/src/openssl/crypto/cmac/cmac.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2010-2024 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * CMAC low level APIs are deprecated for public use, but still ok for internal |
12 | | * use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <stdio.h> |
17 | | #include <stdlib.h> |
18 | | #include <string.h> |
19 | | #include "internal/cryptlib.h" |
20 | | #include <openssl/cmac.h> |
21 | | #include <openssl/err.h> |
22 | | #include "crypto/cmac.h" |
23 | | |
24 | 0 | #define LOCAL_BUF_SIZE 2048 |
25 | | struct CMAC_CTX_st { |
26 | | /* Cipher context to use */ |
27 | | EVP_CIPHER_CTX *cctx; |
28 | | /* Keys k1 and k2 */ |
29 | | unsigned char k1[EVP_MAX_BLOCK_LENGTH]; |
30 | | unsigned char k2[EVP_MAX_BLOCK_LENGTH]; |
31 | | /* Temporary block */ |
32 | | unsigned char tbl[EVP_MAX_BLOCK_LENGTH]; |
33 | | /* Last (possibly partial) block */ |
34 | | unsigned char last_block[EVP_MAX_BLOCK_LENGTH]; |
35 | | /* Number of bytes in last block: -1 means context not initialised */ |
36 | | int nlast_block; |
37 | | }; |
38 | | |
39 | | /* Make temporary keys K1 and K2 */ |
40 | | |
41 | | static void make_kn(unsigned char *k1, const unsigned char *l, int bl) |
42 | 0 | { |
43 | 0 | int i; |
44 | 0 | unsigned char c = l[0], carry = c >> 7, cnext; |
45 | | |
46 | | /* Shift block to left, including carry */ |
47 | 0 | for (i = 0; i < bl - 1; i++, c = cnext) |
48 | 0 | k1[i] = (c << 1) | ((cnext = l[i + 1]) >> 7); |
49 | | |
50 | | /* If MSB set fixup with R */ |
51 | 0 | k1[i] = (c << 1) ^ ((0 - carry) & (bl == 16 ? 0x87 : 0x1b)); |
52 | 0 | } |
53 | | |
54 | | CMAC_CTX *CMAC_CTX_new(void) |
55 | 0 | { |
56 | 0 | CMAC_CTX *ctx; |
57 | |
|
58 | 0 | if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL) |
59 | 0 | return NULL; |
60 | 0 | ctx->cctx = EVP_CIPHER_CTX_new(); |
61 | 0 | if (ctx->cctx == NULL) { |
62 | 0 | OPENSSL_free(ctx); |
63 | 0 | return NULL; |
64 | 0 | } |
65 | 0 | ctx->nlast_block = -1; |
66 | 0 | return ctx; |
67 | 0 | } |
68 | | |
69 | | void CMAC_CTX_cleanup(CMAC_CTX *ctx) |
70 | 0 | { |
71 | 0 | EVP_CIPHER_CTX_reset(ctx->cctx); |
72 | 0 | OPENSSL_cleanse(ctx->tbl, EVP_MAX_BLOCK_LENGTH); |
73 | 0 | OPENSSL_cleanse(ctx->k1, EVP_MAX_BLOCK_LENGTH); |
74 | 0 | OPENSSL_cleanse(ctx->k2, EVP_MAX_BLOCK_LENGTH); |
75 | 0 | OPENSSL_cleanse(ctx->last_block, EVP_MAX_BLOCK_LENGTH); |
76 | 0 | ctx->nlast_block = -1; |
77 | 0 | } |
78 | | |
79 | | EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx) |
80 | 0 | { |
81 | 0 | return ctx->cctx; |
82 | 0 | } |
83 | | |
84 | | void CMAC_CTX_free(CMAC_CTX *ctx) |
85 | 0 | { |
86 | 0 | if (!ctx) |
87 | 0 | return; |
88 | 0 | CMAC_CTX_cleanup(ctx); |
89 | 0 | EVP_CIPHER_CTX_free(ctx->cctx); |
90 | 0 | OPENSSL_free(ctx); |
91 | 0 | } |
92 | | |
93 | | int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) |
94 | 0 | { |
95 | 0 | int bl; |
96 | |
|
97 | 0 | if (in->nlast_block == -1) |
98 | 0 | return 0; |
99 | 0 | if ((bl = EVP_CIPHER_CTX_get_block_size(in->cctx)) == 0) |
100 | 0 | return 0; |
101 | 0 | if (!EVP_CIPHER_CTX_copy(out->cctx, in->cctx)) |
102 | 0 | return 0; |
103 | 0 | memcpy(out->k1, in->k1, bl); |
104 | 0 | memcpy(out->k2, in->k2, bl); |
105 | 0 | memcpy(out->tbl, in->tbl, bl); |
106 | 0 | memcpy(out->last_block, in->last_block, bl); |
107 | 0 | out->nlast_block = in->nlast_block; |
108 | 0 | return 1; |
109 | 0 | } |
110 | | |
111 | | int ossl_cmac_init(CMAC_CTX *ctx, const void *key, size_t keylen, |
112 | | const EVP_CIPHER *cipher, ENGINE *impl, |
113 | | const OSSL_PARAM param[]) |
114 | 0 | { |
115 | 0 | static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH] = { 0 }; |
116 | 0 | int block_len; |
117 | | |
118 | | /* All zeros means restart */ |
119 | 0 | if (!key && !cipher && !impl && keylen == 0) { |
120 | | /* Not initialised */ |
121 | 0 | if (ctx->nlast_block == -1) |
122 | 0 | return 0; |
123 | 0 | if (!EVP_EncryptInit_ex2(ctx->cctx, NULL, NULL, zero_iv, param)) |
124 | 0 | return 0; |
125 | 0 | block_len = EVP_CIPHER_CTX_get_block_size(ctx->cctx); |
126 | 0 | if (block_len == 0) |
127 | 0 | return 0; |
128 | 0 | memset(ctx->tbl, 0, block_len); |
129 | 0 | ctx->nlast_block = 0; |
130 | 0 | return 1; |
131 | 0 | } |
132 | | /* Initialise context */ |
133 | 0 | if (cipher != NULL) { |
134 | | /* Ensure we can't use this ctx until we also have a key */ |
135 | 0 | ctx->nlast_block = -1; |
136 | 0 | if (impl != NULL) { |
137 | 0 | if (!EVP_EncryptInit_ex(ctx->cctx, cipher, impl, NULL, NULL)) |
138 | 0 | return 0; |
139 | 0 | } else { |
140 | 0 | if (!EVP_EncryptInit_ex2(ctx->cctx, cipher, NULL, NULL, param)) |
141 | 0 | return 0; |
142 | 0 | } |
143 | 0 | } |
144 | | /* Non-NULL key means initialisation complete */ |
145 | 0 | if (key != NULL) { |
146 | 0 | int bl; |
147 | | |
148 | | /* If anything fails then ensure we can't use this ctx */ |
149 | 0 | ctx->nlast_block = -1; |
150 | 0 | if (EVP_CIPHER_CTX_get0_cipher(ctx->cctx) == NULL) |
151 | 0 | return 0; |
152 | 0 | if (EVP_CIPHER_CTX_set_key_length(ctx->cctx, keylen) <= 0) |
153 | 0 | return 0; |
154 | 0 | if (!EVP_EncryptInit_ex2(ctx->cctx, NULL, key, zero_iv, param)) |
155 | 0 | return 0; |
156 | 0 | if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) < 0) |
157 | 0 | return 0; |
158 | 0 | if (EVP_Cipher(ctx->cctx, ctx->tbl, zero_iv, bl) <= 0) |
159 | 0 | return 0; |
160 | 0 | make_kn(ctx->k1, ctx->tbl, bl); |
161 | 0 | make_kn(ctx->k2, ctx->k1, bl); |
162 | 0 | OPENSSL_cleanse(ctx->tbl, bl); |
163 | | /* Reset context again ready for first data block */ |
164 | 0 | if (!EVP_EncryptInit_ex2(ctx->cctx, NULL, NULL, zero_iv, param)) |
165 | 0 | return 0; |
166 | | /* Zero tbl so resume works */ |
167 | 0 | memset(ctx->tbl, 0, bl); |
168 | 0 | ctx->nlast_block = 0; |
169 | 0 | } |
170 | 0 | return 1; |
171 | 0 | } |
172 | | |
173 | | int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen, |
174 | | const EVP_CIPHER *cipher, ENGINE *impl) |
175 | 0 | { |
176 | 0 | return ossl_cmac_init(ctx, key, keylen, cipher, impl, NULL); |
177 | 0 | } |
178 | | |
179 | | int CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen) |
180 | 0 | { |
181 | 0 | const unsigned char *data = in; |
182 | 0 | int bl; |
183 | 0 | size_t max_burst_blocks, cipher_blocks; |
184 | 0 | unsigned char buf[LOCAL_BUF_SIZE]; |
185 | |
|
186 | 0 | if (ctx->nlast_block == -1) |
187 | 0 | return 0; |
188 | 0 | if (dlen == 0) |
189 | 0 | return 1; |
190 | 0 | if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) == 0) |
191 | 0 | return 0; |
192 | | /* Copy into partial block if we need to */ |
193 | 0 | if (ctx->nlast_block > 0) { |
194 | 0 | size_t nleft; |
195 | |
|
196 | 0 | nleft = bl - ctx->nlast_block; |
197 | 0 | if (dlen < nleft) |
198 | 0 | nleft = dlen; |
199 | 0 | memcpy(ctx->last_block + ctx->nlast_block, data, nleft); |
200 | 0 | dlen -= nleft; |
201 | 0 | ctx->nlast_block += nleft; |
202 | | /* If no more to process return */ |
203 | 0 | if (dlen == 0) |
204 | 0 | return 1; |
205 | 0 | data += nleft; |
206 | | /* Else not final block so encrypt it */ |
207 | 0 | if (EVP_Cipher(ctx->cctx, ctx->tbl, ctx->last_block, bl) <= 0) |
208 | 0 | return 0; |
209 | 0 | } |
210 | | /* Encrypt all but one of the complete blocks left */ |
211 | | |
212 | 0 | max_burst_blocks = LOCAL_BUF_SIZE / bl; |
213 | 0 | cipher_blocks = (dlen - 1) / bl; |
214 | 0 | if (max_burst_blocks == 0) { |
215 | | /* |
216 | | * When block length is greater than local buffer size, |
217 | | * use ctx->tbl as cipher output. |
218 | | */ |
219 | 0 | while (dlen > (size_t)bl) { |
220 | 0 | if (EVP_Cipher(ctx->cctx, ctx->tbl, data, bl) <= 0) |
221 | 0 | return 0; |
222 | 0 | dlen -= bl; |
223 | 0 | data += bl; |
224 | 0 | } |
225 | 0 | } else { |
226 | 0 | while (cipher_blocks > max_burst_blocks) { |
227 | 0 | if (EVP_Cipher(ctx->cctx, buf, data, max_burst_blocks * bl) <= 0) |
228 | 0 | return 0; |
229 | 0 | dlen -= max_burst_blocks * bl; |
230 | 0 | data += max_burst_blocks * bl; |
231 | 0 | cipher_blocks -= max_burst_blocks; |
232 | 0 | } |
233 | 0 | if (cipher_blocks > 0) { |
234 | 0 | if (EVP_Cipher(ctx->cctx, buf, data, cipher_blocks * bl) <= 0) |
235 | 0 | return 0; |
236 | 0 | dlen -= cipher_blocks * bl; |
237 | 0 | data += cipher_blocks * bl; |
238 | 0 | memcpy(ctx->tbl, &buf[(cipher_blocks - 1) * bl], bl); |
239 | 0 | } |
240 | 0 | } |
241 | | /* Copy any data left to last block buffer */ |
242 | 0 | memcpy(ctx->last_block, data, dlen); |
243 | 0 | ctx->nlast_block = dlen; |
244 | 0 | return 1; |
245 | |
|
246 | 0 | } |
247 | | |
248 | | int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen) |
249 | 0 | { |
250 | 0 | int i, bl, lb; |
251 | |
|
252 | 0 | if (ctx->nlast_block == -1) |
253 | 0 | return 0; |
254 | 0 | if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) == 0) |
255 | 0 | return 0; |
256 | 0 | if (poutlen != NULL) |
257 | 0 | *poutlen = (size_t)bl; |
258 | 0 | if (!out) |
259 | 0 | return 1; |
260 | 0 | lb = ctx->nlast_block; |
261 | | /* Is last block complete? */ |
262 | 0 | if (lb == bl) { |
263 | 0 | for (i = 0; i < bl; i++) |
264 | 0 | out[i] = ctx->last_block[i] ^ ctx->k1[i]; |
265 | 0 | } else { |
266 | 0 | ctx->last_block[lb] = 0x80; |
267 | 0 | if (bl - lb > 1) |
268 | 0 | memset(ctx->last_block + lb + 1, 0, bl - lb - 1); |
269 | 0 | for (i = 0; i < bl; i++) |
270 | 0 | out[i] = ctx->last_block[i] ^ ctx->k2[i]; |
271 | 0 | } |
272 | 0 | if (EVP_Cipher(ctx->cctx, out, out, bl) <= 0) { |
273 | 0 | OPENSSL_cleanse(out, bl); |
274 | 0 | return 0; |
275 | 0 | } |
276 | 0 | return 1; |
277 | 0 | } |
278 | | |
279 | | int CMAC_resume(CMAC_CTX *ctx) |
280 | 0 | { |
281 | 0 | if (ctx->nlast_block == -1) |
282 | 0 | return 0; |
283 | | /* |
284 | | * The buffer "tbl" contains the last fully encrypted block which is the |
285 | | * last IV (or all zeroes if no last encrypted block). The last block has |
286 | | * not been modified since CMAC_final(). So reinitialising using the last |
287 | | * decrypted block will allow CMAC to continue after calling |
288 | | * CMAC_Final(). |
289 | | */ |
290 | 0 | return EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, ctx->tbl); |
291 | 0 | } |