/src/openssl/include/crypto/md32_common.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /*- |
11 | | * This is a generic 32 bit "collector" for message digest algorithms. |
12 | | * Whenever needed it collects input character stream into chunks of |
13 | | * 32 bit values and invokes a block function that performs actual hash |
14 | | * calculations. |
15 | | * |
16 | | * Porting guide. |
17 | | * |
18 | | * Obligatory macros: |
19 | | * |
20 | | * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN |
21 | | * this macro defines byte order of input stream. |
22 | | * HASH_CBLOCK |
23 | | * size of a unit chunk HASH_BLOCK operates on. |
24 | | * HASH_LONG |
25 | | * has to be at least 32 bit wide. |
26 | | * HASH_CTX |
27 | | * context structure that at least contains following |
28 | | * members: |
29 | | * typedef struct { |
30 | | * ... |
31 | | * HASH_LONG Nl,Nh; |
32 | | * either { |
33 | | * HASH_LONG data[HASH_LBLOCK]; |
34 | | * unsigned char data[HASH_CBLOCK]; |
35 | | * }; |
36 | | * unsigned int num; |
37 | | * ... |
38 | | * } HASH_CTX; |
39 | | * data[] vector is expected to be zeroed upon first call to |
40 | | * HASH_UPDATE. |
41 | | * HASH_UPDATE |
42 | | * name of "Update" function, implemented here. |
43 | | * HASH_TRANSFORM |
44 | | * name of "Transform" function, implemented here. |
45 | | * HASH_FINAL |
46 | | * name of "Final" function, implemented here. |
47 | | * HASH_BLOCK_DATA_ORDER |
48 | | * name of "block" function capable of treating *unaligned* input |
49 | | * message in original (data) byte order, implemented externally. |
50 | | * HASH_MAKE_STRING |
51 | | * macro converting context variables to an ASCII hash string. |
52 | | * |
53 | | * MD5 example: |
54 | | * |
55 | | * #define DATA_ORDER_IS_LITTLE_ENDIAN |
56 | | * |
57 | | * #define HASH_LONG MD5_LONG |
58 | | * #define HASH_CTX MD5_CTX |
59 | | * #define HASH_CBLOCK MD5_CBLOCK |
60 | | * #define HASH_UPDATE MD5_Update |
61 | | * #define HASH_TRANSFORM MD5_Transform |
62 | | * #define HASH_FINAL MD5_Final |
63 | | * #define HASH_BLOCK_DATA_ORDER md5_block_data_order |
64 | | */ |
65 | | |
66 | | #ifndef OSSL_CRYPTO_MD32_COMMON_H |
67 | | # define OSSL_CRYPTO_MD32_COMMON_H |
68 | | # pragma once |
69 | | |
70 | | # include <openssl/crypto.h> |
71 | | |
72 | | # if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
73 | | # error "DATA_ORDER must be defined!" |
74 | | # endif |
75 | | |
76 | | # ifndef HASH_CBLOCK |
77 | | # error "HASH_CBLOCK must be defined!" |
78 | | # endif |
79 | | # ifndef HASH_LONG |
80 | | # error "HASH_LONG must be defined!" |
81 | | # endif |
82 | | # ifndef HASH_CTX |
83 | | # error "HASH_CTX must be defined!" |
84 | | # endif |
85 | | |
86 | | # ifndef HASH_UPDATE |
87 | | # error "HASH_UPDATE must be defined!" |
88 | | # endif |
89 | | # ifndef HASH_TRANSFORM |
90 | | # error "HASH_TRANSFORM must be defined!" |
91 | | # endif |
92 | | # ifndef HASH_FINAL |
93 | | # error "HASH_FINAL must be defined!" |
94 | | # endif |
95 | | |
96 | | # ifndef HASH_BLOCK_DATA_ORDER |
97 | | # error "HASH_BLOCK_DATA_ORDER must be defined!" |
98 | | # endif |
99 | | |
100 | 63.8M | # define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) |
101 | | |
102 | | #ifndef PEDANTIC |
103 | | # if defined(__GNUC__) && __GNUC__>=2 && \ |
104 | | !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) |
105 | | # if defined(__riscv_zbb) || defined(__riscv_zbkb) |
106 | | # if __riscv_xlen == 64 |
107 | | # undef ROTATE |
108 | | # define ROTATE(x, n) ({ MD32_REG_T ret; \ |
109 | | asm ("roriw %0, %1, %2" \ |
110 | | : "=r"(ret) \ |
111 | | : "r"(x), "i"(32 - (n))); ret;}) |
112 | | # endif |
113 | | # if __riscv_xlen == 32 |
114 | | # undef ROTATE |
115 | | # define ROTATE(x, n) ({ MD32_REG_T ret; \ |
116 | | asm ("rori %0, %1, %2" \ |
117 | | : "=r"(ret) \ |
118 | | : "r"(x), "i"(32 - (n))); ret;}) |
119 | | # endif |
120 | | # endif |
121 | | # endif |
122 | | #endif |
123 | | |
124 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) |
125 | | |
126 | 0 | # define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ |
127 | 0 | l|=(((unsigned long)(*((c)++)))<<16), \ |
128 | 0 | l|=(((unsigned long)(*((c)++)))<< 8), \ |
129 | 0 | l|=(((unsigned long)(*((c)++))) ) ) |
130 | 2.30M | # define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ |
131 | 2.30M | *((c)++)=(unsigned char)(((l)>>16)&0xff), \ |
132 | 2.30M | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
133 | 2.30M | *((c)++)=(unsigned char)(((l) )&0xff), \ |
134 | 2.30M | l) |
135 | | |
136 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
137 | | |
138 | 3.19M | # define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ |
139 | 3.19M | l|=(((unsigned long)(*((c)++)))<< 8), \ |
140 | 3.19M | l|=(((unsigned long)(*((c)++)))<<16), \ |
141 | 3.19M | l|=(((unsigned long)(*((c)++)))<<24) ) |
142 | 1.39M | # define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ |
143 | 1.39M | *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
144 | 1.39M | *((c)++)=(unsigned char)(((l)>>16)&0xff), \ |
145 | 1.39M | *((c)++)=(unsigned char)(((l)>>24)&0xff), \ |
146 | 1.39M | l) |
147 | | |
148 | | # endif |
149 | | |
150 | | /* |
151 | | * Time for some action :-) |
152 | | */ |
153 | | |
154 | | int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len) |
155 | 505k | { |
156 | 505k | const unsigned char *data = data_; |
157 | 505k | unsigned char *p; |
158 | 505k | HASH_LONG l; |
159 | 505k | size_t n; |
160 | | |
161 | 505k | if (len == 0) |
162 | 0 | return 1; |
163 | | |
164 | 505k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; |
165 | 505k | if (l < c->Nl) /* overflow */ |
166 | 0 | c->Nh++; |
167 | 505k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on |
168 | | * 16-bit */ |
169 | 505k | c->Nl = l; |
170 | | |
171 | 505k | n = c->num; |
172 | 505k | if (n != 0) { |
173 | 180 | p = (unsigned char *)c->data; |
174 | | |
175 | 180 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { |
176 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); |
177 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); |
178 | 0 | n = HASH_CBLOCK - n; |
179 | 0 | data += n; |
180 | 0 | len -= n; |
181 | 0 | c->num = 0; |
182 | | /* |
183 | | * We use memset rather than OPENSSL_cleanse() here deliberately. |
184 | | * Using OPENSSL_cleanse() here could be a performance issue. It |
185 | | * will get properly cleansed on finalisation so this isn't a |
186 | | * security problem. |
187 | | */ |
188 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ |
189 | 180 | } else { |
190 | 180 | memcpy(p + n, data, len); |
191 | 180 | c->num += (unsigned int)len; |
192 | 180 | return 1; |
193 | 180 | } |
194 | 180 | } |
195 | | |
196 | 504k | n = len / HASH_CBLOCK; |
197 | 504k | if (n > 0) { |
198 | 2.27k | HASH_BLOCK_DATA_ORDER(c, data, n); |
199 | 2.27k | n *= HASH_CBLOCK; |
200 | 2.27k | data += n; |
201 | 2.27k | len -= n; |
202 | 2.27k | } |
203 | | |
204 | 504k | if (len != 0) { |
205 | 504k | p = (unsigned char *)c->data; |
206 | 504k | c->num = (unsigned int)len; |
207 | 504k | memcpy(p, data, len); |
208 | 504k | } |
209 | 504k | return 1; |
210 | 505k | } Line | Count | Source | 155 | 231k | { | 156 | 231k | const unsigned char *data = data_; | 157 | 231k | unsigned char *p; | 158 | 231k | HASH_LONG l; | 159 | 231k | size_t n; | 160 | | | 161 | 231k | if (len == 0) | 162 | 0 | return 1; | 163 | | | 164 | 231k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 165 | 231k | if (l < c->Nl) /* overflow */ | 166 | 0 | c->Nh++; | 167 | 231k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 168 | | * 16-bit */ | 169 | 231k | c->Nl = l; | 170 | | | 171 | 231k | n = c->num; | 172 | 231k | if (n != 0) { | 173 | 180 | p = (unsigned char *)c->data; | 174 | | | 175 | 180 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 176 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 177 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 178 | 0 | n = HASH_CBLOCK - n; | 179 | 0 | data += n; | 180 | 0 | len -= n; | 181 | 0 | c->num = 0; | 182 | | /* | 183 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 184 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 185 | | * will get properly cleansed on finalisation so this isn't a | 186 | | * security problem. | 187 | | */ | 188 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 189 | 180 | } else { | 190 | 180 | memcpy(p + n, data, len); | 191 | 180 | c->num += (unsigned int)len; | 192 | 180 | return 1; | 193 | 180 | } | 194 | 180 | } | 195 | | | 196 | 231k | n = len / HASH_CBLOCK; | 197 | 231k | if (n > 0) { | 198 | 1.97k | HASH_BLOCK_DATA_ORDER(c, data, n); | 199 | 1.97k | n *= HASH_CBLOCK; | 200 | 1.97k | data += n; | 201 | 1.97k | len -= n; | 202 | 1.97k | } | 203 | | | 204 | 231k | if (len != 0) { | 205 | 231k | p = (unsigned char *)c->data; | 206 | 231k | c->num = (unsigned int)len; | 207 | 231k | memcpy(p, data, len); | 208 | 231k | } | 209 | 231k | return 1; | 210 | 231k | } |
Line | Count | Source | 155 | 74.2k | { | 156 | 74.2k | const unsigned char *data = data_; | 157 | 74.2k | unsigned char *p; | 158 | 74.2k | HASH_LONG l; | 159 | 74.2k | size_t n; | 160 | | | 161 | 74.2k | if (len == 0) | 162 | 0 | return 1; | 163 | | | 164 | 74.2k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 165 | 74.2k | if (l < c->Nl) /* overflow */ | 166 | 0 | c->Nh++; | 167 | 74.2k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 168 | | * 16-bit */ | 169 | 74.2k | c->Nl = l; | 170 | | | 171 | 74.2k | n = c->num; | 172 | 74.2k | if (n != 0) { | 173 | 0 | p = (unsigned char *)c->data; | 174 | |
| 175 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 176 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 177 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 178 | 0 | n = HASH_CBLOCK - n; | 179 | 0 | data += n; | 180 | 0 | len -= n; | 181 | 0 | c->num = 0; | 182 | | /* | 183 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 184 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 185 | | * will get properly cleansed on finalisation so this isn't a | 186 | | * security problem. | 187 | | */ | 188 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 189 | 0 | } else { | 190 | 0 | memcpy(p + n, data, len); | 191 | 0 | c->num += (unsigned int)len; | 192 | 0 | return 1; | 193 | 0 | } | 194 | 0 | } | 195 | | | 196 | 74.2k | n = len / HASH_CBLOCK; | 197 | 74.2k | if (n > 0) { | 198 | 225 | HASH_BLOCK_DATA_ORDER(c, data, n); | 199 | 225 | n *= HASH_CBLOCK; | 200 | 225 | data += n; | 201 | 225 | len -= n; | 202 | 225 | } | 203 | | | 204 | 74.2k | if (len != 0) { | 205 | 74.1k | p = (unsigned char *)c->data; | 206 | 74.1k | c->num = (unsigned int)len; | 207 | 74.1k | memcpy(p, data, len); | 208 | 74.1k | } | 209 | 74.2k | return 1; | 210 | 74.2k | } |
Unexecuted instantiation: MD4_Update Line | Count | Source | 155 | 88 | { | 156 | 88 | const unsigned char *data = data_; | 157 | 88 | unsigned char *p; | 158 | 88 | HASH_LONG l; | 159 | 88 | size_t n; | 160 | | | 161 | 88 | if (len == 0) | 162 | 0 | return 1; | 163 | | | 164 | 88 | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 165 | 88 | if (l < c->Nl) /* overflow */ | 166 | 0 | c->Nh++; | 167 | 88 | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 168 | | * 16-bit */ | 169 | 88 | c->Nl = l; | 170 | | | 171 | 88 | n = c->num; | 172 | 88 | if (n != 0) { | 173 | 0 | p = (unsigned char *)c->data; | 174 | |
| 175 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 176 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 177 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 178 | 0 | n = HASH_CBLOCK - n; | 179 | 0 | data += n; | 180 | 0 | len -= n; | 181 | 0 | c->num = 0; | 182 | | /* | 183 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 184 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 185 | | * will get properly cleansed on finalisation so this isn't a | 186 | | * security problem. | 187 | | */ | 188 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 189 | 0 | } else { | 190 | 0 | memcpy(p + n, data, len); | 191 | 0 | c->num += (unsigned int)len; | 192 | 0 | return 1; | 193 | 0 | } | 194 | 0 | } | 195 | | | 196 | 88 | n = len / HASH_CBLOCK; | 197 | 88 | if (n > 0) { | 198 | 75 | HASH_BLOCK_DATA_ORDER(c, data, n); | 199 | 75 | n *= HASH_CBLOCK; | 200 | 75 | data += n; | 201 | 75 | len -= n; | 202 | 75 | } | 203 | | | 204 | 88 | if (len != 0) { | 205 | 59 | p = (unsigned char *)c->data; | 206 | 59 | c->num = (unsigned int)len; | 207 | 59 | memcpy(p, data, len); | 208 | 59 | } | 209 | 88 | return 1; | 210 | 88 | } |
Line | Count | Source | 155 | 199k | { | 156 | 199k | const unsigned char *data = data_; | 157 | 199k | unsigned char *p; | 158 | 199k | HASH_LONG l; | 159 | 199k | size_t n; | 160 | | | 161 | 199k | if (len == 0) | 162 | 0 | return 1; | 163 | | | 164 | 199k | l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL; | 165 | 199k | if (l < c->Nl) /* overflow */ | 166 | 0 | c->Nh++; | 167 | 199k | c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on | 168 | | * 16-bit */ | 169 | 199k | c->Nl = l; | 170 | | | 171 | 199k | n = c->num; | 172 | 199k | if (n != 0) { | 173 | 0 | p = (unsigned char *)c->data; | 174 | |
| 175 | 0 | if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) { | 176 | 0 | memcpy(p + n, data, HASH_CBLOCK - n); | 177 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 178 | 0 | n = HASH_CBLOCK - n; | 179 | 0 | data += n; | 180 | 0 | len -= n; | 181 | 0 | c->num = 0; | 182 | | /* | 183 | | * We use memset rather than OPENSSL_cleanse() here deliberately. | 184 | | * Using OPENSSL_cleanse() here could be a performance issue. It | 185 | | * will get properly cleansed on finalisation so this isn't a | 186 | | * security problem. | 187 | | */ | 188 | 0 | memset(p, 0, HASH_CBLOCK); /* keep it zeroed */ | 189 | 0 | } else { | 190 | 0 | memcpy(p + n, data, len); | 191 | 0 | c->num += (unsigned int)len; | 192 | 0 | return 1; | 193 | 0 | } | 194 | 0 | } | 195 | | | 196 | 199k | n = len / HASH_CBLOCK; | 197 | 199k | if (n > 0) { | 198 | 0 | HASH_BLOCK_DATA_ORDER(c, data, n); | 199 | 0 | n *= HASH_CBLOCK; | 200 | 0 | data += n; | 201 | 0 | len -= n; | 202 | 0 | } | 203 | | | 204 | 199k | if (len != 0) { | 205 | 199k | p = (unsigned char *)c->data; | 206 | 199k | c->num = (unsigned int)len; | 207 | 199k | memcpy(p, data, len); | 208 | 199k | } | 209 | 199k | return 1; | 210 | 199k | } |
Unexecuted instantiation: ossl_sm3_update |
211 | | |
212 | | void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data) |
213 | 0 | { |
214 | 0 | HASH_BLOCK_DATA_ORDER(c, data, 1); |
215 | 0 | } Unexecuted instantiation: SHA1_Transform Unexecuted instantiation: SHA256_Transform Unexecuted instantiation: MD4_Transform Unexecuted instantiation: MD5_Transform Unexecuted instantiation: RIPEMD160_Transform Unexecuted instantiation: ossl_sm3_transform |
216 | | |
217 | | int HASH_FINAL(unsigned char *md, HASH_CTX *c) |
218 | 504k | { |
219 | 504k | unsigned char *p = (unsigned char *)c->data; |
220 | 504k | size_t n = c->num; |
221 | | |
222 | 504k | p[n] = 0x80; /* there is always room for one */ |
223 | 504k | n++; |
224 | | |
225 | 504k | if (n > (HASH_CBLOCK - 8)) { |
226 | 105 | memset(p + n, 0, HASH_CBLOCK - n); |
227 | 105 | n = 0; |
228 | 105 | HASH_BLOCK_DATA_ORDER(c, p, 1); |
229 | 105 | } |
230 | 504k | memset(p + n, 0, HASH_CBLOCK - 8 - n); |
231 | | |
232 | 504k | p += HASH_CBLOCK - 8; |
233 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) |
234 | 305k | (void)HOST_l2c(c->Nh, p); |
235 | 305k | (void)HOST_l2c(c->Nl, p); |
236 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) |
237 | 199k | (void)HOST_l2c(c->Nl, p); |
238 | 199k | (void)HOST_l2c(c->Nh, p); |
239 | | # endif |
240 | 504k | p -= HASH_CBLOCK; |
241 | 504k | HASH_BLOCK_DATA_ORDER(c, p, 1); |
242 | 504k | c->num = 0; |
243 | 504k | OPENSSL_cleanse(p, HASH_CBLOCK); |
244 | | |
245 | | # ifndef HASH_MAKE_STRING |
246 | | # error "HASH_MAKE_STRING must be defined!" |
247 | | # else |
248 | 504k | HASH_MAKE_STRING(c, md); |
249 | 74.1k | # endif |
250 | | |
251 | 74.1k | return 1; |
252 | 504k | } Line | Count | Source | 218 | 231k | { | 219 | 231k | unsigned char *p = (unsigned char *)c->data; | 220 | 231k | size_t n = c->num; | 221 | | | 222 | 231k | p[n] = 0x80; /* there is always room for one */ | 223 | 231k | n++; | 224 | | | 225 | 231k | if (n > (HASH_CBLOCK - 8)) { | 226 | 102 | memset(p + n, 0, HASH_CBLOCK - n); | 227 | 102 | n = 0; | 228 | 102 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 229 | 102 | } | 230 | 231k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 231 | | | 232 | 231k | p += HASH_CBLOCK - 8; | 233 | 231k | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 234 | 231k | (void)HOST_l2c(c->Nh, p); | 235 | 231k | (void)HOST_l2c(c->Nl, p); | 236 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 237 | | (void)HOST_l2c(c->Nl, p); | 238 | | (void)HOST_l2c(c->Nh, p); | 239 | | # endif | 240 | 231k | p -= HASH_CBLOCK; | 241 | 231k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 242 | 231k | c->num = 0; | 243 | 231k | OPENSSL_cleanse(p, HASH_CBLOCK); | 244 | | | 245 | | # ifndef HASH_MAKE_STRING | 246 | | # error "HASH_MAKE_STRING must be defined!" | 247 | | # else | 248 | 231k | HASH_MAKE_STRING(c, md); | 249 | 231k | # endif | 250 | | | 251 | 231k | return 1; | 252 | 231k | } |
Line | Count | Source | 218 | 74.1k | { | 219 | 74.1k | unsigned char *p = (unsigned char *)c->data; | 220 | 74.1k | size_t n = c->num; | 221 | | | 222 | 74.1k | p[n] = 0x80; /* there is always room for one */ | 223 | 74.1k | n++; | 224 | | | 225 | 74.1k | if (n > (HASH_CBLOCK - 8)) { | 226 | 2 | memset(p + n, 0, HASH_CBLOCK - n); | 227 | 2 | n = 0; | 228 | 2 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 229 | 2 | } | 230 | 74.1k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 231 | | | 232 | 74.1k | p += HASH_CBLOCK - 8; | 233 | 74.1k | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 234 | 74.1k | (void)HOST_l2c(c->Nh, p); | 235 | 74.1k | (void)HOST_l2c(c->Nl, p); | 236 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 237 | | (void)HOST_l2c(c->Nl, p); | 238 | | (void)HOST_l2c(c->Nh, p); | 239 | | # endif | 240 | 74.1k | p -= HASH_CBLOCK; | 241 | 74.1k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 242 | 74.1k | c->num = 0; | 243 | 74.1k | OPENSSL_cleanse(p, HASH_CBLOCK); | 244 | | | 245 | | # ifndef HASH_MAKE_STRING | 246 | | # error "HASH_MAKE_STRING must be defined!" | 247 | | # else | 248 | 74.1k | HASH_MAKE_STRING(c, md); | 249 | 74.1k | # endif | 250 | | | 251 | 74.1k | return 1; | 252 | 74.1k | } |
Unexecuted instantiation: MD4_Final Line | Count | Source | 218 | 62 | { | 219 | 62 | unsigned char *p = (unsigned char *)c->data; | 220 | 62 | size_t n = c->num; | 221 | | | 222 | 62 | p[n] = 0x80; /* there is always room for one */ | 223 | 62 | n++; | 224 | | | 225 | 62 | if (n > (HASH_CBLOCK - 8)) { | 226 | 1 | memset(p + n, 0, HASH_CBLOCK - n); | 227 | 1 | n = 0; | 228 | 1 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 229 | 1 | } | 230 | 62 | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 231 | | | 232 | 62 | p += HASH_CBLOCK - 8; | 233 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 234 | | (void)HOST_l2c(c->Nh, p); | 235 | | (void)HOST_l2c(c->Nl, p); | 236 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 237 | 62 | (void)HOST_l2c(c->Nl, p); | 238 | 62 | (void)HOST_l2c(c->Nh, p); | 239 | 62 | # endif | 240 | 62 | p -= HASH_CBLOCK; | 241 | 62 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 242 | 62 | c->num = 0; | 243 | 62 | OPENSSL_cleanse(p, HASH_CBLOCK); | 244 | | | 245 | | # ifndef HASH_MAKE_STRING | 246 | | # error "HASH_MAKE_STRING must be defined!" | 247 | | # else | 248 | 62 | HASH_MAKE_STRING(c, md); | 249 | 62 | # endif | 250 | | | 251 | 62 | return 1; | 252 | 62 | } |
Line | Count | Source | 218 | 199k | { | 219 | 199k | unsigned char *p = (unsigned char *)c->data; | 220 | 199k | size_t n = c->num; | 221 | | | 222 | 199k | p[n] = 0x80; /* there is always room for one */ | 223 | 199k | n++; | 224 | | | 225 | 199k | if (n > (HASH_CBLOCK - 8)) { | 226 | 0 | memset(p + n, 0, HASH_CBLOCK - n); | 227 | 0 | n = 0; | 228 | 0 | HASH_BLOCK_DATA_ORDER(c, p, 1); | 229 | 0 | } | 230 | 199k | memset(p + n, 0, HASH_CBLOCK - 8 - n); | 231 | | | 232 | 199k | p += HASH_CBLOCK - 8; | 233 | | # if defined(DATA_ORDER_IS_BIG_ENDIAN) | 234 | | (void)HOST_l2c(c->Nh, p); | 235 | | (void)HOST_l2c(c->Nl, p); | 236 | | # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) | 237 | 199k | (void)HOST_l2c(c->Nl, p); | 238 | 199k | (void)HOST_l2c(c->Nh, p); | 239 | 199k | # endif | 240 | 199k | p -= HASH_CBLOCK; | 241 | 199k | HASH_BLOCK_DATA_ORDER(c, p, 1); | 242 | 199k | c->num = 0; | 243 | 199k | OPENSSL_cleanse(p, HASH_CBLOCK); | 244 | | | 245 | | # ifndef HASH_MAKE_STRING | 246 | | # error "HASH_MAKE_STRING must be defined!" | 247 | | # else | 248 | 199k | HASH_MAKE_STRING(c, md); | 249 | 199k | # endif | 250 | | | 251 | 199k | return 1; | 252 | 199k | } |
Unexecuted instantiation: ossl_sm3_final |
253 | | |
254 | | # ifndef MD32_REG_T |
255 | | # if defined(__alpha) || defined(__sparcv9) || defined(__mips) |
256 | | # define MD32_REG_T long |
257 | | /* |
258 | | * This comment was originally written for MD5, which is why it |
259 | | * discusses A-D. But it basically applies to all 32-bit digests, |
260 | | * which is why it was moved to common header file. |
261 | | * |
262 | | * In case you wonder why A-D are declared as long and not |
263 | | * as MD5_LONG. Doing so results in slight performance |
264 | | * boost on LP64 architectures. The catch is we don't |
265 | | * really care if 32 MSBs of a 64-bit register get polluted |
266 | | * with eventual overflows as we *save* only 32 LSBs in |
267 | | * *either* case. Now declaring 'em long excuses the compiler |
268 | | * from keeping 32 MSBs zeroed resulting in 13% performance |
269 | | * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. |
270 | | * Well, to be honest it should say that this *prevents* |
271 | | * performance degradation. |
272 | | */ |
273 | | # else |
274 | | /* |
275 | | * Above is not absolute and there are LP64 compilers that |
276 | | * generate better code if MD32_REG_T is defined int. The above |
277 | | * pre-processor condition reflects the circumstances under which |
278 | | * the conclusion was made and is subject to further extension. |
279 | | */ |
280 | | # define MD32_REG_T int |
281 | | # endif |
282 | | # endif |
283 | | |
284 | | #endif |