>= exp_chunk_shift;
512
                    /*
513
                     * Get additional bits from then next quadword
514
                     * when 64-bit boundaries are crossed.
515
                     */
516
0
                    if (exp_chunk_shift > 64 - exp_win_size) {
517
0
                        T <<= (64 - exp_chunk_shift);
518
0
                        red_table_idx_1 ^= T;
519
0
                    }
520
0
                    red_table_idx_1 &= table_idx_mask;
521
0
                }
522
523
0
                extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
524
0
            }
525
526
            /* Series of squaring */
527
0
            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
528
0
            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
529
0
            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
530
0
            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
531
0
            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
532
533
0
            damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
534
0
        }
535
0
    }
536
537
    /*
538
     *
539
     * NB: After the last AMM of exponentiation in Montgomery domain, the result
540
     * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
541
     * performs an AMM(x,1) which guarantees that the final result is less than
542
     * |m|, so no conditional subtraction is needed here. See [1] for details.
543
     *
544
     * [1] Gueron, S. Efficient software implementations of modular exponentiation.
545
     *     DOI: 10.1007/s13389-012-0031-5
546
     */
547
548
    /* Convert result back in regular 2^52 domain */
549
0
    memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
550
0
    red_X[0 * red_digits] = 1;
551
0
    red_X[1 * red_digits] = 1;
552
0
    damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
553
554
0
    ret = 1;
555
556
0
err:
557
0
    if (storage != NULL) {
558
        /* Clear whole storage */
559
0
        OPENSSL_cleanse(storage, storage_len_bytes);
560
0
        OPENSSL_free(storage);
561
0
    }
562
563
0
#undef DAMS
564
0
    return ret;
565
0
}
566
567
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
568
0
{
569
0
    uint64_t digit = 0;
570
571
0
    assert(in != NULL);
572
0
    assert(in_len <= 8);
573
574
0
    for (; in_len > 0; in_len--) {
575
0
        digit <<= 8;
576
0
        digit += (uint64_t)(in[in_len - 1]);
577
0
    }
578
0
    return digit;
579
0
}
580
581
/*
582
 * Convert array of words in regular (base=2^64) representation to array of
583
 * words in redundant (base=2^52) one.
584
 */
585
static void to_words52(BN_ULONG *out, int out_len,
586
                       const BN_ULONG *in, int in_bitsize)
587
0
{
588
0
    uint8_t *in_str = NULL;
589
590
0
    assert(out != NULL);
591
0
    assert(in != NULL);
592
    /* Check destination buffer capacity */
593
0
    assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
594
595
0
    in_str = (uint8_t *)in;
596
597
0
    for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
598
0
        uint64_t digit;
599
600
0
        memcpy(&digit, in_str, sizeof(digit));
601
0
        out[0] = digit & DIGIT_MASK;
602
0
        in_str += 6;
603
0
        memcpy(&digit, in_str, sizeof(digit));
604
0
        out[1] = (digit >> 4) & DIGIT_MASK;
605
0
        in_str += 7;
606
0
        out_len -= 2;
607
0
    }
608
609
0
    if (in_bitsize > DIGIT_SIZE) {
610
0
        uint64_t digit = get_digit(in_str, 7);
611
612
0
        out[0] = digit & DIGIT_MASK;
613
0
        in_str += 6;
614
0
        in_bitsize -= DIGIT_SIZE;
615
0
        digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
616
0
        out[1] = digit >> 4;
617
0
        out += 2;
618
0
        out_len -= 2;
619
0
    } else if (in_bitsize > 0) {
620
0
        out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
621
0
        out++;
622
0
        out_len--;
623
0
    }
624
625
0
    memset(out, 0, out_len * sizeof(BN_ULONG));
626
0
}
627
628
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
629
0
{
630
0
    assert(out != NULL);
631
0
    assert(out_len <= 8);
632
633
0
    for (; out_len > 0; out_len--) {
634
0
        *out++ = (uint8_t)(digit & 0xFF);
635
0
        digit >>= 8;
636
0
    }
637
0
}
638
639
/*
640
 * Convert array of words in redundant (base=2^52) representation to array of
641
 * words in regular (base=2^64) one.
642
 */
643
static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
644
0
{
645
0
    int i;
646
0
    int out_len = BITS2WORD64_SIZE(out_bitsize);
647
648
0
    assert(out != NULL);
649
0
    assert(in != NULL);
650
651
0
    for (i = 0; i < out_len; i++)
652
0
        out[i] = 0;
653
654
0
    {
655
0
        uint8_t *out_str = (uint8_t *)out;
656
657
0
        for (; out_bitsize >= (2 * DIGIT_SIZE);
658
0
               out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
659
0
            uint64_t digit;
660
661
0
            digit = in[0];
662
0
            memcpy(out_str, &digit, sizeof(digit));
663
0
            out_str += 6;
664
0
            digit = digit >> 48 | in[1] << 4;
665
0
            memcpy(out_str, &digit, sizeof(digit));
666
0
            out_str += 7;
667
0
        }
668
669
0
        if (out_bitsize > DIGIT_SIZE) {
670
0
            put_digit(out_str, 7, in[0]);
671
0
            out_str += 6;
672
0
            out_bitsize -= DIGIT_SIZE;
673
0
            put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
674
0
                        (in[1] << 4 | in[0] >> 48));
675
0
        } else if (out_bitsize) {
676
0
            put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
677
0
        }
678
0
    }
679
0
}
680
681
/*
682
 * Set bit at index |idx| in the words array |a|.
683
 * It does not do any boundaries checks, make sure the index is valid before
684
 * calling the function.
685
 */
686
static ossl_inline void set_bit(BN_ULONG *a, int idx)
687
0
{
688
0
    assert(a != NULL);
689
690
0
    {
691
0
        int i, j;
692
693
0
        i = idx / BN_BITS2;
694
0
        j = idx % BN_BITS2;
695
0
        a[i] |= (((BN_ULONG)1) << j);
696
0
    }
697
0
}
698
699
#endif