Coverage Report

Created: 2025-06-13 06:56

/src/openssl/providers/implementations/kem/ecx_kem.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * The following implementation is part of RFC 9180 related to DHKEM using
12
 * ECX keys (i.e. X25519 and X448)
13
 * References to Sections in the comments below refer to RFC 9180.
14
 */
15
16
#include "internal/deprecated.h"
17
18
#include <string.h>
19
#include <openssl/crypto.h>
20
#include <openssl/evp.h>
21
#include <openssl/core_dispatch.h>
22
#include <openssl/core_names.h>
23
#include <openssl/params.h>
24
#include <openssl/kdf.h>
25
#include <openssl/err.h>
26
#include <openssl/sha.h>
27
#include <openssl/rand.h>
28
#include <openssl/proverr.h>
29
#include "prov/provider_ctx.h"
30
#include "prov/implementations.h"
31
#include "prov/securitycheck.h"
32
#include "prov/providercommon.h"
33
#include "prov/ecx.h"
34
#include "crypto/ecx.h"
35
#include <openssl/hpke.h>
36
#include "internal/hpke_util.h"
37
#include "eckem.h"
38
39
#define MAX_ECX_KEYLEN X448_KEYLEN
40
41
/* KEM identifiers from Section 7.1 "Table 2 KEM IDs" */
42
#define KEMID_X25519_HKDF_SHA256 0x20
43
#define KEMID_X448_HKDF_SHA512   0x21
44
45
/* ASCII: "KEM", in hex for EBCDIC compatibility */
46
static const char LABEL_KEM[] = "\x4b\x45\x4d";
47
48
typedef struct {
49
    ECX_KEY *recipient_key;
50
    ECX_KEY *sender_authkey;
51
    OSSL_LIB_CTX *libctx;
52
    char *propq;
53
    unsigned int mode;
54
    unsigned int op;
55
    unsigned char *ikm;
56
    size_t ikmlen;
57
    const char *kdfname;
58
    const OSSL_HPKE_KEM_INFO *info;
59
} PROV_ECX_CTX;
60
61
static OSSL_FUNC_kem_newctx_fn ecxkem_newctx;
62
static OSSL_FUNC_kem_encapsulate_init_fn ecxkem_encapsulate_init;
63
static OSSL_FUNC_kem_encapsulate_fn ecxkem_encapsulate;
64
static OSSL_FUNC_kem_decapsulate_init_fn ecxkem_decapsulate_init;
65
static OSSL_FUNC_kem_decapsulate_fn ecxkem_decapsulate;
66
static OSSL_FUNC_kem_freectx_fn ecxkem_freectx;
67
static OSSL_FUNC_kem_set_ctx_params_fn ecxkem_set_ctx_params;
68
static OSSL_FUNC_kem_auth_encapsulate_init_fn ecxkem_auth_encapsulate_init;
69
static OSSL_FUNC_kem_auth_decapsulate_init_fn ecxkem_auth_decapsulate_init;
70
71
/*
72
 * Set KEM values as specified in Section 7.1 "Table 2 KEM IDs"
73
 * There is only one set of values for X25519 and X448.
74
 * Additional values could be set via set_params if required.
75
 */
76
static const OSSL_HPKE_KEM_INFO *get_kem_info(ECX_KEY *ecx)
77
0
{
78
0
    const char *name = NULL;
79
80
0
    if (ecx->type == ECX_KEY_TYPE_X25519)
81
0
        name = SN_X25519;
82
0
    else
83
0
        name = SN_X448;
84
0
    return ossl_HPKE_KEM_INFO_find_curve(name);
85
0
}
86
87
/*
88
 * Set the recipient key, and free any existing key.
89
 * ecx can be NULL. The ecx key may have only a private or public component.
90
 */
91
static int recipient_key_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
92
0
{
93
0
    ossl_ecx_key_free(ctx->recipient_key);
94
0
    ctx->recipient_key = NULL;
95
0
    if (ecx != NULL) {
96
0
        ctx->info = get_kem_info(ecx);
97
0
        if (ctx->info == NULL)
98
0
            return -2;
99
0
        ctx->kdfname = "HKDF";
100
0
        if (!ossl_ecx_key_up_ref(ecx))
101
0
            return 0;
102
0
        ctx->recipient_key = ecx;
103
0
    }
104
0
    return 1;
105
0
}
106
107
/*
108
 * Set the senders auth key, and free any existing auth key.
109
 * ecx can be NULL.
110
 */
111
static int sender_authkey_set(PROV_ECX_CTX *ctx, ECX_KEY *ecx)
112
0
{
113
0
    ossl_ecx_key_free(ctx->sender_authkey);
114
0
    ctx->sender_authkey = NULL;
115
116
0
    if (ecx != NULL) {
117
0
        if (!ossl_ecx_key_up_ref(ecx))
118
0
            return 0;
119
0
        ctx->sender_authkey = ecx;
120
0
    }
121
0
    return 1;
122
0
}
123
124
/*
125
 * Serialize a public key from byte array's for the encoded public keys.
126
 * ctx is used to access the key type.
127
 * Returns: The created ECX_KEY or NULL on error.
128
 */
129
static ECX_KEY *ecxkey_pubfromdata(PROV_ECX_CTX *ctx,
130
                                   const unsigned char *pubbuf, size_t pubbuflen)
131
0
{
132
0
    ECX_KEY *ecx = NULL;
133
0
    OSSL_PARAM params[2], *p = params;
134
135
0
    *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
136
0
                                             (char *)pubbuf, pubbuflen);
137
0
    *p = OSSL_PARAM_construct_end();
138
139
0
    ecx = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 1, ctx->propq);
140
0
    if (ecx == NULL)
141
0
        return NULL;
142
0
    if (ossl_ecx_key_fromdata(ecx, params, 0) <= 0) {
143
0
        ossl_ecx_key_free(ecx);
144
0
        ecx = NULL;
145
0
    }
146
0
    return ecx;
147
0
}
148
149
static unsigned char *ecx_pubkey(ECX_KEY *ecx)
150
0
{
151
0
    if (ecx == NULL || !ecx->haspubkey) {
152
0
        ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
153
0
        return 0;
154
0
    }
155
0
    return ecx->pubkey;
156
0
}
157
158
static void *ecxkem_newctx(void *provctx)
159
0
{
160
0
    PROV_ECX_CTX *ctx =  OPENSSL_zalloc(sizeof(PROV_ECX_CTX));
161
162
0
    if (ctx == NULL)
163
0
        return NULL;
164
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
165
0
    ctx->mode = KEM_MODE_DHKEM;
166
167
0
    return ctx;
168
0
}
169
170
static void ecxkem_freectx(void *vectx)
171
0
{
172
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vectx;
173
174
0
    OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
175
0
    recipient_key_set(ctx, NULL);
176
0
    sender_authkey_set(ctx, NULL);
177
0
    OPENSSL_free(ctx);
178
0
}
179
180
static int ecx_match_params(const ECX_KEY *key1, const ECX_KEY *key2)
181
0
{
182
0
    return (key1->type == key2->type && key1->keylen == key2->keylen);
183
0
}
184
185
static int ecx_key_check(const ECX_KEY *ecx, int requires_privatekey)
186
0
{
187
0
    if (ecx->privkey == NULL)
188
0
        return (requires_privatekey == 0);
189
0
    return 1;
190
0
}
191
192
static int ecxkem_init(void *vecxctx, int operation, void *vecx, void *vauth,
193
                       ossl_unused const OSSL_PARAM params[])
194
0
{
195
0
    int rv;
196
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vecxctx;
197
0
    ECX_KEY *ecx = vecx;
198
0
    ECX_KEY *auth = vauth;
199
200
0
    if (!ossl_prov_is_running())
201
0
        return 0;
202
203
0
    if (!ecx_key_check(ecx, operation == EVP_PKEY_OP_DECAPSULATE))
204
0
        return 0;
205
0
    rv = recipient_key_set(ctx, ecx);
206
0
    if (rv <= 0)
207
0
        return rv;
208
209
0
    if (auth != NULL) {
210
0
        if (!ecx_match_params(auth, ctx->recipient_key)
211
0
                || !ecx_key_check(auth, operation == EVP_PKEY_OP_ENCAPSULATE)
212
0
                || !sender_authkey_set(ctx, auth))
213
0
            return 0;
214
0
    }
215
216
0
    ctx->op = operation;
217
0
    return ecxkem_set_ctx_params(vecxctx, params);
218
0
}
219
220
static int ecxkem_encapsulate_init(void *vecxctx, void *vecx,
221
                                   const OSSL_PARAM params[])
222
0
{
223
0
    return ecxkem_init(vecxctx, EVP_PKEY_OP_ENCAPSULATE, vecx, NULL, params);
224
0
}
225
226
static int ecxkem_decapsulate_init(void *vecxctx, void *vecx,
227
                                   const OSSL_PARAM params[])
228
0
{
229
0
    return ecxkem_init(vecxctx, EVP_PKEY_OP_DECAPSULATE, vecx, NULL, params);
230
0
}
231
232
static int ecxkem_auth_encapsulate_init(void *vctx, void *vecx, void *vauthpriv,
233
                                        const OSSL_PARAM params[])
234
0
{
235
0
    return ecxkem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, vecx, vauthpriv, params);
236
0
}
237
238
static int ecxkem_auth_decapsulate_init(void *vctx, void *vecx, void *vauthpub,
239
                                        const OSSL_PARAM params[])
240
0
{
241
0
    return ecxkem_init(vctx, EVP_PKEY_OP_DECAPSULATE, vecx, vauthpub, params);
242
0
}
243
244
static int ecxkem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
245
0
{
246
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
247
0
    const OSSL_PARAM *p;
248
0
    int mode;
249
250
0
    if (ctx == NULL)
251
0
        return 0;
252
0
    if (ossl_param_is_empty(params))
253
0
        return 1;
254
255
0
    p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_IKME);
256
0
    if (p != NULL) {
257
0
        void *tmp = NULL;
258
0
        size_t tmplen = 0;
259
260
0
        if (p->data != NULL && p->data_size != 0) {
261
0
            if (!OSSL_PARAM_get_octet_string(p, &tmp, 0, &tmplen))
262
0
                return 0;
263
0
        }
264
0
        OPENSSL_clear_free(ctx->ikm, ctx->ikmlen);
265
0
        ctx->ikm = tmp;
266
0
        ctx->ikmlen = tmplen;
267
0
    }
268
0
    p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
269
0
    if (p != NULL) {
270
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING)
271
0
            return 0;
272
0
        mode = ossl_eckem_modename2id(p->data);
273
0
        if (mode == KEM_MODE_UNDEFINED)
274
0
            return 0;
275
0
        ctx->mode = mode;
276
0
    }
277
0
    return 1;
278
0
}
279
280
static const OSSL_PARAM known_settable_ecxkem_ctx_params[] = {
281
    OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
282
    OSSL_PARAM_octet_string(OSSL_KEM_PARAM_IKME, NULL, 0),
283
    OSSL_PARAM_END
284
};
285
286
static const OSSL_PARAM *ecxkem_settable_ctx_params(ossl_unused void *vctx,
287
                                                   ossl_unused void *provctx)
288
0
{
289
0
    return known_settable_ecxkem_ctx_params;
290
0
}
291
292
/*
293
 * See Section 4.1 DH-Based KEM (DHKEM) ExtractAndExpand
294
 */
295
static int dhkem_extract_and_expand(EVP_KDF_CTX *kctx,
296
                                    unsigned char *okm, size_t okmlen,
297
                                    uint16_t kemid,
298
                                    const unsigned char *dhkm, size_t dhkmlen,
299
                                    const unsigned char *kemctx,
300
                                    size_t kemctxlen)
301
0
{
302
0
    uint8_t suiteid[2];
303
0
    uint8_t prk[EVP_MAX_MD_SIZE];
304
0
    size_t prklen = okmlen; /* Nh */
305
0
    int ret;
306
307
0
    if (prklen > sizeof(prk))
308
0
        return 0;
309
310
0
    suiteid[0] = (kemid >> 8) &0xff;
311
0
    suiteid[1] = kemid & 0xff;
312
313
0
    ret = ossl_hpke_labeled_extract(kctx, prk, prklen,
314
0
                                    NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
315
0
                                    OSSL_DHKEM_LABEL_EAE_PRK, dhkm, dhkmlen)
316
0
          && ossl_hpke_labeled_expand(kctx, okm, okmlen, prk, prklen,
317
0
                                      LABEL_KEM, suiteid, sizeof(suiteid),
318
0
                                      OSSL_DHKEM_LABEL_SHARED_SECRET,
319
0
                                      kemctx, kemctxlen);
320
0
    OPENSSL_cleanse(prk, prklen);
321
0
    return ret;
322
0
}
323
324
/*
325
 * See Section 7.1.3 DeriveKeyPair.
326
 *
327
 * This function is used by ecx keygen.
328
 * (For this reason it does not use any of the state stored in PROV_ECX_CTX).
329
 *
330
 * Params:
331
 *     ecx An initialized ecx key.
332
 *     privout The buffer to store the generated private key into (it is assumed
333
 *             this is of length ecx->keylen).
334
 *     ikm buffer containing the input key material (seed). This must be non NULL.
335
 *     ikmlen size of the ikm buffer in bytes
336
 * Returns:
337
 *     1 if successful or 0 otherwise.
338
 */
339
int ossl_ecx_dhkem_derive_private(ECX_KEY *ecx, unsigned char *privout,
340
                                  const unsigned char *ikm, size_t ikmlen)
341
0
{
342
0
    int ret = 0;
343
0
    EVP_KDF_CTX *kdfctx = NULL;
344
0
    unsigned char prk[EVP_MAX_MD_SIZE];
345
0
    uint8_t suiteid[2];
346
0
    const OSSL_HPKE_KEM_INFO *info = get_kem_info(ecx);
347
348
    /* ikmlen should have a length of at least Nsk */
349
0
    if (ikmlen < info->Nsk) {
350
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_INPUT_LENGTH,
351
0
                       "ikm length is :%zu, should be at least %zu",
352
0
                       ikmlen, info->Nsk);
353
0
        goto err;
354
0
    }
355
356
0
    kdfctx = ossl_kdf_ctx_create("HKDF", info->mdname, ecx->libctx, ecx->propq);
357
0
    if (kdfctx == NULL)
358
0
        return 0;
359
360
0
    suiteid[0] = info->kem_id / 256;
361
0
    suiteid[1] = info->kem_id % 256;
362
363
0
    if (!ossl_hpke_labeled_extract(kdfctx, prk, info->Nsecret,
364
0
                                   NULL, 0, LABEL_KEM, suiteid, sizeof(suiteid),
365
0
                                   OSSL_DHKEM_LABEL_DKP_PRK, ikm, ikmlen))
366
0
        goto err;
367
368
0
    if (!ossl_hpke_labeled_expand(kdfctx, privout, info->Nsk, prk, info->Nsecret,
369
0
                                  LABEL_KEM, suiteid, sizeof(suiteid),
370
0
                                  OSSL_DHKEM_LABEL_SK, NULL, 0))
371
0
        goto err;
372
0
    ret = 1;
373
0
err:
374
0
    OPENSSL_cleanse(prk, sizeof(prk));
375
0
    EVP_KDF_CTX_free(kdfctx);
376
0
    return ret;
377
0
}
378
379
/*
380
 * Do a keygen operation without having to use EVP_PKEY.
381
 * Params:
382
 *     ctx Context object
383
 *     ikm The seed material - if this is NULL, then a random seed is used.
384
 * Returns:
385
 *     The generated ECX key, or NULL on failure.
386
 */
387
static ECX_KEY *derivekey(PROV_ECX_CTX *ctx,
388
                          const unsigned char *ikm, size_t ikmlen)
389
0
{
390
0
    int ok = 0;
391
0
    ECX_KEY *key;
392
0
    unsigned char *privkey;
393
0
    unsigned char *seed = (unsigned char *)ikm;
394
0
    size_t seedlen = ikmlen;
395
0
    unsigned char tmpbuf[OSSL_HPKE_MAX_PRIVATE];
396
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
397
398
0
    key = ossl_ecx_key_new(ctx->libctx, ctx->recipient_key->type, 0, ctx->propq);
399
0
    if (key == NULL)
400
0
        return NULL;
401
0
    privkey = ossl_ecx_key_allocate_privkey(key);
402
0
    if (privkey == NULL)
403
0
        goto err;
404
405
    /* Generate a random seed if there is no input ikm */
406
0
    if (seed == NULL || seedlen == 0) {
407
0
        if (info->Nsk > sizeof(tmpbuf))
408
0
            goto err;
409
0
        if (RAND_priv_bytes_ex(ctx->libctx, tmpbuf, info->Nsk, 0) <= 0)
410
0
            goto err;
411
0
        seed = tmpbuf;
412
0
        seedlen = info->Nsk;
413
0
    }
414
0
    if (!ossl_ecx_dhkem_derive_private(key, privkey, seed, seedlen))
415
0
        goto err;
416
0
    if (!ossl_ecx_public_from_private(key))
417
0
        goto err;
418
0
    key->haspubkey = 1;
419
0
    ok = 1;
420
0
err:
421
0
    if (!ok) {
422
0
        ossl_ecx_key_free(key);
423
0
        key = NULL;
424
0
    }
425
0
    if (seed != ikm)
426
0
        OPENSSL_cleanse(seed, seedlen);
427
0
    return key;
428
0
}
429
430
/*
431
 * Do an ecxdh key exchange.
432
 * dhkm = DH(sender, peer)
433
 *
434
 * NOTE: Instead of using EVP_PKEY_derive() API's, we use ECX_KEY operations
435
 *       to avoid messy conversions back to EVP_PKEY.
436
 *
437
 * Returns the size of the secret if successful, or 0 otherwise,
438
 */
439
static int generate_ecxdhkm(const ECX_KEY *sender, const ECX_KEY *peer,
440
                           unsigned char *out,  size_t maxout,
441
                           unsigned int secretsz)
442
0
{
443
0
    size_t len = 0;
444
445
    /* NOTE: ossl_ecx_compute_key checks for shared secret being all zeros */
446
0
    return ossl_ecx_compute_key((ECX_KEY *)peer, (ECX_KEY *)sender,
447
0
                                 sender->keylen, out, &len, maxout);
448
0
}
449
450
/*
451
 * Derive a secret using ECXDH (code is shared by the encap and decap)
452
 *
453
 * dhkm = Concat(ecxdh(privkey1, peerkey1), ecdh(privkey2, peerkey2)
454
 * kemctx = Concat(sender_pub, recipient_pub, ctx->sender_authkey)
455
 * secret = dhkem_extract_and_expand(kemid, dhkm, kemctx);
456
 *
457
 * Params:
458
 *     ctx Object that contains algorithm state and constants.
459
 *     secret The returned secret (with a length ctx->alg->secretlen bytes).
460
 *     privkey1 A private key used for ECXDH key derivation.
461
 *     peerkey1 A public key used for ECXDH key derivation with privkey1
462
 *     privkey2 A optional private key used for a second ECXDH key derivation.
463
 *              It can be NULL.
464
 *     peerkey2 A optional public key used for a second ECXDH key derivation
465
 *              with privkey2,. It can be NULL.
466
 *     sender_pub The senders public key in encoded form.
467
 *     recipient_pub The recipients public key in encoded form.
468
 * Notes:
469
 *     The second ecdh() is only used for the HPKE auth modes when both privkey2
470
 *     and peerkey2 are non NULL (i.e. ctx->sender_authkey is not NULL).
471
 */
472
static int derive_secret(PROV_ECX_CTX *ctx, unsigned char *secret,
473
                         const ECX_KEY *privkey1, const ECX_KEY *peerkey1,
474
                         const ECX_KEY *privkey2, const ECX_KEY *peerkey2,
475
                         const unsigned char *sender_pub,
476
                         const unsigned char *recipient_pub)
477
0
{
478
0
    int ret = 0;
479
0
    EVP_KDF_CTX *kdfctx = NULL;
480
0
    unsigned char *sender_authpub = NULL;
481
0
    unsigned char dhkm[MAX_ECX_KEYLEN * 2];
482
0
    unsigned char kemctx[MAX_ECX_KEYLEN * 3];
483
0
    size_t kemctxlen = 0, dhkmlen = 0;
484
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
485
0
    int auth = ctx->sender_authkey != NULL;
486
0
    size_t encodedkeylen = info->Npk;
487
488
0
    if (!generate_ecxdhkm(privkey1, peerkey1, dhkm, sizeof(dhkm), encodedkeylen))
489
0
        goto err;
490
0
    dhkmlen = encodedkeylen;
491
492
    /* Concat the optional second ECXDH (used for Auth) */
493
0
    if (auth) {
494
0
        if (!generate_ecxdhkm(privkey2, peerkey2,
495
0
                              dhkm + dhkmlen, sizeof(dhkm) - dhkmlen,
496
0
                              encodedkeylen))
497
0
            goto err;
498
        /* Get the public key of the auth sender in encoded form */
499
0
        sender_authpub = ecx_pubkey(ctx->sender_authkey);
500
0
        if (sender_authpub == NULL)
501
0
            goto err;
502
0
        dhkmlen += encodedkeylen;
503
0
    }
504
0
    kemctxlen = encodedkeylen + dhkmlen;
505
0
    if (kemctxlen > sizeof(kemctx))
506
0
        goto err;
507
508
    /* kemctx is the concat of both sides encoded public key */
509
0
    memcpy(kemctx, sender_pub, encodedkeylen);
510
0
    memcpy(kemctx + encodedkeylen, recipient_pub, encodedkeylen);
511
0
    if (auth)
512
0
        memcpy(kemctx + 2 * encodedkeylen, sender_authpub, encodedkeylen);
513
0
    kdfctx = ossl_kdf_ctx_create(ctx->kdfname, info->mdname,
514
0
                                 ctx->libctx, ctx->propq);
515
0
    if (kdfctx == NULL)
516
0
        goto err;
517
0
    if (!dhkem_extract_and_expand(kdfctx, secret, info->Nsecret,
518
0
                                  info->kem_id, dhkm, dhkmlen,
519
0
                                  kemctx, kemctxlen))
520
0
        goto err;
521
0
    ret = 1;
522
0
err:
523
0
    OPENSSL_cleanse(dhkm, dhkmlen);
524
0
    EVP_KDF_CTX_free(kdfctx);
525
0
    return ret;
526
0
}
527
528
/*
529
 * Do a DHKEM encapsulate operation.
530
 *
531
 * See Section 4.1 Encap() and AuthEncap()
532
 *
533
 * Params:
534
 *     ctx A context object holding the recipients public key and the
535
 *         optional senders auth private key.
536
 *     enc A buffer to return the senders ephemeral public key.
537
 *         Setting this to NULL allows the enclen and secretlen to return
538
 *         values, without calculating the secret.
539
 *     enclen Passes in the max size of the enc buffer and returns the
540
 *            encoded public key length.
541
 *     secret A buffer to return the calculated shared secret.
542
 *     secretlen Passes in the max size of the secret buffer and returns the
543
 *               secret length.
544
 * Returns: 1 on success or 0 otherwise.
545
 */
546
static int dhkem_encap(PROV_ECX_CTX *ctx,
547
                       unsigned char *enc, size_t *enclen,
548
                       unsigned char *secret, size_t *secretlen)
549
0
{
550
0
    int ret = 0;
551
0
    ECX_KEY *sender_ephemkey = NULL;
552
0
    unsigned char *sender_ephempub, *recipient_pub;
553
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
554
555
0
    if (enc == NULL) {
556
0
        if (enclen == NULL && secretlen == NULL)
557
0
            return 0;
558
0
        if (enclen != NULL)
559
0
            *enclen = info->Nenc;
560
0
        if (secretlen != NULL)
561
0
            *secretlen = info->Nsecret;
562
0
       return 1;
563
0
    }
564
565
0
    if (*secretlen < info->Nsecret) {
566
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
567
0
        return 0;
568
0
    }
569
0
    if (*enclen < info->Nenc) {
570
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*enclen too small");
571
0
        return 0;
572
0
    }
573
574
    /* Create an ephemeral key */
575
0
    sender_ephemkey = derivekey(ctx, ctx->ikm, ctx->ikmlen);
576
577
0
    sender_ephempub = ecx_pubkey(sender_ephemkey);
578
0
    recipient_pub = ecx_pubkey(ctx->recipient_key);
579
0
    if (sender_ephempub == NULL || recipient_pub == NULL)
580
0
        goto err;
581
582
0
    if (!derive_secret(ctx, secret,
583
0
                       sender_ephemkey, ctx->recipient_key,
584
0
                       ctx->sender_authkey, ctx->recipient_key,
585
0
                       sender_ephempub, recipient_pub))
586
0
        goto err;
587
588
    /* Return the public part of the ephemeral key */
589
0
    memcpy(enc, sender_ephempub, info->Nenc);
590
0
    *enclen = info->Nenc;
591
0
    *secretlen = info->Nsecret;
592
0
    ret = 1;
593
0
err:
594
0
    ossl_ecx_key_free(sender_ephemkey);
595
0
    return ret;
596
0
}
597
598
/*
599
 * Do a DHKEM decapsulate operation.
600
 * See Section 4.1 Decap() and Auth Decap()
601
 *
602
 * Params:
603
 *     ctx A context object holding the recipients private key and the
604
 *         optional senders auth public key.
605
 *     secret A buffer to return the calculated shared secret. Setting this to
606
 *            NULL can be used to return the secretlen.
607
 *     secretlen Passes in the max size of the secret buffer and returns the
608
 *               secret length.
609
 *     enc A buffer containing the senders ephemeral public key that was returned
610
 *         from dhkem_encap().
611
 *     enclen The length in bytes of enc.
612
 * Returns: 1 If the shared secret is returned or 0 on error.
613
 */
614
static int dhkem_decap(PROV_ECX_CTX *ctx,
615
                       unsigned char *secret, size_t *secretlen,
616
                       const unsigned char *enc, size_t enclen)
617
0
{
618
0
    int ret = 0;
619
0
    ECX_KEY *recipient_privkey = ctx->recipient_key;
620
0
    ECX_KEY *sender_ephempubkey = NULL;
621
0
    const OSSL_HPKE_KEM_INFO *info = ctx->info;
622
0
    unsigned char *recipient_pub;
623
624
0
    if (secret == NULL) {
625
0
        *secretlen = info->Nsecret;
626
0
        return 1;
627
0
    }
628
0
    if (*secretlen < info->Nsecret) {
629
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_BAD_LENGTH, "*secretlen too small");
630
0
        return 0;
631
0
    }
632
0
    if (enclen != info->Nenc) {
633
0
        ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "Invalid enc public key");
634
0
        return 0;
635
0
    }
636
637
    /* Get the public part of the ephemeral key created by encap */
638
0
    sender_ephempubkey = ecxkey_pubfromdata(ctx, enc, enclen);
639
0
    if (sender_ephempubkey == NULL)
640
0
        goto err;
641
642
0
    recipient_pub = ecx_pubkey(recipient_privkey);
643
0
    if (recipient_pub == NULL)
644
0
        goto err;
645
646
0
    if (!derive_secret(ctx, secret,
647
0
                       ctx->recipient_key, sender_ephempubkey,
648
0
                       ctx->recipient_key, ctx->sender_authkey,
649
0
                       enc, recipient_pub))
650
0
        goto err;
651
652
0
    *secretlen = info->Nsecret;
653
0
    ret = 1;
654
0
err:
655
0
    ossl_ecx_key_free(sender_ephempubkey);
656
0
    return ret;
657
0
}
658
659
static int ecxkem_encapsulate(void *vctx, unsigned char *out, size_t *outlen,
660
                              unsigned char *secret, size_t *secretlen)
661
0
{
662
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
663
664
0
    switch (ctx->mode) {
665
0
        case KEM_MODE_DHKEM:
666
0
            return dhkem_encap(ctx, out, outlen, secret, secretlen);
667
0
        default:
668
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
669
0
            return -2;
670
0
    }
671
0
}
672
673
static int ecxkem_decapsulate(void *vctx, unsigned char *out, size_t *outlen,
674
                              const unsigned char *in, size_t inlen)
675
0
{
676
0
    PROV_ECX_CTX *ctx = (PROV_ECX_CTX *)vctx;
677
678
0
    switch (ctx->mode) {
679
0
        case KEM_MODE_DHKEM:
680
0
            return dhkem_decap(vctx, out, outlen, in, inlen);
681
0
        default:
682
0
            ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE);
683
0
            return -2;
684
0
    }
685
0
}
686
687
const OSSL_DISPATCH ossl_ecx_asym_kem_functions[] = {
688
    { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))ecxkem_newctx },
689
    { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
690
      (void (*)(void))ecxkem_encapsulate_init },
691
    { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))ecxkem_encapsulate },
692
    { OSSL_FUNC_KEM_DECAPSULATE_INIT,
693
      (void (*)(void))ecxkem_decapsulate_init },
694
    { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))ecxkem_decapsulate },
695
    { OSSL_FUNC_KEM_FREECTX, (void (*)(void))ecxkem_freectx },
696
    { OSSL_FUNC_KEM_SET_CTX_PARAMS,
697
      (void (*)(void))ecxkem_set_ctx_params },
698
    { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
699
      (void (*)(void))ecxkem_settable_ctx_params },
700
    { OSSL_FUNC_KEM_AUTH_ENCAPSULATE_INIT,
701
      (void (*)(void))ecxkem_auth_encapsulate_init },
702
    { OSSL_FUNC_KEM_AUTH_DECAPSULATE_INIT,
703
      (void (*)(void))ecxkem_auth_decapsulate_init },
704
    OSSL_DISPATCH_END
705
};