/src/openssl/providers/implementations/kem/ecx_kem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * The following implementation is part of RFC 9180 related to DHKEM using |
12 | | * ECX keys (i.e. X25519 and X448) |
13 | | * References to Sections in the comments below refer to RFC 9180. |
14 | | */ |
15 | | |
16 | | #include "internal/deprecated.h" |
17 | | |
18 | | #include <string.h> |
19 | | #include <openssl/crypto.h> |
20 | | #include <openssl/evp.h> |
21 | | #include <openssl/core_dispatch.h> |
22 | | #include <openssl/core_names.h> |
23 | | #include <openssl/params.h> |
24 | | #include <openssl/kdf.h> |
25 | | #include <openssl/err.h> |
26 | | #include <openssl/sha.h> |
27 | | #include <openssl/rand.h> |
28 | | #include <openssl/proverr.h> |
29 | | #include "prov/provider_ctx.h" |
30 | | #include "prov/implementations.h" |
31 | | #include "prov/securitycheck.h" |
32 | | #include "prov/providercommon.h" |
33 | | #include "prov/ecx.h" |
34 | | #include "crypto/ecx.h" |
35 | | #include <openssl/hpke.h> |
36 | | #include "internal/hpke_util.h" |
37 | | #include "eckem.h" |
38 | | |
39 | | #define MAX_ECX_KEYLEN X448_KEYLEN |
40 | | |
41 | | /* KEM identifiers from Section 7.1 "Table 2 KEM IDs" */ |
42 | | #define KEMID_X25519_HKDF_SHA256 0x20 |
43 | | #define KEMID_X448_HKDF_SHA512 0x21 |
44 | | |
45 | | /* ASCII: "KEM", in hex for EBCDIC compatibility */ |
46 | | static const char LABEL_KEM[] = "\x4b\x45\x4d"; |
47 | | |
48 | | typedef struct { |
49 | | ECX_KEY *recipient_key; |
50 | | ECX_KEY *sender_authkey; |
51 | | OSSL_LIB_CTX *libctx; |
52 | | char *propq; |
53 | | unsigned int mode; |
54 | | unsigned int op; |
55 | | unsigned char *ikm; |
56 | | size_t ikmlen; |
57 | | const char *kdfname; |
58 | | const OSSL_HPKE_KEM_INFO *info; |
59 | | } PROV_ECX_CTX; |
60 | | |
61 | | static OSSL_FUNC_kem_newctx_fn ecxkem_newctx; |
62 | | static OSSL_FUNC_kem_encapsulate_init_fn ecxkem_encapsulate_init; |
63 | | static OSSL_FUNC_kem_encapsulate_fn ecxkem_encapsulate; |
64 | | static OSSL_FUNC_kem_decapsulate_init_fn ecxkem_decapsulate_init; |
65 | | static OSSL_FUNC_kem_decapsulate_fn ecxkem_decapsulate; |
66 | | static OSSL_FUNC_kem_freectx_fn ecxkem_freectx; |
67 | | static OSSL_FUNC_kem_set_ctx_params_fn ecxkem_set_ctx_params; |
68 | | static OSSL_FUNC_kem_auth_encapsulate_init_fn ecxkem_auth_encapsulate_init; |
69 | | static OSSL_FUNC_kem_auth_decapsulate_init_fn ecxkem_auth_decapsulate_init; |
70 | | |
71 | | /* |
72 | | * Set KEM values as specified in Section 7.1 "Table 2 KEM IDs" |
73 | | * There is only one set of values for X25519 and X448. |
74 | | * Additional values could be set via set_params if required. |
75 | | */ |
76 | | static const OSSL_HPKE_KEM_INFO *get_kem_info(ECX_KEY *ecx) |
77 | 0 | { |
78 | 0 | const char *name = NULL; |
79 | |
|
80 | 0 | if (ecx->type == ECX_KEY_TYPE_X25519) |
81 | 0 | name = SN_X25519; |
82 | 0 | else |
83 | 0 | name = SN_X448; |
84 | 0 | return ossl_HPKE_KEM_INFO_find_curve(name); |
85 | 0 | } |
86 | | |
87 | | /* |
88 | | * Set the recipient key, and free any existing key. |
89 | | * ecx can be NULL. The ecx key may have only a private or public component. |
90 | | */ |
91 | | static int recipient_key_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx) |
92 | 0 | { |
93 | 0 | ossl_ecx_key_free(ctx->recipient_key); |
94 | 0 | ctx->recipient_key = NULL; |
95 | 0 | if (ecx != NULL) { |
96 | 0 | ctx->info = get_kem_info(ecx); |
97 | 0 | if (ctx->info == NULL) |
98 | 0 | return -2; |
99 | 0 | ctx->kdfname = "HKDF"; |
100 | 0 | if (!ossl_ecx_key_up_ref(ecx)) |
101 | 0 | return 0; |
102 | 0 | ctx->recipient_key = ecx; |
103 | 0 | } |
104 | 0 | return 1; |
105 | 0 | } |
106 | | |
107 | | /* |
108 | | * Set the senders auth key, and free any existing auth key. |
109 | | * ecx can be NULL. |
110 | | */ |
111 | | static int sender_authkey_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx) |
112 | 0 | { |
113 | 0 | ossl_ecx_key_free(ctx->sender_authkey); |
114 | 0 | ctx->sender_authkey = NULL; |
115 | |
|
116 | 0 | if (ecx != NULL) { |
117 | 0 | if (!ossl_ecx_key_up_ref(ecx)) |
118 | 0 | return 0; |
119 | 0 | ctx->sender_authkey = ecx; |
120 | 0 | } |
121 | 0 | return 1; |
122 | 0 | } |
123 | | |
124 | | /* |
125 | | * Serialize a public key from byte array's for the encoded public keys. |
126 | | * ctx is used to access the key type. |
127 | | * Returns: The created ECX_KEY or NULL on error. |
128 | | */ |
129 | | static ECX_KEY *ecxkey_pubfromdata(PROV_ECX_CTX *ctx, |
130 | | const unsigned char *pubbuf, size_t pubbuflen) |
131 | 0 | { |
132 | 0 | ECX_KEY *ecx = NULL; |
133 | 0 | OSSL_PARAM params[2], *p = params; |
134 | |
|
135 | 0 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, |
136 | 0 | (char *)pubbuf, pubbuflen); |
137 | 0 | *p = OSSL_PARAM_construct_end(); |
138 | |
|
139 | 0 | ecx = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 1, ctx->propq); |
140 | 0 | if (ecx == NULL) |
141 | 0 | return NULL; |
142 | 0 | if (ossl_ecx_key_fromdata(ecx, params, 0) <= 0) { |
143 | 0 | ossl_ecx_key_free(ecx); |
144 | 0 | ecx = NULL; |
145 | 0 | } |
146 | 0 | return ecx; |
147 | 0 | } |
148 | | |
149 | | static unsigned char *ecx_pubkey(ECX_KEY *ecx) |
150 | 0 | { |
151 | 0 | if (ecx == NULL || !ecx->haspubkey) { |
152 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY); |
153 | 0 | return 0; |
154 | 0 | } |
155 | 0 | return ecx->pubkey; |
156 | 0 | } |
157 | | |
158 | | static void *ecxkem_newctx(void *provctx) |
159 | 0 | { |
160 | 0 | PROV_ECX_CTX *ctx = OPENSSL_zalloc(sizeof(PROV_ECX_CTX)); |
161 | |
|
162 | 0 | if (ctx == NULL) |
163 | 0 | return NULL; |
164 | 0 | ctx->libctx = PROV_LIBCTX_OF(provctx); |
165 | 0 | ctx->mode = KEM_MODE_DHKEM; |
166 | |
|
167 | 0 | return ctx; |
168 | 0 | } |
169 | | |
170 | | static void ecxkem_freectx(void *vectx) |
171 | 0 | { |
172 | 0 | PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vectx; |
173 | |
|
174 | 0 | OPENSSL_clear_free(ctx->ikm, ctx->ikmlen); |
175 | 0 | recipient_key_set(ctx, NULL); |
176 | 0 | sender_authkey_set(ctx, NULL); |
177 | 0 | OPENSSL_free(ctx); |
178 | 0 | } |
179 | | |
180 | | static int ecx_match_params(const ECX_KEY *key1, const ECX_KEY *key2) |
181 | 0 | { |
182 | 0 | return (key1->type == key2->type && key1->keylen == key2->keylen); |
183 | 0 | } |
184 | | |
185 | | static int ecx_key_check(const ECX_KEY *ecx, int requires_privatekey) |
186 | 0 | { |
187 | 0 | if (ecx->privkey == NULL) |
188 | 0 | return (requires_privatekey == 0); |
189 | 0 | return 1; |
190 | 0 | } |
191 | | |
192 | | static int ecxkem_init(void *vecxctx, int operation, void *vecx, void *vauth, |
193 | | ossl_unused const OSSL_PARAM params[]) |
194 | 0 | { |
195 | 0 | int rv; |
196 | 0 | PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vecxctx; |
197 | 0 | ECX_KEY *ecx = vecx; |
198 | 0 | ECX_KEY *auth = vauth; |
199 | |
|
200 | 0 | if (!ossl_prov_is_running()) |
201 | 0 | return 0; |
202 | | |
203 | 0 | if (!ecx_key_check(ecx, operation == EVP_PKEY_OP_DECAPSULATE)) |
204 | 0 | return 0; |
205 | 0 | rv = recipient_key_set(ctx, ecx); |
206 | 0 | if (rv <= 0) |
207 | 0 | return rv; |
208 | | |
209 | 0 | if (auth != NULL) { |
210 | 0 | if (!ecx_match_params(auth, ctx->recipient_key) |
211 | 0 | || !ecx_key_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE) |
212 | 0 | || !sender_authkey_set(ctx, auth)) |
213 | 0 | return 0; |
214 | 0 | } |
215 | | |
216 | 0 | ctx->op = operation; |
217 | 0 | return ecxkem_set_ctx_params(vecxctx, params); |
218 | 0 | } |
219 | | |
220 | | static int ecxkem_encapsulate_init(void *vecxctx, void *vecx, |
221 | | const OSSL_PARAM params[]) |
222 | 0 | { |
223 | 0 | return ecxkem_init(vecxctx, EVP_PKEY_OP_ENCAPSULATE, vecx, NULL, params); |
224 | 0 | } |
225 | | |
226 | | static int ecxkem_decapsulate_init(void *vecxctx, void *vecx, |
227 | | const OSSL_PARAM params[]) |
228 | 0 | { |
229 | 0 | return ecxkem_init(vecxctx, EVP_PKEY_OP_DECAPSULATE, vecx, NULL, params); |
230 | 0 | } |
231 | | |
232 | | static int ecxkem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv, |
233 | | const OSSL_PARAM params[]) |
234 | 0 | { |
235 | 0 | return ecxkem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params); |
236 | 0 | } |
237 | | |
238 | | static int ecxkem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub, |
239 | | const OSSL_PARAM params[]) |
240 | 0 | { |
241 | 0 | return ecxkem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params); |
242 | 0 | } |
243 | | |
244 | | static int ecxkem_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
245 | 0 | { |
246 | 0 | PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx; |
247 | 0 | const OSSL_PARAM *p; |
248 | 0 | int mode; |
249 | |
|
250 | 0 | if (ctx == NULL) |
251 | 0 | return 0; |
252 | 0 | if (ossl_param_is_empty(params)) |
253 | 0 | return 1; |
254 | | |
255 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_IKME); |
256 | 0 | if (p != NULL) { |
257 | 0 | void *tmp = NULL; |
258 | 0 | size_t tmplen = 0; |
259 | |
|
260 | 0 | if (p->data != NULL && p->data_size != 0) { |
261 | 0 | if (!OSSL_PARAM_get_octet_string(p, &tmp, 0, &tmplen)) |
262 | 0 | return 0; |
263 | 0 | } |
264 | 0 | OPENSSL_clear_free(ctx->ikm, ctx->ikmlen); |
265 | 0 | ctx->ikm = tmp; |
266 | 0 | ctx->ikmlen = tmplen; |
267 | 0 | } |
268 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION); |
269 | 0 | if (p != NULL) { |
270 | 0 | if (p->data_type != OSSL_PARAM_UTF8_STRING) |
271 | 0 | return 0; |
272 | 0 | mode = ossl_eckem_modename2id(p->data); |
273 | 0 | if (mode == KEM_MODE_UNDEFINED) |
274 | 0 | return 0; |
275 | 0 | ctx->mode = mode; |
276 | 0 | } |
277 | 0 | return 1; |
278 | 0 | } |
279 | | |
280 | | static const OSSL_PARAM known_settable_ecxkem_ctx_params[] = { |
281 | | OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0), |
282 | | OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0), |
283 | | OSSL_PARAM_END |
284 | | }; |
285 | | |
286 | | static const OSSL_PARAM *ecxkem_settable_ctx_params(ossl_unused void *vctx, |
287 | | ossl_unused void *provctx) |
288 | 0 | { |
289 | 0 | return known_settable_ecxkem_ctx_params; |
290 | 0 | } |
291 | | |
292 | | /* |
293 | | * See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand |
294 | | */ |
295 | | static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx, |
296 | | unsigned char *okm, size_t okmlen, |
297 | | uint16_t kemid, |
298 | | const unsigned char *dhkm, size_t dhkmlen, |
299 | | const unsigned char *kemctx, |
300 | | size_t kemctxlen) |
301 | 0 | { |
302 | 0 | uint8_t suiteid[2]; |
303 | 0 | uint8_t prk[EVP_MAX_MD_SIZE]; |
304 | 0 | size_t prklen = okmlen; /* Nh */ |
305 | 0 | int ret; |
306 | |
|
307 | 0 | if (prklen > sizeof(prk)) |
308 | 0 | return 0; |
309 | | |
310 | 0 | suiteid[0] = (kemid >> 8) &0xff; |
311 | 0 | suiteid[1] = kemid & 0xff; |
312 | |
|
313 | 0 | ret = ossl_hpke_labeled_extract(kctx, prk, prklen, |
314 | 0 | NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid), |
315 | 0 | OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen) |
316 | 0 | && ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen, |
317 | 0 | LABEL_KEM, suiteid, sizeof(suiteid), |
318 | 0 | OSSL_DHKEM_LABEL_SHARED_SECRET, |
319 | 0 | kemctx, kemctxlen); |
320 | 0 | OPENSSL_cleanse(prk, prklen); |
321 | 0 | return ret; |
322 | 0 | } |
323 | | |
324 | | /* |
325 | | * See Section 7.1.3 DeriveKeyPair. |
326 | | * |
327 | | * This function is used by ecx keygen. |
328 | | * (For this reason it does not use any of the state stored in PROV_ECX_CTX). |
329 | | * |
330 | | * Params: |
331 | | * ecx An initialized ecx key. |
332 | | * privout The buffer to store the generated private key into (it is assumed |
333 | | * this is of length ecx->keylen). |
334 | | * ikm buffer containing the input key material (seed). This must be non NULL. |
335 | | * ikmlen size of the ikm buffer in bytes |
336 | | * Returns: |
337 | | * 1 if successful or 0 otherwise. |
338 | | */ |
339 | | int ossl_ecx_dhkem_derive_private(ECX_KEY *ecx, unsigned char *privout, |
340 | | const unsigned char *ikm, size_t ikmlen) |
341 | 0 | { |
342 | 0 | int ret = 0; |
343 | 0 | EVP_KDF_CTX *kdfctx = NULL; |
344 | 0 | unsigned char prk[EVP_MAX_MD_SIZE]; |
345 | 0 | uint8_t suiteid[2]; |
346 | 0 | const OSSL_HPKE_KEM_INFO *info = get_kem_info(ecx); |
347 | | |
348 | | /* ikmlen should have a length of at least Nsk */ |
349 | 0 | if (ikmlen < info->Nsk) { |
350 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH, |
351 | 0 | "ikm length is :%zu, should be at least %zu", |
352 | 0 | ikmlen, info->Nsk); |
353 | 0 | goto err; |
354 | 0 | } |
355 | | |
356 | 0 | kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname, ecx->libctx, ecx->propq); |
357 | 0 | if (kdfctx == NULL) |
358 | 0 | return 0; |
359 | | |
360 | 0 | suiteid[0] = info->kem_id / 256; |
361 | 0 | suiteid[1] = info->kem_id % 256; |
362 | |
|
363 | 0 | if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret, |
364 | 0 | NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid), |
365 | 0 | OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen)) |
366 | 0 | goto err; |
367 | | |
368 | 0 | if (!ossl_hpke_labeled_expand(kdfctx, privout, info->Nsk, prk, info->Nsecret, |
369 | 0 | LABEL_KEM, suiteid, sizeof(suiteid), |
370 | 0 | OSSL_DHKEM_LABEL_SK, NULL, 0)) |
371 | 0 | goto err; |
372 | 0 | ret = 1; |
373 | 0 | err: |
374 | 0 | OPENSSL_cleanse(prk, sizeof(prk)); |
375 | 0 | EVP_KDF_CTX_free(kdfctx); |
376 | 0 | return ret; |
377 | 0 | } |
378 | | |
379 | | /* |
380 | | * Do a keygen operation without having to use EVP_PKEY. |
381 | | * Params: |
382 | | * ctx Context object |
383 | | * ikm The seed material - if this is NULL, then a random seed is used. |
384 | | * Returns: |
385 | | * The generated ECX key, or NULL on failure. |
386 | | */ |
387 | | static ECX_KEY *derivekey(PROV_ECX_CTX *ctx, |
388 | | const unsigned char *ikm, size_t ikmlen) |
389 | 0 | { |
390 | 0 | int ok = 0; |
391 | 0 | ECX_KEY *key; |
392 | 0 | unsigned char *privkey; |
393 | 0 | unsigned char *seed = (unsigned char *)ikm; |
394 | 0 | size_t seedlen = ikmlen; |
395 | 0 | unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE]; |
396 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
397 | |
|
398 | 0 | key = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 0, ctx->propq); |
399 | 0 | if (key == NULL) |
400 | 0 | return NULL; |
401 | 0 | privkey = ossl_ecx_key_allocate_privkey(key); |
402 | 0 | if (privkey == NULL) |
403 | 0 | goto err; |
404 | | |
405 | | /* Generate a random seed if there is no input ikm */ |
406 | 0 | if (seed == NULL || seedlen == 0) { |
407 | 0 | if (info->Nsk > sizeof(tmpbuf)) |
408 | 0 | goto err; |
409 | 0 | if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, info->Nsk, 0) <= 0) |
410 | 0 | goto err; |
411 | 0 | seed = tmpbuf; |
412 | 0 | seedlen = info->Nsk; |
413 | 0 | } |
414 | 0 | if (!ossl_ecx_dhkem_derive_private(key, privkey, seed, seedlen)) |
415 | 0 | goto err; |
416 | 0 | if (!ossl_ecx_public_from_private(key)) |
417 | 0 | goto err; |
418 | 0 | key->haspubkey = 1; |
419 | 0 | ok = 1; |
420 | 0 | err: |
421 | 0 | if (!ok) { |
422 | 0 | ossl_ecx_key_free(key); |
423 | 0 | key = NULL; |
424 | 0 | } |
425 | 0 | if (seed != ikm) |
426 | 0 | OPENSSL_cleanse(seed, seedlen); |
427 | 0 | return key; |
428 | 0 | } |
429 | | |
430 | | /* |
431 | | * Do an ecxdh key exchange. |
432 | | * dhkm = DH(sender, peer) |
433 | | * |
434 | | * NOTE: Instead of using EVP_PKEY_derive() API's, we use ECX_KEY operations |
435 | | * to avoid messy conversions back to EVP_PKEY. |
436 | | * |
437 | | * Returns the size of the secret if successful, or 0 otherwise, |
438 | | */ |
439 | | static int generate_ecxdhkm(const ECX_KEY *sender, const ECX_KEY *peer, |
440 | | unsigned char *out, size_t maxout, |
441 | | unsigned int secretsz) |
442 | 0 | { |
443 | 0 | size_t len = 0; |
444 | | |
445 | | /* NOTE: ossl_ecx_compute_key checks for shared secret being all zeros */ |
446 | 0 | return ossl_ecx_compute_key((ECX_KEY *)peer, (ECX_KEY *)sender, |
447 | 0 | sender->keylen, out, &len, maxout); |
448 | 0 | } |
449 | | |
450 | | /* |
451 | | * Derive a secret using ECXDH (code is shared by the encap and decap) |
452 | | * |
453 | | * dhkm = Concat(ecxdh(privkey1, peerkey1), ecdh(privkey2, peerkey2) |
454 | | * kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey) |
455 | | * secret = dhkem_extract_and_expand(kemid, dhkm, kemctx); |
456 | | * |
457 | | * Params: |
458 | | * ctx Object that contains algorithm state and constants. |
459 | | * secret The returned secret (with a length ctx->alg->secretlen bytes). |
460 | | * privkey1 A private key used for ECXDH key derivation. |
461 | | * peerkey1 A public key used for ECXDH key derivation with privkey1 |
462 | | * privkey2 A optional private key used for a second ECXDH key derivation. |
463 | | * It can be NULL. |
464 | | * peerkey2 A optional public key used for a second ECXDH key derivation |
465 | | * with privkey2,. It can be NULL. |
466 | | * sender_pub The senders public key in encoded form. |
467 | | * recipient_pub The recipients public key in encoded form. |
468 | | * Notes: |
469 | | * The second ecdh() is only used for the HPKE auth modes when both privkey2 |
470 | | * and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL). |
471 | | */ |
472 | | static int derive_secret(PROV_ECX_CTX *ctx, unsigned char *secret, |
473 | | const ECX_KEY *privkey1, const ECX_KEY *peerkey1, |
474 | | const ECX_KEY *privkey2, const ECX_KEY *peerkey2, |
475 | | const unsigned char *sender_pub, |
476 | | const unsigned char *recipient_pub) |
477 | 0 | { |
478 | 0 | int ret = 0; |
479 | 0 | EVP_KDF_CTX *kdfctx = NULL; |
480 | 0 | unsigned char *sender_authpub = NULL; |
481 | 0 | unsigned char dhkm[MAX_ECX_KEYLEN * 2]; |
482 | 0 | unsigned char kemctx[MAX_ECX_KEYLEN * 3]; |
483 | 0 | size_t kemctxlen = 0, dhkmlen = 0; |
484 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
485 | 0 | int auth = ctx->sender_authkey != NULL; |
486 | 0 | size_t encodedkeylen = info->Npk; |
487 | |
|
488 | 0 | if (!generate_ecxdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), encodedkeylen)) |
489 | 0 | goto err; |
490 | 0 | dhkmlen = encodedkeylen; |
491 | | |
492 | | /* Concat the optional second ECXDH (used for Auth) */ |
493 | 0 | if (auth) { |
494 | 0 | if (!generate_ecxdhkm(privkey2, peerkey2, |
495 | 0 | dhkm + dhkmlen, sizeof(dhkm) - dhkmlen, |
496 | 0 | encodedkeylen)) |
497 | 0 | goto err; |
498 | | /* Get the public key of the auth sender in encoded form */ |
499 | 0 | sender_authpub = ecx_pubkey(ctx->sender_authkey); |
500 | 0 | if (sender_authpub == NULL) |
501 | 0 | goto err; |
502 | 0 | dhkmlen += encodedkeylen; |
503 | 0 | } |
504 | 0 | kemctxlen = encodedkeylen + dhkmlen; |
505 | 0 | if (kemctxlen > sizeof(kemctx)) |
506 | 0 | goto err; |
507 | | |
508 | | /* kemctx is the concat of both sides encoded public key */ |
509 | 0 | memcpy(kemctx, sender_pub, encodedkeylen); |
510 | 0 | memcpy(kemctx + encodedkeylen, recipient_pub, encodedkeylen); |
511 | 0 | if (auth) |
512 | 0 | memcpy(kemctx + 2 * encodedkeylen, sender_authpub, encodedkeylen); |
513 | 0 | kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname, |
514 | 0 | ctx->libctx, ctx->propq); |
515 | 0 | if (kdfctx == NULL) |
516 | 0 | goto err; |
517 | 0 | if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret, |
518 | 0 | info->kem_id, dhkm, dhkmlen, |
519 | 0 | kemctx, kemctxlen)) |
520 | 0 | goto err; |
521 | 0 | ret = 1; |
522 | 0 | err: |
523 | 0 | OPENSSL_cleanse(dhkm, dhkmlen); |
524 | 0 | EVP_KDF_CTX_free(kdfctx); |
525 | 0 | return ret; |
526 | 0 | } |
527 | | |
528 | | /* |
529 | | * Do a DHKEM encapsulate operation. |
530 | | * |
531 | | * See Section 4.1 Encap() and AuthEncap() |
532 | | * |
533 | | * Params: |
534 | | * ctx A context object holding the recipients public key and the |
535 | | * optional senders auth private key. |
536 | | * enc A buffer to return the senders ephemeral public key. |
537 | | * Setting this to NULL allows the enclen and secretlen to return |
538 | | * values, without calculating the secret. |
539 | | * enclen Passes in the max size of the enc buffer and returns the |
540 | | * encoded public key length. |
541 | | * secret A buffer to return the calculated shared secret. |
542 | | * secretlen Passes in the max size of the secret buffer and returns the |
543 | | * secret length. |
544 | | * Returns: 1 on success or 0 otherwise. |
545 | | */ |
546 | | static int dhkem_encap(PROV_ECX_CTX *ctx, |
547 | | unsigned char *enc, size_t *enclen, |
548 | | unsigned char *secret, size_t *secretlen) |
549 | 0 | { |
550 | 0 | int ret = 0; |
551 | 0 | ECX_KEY *sender_ephemkey = NULL; |
552 | 0 | unsigned char *sender_ephempub, *recipient_pub; |
553 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
554 | |
|
555 | 0 | if (enc == NULL) { |
556 | 0 | if (enclen == NULL && secretlen == NULL) |
557 | 0 | return 0; |
558 | 0 | if (enclen != NULL) |
559 | 0 | *enclen = info->Nenc; |
560 | 0 | if (secretlen != NULL) |
561 | 0 | *secretlen = info->Nsecret; |
562 | 0 | return 1; |
563 | 0 | } |
564 | | |
565 | 0 | if (*secretlen < info->Nsecret) { |
566 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small"); |
567 | 0 | return 0; |
568 | 0 | } |
569 | 0 | if (*enclen < info->Nenc) { |
570 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small"); |
571 | 0 | return 0; |
572 | 0 | } |
573 | | |
574 | | /* Create an ephemeral key */ |
575 | 0 | sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen); |
576 | |
|
577 | 0 | sender_ephempub = ecx_pubkey(sender_ephemkey); |
578 | 0 | recipient_pub = ecx_pubkey(ctx->recipient_key); |
579 | 0 | if (sender_ephempub == NULL || recipient_pub == NULL) |
580 | 0 | goto err; |
581 | | |
582 | 0 | if (!derive_secret(ctx, secret, |
583 | 0 | sender_ephemkey, ctx->recipient_key, |
584 | 0 | ctx->sender_authkey, ctx->recipient_key, |
585 | 0 | sender_ephempub, recipient_pub)) |
586 | 0 | goto err; |
587 | | |
588 | | /* Return the public part of the ephemeral key */ |
589 | 0 | memcpy(enc, sender_ephempub, info->Nenc); |
590 | 0 | *enclen = info->Nenc; |
591 | 0 | *secretlen = info->Nsecret; |
592 | 0 | ret = 1; |
593 | 0 | err: |
594 | 0 | ossl_ecx_key_free(sender_ephemkey); |
595 | 0 | return ret; |
596 | 0 | } |
597 | | |
598 | | /* |
599 | | * Do a DHKEM decapsulate operation. |
600 | | * See Section 4.1 Decap() and Auth Decap() |
601 | | * |
602 | | * Params: |
603 | | * ctx A context object holding the recipients private key and the |
604 | | * optional senders auth public key. |
605 | | * secret A buffer to return the calculated shared secret. Setting this to |
606 | | * NULL can be used to return the secretlen. |
607 | | * secretlen Passes in the max size of the secret buffer and returns the |
608 | | * secret length. |
609 | | * enc A buffer containing the senders ephemeral public key that was returned |
610 | | * from dhkem_encap(). |
611 | | * enclen The length in bytes of enc. |
612 | | * Returns: 1 If the shared secret is returned or 0 on error. |
613 | | */ |
614 | | static int dhkem_decap(PROV_ECX_CTX *ctx, |
615 | | unsigned char *secret, size_t *secretlen, |
616 | | const unsigned char *enc, size_t enclen) |
617 | 0 | { |
618 | 0 | int ret = 0; |
619 | 0 | ECX_KEY *recipient_privkey = ctx->recipient_key; |
620 | 0 | ECX_KEY *sender_ephempubkey = NULL; |
621 | 0 | const OSSL_HPKE_KEM_INFO *info = ctx->info; |
622 | 0 | unsigned char *recipient_pub; |
623 | |
|
624 | 0 | if (secret == NULL) { |
625 | 0 | *secretlen = info->Nsecret; |
626 | 0 | return 1; |
627 | 0 | } |
628 | 0 | if (*secretlen < info->Nsecret) { |
629 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small"); |
630 | 0 | return 0; |
631 | 0 | } |
632 | 0 | if (enclen != info->Nenc) { |
633 | 0 | ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key"); |
634 | 0 | return 0; |
635 | 0 | } |
636 | | |
637 | | /* Get the public part of the ephemeral key created by encap */ |
638 | 0 | sender_ephempubkey = ecxkey_pubfromdata(ctx, enc, enclen); |
639 | 0 | if (sender_ephempubkey == NULL) |
640 | 0 | goto err; |
641 | | |
642 | 0 | recipient_pub = ecx_pubkey(recipient_privkey); |
643 | 0 | if (recipient_pub == NULL) |
644 | 0 | goto err; |
645 | | |
646 | 0 | if (!derive_secret(ctx, secret, |
647 | 0 | ctx->recipient_key, sender_ephempubkey, |
648 | 0 | ctx->recipient_key, ctx->sender_authkey, |
649 | 0 | enc, recipient_pub)) |
650 | 0 | goto err; |
651 | | |
652 | 0 | *secretlen = info->Nsecret; |
653 | 0 | ret = 1; |
654 | 0 | err: |
655 | 0 | ossl_ecx_key_free(sender_ephempubkey); |
656 | 0 | return ret; |
657 | 0 | } |
658 | | |
659 | | static int ecxkem_encapsulate(void *vctx, unsigned char *out, size_t *outlen, |
660 | | unsigned char *secret, size_t *secretlen) |
661 | 0 | { |
662 | 0 | PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx; |
663 | |
|
664 | 0 | switch (ctx->mode) { |
665 | 0 | case KEM_MODE_DHKEM: |
666 | 0 | return dhkem_encap(ctx, out, outlen, secret, secretlen); |
667 | 0 | default: |
668 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
669 | 0 | return -2; |
670 | 0 | } |
671 | 0 | } |
672 | | |
673 | | static int ecxkem_decapsulate(void *vctx, unsigned char *out, size_t *outlen, |
674 | | const unsigned char *in, size_t inlen) |
675 | 0 | { |
676 | 0 | PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx; |
677 | |
|
678 | 0 | switch (ctx->mode) { |
679 | 0 | case KEM_MODE_DHKEM: |
680 | 0 | return dhkem_decap(vctx, out, outlen, in, inlen); |
681 | 0 | default: |
682 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); |
683 | 0 | return -2; |
684 | 0 | } |
685 | 0 | } |
686 | | |
687 | | const OSSL_DISPATCH ossl_ecx_asym_kem_functions[] = { |
688 | | { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))ecxkem_newctx }, |
689 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, |
690 | | (void (*)(void))ecxkem_encapsulate_init }, |
691 | | { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))ecxkem_encapsulate }, |
692 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, |
693 | | (void (*)(void))ecxkem_decapsulate_init }, |
694 | | { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))ecxkem_decapsulate }, |
695 | | { OSSL_FUNC_KEM_FREECTX, (void (*)(void))ecxkem_freectx }, |
696 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, |
697 | | (void (*)(void))ecxkem_set_ctx_params }, |
698 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, |
699 | | (void (*)(void))ecxkem_settable_ctx_params }, |
700 | | { OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT, |
701 | | (void (*)(void))ecxkem_auth_encapsulate_init }, |
702 | | { OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT, |
703 | | (void (*)(void))ecxkem_auth_decapsulate_init }, |
704 | | OSSL_DISPATCH_END |
705 | | }; |