/src/openssl/crypto/ec/ecp_smpl.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved  | 
4  |  |  *  | 
5  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
6  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
7  |  |  * in the file LICENSE in the source distribution or at  | 
8  |  |  * https://www.openssl.org/source/license.html  | 
9  |  |  */  | 
10  |  |  | 
11  |  | /*  | 
12  |  |  * ECDSA low-level APIs are deprecated for public use, but still ok for  | 
13  |  |  * internal use.  | 
14  |  |  */  | 
15  |  | #include "internal/deprecated.h"  | 
16  |  |  | 
17  |  | #include <openssl/err.h>  | 
18  |  | #include <openssl/symhacks.h>  | 
19  |  |  | 
20  |  | #include "ec_local.h"  | 
21  |  |  | 
22  |  | const EC_METHOD *EC_GFp_simple_method(void)  | 
23  | 0  | { | 
24  | 0  |     static const EC_METHOD ret = { | 
25  | 0  |         EC_FLAGS_DEFAULT_OCT,  | 
26  | 0  |         NID_X9_62_prime_field,  | 
27  | 0  |         ossl_ec_GFp_simple_group_init,  | 
28  | 0  |         ossl_ec_GFp_simple_group_finish,  | 
29  | 0  |         ossl_ec_GFp_simple_group_clear_finish,  | 
30  | 0  |         ossl_ec_GFp_simple_group_copy,  | 
31  | 0  |         ossl_ec_GFp_simple_group_set_curve,  | 
32  | 0  |         ossl_ec_GFp_simple_group_get_curve,  | 
33  | 0  |         ossl_ec_GFp_simple_group_get_degree,  | 
34  | 0  |         ossl_ec_group_simple_order_bits,  | 
35  | 0  |         ossl_ec_GFp_simple_group_check_discriminant,  | 
36  | 0  |         ossl_ec_GFp_simple_point_init,  | 
37  | 0  |         ossl_ec_GFp_simple_point_finish,  | 
38  | 0  |         ossl_ec_GFp_simple_point_clear_finish,  | 
39  | 0  |         ossl_ec_GFp_simple_point_copy,  | 
40  | 0  |         ossl_ec_GFp_simple_point_set_to_infinity,  | 
41  | 0  |         ossl_ec_GFp_simple_point_set_affine_coordinates,  | 
42  | 0  |         ossl_ec_GFp_simple_point_get_affine_coordinates,  | 
43  | 0  |         0, 0, 0,  | 
44  | 0  |         ossl_ec_GFp_simple_add,  | 
45  | 0  |         ossl_ec_GFp_simple_dbl,  | 
46  | 0  |         ossl_ec_GFp_simple_invert,  | 
47  | 0  |         ossl_ec_GFp_simple_is_at_infinity,  | 
48  | 0  |         ossl_ec_GFp_simple_is_on_curve,  | 
49  | 0  |         ossl_ec_GFp_simple_cmp,  | 
50  | 0  |         ossl_ec_GFp_simple_make_affine,  | 
51  | 0  |         ossl_ec_GFp_simple_points_make_affine,  | 
52  | 0  |         0 /* mul */ ,  | 
53  | 0  |         0 /* precompute_mult */ ,  | 
54  | 0  |         0 /* have_precompute_mult */ ,  | 
55  | 0  |         ossl_ec_GFp_simple_field_mul,  | 
56  | 0  |         ossl_ec_GFp_simple_field_sqr,  | 
57  | 0  |         0 /* field_div */ ,  | 
58  | 0  |         ossl_ec_GFp_simple_field_inv,  | 
59  | 0  |         0 /* field_encode */ ,  | 
60  | 0  |         0 /* field_decode */ ,  | 
61  | 0  |         0,                      /* field_set_to_one */  | 
62  | 0  |         ossl_ec_key_simple_priv2oct,  | 
63  | 0  |         ossl_ec_key_simple_oct2priv,  | 
64  | 0  |         0, /* set private */  | 
65  | 0  |         ossl_ec_key_simple_generate_key,  | 
66  | 0  |         ossl_ec_key_simple_check_key,  | 
67  | 0  |         ossl_ec_key_simple_generate_public_key,  | 
68  | 0  |         0, /* keycopy */  | 
69  | 0  |         0, /* keyfinish */  | 
70  | 0  |         ossl_ecdh_simple_compute_key,  | 
71  | 0  |         ossl_ecdsa_simple_sign_setup,  | 
72  | 0  |         ossl_ecdsa_simple_sign_sig,  | 
73  | 0  |         ossl_ecdsa_simple_verify_sig,  | 
74  | 0  |         0, /* field_inverse_mod_ord */  | 
75  | 0  |         ossl_ec_GFp_simple_blind_coordinates,  | 
76  | 0  |         ossl_ec_GFp_simple_ladder_pre,  | 
77  | 0  |         ossl_ec_GFp_simple_ladder_step,  | 
78  | 0  |         ossl_ec_GFp_simple_ladder_post  | 
79  | 0  |     };  | 
80  |  | 
  | 
81  | 0  |     return &ret;  | 
82  | 0  | }  | 
83  |  |  | 
84  |  | /*  | 
85  |  |  * Most method functions in this file are designed to work with  | 
86  |  |  * non-trivial representations of field elements if necessary  | 
87  |  |  * (see ecp_mont.c): while standard modular addition and subtraction  | 
88  |  |  * are used, the field_mul and field_sqr methods will be used for  | 
89  |  |  * multiplication, and field_encode and field_decode (if defined)  | 
90  |  |  * will be used for converting between representations.  | 
91  |  |  *  | 
92  |  |  * Functions ec_GFp_simple_points_make_affine() and  | 
93  |  |  * ec_GFp_simple_point_get_affine_coordinates() specifically assume  | 
94  |  |  * that if a non-trivial representation is used, it is a Montgomery  | 
95  |  |  * representation (i.e. 'encoding' means multiplying by some factor R).  | 
96  |  |  */  | 
97  |  |  | 
98  |  | int ossl_ec_GFp_simple_group_init(EC_GROUP *group)  | 
99  | 38.0k  | { | 
100  | 38.0k  |     group->field = BN_new();  | 
101  | 38.0k  |     group->a = BN_new();  | 
102  | 38.0k  |     group->b = BN_new();  | 
103  | 38.0k  |     if (group->field == NULL || group->a == NULL || group->b == NULL) { | 
104  | 0  |         BN_free(group->field);  | 
105  | 0  |         BN_free(group->a);  | 
106  | 0  |         BN_free(group->b);  | 
107  | 0  |         return 0;  | 
108  | 0  |     }  | 
109  | 38.0k  |     group->a_is_minus3 = 0;  | 
110  | 38.0k  |     return 1;  | 
111  | 38.0k  | }  | 
112  |  |  | 
113  |  | void ossl_ec_GFp_simple_group_finish(EC_GROUP *group)  | 
114  | 38.0k  | { | 
115  | 38.0k  |     BN_free(group->field);  | 
116  | 38.0k  |     BN_free(group->a);  | 
117  | 38.0k  |     BN_free(group->b);  | 
118  | 38.0k  | }  | 
119  |  |  | 
120  |  | void ossl_ec_GFp_simple_group_clear_finish(EC_GROUP *group)  | 
121  | 0  | { | 
122  | 0  |     BN_clear_free(group->field);  | 
123  | 0  |     BN_clear_free(group->a);  | 
124  | 0  |     BN_clear_free(group->b);  | 
125  | 0  | }  | 
126  |  |  | 
127  |  | int ossl_ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)  | 
128  | 19.0k  | { | 
129  | 19.0k  |     if (!BN_copy(dest->field, src->field))  | 
130  | 0  |         return 0;  | 
131  | 19.0k  |     if (!BN_copy(dest->a, src->a))  | 
132  | 0  |         return 0;  | 
133  | 19.0k  |     if (!BN_copy(dest->b, src->b))  | 
134  | 0  |         return 0;  | 
135  |  |  | 
136  | 19.0k  |     dest->a_is_minus3 = src->a_is_minus3;  | 
137  |  |  | 
138  | 19.0k  |     return 1;  | 
139  | 19.0k  | }  | 
140  |  |  | 
141  |  | int ossl_ec_GFp_simple_group_set_curve(EC_GROUP *group,  | 
142  |  |                                        const BIGNUM *p, const BIGNUM *a,  | 
143  |  |                                        const BIGNUM *b, BN_CTX *ctx)  | 
144  | 19.0k  | { | 
145  | 19.0k  |     int ret = 0;  | 
146  | 19.0k  |     BN_CTX *new_ctx = NULL;  | 
147  | 19.0k  |     BIGNUM *tmp_a;  | 
148  |  |  | 
149  |  |     /* p must be a prime > 3 */  | 
150  | 19.0k  |     if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | 
151  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_INVALID_FIELD);  | 
152  | 0  |         return 0;  | 
153  | 0  |     }  | 
154  |  |  | 
155  | 19.0k  |     if (ctx == NULL) { | 
156  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
157  | 0  |         if (ctx == NULL)  | 
158  | 0  |             return 0;  | 
159  | 0  |     }  | 
160  |  |  | 
161  | 19.0k  |     BN_CTX_start(ctx);  | 
162  | 19.0k  |     tmp_a = BN_CTX_get(ctx);  | 
163  | 19.0k  |     if (tmp_a == NULL)  | 
164  | 0  |         goto err;  | 
165  |  |  | 
166  |  |     /* group->field */  | 
167  | 19.0k  |     if (!BN_copy(group->field, p))  | 
168  | 0  |         goto err;  | 
169  | 19.0k  |     BN_set_negative(group->field, 0);  | 
170  |  |  | 
171  |  |     /* group->a */  | 
172  | 19.0k  |     if (!BN_nnmod(tmp_a, a, p, ctx))  | 
173  | 0  |         goto err;  | 
174  | 19.0k  |     if (group->meth->field_encode != NULL) { | 
175  | 8.76k  |         if (!group->meth->field_encode(group, group->a, tmp_a, ctx))  | 
176  | 0  |             goto err;  | 
177  | 10.2k  |     } else if (!BN_copy(group->a, tmp_a))  | 
178  | 0  |         goto err;  | 
179  |  |  | 
180  |  |     /* group->b */  | 
181  | 19.0k  |     if (!BN_nnmod(group->b, b, p, ctx))  | 
182  | 0  |         goto err;  | 
183  | 19.0k  |     if (group->meth->field_encode != NULL)  | 
184  | 8.76k  |         if (!group->meth->field_encode(group, group->b, group->b, ctx))  | 
185  | 0  |             goto err;  | 
186  |  |  | 
187  |  |     /* group->a_is_minus3 */  | 
188  | 19.0k  |     if (!BN_add_word(tmp_a, 3))  | 
189  | 0  |         goto err;  | 
190  | 19.0k  |     group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));  | 
191  |  |  | 
192  | 19.0k  |     ret = 1;  | 
193  |  |  | 
194  | 19.0k  |  err:  | 
195  | 19.0k  |     BN_CTX_end(ctx);  | 
196  | 19.0k  |     BN_CTX_free(new_ctx);  | 
197  | 19.0k  |     return ret;  | 
198  | 19.0k  | }  | 
199  |  |  | 
200  |  | int ossl_ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,  | 
201  |  |                                        BIGNUM *a, BIGNUM *b, BN_CTX *ctx)  | 
202  | 0  | { | 
203  | 0  |     int ret = 0;  | 
204  | 0  |     BN_CTX *new_ctx = NULL;  | 
205  |  | 
  | 
206  | 0  |     if (p != NULL) { | 
207  | 0  |         if (!BN_copy(p, group->field))  | 
208  | 0  |             return 0;  | 
209  | 0  |     }  | 
210  |  |  | 
211  | 0  |     if (a != NULL || b != NULL) { | 
212  | 0  |         if (group->meth->field_decode != NULL) { | 
213  | 0  |             if (ctx == NULL) { | 
214  | 0  |                 ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
215  | 0  |                 if (ctx == NULL)  | 
216  | 0  |                     return 0;  | 
217  | 0  |             }  | 
218  | 0  |             if (a != NULL) { | 
219  | 0  |                 if (!group->meth->field_decode(group, a, group->a, ctx))  | 
220  | 0  |                     goto err;  | 
221  | 0  |             }  | 
222  | 0  |             if (b != NULL) { | 
223  | 0  |                 if (!group->meth->field_decode(group, b, group->b, ctx))  | 
224  | 0  |                     goto err;  | 
225  | 0  |             }  | 
226  | 0  |         } else { | 
227  | 0  |             if (a != NULL) { | 
228  | 0  |                 if (!BN_copy(a, group->a))  | 
229  | 0  |                     goto err;  | 
230  | 0  |             }  | 
231  | 0  |             if (b != NULL) { | 
232  | 0  |                 if (!BN_copy(b, group->b))  | 
233  | 0  |                     goto err;  | 
234  | 0  |             }  | 
235  | 0  |         }  | 
236  | 0  |     }  | 
237  |  |  | 
238  | 0  |     ret = 1;  | 
239  |  | 
  | 
240  | 0  |  err:  | 
241  | 0  |     BN_CTX_free(new_ctx);  | 
242  | 0  |     return ret;  | 
243  | 0  | }  | 
244  |  |  | 
245  |  | int ossl_ec_GFp_simple_group_get_degree(const EC_GROUP *group)  | 
246  | 0  | { | 
247  | 0  |     return BN_num_bits(group->field);  | 
248  | 0  | }  | 
249  |  |  | 
250  |  | int ossl_ec_GFp_simple_group_check_discriminant(const EC_GROUP *group,  | 
251  |  |                                                 BN_CTX *ctx)  | 
252  | 0  | { | 
253  | 0  |     int ret = 0;  | 
254  | 0  |     BIGNUM *a, *b, *order, *tmp_1, *tmp_2;  | 
255  | 0  |     const BIGNUM *p = group->field;  | 
256  | 0  |     BN_CTX *new_ctx = NULL;  | 
257  |  | 
  | 
258  | 0  |     if (ctx == NULL) { | 
259  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
260  | 0  |         if (ctx == NULL) { | 
261  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
262  | 0  |             goto err;  | 
263  | 0  |         }  | 
264  | 0  |     }  | 
265  | 0  |     BN_CTX_start(ctx);  | 
266  | 0  |     a = BN_CTX_get(ctx);  | 
267  | 0  |     b = BN_CTX_get(ctx);  | 
268  | 0  |     tmp_1 = BN_CTX_get(ctx);  | 
269  | 0  |     tmp_2 = BN_CTX_get(ctx);  | 
270  | 0  |     order = BN_CTX_get(ctx);  | 
271  | 0  |     if (order == NULL)  | 
272  | 0  |         goto err;  | 
273  |  |  | 
274  | 0  |     if (group->meth->field_decode != NULL) { | 
275  | 0  |         if (!group->meth->field_decode(group, a, group->a, ctx))  | 
276  | 0  |             goto err;  | 
277  | 0  |         if (!group->meth->field_decode(group, b, group->b, ctx))  | 
278  | 0  |             goto err;  | 
279  | 0  |     } else { | 
280  | 0  |         if (!BN_copy(a, group->a))  | 
281  | 0  |             goto err;  | 
282  | 0  |         if (!BN_copy(b, group->b))  | 
283  | 0  |             goto err;  | 
284  | 0  |     }  | 
285  |  |  | 
286  |  |     /*-  | 
287  |  |      * check the discriminant:  | 
288  |  |      * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)  | 
289  |  |      * 0 =< a, b < p  | 
290  |  |      */  | 
291  | 0  |     if (BN_is_zero(a)) { | 
292  | 0  |         if (BN_is_zero(b))  | 
293  | 0  |             goto err;  | 
294  | 0  |     } else if (!BN_is_zero(b)) { | 
295  | 0  |         if (!BN_mod_sqr(tmp_1, a, p, ctx))  | 
296  | 0  |             goto err;  | 
297  | 0  |         if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))  | 
298  | 0  |             goto err;  | 
299  | 0  |         if (!BN_lshift(tmp_1, tmp_2, 2))  | 
300  | 0  |             goto err;  | 
301  |  |         /* tmp_1 = 4*a^3 */  | 
302  |  |  | 
303  | 0  |         if (!BN_mod_sqr(tmp_2, b, p, ctx))  | 
304  | 0  |             goto err;  | 
305  | 0  |         if (!BN_mul_word(tmp_2, 27))  | 
306  | 0  |             goto err;  | 
307  |  |         /* tmp_2 = 27*b^2 */  | 
308  |  |  | 
309  | 0  |         if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))  | 
310  | 0  |             goto err;  | 
311  | 0  |         if (BN_is_zero(a))  | 
312  | 0  |             goto err;  | 
313  | 0  |     }  | 
314  | 0  |     ret = 1;  | 
315  |  | 
  | 
316  | 0  |  err:  | 
317  | 0  |     BN_CTX_end(ctx);  | 
318  | 0  |     BN_CTX_free(new_ctx);  | 
319  | 0  |     return ret;  | 
320  | 0  | }  | 
321  |  |  | 
322  |  | int ossl_ec_GFp_simple_point_init(EC_POINT *point)  | 
323  | 76.0k  | { | 
324  | 76.0k  |     point->X = BN_new();  | 
325  | 76.0k  |     point->Y = BN_new();  | 
326  | 76.0k  |     point->Z = BN_new();  | 
327  | 76.0k  |     point->Z_is_one = 0;  | 
328  |  |  | 
329  | 76.0k  |     if (point->X == NULL || point->Y == NULL || point->Z == NULL) { | 
330  | 0  |         BN_free(point->X);  | 
331  | 0  |         BN_free(point->Y);  | 
332  | 0  |         BN_free(point->Z);  | 
333  | 0  |         return 0;  | 
334  | 0  |     }  | 
335  | 76.0k  |     return 1;  | 
336  | 76.0k  | }  | 
337  |  |  | 
338  |  | void ossl_ec_GFp_simple_point_finish(EC_POINT *point)  | 
339  | 76.0k  | { | 
340  | 76.0k  |     BN_free(point->X);  | 
341  | 76.0k  |     BN_free(point->Y);  | 
342  | 76.0k  |     BN_free(point->Z);  | 
343  | 76.0k  | }  | 
344  |  |  | 
345  |  | void ossl_ec_GFp_simple_point_clear_finish(EC_POINT *point)  | 
346  | 0  | { | 
347  | 0  |     BN_clear_free(point->X);  | 
348  | 0  |     BN_clear_free(point->Y);  | 
349  | 0  |     BN_clear_free(point->Z);  | 
350  | 0  |     point->Z_is_one = 0;  | 
351  | 0  | }  | 
352  |  |  | 
353  |  | int ossl_ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)  | 
354  | 38.0k  | { | 
355  | 38.0k  |     if (!BN_copy(dest->X, src->X))  | 
356  | 0  |         return 0;  | 
357  | 38.0k  |     if (!BN_copy(dest->Y, src->Y))  | 
358  | 0  |         return 0;  | 
359  | 38.0k  |     if (!BN_copy(dest->Z, src->Z))  | 
360  | 0  |         return 0;  | 
361  | 38.0k  |     dest->Z_is_one = src->Z_is_one;  | 
362  | 38.0k  |     dest->curve_name = src->curve_name;  | 
363  |  |  | 
364  | 38.0k  |     return 1;  | 
365  | 38.0k  | }  | 
366  |  |  | 
367  |  | int ossl_ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,  | 
368  |  |                                              EC_POINT *point)  | 
369  | 265  | { | 
370  | 265  |     point->Z_is_one = 0;  | 
371  | 265  |     BN_zero(point->Z);  | 
372  | 265  |     return 1;  | 
373  | 265  | }  | 
374  |  |  | 
375  |  | int ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,  | 
376  |  |                                                        EC_POINT *point,  | 
377  |  |                                                        const BIGNUM *x,  | 
378  |  |                                                        const BIGNUM *y,  | 
379  |  |                                                        const BIGNUM *z,  | 
380  |  |                                                        BN_CTX *ctx)  | 
381  | 30.4k  | { | 
382  | 30.4k  |     BN_CTX *new_ctx = NULL;  | 
383  | 30.4k  |     int ret = 0;  | 
384  |  |  | 
385  | 30.4k  |     if (ctx == NULL) { | 
386  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
387  | 0  |         if (ctx == NULL)  | 
388  | 0  |             return 0;  | 
389  | 0  |     }  | 
390  |  |  | 
391  | 30.4k  |     if (x != NULL) { | 
392  | 30.4k  |         if (!BN_nnmod(point->X, x, group->field, ctx))  | 
393  | 0  |             goto err;  | 
394  | 30.4k  |         if (group->meth->field_encode) { | 
395  | 12.3k  |             if (!group->meth->field_encode(group, point->X, point->X, ctx))  | 
396  | 0  |                 goto err;  | 
397  | 12.3k  |         }  | 
398  | 30.4k  |     }  | 
399  |  |  | 
400  | 30.4k  |     if (y != NULL) { | 
401  | 30.4k  |         if (!BN_nnmod(point->Y, y, group->field, ctx))  | 
402  | 0  |             goto err;  | 
403  | 30.4k  |         if (group->meth->field_encode) { | 
404  | 12.3k  |             if (!group->meth->field_encode(group, point->Y, point->Y, ctx))  | 
405  | 0  |                 goto err;  | 
406  | 12.3k  |         }  | 
407  | 30.4k  |     }  | 
408  |  |  | 
409  | 30.4k  |     if (z != NULL) { | 
410  | 30.4k  |         int Z_is_one;  | 
411  |  |  | 
412  | 30.4k  |         if (!BN_nnmod(point->Z, z, group->field, ctx))  | 
413  | 0  |             goto err;  | 
414  | 30.4k  |         Z_is_one = BN_is_one(point->Z);  | 
415  | 30.4k  |         if (group->meth->field_encode) { | 
416  | 12.3k  |             if (Z_is_one && (group->meth->field_set_to_one != 0)) { | 
417  | 12.3k  |                 if (!group->meth->field_set_to_one(group, point->Z, ctx))  | 
418  | 0  |                     goto err;  | 
419  | 12.3k  |             } else { | 
420  | 0  |                 if (!group->  | 
421  | 0  |                     meth->field_encode(group, point->Z, point->Z, ctx))  | 
422  | 0  |                     goto err;  | 
423  | 0  |             }  | 
424  | 12.3k  |         }  | 
425  | 30.4k  |         point->Z_is_one = Z_is_one;  | 
426  | 30.4k  |     }  | 
427  |  |  | 
428  | 30.4k  |     ret = 1;  | 
429  |  |  | 
430  | 30.4k  |  err:  | 
431  | 30.4k  |     BN_CTX_free(new_ctx);  | 
432  | 30.4k  |     return ret;  | 
433  | 30.4k  | }  | 
434  |  |  | 
435  |  | int ossl_ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,  | 
436  |  |                                                        const EC_POINT *point,  | 
437  |  |                                                        BIGNUM *x, BIGNUM *y,  | 
438  |  |                                                        BIGNUM *z, BN_CTX *ctx)  | 
439  | 0  | { | 
440  | 0  |     BN_CTX *new_ctx = NULL;  | 
441  | 0  |     int ret = 0;  | 
442  |  | 
  | 
443  | 0  |     if (group->meth->field_decode != NULL) { | 
444  | 0  |         if (ctx == NULL) { | 
445  | 0  |             ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
446  | 0  |             if (ctx == NULL)  | 
447  | 0  |                 return 0;  | 
448  | 0  |         }  | 
449  |  |  | 
450  | 0  |         if (x != NULL) { | 
451  | 0  |             if (!group->meth->field_decode(group, x, point->X, ctx))  | 
452  | 0  |                 goto err;  | 
453  | 0  |         }  | 
454  | 0  |         if (y != NULL) { | 
455  | 0  |             if (!group->meth->field_decode(group, y, point->Y, ctx))  | 
456  | 0  |                 goto err;  | 
457  | 0  |         }  | 
458  | 0  |         if (z != NULL) { | 
459  | 0  |             if (!group->meth->field_decode(group, z, point->Z, ctx))  | 
460  | 0  |                 goto err;  | 
461  | 0  |         }  | 
462  | 0  |     } else { | 
463  | 0  |         if (x != NULL) { | 
464  | 0  |             if (!BN_copy(x, point->X))  | 
465  | 0  |                 goto err;  | 
466  | 0  |         }  | 
467  | 0  |         if (y != NULL) { | 
468  | 0  |             if (!BN_copy(y, point->Y))  | 
469  | 0  |                 goto err;  | 
470  | 0  |         }  | 
471  | 0  |         if (z != NULL) { | 
472  | 0  |             if (!BN_copy(z, point->Z))  | 
473  | 0  |                 goto err;  | 
474  | 0  |         }  | 
475  | 0  |     }  | 
476  |  |  | 
477  | 0  |     ret = 1;  | 
478  |  | 
  | 
479  | 0  |  err:  | 
480  | 0  |     BN_CTX_free(new_ctx);  | 
481  | 0  |     return ret;  | 
482  | 0  | }  | 
483  |  |  | 
484  |  | int ossl_ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,  | 
485  |  |                                                     EC_POINT *point,  | 
486  |  |                                                     const BIGNUM *x,  | 
487  |  |                                                     const BIGNUM *y, BN_CTX *ctx)  | 
488  | 30.4k  | { | 
489  | 30.4k  |     if (x == NULL || y == NULL) { | 
490  |  |         /*  | 
491  |  |          * unlike for projective coordinates, we do not tolerate this  | 
492  |  |          */  | 
493  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);  | 
494  | 0  |         return 0;  | 
495  | 0  |     }  | 
496  |  |  | 
497  | 30.4k  |     return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,  | 
498  | 30.4k  |                                                     BN_value_one(), ctx);  | 
499  | 30.4k  | }  | 
500  |  |  | 
501  |  | int ossl_ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,  | 
502  |  |                                                     const EC_POINT *point,  | 
503  |  |                                                     BIGNUM *x, BIGNUM *y,  | 
504  |  |                                                     BN_CTX *ctx)  | 
505  | 0  | { | 
506  | 0  |     BN_CTX *new_ctx = NULL;  | 
507  | 0  |     BIGNUM *Z, *Z_1, *Z_2, *Z_3;  | 
508  | 0  |     const BIGNUM *Z_;  | 
509  | 0  |     int ret = 0;  | 
510  |  | 
  | 
511  | 0  |     if (EC_POINT_is_at_infinity(group, point)) { | 
512  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);  | 
513  | 0  |         return 0;  | 
514  | 0  |     }  | 
515  |  |  | 
516  | 0  |     if (ctx == NULL) { | 
517  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
518  | 0  |         if (ctx == NULL)  | 
519  | 0  |             return 0;  | 
520  | 0  |     }  | 
521  |  |  | 
522  | 0  |     BN_CTX_start(ctx);  | 
523  | 0  |     Z = BN_CTX_get(ctx);  | 
524  | 0  |     Z_1 = BN_CTX_get(ctx);  | 
525  | 0  |     Z_2 = BN_CTX_get(ctx);  | 
526  | 0  |     Z_3 = BN_CTX_get(ctx);  | 
527  | 0  |     if (Z_3 == NULL)  | 
528  | 0  |         goto err;  | 
529  |  |  | 
530  |  |     /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */  | 
531  |  |  | 
532  | 0  |     if (group->meth->field_decode != NULL) { | 
533  | 0  |         if (!group->meth->field_decode(group, Z, point->Z, ctx))  | 
534  | 0  |             goto err;  | 
535  | 0  |         Z_ = Z;  | 
536  | 0  |     } else { | 
537  | 0  |         Z_ = point->Z;  | 
538  | 0  |     }  | 
539  |  |  | 
540  | 0  |     if (BN_is_one(Z_)) { | 
541  | 0  |         if (group->meth->field_decode != NULL) { | 
542  | 0  |             if (x != NULL) { | 
543  | 0  |                 if (!group->meth->field_decode(group, x, point->X, ctx))  | 
544  | 0  |                     goto err;  | 
545  | 0  |             }  | 
546  | 0  |             if (y != NULL) { | 
547  | 0  |                 if (!group->meth->field_decode(group, y, point->Y, ctx))  | 
548  | 0  |                     goto err;  | 
549  | 0  |             }  | 
550  | 0  |         } else { | 
551  | 0  |             if (x != NULL) { | 
552  | 0  |                 if (!BN_copy(x, point->X))  | 
553  | 0  |                     goto err;  | 
554  | 0  |             }  | 
555  | 0  |             if (y != NULL) { | 
556  | 0  |                 if (!BN_copy(y, point->Y))  | 
557  | 0  |                     goto err;  | 
558  | 0  |             }  | 
559  | 0  |         }  | 
560  | 0  |     } else { | 
561  | 0  |         if (!group->meth->field_inv(group, Z_1, Z_, ctx)) { | 
562  | 0  |             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
563  | 0  |             goto err;  | 
564  | 0  |         }  | 
565  |  |  | 
566  | 0  |         if (group->meth->field_encode == NULL) { | 
567  |  |             /* field_sqr works on standard representation */  | 
568  | 0  |             if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))  | 
569  | 0  |                 goto err;  | 
570  | 0  |         } else { | 
571  | 0  |             if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))  | 
572  | 0  |                 goto err;  | 
573  | 0  |         }  | 
574  |  |  | 
575  | 0  |         if (x != NULL) { | 
576  |  |             /*  | 
577  |  |              * in the Montgomery case, field_mul will cancel out Montgomery  | 
578  |  |              * factor in X:  | 
579  |  |              */  | 
580  | 0  |             if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))  | 
581  | 0  |                 goto err;  | 
582  | 0  |         }  | 
583  |  |  | 
584  | 0  |         if (y != NULL) { | 
585  | 0  |             if (group->meth->field_encode == NULL) { | 
586  |  |                 /*  | 
587  |  |                  * field_mul works on standard representation  | 
588  |  |                  */  | 
589  | 0  |                 if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))  | 
590  | 0  |                     goto err;  | 
591  | 0  |             } else { | 
592  | 0  |                 if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))  | 
593  | 0  |                     goto err;  | 
594  | 0  |             }  | 
595  |  |  | 
596  |  |             /*  | 
597  |  |              * in the Montgomery case, field_mul will cancel out Montgomery  | 
598  |  |              * factor in Y:  | 
599  |  |              */  | 
600  | 0  |             if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))  | 
601  | 0  |                 goto err;  | 
602  | 0  |         }  | 
603  | 0  |     }  | 
604  |  |  | 
605  | 0  |     ret = 1;  | 
606  |  | 
  | 
607  | 0  |  err:  | 
608  | 0  |     BN_CTX_end(ctx);  | 
609  | 0  |     BN_CTX_free(new_ctx);  | 
610  | 0  |     return ret;  | 
611  | 0  | }  | 
612  |  |  | 
613  |  | int ossl_ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,  | 
614  |  |                            const EC_POINT *b, BN_CTX *ctx)  | 
615  | 0  | { | 
616  | 0  |     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,  | 
617  | 0  |                       const BIGNUM *, BN_CTX *);  | 
618  | 0  |     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);  | 
619  | 0  |     const BIGNUM *p;  | 
620  | 0  |     BN_CTX *new_ctx = NULL;  | 
621  | 0  |     BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;  | 
622  | 0  |     int ret = 0;  | 
623  |  | 
  | 
624  | 0  |     if (a == b)  | 
625  | 0  |         return EC_POINT_dbl(group, r, a, ctx);  | 
626  | 0  |     if (EC_POINT_is_at_infinity(group, a))  | 
627  | 0  |         return EC_POINT_copy(r, b);  | 
628  | 0  |     if (EC_POINT_is_at_infinity(group, b))  | 
629  | 0  |         return EC_POINT_copy(r, a);  | 
630  |  |  | 
631  | 0  |     field_mul = group->meth->field_mul;  | 
632  | 0  |     field_sqr = group->meth->field_sqr;  | 
633  | 0  |     p = group->field;  | 
634  |  | 
  | 
635  | 0  |     if (ctx == NULL) { | 
636  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
637  | 0  |         if (ctx == NULL)  | 
638  | 0  |             return 0;  | 
639  | 0  |     }  | 
640  |  |  | 
641  | 0  |     BN_CTX_start(ctx);  | 
642  | 0  |     n0 = BN_CTX_get(ctx);  | 
643  | 0  |     n1 = BN_CTX_get(ctx);  | 
644  | 0  |     n2 = BN_CTX_get(ctx);  | 
645  | 0  |     n3 = BN_CTX_get(ctx);  | 
646  | 0  |     n4 = BN_CTX_get(ctx);  | 
647  | 0  |     n5 = BN_CTX_get(ctx);  | 
648  | 0  |     n6 = BN_CTX_get(ctx);  | 
649  | 0  |     if (n6 == NULL)  | 
650  | 0  |         goto end;  | 
651  |  |  | 
652  |  |     /*  | 
653  |  |      * Note that in this function we must not read components of 'a' or 'b'  | 
654  |  |      * once we have written the corresponding components of 'r'. ('r' might | 
655  |  |      * be one of 'a' or 'b'.)  | 
656  |  |      */  | 
657  |  |  | 
658  |  |     /* n1, n2 */  | 
659  | 0  |     if (b->Z_is_one) { | 
660  | 0  |         if (!BN_copy(n1, a->X))  | 
661  | 0  |             goto end;  | 
662  | 0  |         if (!BN_copy(n2, a->Y))  | 
663  | 0  |             goto end;  | 
664  |  |         /* n1 = X_a */  | 
665  |  |         /* n2 = Y_a */  | 
666  | 0  |     } else { | 
667  | 0  |         if (!field_sqr(group, n0, b->Z, ctx))  | 
668  | 0  |             goto end;  | 
669  | 0  |         if (!field_mul(group, n1, a->X, n0, ctx))  | 
670  | 0  |             goto end;  | 
671  |  |         /* n1 = X_a * Z_b^2 */  | 
672  |  |  | 
673  | 0  |         if (!field_mul(group, n0, n0, b->Z, ctx))  | 
674  | 0  |             goto end;  | 
675  | 0  |         if (!field_mul(group, n2, a->Y, n0, ctx))  | 
676  | 0  |             goto end;  | 
677  |  |         /* n2 = Y_a * Z_b^3 */  | 
678  | 0  |     }  | 
679  |  |  | 
680  |  |     /* n3, n4 */  | 
681  | 0  |     if (a->Z_is_one) { | 
682  | 0  |         if (!BN_copy(n3, b->X))  | 
683  | 0  |             goto end;  | 
684  | 0  |         if (!BN_copy(n4, b->Y))  | 
685  | 0  |             goto end;  | 
686  |  |         /* n3 = X_b */  | 
687  |  |         /* n4 = Y_b */  | 
688  | 0  |     } else { | 
689  | 0  |         if (!field_sqr(group, n0, a->Z, ctx))  | 
690  | 0  |             goto end;  | 
691  | 0  |         if (!field_mul(group, n3, b->X, n0, ctx))  | 
692  | 0  |             goto end;  | 
693  |  |         /* n3 = X_b * Z_a^2 */  | 
694  |  |  | 
695  | 0  |         if (!field_mul(group, n0, n0, a->Z, ctx))  | 
696  | 0  |             goto end;  | 
697  | 0  |         if (!field_mul(group, n4, b->Y, n0, ctx))  | 
698  | 0  |             goto end;  | 
699  |  |         /* n4 = Y_b * Z_a^3 */  | 
700  | 0  |     }  | 
701  |  |  | 
702  |  |     /* n5, n6 */  | 
703  | 0  |     if (!BN_mod_sub_quick(n5, n1, n3, p))  | 
704  | 0  |         goto end;  | 
705  | 0  |     if (!BN_mod_sub_quick(n6, n2, n4, p))  | 
706  | 0  |         goto end;  | 
707  |  |     /* n5 = n1 - n3 */  | 
708  |  |     /* n6 = n2 - n4 */  | 
709  |  |  | 
710  | 0  |     if (BN_is_zero(n5)) { | 
711  | 0  |         if (BN_is_zero(n6)) { | 
712  |  |             /* a is the same point as b */  | 
713  | 0  |             BN_CTX_end(ctx);  | 
714  | 0  |             ret = EC_POINT_dbl(group, r, a, ctx);  | 
715  | 0  |             ctx = NULL;  | 
716  | 0  |             goto end;  | 
717  | 0  |         } else { | 
718  |  |             /* a is the inverse of b */  | 
719  | 0  |             BN_zero(r->Z);  | 
720  | 0  |             r->Z_is_one = 0;  | 
721  | 0  |             ret = 1;  | 
722  | 0  |             goto end;  | 
723  | 0  |         }  | 
724  | 0  |     }  | 
725  |  |  | 
726  |  |     /* 'n7', 'n8' */  | 
727  | 0  |     if (!BN_mod_add_quick(n1, n1, n3, p))  | 
728  | 0  |         goto end;  | 
729  | 0  |     if (!BN_mod_add_quick(n2, n2, n4, p))  | 
730  | 0  |         goto end;  | 
731  |  |     /* 'n7' = n1 + n3 */  | 
732  |  |     /* 'n8' = n2 + n4 */  | 
733  |  |  | 
734  |  |     /* Z_r */  | 
735  | 0  |     if (a->Z_is_one && b->Z_is_one) { | 
736  | 0  |         if (!BN_copy(r->Z, n5))  | 
737  | 0  |             goto end;  | 
738  | 0  |     } else { | 
739  | 0  |         if (a->Z_is_one) { | 
740  | 0  |             if (!BN_copy(n0, b->Z))  | 
741  | 0  |                 goto end;  | 
742  | 0  |         } else if (b->Z_is_one) { | 
743  | 0  |             if (!BN_copy(n0, a->Z))  | 
744  | 0  |                 goto end;  | 
745  | 0  |         } else { | 
746  | 0  |             if (!field_mul(group, n0, a->Z, b->Z, ctx))  | 
747  | 0  |                 goto end;  | 
748  | 0  |         }  | 
749  | 0  |         if (!field_mul(group, r->Z, n0, n5, ctx))  | 
750  | 0  |             goto end;  | 
751  | 0  |     }  | 
752  | 0  |     r->Z_is_one = 0;  | 
753  |  |     /* Z_r = Z_a * Z_b * n5 */  | 
754  |  |  | 
755  |  |     /* X_r */  | 
756  | 0  |     if (!field_sqr(group, n0, n6, ctx))  | 
757  | 0  |         goto end;  | 
758  | 0  |     if (!field_sqr(group, n4, n5, ctx))  | 
759  | 0  |         goto end;  | 
760  | 0  |     if (!field_mul(group, n3, n1, n4, ctx))  | 
761  | 0  |         goto end;  | 
762  | 0  |     if (!BN_mod_sub_quick(r->X, n0, n3, p))  | 
763  | 0  |         goto end;  | 
764  |  |     /* X_r = n6^2 - n5^2 * 'n7' */  | 
765  |  |  | 
766  |  |     /* 'n9' */  | 
767  | 0  |     if (!BN_mod_lshift1_quick(n0, r->X, p))  | 
768  | 0  |         goto end;  | 
769  | 0  |     if (!BN_mod_sub_quick(n0, n3, n0, p))  | 
770  | 0  |         goto end;  | 
771  |  |     /* n9 = n5^2 * 'n7' - 2 * X_r */  | 
772  |  |  | 
773  |  |     /* Y_r */  | 
774  | 0  |     if (!field_mul(group, n0, n0, n6, ctx))  | 
775  | 0  |         goto end;  | 
776  | 0  |     if (!field_mul(group, n5, n4, n5, ctx))  | 
777  | 0  |         goto end;               /* now n5 is n5^3 */  | 
778  | 0  |     if (!field_mul(group, n1, n2, n5, ctx))  | 
779  | 0  |         goto end;  | 
780  | 0  |     if (!BN_mod_sub_quick(n0, n0, n1, p))  | 
781  | 0  |         goto end;  | 
782  | 0  |     if (BN_is_odd(n0))  | 
783  | 0  |         if (!BN_add(n0, n0, p))  | 
784  | 0  |             goto end;  | 
785  |  |     /* now  0 <= n0 < 2*p,  and n0 is even */  | 
786  | 0  |     if (!BN_rshift1(r->Y, n0))  | 
787  | 0  |         goto end;  | 
788  |  |     /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */  | 
789  |  |  | 
790  | 0  |     ret = 1;  | 
791  |  | 
  | 
792  | 0  |  end:  | 
793  | 0  |     BN_CTX_end(ctx);  | 
794  | 0  |     BN_CTX_free(new_ctx);  | 
795  | 0  |     return ret;  | 
796  | 0  | }  | 
797  |  |  | 
798  |  | int ossl_ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,  | 
799  |  |                            BN_CTX *ctx)  | 
800  | 0  | { | 
801  | 0  |     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,  | 
802  | 0  |                       const BIGNUM *, BN_CTX *);  | 
803  | 0  |     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);  | 
804  | 0  |     const BIGNUM *p;  | 
805  | 0  |     BN_CTX *new_ctx = NULL;  | 
806  | 0  |     BIGNUM *n0, *n1, *n2, *n3;  | 
807  | 0  |     int ret = 0;  | 
808  |  | 
  | 
809  | 0  |     if (EC_POINT_is_at_infinity(group, a)) { | 
810  | 0  |         BN_zero(r->Z);  | 
811  | 0  |         r->Z_is_one = 0;  | 
812  | 0  |         return 1;  | 
813  | 0  |     }  | 
814  |  |  | 
815  | 0  |     field_mul = group->meth->field_mul;  | 
816  | 0  |     field_sqr = group->meth->field_sqr;  | 
817  | 0  |     p = group->field;  | 
818  |  | 
  | 
819  | 0  |     if (ctx == NULL) { | 
820  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
821  | 0  |         if (ctx == NULL)  | 
822  | 0  |             return 0;  | 
823  | 0  |     }  | 
824  |  |  | 
825  | 0  |     BN_CTX_start(ctx);  | 
826  | 0  |     n0 = BN_CTX_get(ctx);  | 
827  | 0  |     n1 = BN_CTX_get(ctx);  | 
828  | 0  |     n2 = BN_CTX_get(ctx);  | 
829  | 0  |     n3 = BN_CTX_get(ctx);  | 
830  | 0  |     if (n3 == NULL)  | 
831  | 0  |         goto err;  | 
832  |  |  | 
833  |  |     /*  | 
834  |  |      * Note that in this function we must not read components of 'a' once we  | 
835  |  |      * have written the corresponding components of 'r'. ('r' might the same | 
836  |  |      * as 'a'.)  | 
837  |  |      */  | 
838  |  |  | 
839  |  |     /* n1 */  | 
840  | 0  |     if (a->Z_is_one) { | 
841  | 0  |         if (!field_sqr(group, n0, a->X, ctx))  | 
842  | 0  |             goto err;  | 
843  | 0  |         if (!BN_mod_lshift1_quick(n1, n0, p))  | 
844  | 0  |             goto err;  | 
845  | 0  |         if (!BN_mod_add_quick(n0, n0, n1, p))  | 
846  | 0  |             goto err;  | 
847  | 0  |         if (!BN_mod_add_quick(n1, n0, group->a, p))  | 
848  | 0  |             goto err;  | 
849  |  |         /* n1 = 3 * X_a^2 + a_curve */  | 
850  | 0  |     } else if (group->a_is_minus3) { | 
851  | 0  |         if (!field_sqr(group, n1, a->Z, ctx))  | 
852  | 0  |             goto err;  | 
853  | 0  |         if (!BN_mod_add_quick(n0, a->X, n1, p))  | 
854  | 0  |             goto err;  | 
855  | 0  |         if (!BN_mod_sub_quick(n2, a->X, n1, p))  | 
856  | 0  |             goto err;  | 
857  | 0  |         if (!field_mul(group, n1, n0, n2, ctx))  | 
858  | 0  |             goto err;  | 
859  | 0  |         if (!BN_mod_lshift1_quick(n0, n1, p))  | 
860  | 0  |             goto err;  | 
861  | 0  |         if (!BN_mod_add_quick(n1, n0, n1, p))  | 
862  | 0  |             goto err;  | 
863  |  |         /*-  | 
864  |  |          * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)  | 
865  |  |          *    = 3 * X_a^2 - 3 * Z_a^4  | 
866  |  |          */  | 
867  | 0  |     } else { | 
868  | 0  |         if (!field_sqr(group, n0, a->X, ctx))  | 
869  | 0  |             goto err;  | 
870  | 0  |         if (!BN_mod_lshift1_quick(n1, n0, p))  | 
871  | 0  |             goto err;  | 
872  | 0  |         if (!BN_mod_add_quick(n0, n0, n1, p))  | 
873  | 0  |             goto err;  | 
874  | 0  |         if (!field_sqr(group, n1, a->Z, ctx))  | 
875  | 0  |             goto err;  | 
876  | 0  |         if (!field_sqr(group, n1, n1, ctx))  | 
877  | 0  |             goto err;  | 
878  | 0  |         if (!field_mul(group, n1, n1, group->a, ctx))  | 
879  | 0  |             goto err;  | 
880  | 0  |         if (!BN_mod_add_quick(n1, n1, n0, p))  | 
881  | 0  |             goto err;  | 
882  |  |         /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */  | 
883  | 0  |     }  | 
884  |  |  | 
885  |  |     /* Z_r */  | 
886  | 0  |     if (a->Z_is_one) { | 
887  | 0  |         if (!BN_copy(n0, a->Y))  | 
888  | 0  |             goto err;  | 
889  | 0  |     } else { | 
890  | 0  |         if (!field_mul(group, n0, a->Y, a->Z, ctx))  | 
891  | 0  |             goto err;  | 
892  | 0  |     }  | 
893  | 0  |     if (!BN_mod_lshift1_quick(r->Z, n0, p))  | 
894  | 0  |         goto err;  | 
895  | 0  |     r->Z_is_one = 0;  | 
896  |  |     /* Z_r = 2 * Y_a * Z_a */  | 
897  |  |  | 
898  |  |     /* n2 */  | 
899  | 0  |     if (!field_sqr(group, n3, a->Y, ctx))  | 
900  | 0  |         goto err;  | 
901  | 0  |     if (!field_mul(group, n2, a->X, n3, ctx))  | 
902  | 0  |         goto err;  | 
903  | 0  |     if (!BN_mod_lshift_quick(n2, n2, 2, p))  | 
904  | 0  |         goto err;  | 
905  |  |     /* n2 = 4 * X_a * Y_a^2 */  | 
906  |  |  | 
907  |  |     /* X_r */  | 
908  | 0  |     if (!BN_mod_lshift1_quick(n0, n2, p))  | 
909  | 0  |         goto err;  | 
910  | 0  |     if (!field_sqr(group, r->X, n1, ctx))  | 
911  | 0  |         goto err;  | 
912  | 0  |     if (!BN_mod_sub_quick(r->X, r->X, n0, p))  | 
913  | 0  |         goto err;  | 
914  |  |     /* X_r = n1^2 - 2 * n2 */  | 
915  |  |  | 
916  |  |     /* n3 */  | 
917  | 0  |     if (!field_sqr(group, n0, n3, ctx))  | 
918  | 0  |         goto err;  | 
919  | 0  |     if (!BN_mod_lshift_quick(n3, n0, 3, p))  | 
920  | 0  |         goto err;  | 
921  |  |     /* n3 = 8 * Y_a^4 */  | 
922  |  |  | 
923  |  |     /* Y_r */  | 
924  | 0  |     if (!BN_mod_sub_quick(n0, n2, r->X, p))  | 
925  | 0  |         goto err;  | 
926  | 0  |     if (!field_mul(group, n0, n1, n0, ctx))  | 
927  | 0  |         goto err;  | 
928  | 0  |     if (!BN_mod_sub_quick(r->Y, n0, n3, p))  | 
929  | 0  |         goto err;  | 
930  |  |     /* Y_r = n1 * (n2 - X_r) - n3 */  | 
931  |  |  | 
932  | 0  |     ret = 1;  | 
933  |  | 
  | 
934  | 0  |  err:  | 
935  | 0  |     BN_CTX_end(ctx);  | 
936  | 0  |     BN_CTX_free(new_ctx);  | 
937  | 0  |     return ret;  | 
938  | 0  | }  | 
939  |  |  | 
940  |  | int ossl_ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point,  | 
941  |  |                               BN_CTX *ctx)  | 
942  | 0  | { | 
943  | 0  |     if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))  | 
944  |  |         /* point is its own inverse */  | 
945  | 0  |         return 1;  | 
946  |  |  | 
947  | 0  |     return BN_usub(point->Y, group->field, point->Y);  | 
948  | 0  | }  | 
949  |  |  | 
950  |  | int ossl_ec_GFp_simple_is_at_infinity(const EC_GROUP *group,  | 
951  |  |                                       const EC_POINT *point)  | 
952  | 30.4k  | { | 
953  | 30.4k  |     return BN_is_zero(point->Z);  | 
954  | 30.4k  | }  | 
955  |  |  | 
956  |  | int ossl_ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,  | 
957  |  |                                    BN_CTX *ctx)  | 
958  | 30.4k  | { | 
959  | 30.4k  |     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,  | 
960  | 30.4k  |                       const BIGNUM *, BN_CTX *);  | 
961  | 30.4k  |     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);  | 
962  | 30.4k  |     const BIGNUM *p;  | 
963  | 30.4k  |     BN_CTX *new_ctx = NULL;  | 
964  | 30.4k  |     BIGNUM *rh, *tmp, *Z4, *Z6;  | 
965  | 30.4k  |     int ret = -1;  | 
966  |  |  | 
967  | 30.4k  |     if (EC_POINT_is_at_infinity(group, point))  | 
968  | 0  |         return 1;  | 
969  |  |  | 
970  | 30.4k  |     field_mul = group->meth->field_mul;  | 
971  | 30.4k  |     field_sqr = group->meth->field_sqr;  | 
972  | 30.4k  |     p = group->field;  | 
973  |  |  | 
974  | 30.4k  |     if (ctx == NULL) { | 
975  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
976  | 0  |         if (ctx == NULL)  | 
977  | 0  |             return -1;  | 
978  | 0  |     }  | 
979  |  |  | 
980  | 30.4k  |     BN_CTX_start(ctx);  | 
981  | 30.4k  |     rh = BN_CTX_get(ctx);  | 
982  | 30.4k  |     tmp = BN_CTX_get(ctx);  | 
983  | 30.4k  |     Z4 = BN_CTX_get(ctx);  | 
984  | 30.4k  |     Z6 = BN_CTX_get(ctx);  | 
985  | 30.4k  |     if (Z6 == NULL)  | 
986  | 0  |         goto err;  | 
987  |  |  | 
988  |  |     /*-  | 
989  |  |      * We have a curve defined by a Weierstrass equation  | 
990  |  |      *      y^2 = x^3 + a*x + b.  | 
991  |  |      * The point to consider is given in Jacobian projective coordinates  | 
992  |  |      * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).  | 
993  |  |      * Substituting this and multiplying by  Z^6  transforms the above equation into  | 
994  |  |      *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.  | 
995  |  |      * To test this, we add up the right-hand side in 'rh'.  | 
996  |  |      */  | 
997  |  |  | 
998  |  |     /* rh := X^2 */  | 
999  | 30.4k  |     if (!field_sqr(group, rh, point->X, ctx))  | 
1000  | 0  |         goto err;  | 
1001  |  |  | 
1002  | 30.4k  |     if (!point->Z_is_one) { | 
1003  | 0  |         if (!field_sqr(group, tmp, point->Z, ctx))  | 
1004  | 0  |             goto err;  | 
1005  | 0  |         if (!field_sqr(group, Z4, tmp, ctx))  | 
1006  | 0  |             goto err;  | 
1007  | 0  |         if (!field_mul(group, Z6, Z4, tmp, ctx))  | 
1008  | 0  |             goto err;  | 
1009  |  |  | 
1010  |  |         /* rh := (rh + a*Z^4)*X */  | 
1011  | 0  |         if (group->a_is_minus3) { | 
1012  | 0  |             if (!BN_mod_lshift1_quick(tmp, Z4, p))  | 
1013  | 0  |                 goto err;  | 
1014  | 0  |             if (!BN_mod_add_quick(tmp, tmp, Z4, p))  | 
1015  | 0  |                 goto err;  | 
1016  | 0  |             if (!BN_mod_sub_quick(rh, rh, tmp, p))  | 
1017  | 0  |                 goto err;  | 
1018  | 0  |             if (!field_mul(group, rh, rh, point->X, ctx))  | 
1019  | 0  |                 goto err;  | 
1020  | 0  |         } else { | 
1021  | 0  |             if (!field_mul(group, tmp, Z4, group->a, ctx))  | 
1022  | 0  |                 goto err;  | 
1023  | 0  |             if (!BN_mod_add_quick(rh, rh, tmp, p))  | 
1024  | 0  |                 goto err;  | 
1025  | 0  |             if (!field_mul(group, rh, rh, point->X, ctx))  | 
1026  | 0  |                 goto err;  | 
1027  | 0  |         }  | 
1028  |  |  | 
1029  |  |         /* rh := rh + b*Z^6 */  | 
1030  | 0  |         if (!field_mul(group, tmp, group->b, Z6, ctx))  | 
1031  | 0  |             goto err;  | 
1032  | 0  |         if (!BN_mod_add_quick(rh, rh, tmp, p))  | 
1033  | 0  |             goto err;  | 
1034  | 30.4k  |     } else { | 
1035  |  |         /* point->Z_is_one */  | 
1036  |  |  | 
1037  |  |         /* rh := (rh + a)*X */  | 
1038  | 30.4k  |         if (!BN_mod_add_quick(rh, rh, group->a, p))  | 
1039  | 0  |             goto err;  | 
1040  | 30.4k  |         if (!field_mul(group, rh, rh, point->X, ctx))  | 
1041  | 0  |             goto err;  | 
1042  |  |         /* rh := rh + b */  | 
1043  | 30.4k  |         if (!BN_mod_add_quick(rh, rh, group->b, p))  | 
1044  | 0  |             goto err;  | 
1045  | 30.4k  |     }  | 
1046  |  |  | 
1047  |  |     /* 'lh' := Y^2 */  | 
1048  | 30.4k  |     if (!field_sqr(group, tmp, point->Y, ctx))  | 
1049  | 0  |         goto err;  | 
1050  |  |  | 
1051  | 30.4k  |     ret = (0 == BN_ucmp(tmp, rh));  | 
1052  |  |  | 
1053  | 30.4k  |  err:  | 
1054  | 30.4k  |     BN_CTX_end(ctx);  | 
1055  | 30.4k  |     BN_CTX_free(new_ctx);  | 
1056  | 30.4k  |     return ret;  | 
1057  | 30.4k  | }  | 
1058  |  |  | 
1059  |  | int ossl_ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,  | 
1060  |  |                            const EC_POINT *b, BN_CTX *ctx)  | 
1061  | 0  | { | 
1062  |  |     /*-  | 
1063  |  |      * return values:  | 
1064  |  |      *  -1   error  | 
1065  |  |      *   0   equal (in affine coordinates)  | 
1066  |  |      *   1   not equal  | 
1067  |  |      */  | 
1068  |  | 
  | 
1069  | 0  |     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,  | 
1070  | 0  |                       const BIGNUM *, BN_CTX *);  | 
1071  | 0  |     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);  | 
1072  | 0  |     BN_CTX *new_ctx = NULL;  | 
1073  | 0  |     BIGNUM *tmp1, *tmp2, *Za23, *Zb23;  | 
1074  | 0  |     const BIGNUM *tmp1_, *tmp2_;  | 
1075  | 0  |     int ret = -1;  | 
1076  |  | 
  | 
1077  | 0  |     if (EC_POINT_is_at_infinity(group, a)) { | 
1078  | 0  |         return EC_POINT_is_at_infinity(group, b) ? 0 : 1;  | 
1079  | 0  |     }  | 
1080  |  |  | 
1081  | 0  |     if (EC_POINT_is_at_infinity(group, b))  | 
1082  | 0  |         return 1;  | 
1083  |  |  | 
1084  | 0  |     if (a->Z_is_one && b->Z_is_one) { | 
1085  | 0  |         return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;  | 
1086  | 0  |     }  | 
1087  |  |  | 
1088  | 0  |     field_mul = group->meth->field_mul;  | 
1089  | 0  |     field_sqr = group->meth->field_sqr;  | 
1090  |  | 
  | 
1091  | 0  |     if (ctx == NULL) { | 
1092  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
1093  | 0  |         if (ctx == NULL)  | 
1094  | 0  |             return -1;  | 
1095  | 0  |     }  | 
1096  |  |  | 
1097  | 0  |     BN_CTX_start(ctx);  | 
1098  | 0  |     tmp1 = BN_CTX_get(ctx);  | 
1099  | 0  |     tmp2 = BN_CTX_get(ctx);  | 
1100  | 0  |     Za23 = BN_CTX_get(ctx);  | 
1101  | 0  |     Zb23 = BN_CTX_get(ctx);  | 
1102  | 0  |     if (Zb23 == NULL)  | 
1103  | 0  |         goto end;  | 
1104  |  |  | 
1105  |  |     /*-  | 
1106  |  |      * We have to decide whether  | 
1107  |  |      *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),  | 
1108  |  |      * or equivalently, whether  | 
1109  |  |      *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).  | 
1110  |  |      */  | 
1111  |  |  | 
1112  | 0  |     if (!b->Z_is_one) { | 
1113  | 0  |         if (!field_sqr(group, Zb23, b->Z, ctx))  | 
1114  | 0  |             goto end;  | 
1115  | 0  |         if (!field_mul(group, tmp1, a->X, Zb23, ctx))  | 
1116  | 0  |             goto end;  | 
1117  | 0  |         tmp1_ = tmp1;  | 
1118  | 0  |     } else  | 
1119  | 0  |         tmp1_ = a->X;  | 
1120  | 0  |     if (!a->Z_is_one) { | 
1121  | 0  |         if (!field_sqr(group, Za23, a->Z, ctx))  | 
1122  | 0  |             goto end;  | 
1123  | 0  |         if (!field_mul(group, tmp2, b->X, Za23, ctx))  | 
1124  | 0  |             goto end;  | 
1125  | 0  |         tmp2_ = tmp2;  | 
1126  | 0  |     } else  | 
1127  | 0  |         tmp2_ = b->X;  | 
1128  |  |  | 
1129  |  |     /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */  | 
1130  | 0  |     if (BN_cmp(tmp1_, tmp2_) != 0) { | 
1131  | 0  |         ret = 1;                /* points differ */  | 
1132  | 0  |         goto end;  | 
1133  | 0  |     }  | 
1134  |  |  | 
1135  | 0  |     if (!b->Z_is_one) { | 
1136  | 0  |         if (!field_mul(group, Zb23, Zb23, b->Z, ctx))  | 
1137  | 0  |             goto end;  | 
1138  | 0  |         if (!field_mul(group, tmp1, a->Y, Zb23, ctx))  | 
1139  | 0  |             goto end;  | 
1140  |  |         /* tmp1_ = tmp1 */  | 
1141  | 0  |     } else  | 
1142  | 0  |         tmp1_ = a->Y;  | 
1143  | 0  |     if (!a->Z_is_one) { | 
1144  | 0  |         if (!field_mul(group, Za23, Za23, a->Z, ctx))  | 
1145  | 0  |             goto end;  | 
1146  | 0  |         if (!field_mul(group, tmp2, b->Y, Za23, ctx))  | 
1147  | 0  |             goto end;  | 
1148  |  |         /* tmp2_ = tmp2 */  | 
1149  | 0  |     } else  | 
1150  | 0  |         tmp2_ = b->Y;  | 
1151  |  |  | 
1152  |  |     /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */  | 
1153  | 0  |     if (BN_cmp(tmp1_, tmp2_) != 0) { | 
1154  | 0  |         ret = 1;                /* points differ */  | 
1155  | 0  |         goto end;  | 
1156  | 0  |     }  | 
1157  |  |  | 
1158  |  |     /* points are equal */  | 
1159  | 0  |     ret = 0;  | 
1160  |  | 
  | 
1161  | 0  |  end:  | 
1162  | 0  |     BN_CTX_end(ctx);  | 
1163  | 0  |     BN_CTX_free(new_ctx);  | 
1164  | 0  |     return ret;  | 
1165  | 0  | }  | 
1166  |  |  | 
1167  |  | int ossl_ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,  | 
1168  |  |                                    BN_CTX *ctx)  | 
1169  | 0  | { | 
1170  | 0  |     BN_CTX *new_ctx = NULL;  | 
1171  | 0  |     BIGNUM *x, *y;  | 
1172  | 0  |     int ret = 0;  | 
1173  |  | 
  | 
1174  | 0  |     if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))  | 
1175  | 0  |         return 1;  | 
1176  |  |  | 
1177  | 0  |     if (ctx == NULL) { | 
1178  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
1179  | 0  |         if (ctx == NULL)  | 
1180  | 0  |             return 0;  | 
1181  | 0  |     }  | 
1182  |  |  | 
1183  | 0  |     BN_CTX_start(ctx);  | 
1184  | 0  |     x = BN_CTX_get(ctx);  | 
1185  | 0  |     y = BN_CTX_get(ctx);  | 
1186  | 0  |     if (y == NULL)  | 
1187  | 0  |         goto err;  | 
1188  |  |  | 
1189  | 0  |     if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))  | 
1190  | 0  |         goto err;  | 
1191  | 0  |     if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))  | 
1192  | 0  |         goto err;  | 
1193  | 0  |     if (!point->Z_is_one) { | 
1194  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);  | 
1195  | 0  |         goto err;  | 
1196  | 0  |     }  | 
1197  |  |  | 
1198  | 0  |     ret = 1;  | 
1199  |  | 
  | 
1200  | 0  |  err:  | 
1201  | 0  |     BN_CTX_end(ctx);  | 
1202  | 0  |     BN_CTX_free(new_ctx);  | 
1203  | 0  |     return ret;  | 
1204  | 0  | }  | 
1205  |  |  | 
1206  |  | int ossl_ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,  | 
1207  |  |                                           EC_POINT *points[], BN_CTX *ctx)  | 
1208  | 0  | { | 
1209  | 0  |     BN_CTX *new_ctx = NULL;  | 
1210  | 0  |     BIGNUM *tmp, *tmp_Z;  | 
1211  | 0  |     BIGNUM **prod_Z = NULL;  | 
1212  | 0  |     size_t i;  | 
1213  | 0  |     int ret = 0;  | 
1214  |  | 
  | 
1215  | 0  |     if (num == 0)  | 
1216  | 0  |         return 1;  | 
1217  |  |  | 
1218  | 0  |     if (ctx == NULL) { | 
1219  | 0  |         ctx = new_ctx = BN_CTX_new_ex(group->libctx);  | 
1220  | 0  |         if (ctx == NULL)  | 
1221  | 0  |             return 0;  | 
1222  | 0  |     }  | 
1223  |  |  | 
1224  | 0  |     BN_CTX_start(ctx);  | 
1225  | 0  |     tmp = BN_CTX_get(ctx);  | 
1226  | 0  |     tmp_Z = BN_CTX_get(ctx);  | 
1227  | 0  |     if (tmp_Z == NULL)  | 
1228  | 0  |         goto err;  | 
1229  |  |  | 
1230  | 0  |     prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));  | 
1231  | 0  |     if (prod_Z == NULL)  | 
1232  | 0  |         goto err;  | 
1233  | 0  |     for (i = 0; i < num; i++) { | 
1234  | 0  |         prod_Z[i] = BN_new();  | 
1235  | 0  |         if (prod_Z[i] == NULL)  | 
1236  | 0  |             goto err;  | 
1237  | 0  |     }  | 
1238  |  |  | 
1239  |  |     /*  | 
1240  |  |      * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,  | 
1241  |  |      * skipping any zero-valued inputs (pretend that they're 1).  | 
1242  |  |      */  | 
1243  |  |  | 
1244  | 0  |     if (!BN_is_zero(points[0]->Z)) { | 
1245  | 0  |         if (!BN_copy(prod_Z[0], points[0]->Z))  | 
1246  | 0  |             goto err;  | 
1247  | 0  |     } else { | 
1248  | 0  |         if (group->meth->field_set_to_one != 0) { | 
1249  | 0  |             if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))  | 
1250  | 0  |                 goto err;  | 
1251  | 0  |         } else { | 
1252  | 0  |             if (!BN_one(prod_Z[0]))  | 
1253  | 0  |                 goto err;  | 
1254  | 0  |         }  | 
1255  | 0  |     }  | 
1256  |  |  | 
1257  | 0  |     for (i = 1; i < num; i++) { | 
1258  | 0  |         if (!BN_is_zero(points[i]->Z)) { | 
1259  | 0  |             if (!group->  | 
1260  | 0  |                 meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,  | 
1261  | 0  |                                 ctx))  | 
1262  | 0  |                 goto err;  | 
1263  | 0  |         } else { | 
1264  | 0  |             if (!BN_copy(prod_Z[i], prod_Z[i - 1]))  | 
1265  | 0  |                 goto err;  | 
1266  | 0  |         }  | 
1267  | 0  |     }  | 
1268  |  |  | 
1269  |  |     /*  | 
1270  |  |      * Now use a single explicit inversion to replace every non-zero  | 
1271  |  |      * points[i]->Z by its inverse.  | 
1272  |  |      */  | 
1273  |  |  | 
1274  | 0  |     if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) { | 
1275  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1276  | 0  |         goto err;  | 
1277  | 0  |     }  | 
1278  | 0  |     if (group->meth->field_encode != NULL) { | 
1279  |  |         /*  | 
1280  |  |          * In the Montgomery case, we just turned R*H (representing H) into  | 
1281  |  |          * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to  | 
1282  |  |          * multiply by the Montgomery factor twice.  | 
1283  |  |          */  | 
1284  | 0  |         if (!group->meth->field_encode(group, tmp, tmp, ctx))  | 
1285  | 0  |             goto err;  | 
1286  | 0  |         if (!group->meth->field_encode(group, tmp, tmp, ctx))  | 
1287  | 0  |             goto err;  | 
1288  | 0  |     }  | 
1289  |  |  | 
1290  | 0  |     for (i = num - 1; i > 0; --i) { | 
1291  |  |         /*  | 
1292  |  |          * Loop invariant: tmp is the product of the inverses of points[0]->Z  | 
1293  |  |          * .. points[i]->Z (zero-valued inputs skipped).  | 
1294  |  |          */  | 
1295  | 0  |         if (!BN_is_zero(points[i]->Z)) { | 
1296  |  |             /*  | 
1297  |  |              * Set tmp_Z to the inverse of points[i]->Z (as product of Z  | 
1298  |  |              * inverses 0 .. i, Z values 0 .. i - 1).  | 
1299  |  |              */  | 
1300  | 0  |             if (!group->  | 
1301  | 0  |                 meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))  | 
1302  | 0  |                 goto err;  | 
1303  |  |             /*  | 
1304  |  |              * Update tmp to satisfy the loop invariant for i - 1.  | 
1305  |  |              */  | 
1306  | 0  |             if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))  | 
1307  | 0  |                 goto err;  | 
1308  |  |             /* Replace points[i]->Z by its inverse. */  | 
1309  | 0  |             if (!BN_copy(points[i]->Z, tmp_Z))  | 
1310  | 0  |                 goto err;  | 
1311  | 0  |         }  | 
1312  | 0  |     }  | 
1313  |  |  | 
1314  | 0  |     if (!BN_is_zero(points[0]->Z)) { | 
1315  |  |         /* Replace points[0]->Z by its inverse. */  | 
1316  | 0  |         if (!BN_copy(points[0]->Z, tmp))  | 
1317  | 0  |             goto err;  | 
1318  | 0  |     }  | 
1319  |  |  | 
1320  |  |     /* Finally, fix up the X and Y coordinates for all points. */  | 
1321  |  |  | 
1322  | 0  |     for (i = 0; i < num; i++) { | 
1323  | 0  |         EC_POINT *p = points[i];  | 
1324  |  | 
  | 
1325  | 0  |         if (!BN_is_zero(p->Z)) { | 
1326  |  |             /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */  | 
1327  |  | 
  | 
1328  | 0  |             if (!group->meth->field_sqr(group, tmp, p->Z, ctx))  | 
1329  | 0  |                 goto err;  | 
1330  | 0  |             if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))  | 
1331  | 0  |                 goto err;  | 
1332  |  |  | 
1333  | 0  |             if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))  | 
1334  | 0  |                 goto err;  | 
1335  | 0  |             if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))  | 
1336  | 0  |                 goto err;  | 
1337  |  |  | 
1338  | 0  |             if (group->meth->field_set_to_one != 0) { | 
1339  | 0  |                 if (!group->meth->field_set_to_one(group, p->Z, ctx))  | 
1340  | 0  |                     goto err;  | 
1341  | 0  |             } else { | 
1342  | 0  |                 if (!BN_one(p->Z))  | 
1343  | 0  |                     goto err;  | 
1344  | 0  |             }  | 
1345  | 0  |             p->Z_is_one = 1;  | 
1346  | 0  |         }  | 
1347  | 0  |     }  | 
1348  |  |  | 
1349  | 0  |     ret = 1;  | 
1350  |  | 
  | 
1351  | 0  |  err:  | 
1352  | 0  |     BN_CTX_end(ctx);  | 
1353  | 0  |     BN_CTX_free(new_ctx);  | 
1354  | 0  |     if (prod_Z != NULL) { | 
1355  | 0  |         for (i = 0; i < num; i++) { | 
1356  | 0  |             if (prod_Z[i] == NULL)  | 
1357  | 0  |                 break;  | 
1358  | 0  |             BN_clear_free(prod_Z[i]);  | 
1359  | 0  |         }  | 
1360  | 0  |         OPENSSL_free(prod_Z);  | 
1361  | 0  |     }  | 
1362  | 0  |     return ret;  | 
1363  | 0  | }  | 
1364  |  |  | 
1365  |  | int ossl_ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,  | 
1366  |  |                                  const BIGNUM *b, BN_CTX *ctx)  | 
1367  | 0  | { | 
1368  | 0  |     return BN_mod_mul(r, a, b, group->field, ctx);  | 
1369  | 0  | }  | 
1370  |  |  | 
1371  |  | int ossl_ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,  | 
1372  |  |                                  BN_CTX *ctx)  | 
1373  | 0  | { | 
1374  | 0  |     return BN_mod_sqr(r, a, group->field, ctx);  | 
1375  | 0  | }  | 
1376  |  |  | 
1377  |  | /*-  | 
1378  |  |  * Computes the multiplicative inverse of a in GF(p), storing the result in r.  | 
1379  |  |  * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error.  | 
1380  |  |  * Since we don't have a Mont structure here, SCA hardening is with blinding.  | 
1381  |  |  * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)  | 
1382  |  |  */  | 
1383  |  | int ossl_ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r,  | 
1384  |  |                                  const BIGNUM *a, BN_CTX *ctx)  | 
1385  | 0  | { | 
1386  | 0  |     BIGNUM *e = NULL;  | 
1387  | 0  |     BN_CTX *new_ctx = NULL;  | 
1388  | 0  |     int ret = 0;  | 
1389  |  | 
  | 
1390  | 0  |     if (ctx == NULL  | 
1391  | 0  |             && (ctx = new_ctx = BN_CTX_secure_new_ex(group->libctx)) == NULL)  | 
1392  | 0  |         return 0;  | 
1393  |  |  | 
1394  | 0  |     BN_CTX_start(ctx);  | 
1395  | 0  |     if ((e = BN_CTX_get(ctx)) == NULL)  | 
1396  | 0  |         goto err;  | 
1397  |  |  | 
1398  | 0  |     do { | 
1399  | 0  |         if (!BN_priv_rand_range_ex(e, group->field, 0, ctx))  | 
1400  | 0  |         goto err;  | 
1401  | 0  |     } while (BN_is_zero(e));  | 
1402  |  |  | 
1403  |  |     /* r := a * e */  | 
1404  | 0  |     if (!group->meth->field_mul(group, r, a, e, ctx))  | 
1405  | 0  |         goto err;  | 
1406  |  |     /* r := 1/(a * e) */  | 
1407  | 0  |     if (!BN_mod_inverse(r, r, group->field, ctx)) { | 
1408  | 0  |         ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);  | 
1409  | 0  |         goto err;  | 
1410  | 0  |     }  | 
1411  |  |     /* r := e/(a * e) = 1/a */  | 
1412  | 0  |     if (!group->meth->field_mul(group, r, r, e, ctx))  | 
1413  | 0  |         goto err;  | 
1414  |  |  | 
1415  | 0  |     ret = 1;  | 
1416  |  | 
  | 
1417  | 0  |  err:  | 
1418  | 0  |     BN_CTX_end(ctx);  | 
1419  | 0  |     BN_CTX_free(new_ctx);  | 
1420  | 0  |     return ret;  | 
1421  | 0  | }  | 
1422  |  |  | 
1423  |  | /*-  | 
1424  |  |  * Apply randomization of EC point projective coordinates:  | 
1425  |  |  *  | 
1426  |  |  *   (X, Y, Z) = (lambda^2*X, lambda^3*Y, lambda*Z)  | 
1427  |  |  *   lambda = [1, group->field)  | 
1428  |  |  *  | 
1429  |  |  */  | 
1430  |  | int ossl_ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,  | 
1431  |  |                                          BN_CTX *ctx)  | 
1432  | 0  | { | 
1433  | 0  |     int ret = 0;  | 
1434  | 0  |     BIGNUM *lambda = NULL;  | 
1435  | 0  |     BIGNUM *temp = NULL;  | 
1436  |  | 
  | 
1437  | 0  |     BN_CTX_start(ctx);  | 
1438  | 0  |     lambda = BN_CTX_get(ctx);  | 
1439  | 0  |     temp = BN_CTX_get(ctx);  | 
1440  | 0  |     if (temp == NULL) { | 
1441  | 0  |         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);  | 
1442  | 0  |         goto end;  | 
1443  | 0  |     }  | 
1444  |  |  | 
1445  |  |     /*-  | 
1446  |  |      * Make sure lambda is not zero.  | 
1447  |  |      * If the RNG fails, we cannot blind but nevertheless want  | 
1448  |  |      * code to continue smoothly and not clobber the error stack.  | 
1449  |  |      */  | 
1450  | 0  |     do { | 
1451  | 0  |         ERR_set_mark();  | 
1452  | 0  |         ret = BN_priv_rand_range_ex(lambda, group->field, 0, ctx);  | 
1453  | 0  |         ERR_pop_to_mark();  | 
1454  | 0  |         if (ret == 0) { | 
1455  | 0  |             ret = 1;  | 
1456  | 0  |             goto end;  | 
1457  | 0  |         }  | 
1458  | 0  |     } while (BN_is_zero(lambda));  | 
1459  |  |  | 
1460  |  |     /* if field_encode defined convert between representations */  | 
1461  | 0  |     if ((group->meth->field_encode != NULL  | 
1462  | 0  |          && !group->meth->field_encode(group, lambda, lambda, ctx))  | 
1463  | 0  |         || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)  | 
1464  | 0  |         || !group->meth->field_sqr(group, temp, lambda, ctx)  | 
1465  | 0  |         || !group->meth->field_mul(group, p->X, p->X, temp, ctx)  | 
1466  | 0  |         || !group->meth->field_mul(group, temp, temp, lambda, ctx)  | 
1467  | 0  |         || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))  | 
1468  | 0  |         goto end;  | 
1469  |  |  | 
1470  | 0  |     p->Z_is_one = 0;  | 
1471  | 0  |     ret = 1;  | 
1472  |  | 
  | 
1473  | 0  |  end:  | 
1474  | 0  |     BN_CTX_end(ctx);  | 
1475  | 0  |     return ret;  | 
1476  | 0  | }  | 
1477  |  |  | 
1478  |  | /*-  | 
1479  |  |  * Input:  | 
1480  |  |  * - p: affine coordinates  | 
1481  |  |  *  | 
1482  |  |  * Output:  | 
1483  |  |  * - s := p, r := 2p: blinded projective (homogeneous) coordinates  | 
1484  |  |  *  | 
1485  |  |  * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve  | 
1486  |  |  * multiplication resistant against side channel attacks" appendix, described at  | 
1487  |  |  * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2  | 
1488  |  |  * simplified for Z1=1.  | 
1489  |  |  *  | 
1490  |  |  * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)  | 
1491  |  |  * for any non-zero \lambda that holds for projective (homogeneous) coords.  | 
1492  |  |  */  | 
1493  |  | int ossl_ec_GFp_simple_ladder_pre(const EC_GROUP *group,  | 
1494  |  |                                   EC_POINT *r, EC_POINT *s,  | 
1495  |  |                                   EC_POINT *p, BN_CTX *ctx)  | 
1496  | 0  | { | 
1497  | 0  |     BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;  | 
1498  |  | 
  | 
1499  | 0  |     t1 = s->Z;  | 
1500  | 0  |     t2 = r->Z;  | 
1501  | 0  |     t3 = s->X;  | 
1502  | 0  |     t4 = r->X;  | 
1503  | 0  |     t5 = s->Y;  | 
1504  |  | 
  | 
1505  | 0  |     if (!p->Z_is_one /* r := 2p */  | 
1506  | 0  |         || !group->meth->field_sqr(group, t3, p->X, ctx)  | 
1507  | 0  |         || !BN_mod_sub_quick(t4, t3, group->a, group->field)  | 
1508  | 0  |         || !group->meth->field_sqr(group, t4, t4, ctx)  | 
1509  | 0  |         || !group->meth->field_mul(group, t5, p->X, group->b, ctx)  | 
1510  | 0  |         || !BN_mod_lshift_quick(t5, t5, 3, group->field)  | 
1511  |  |         /* r->X coord output */  | 
1512  | 0  |         || !BN_mod_sub_quick(r->X, t4, t5, group->field)  | 
1513  | 0  |         || !BN_mod_add_quick(t1, t3, group->a, group->field)  | 
1514  | 0  |         || !group->meth->field_mul(group, t2, p->X, t1, ctx)  | 
1515  | 0  |         || !BN_mod_add_quick(t2, group->b, t2, group->field)  | 
1516  |  |         /* r->Z coord output */  | 
1517  | 0  |         || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))  | 
1518  | 0  |         return 0;  | 
1519  |  |  | 
1520  |  |     /* make sure lambda (r->Y here for storage) is not zero */  | 
1521  | 0  |     do { | 
1522  | 0  |         if (!BN_priv_rand_range_ex(r->Y, group->field, 0, ctx))  | 
1523  | 0  |             return 0;  | 
1524  | 0  |     } while (BN_is_zero(r->Y));  | 
1525  |  |  | 
1526  |  |     /* make sure lambda (s->Z here for storage) is not zero */  | 
1527  | 0  |     do { | 
1528  | 0  |         if (!BN_priv_rand_range_ex(s->Z, group->field, 0, ctx))  | 
1529  | 0  |             return 0;  | 
1530  | 0  |     } while (BN_is_zero(s->Z));  | 
1531  |  |  | 
1532  |  |     /* if field_encode defined convert between representations */  | 
1533  | 0  |     if (group->meth->field_encode != NULL  | 
1534  | 0  |         && (!group->meth->field_encode(group, r->Y, r->Y, ctx)  | 
1535  | 0  |             || !group->meth->field_encode(group, s->Z, s->Z, ctx)))  | 
1536  | 0  |         return 0;  | 
1537  |  |  | 
1538  |  |     /* blind r and s independently */  | 
1539  | 0  |     if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)  | 
1540  | 0  |         || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)  | 
1541  | 0  |         || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */  | 
1542  | 0  |         return 0;  | 
1543  |  |  | 
1544  | 0  |     r->Z_is_one = 0;  | 
1545  | 0  |     s->Z_is_one = 0;  | 
1546  |  | 
  | 
1547  | 0  |     return 1;  | 
1548  | 0  | }  | 
1549  |  |  | 
1550  |  | /*-  | 
1551  |  |  * Input:  | 
1552  |  |  * - s, r: projective (homogeneous) coordinates  | 
1553  |  |  * - p: affine coordinates  | 
1554  |  |  *  | 
1555  |  |  * Output:  | 
1556  |  |  * - s := r + s, r := 2r: projective (homogeneous) coordinates  | 
1557  |  |  *  | 
1558  |  |  * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi  | 
1559  |  |  * "A fast parallel elliptic curve multiplication resistant against side channel  | 
1560  |  |  * attacks", as described at  | 
1561  |  |  * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4  | 
1562  |  |  */  | 
1563  |  | int ossl_ec_GFp_simple_ladder_step(const EC_GROUP *group,  | 
1564  |  |                                    EC_POINT *r, EC_POINT *s,  | 
1565  |  |                                    EC_POINT *p, BN_CTX *ctx)  | 
1566  | 0  | { | 
1567  | 0  |     int ret = 0;  | 
1568  | 0  |     BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;  | 
1569  |  | 
  | 
1570  | 0  |     BN_CTX_start(ctx);  | 
1571  | 0  |     t0 = BN_CTX_get(ctx);  | 
1572  | 0  |     t1 = BN_CTX_get(ctx);  | 
1573  | 0  |     t2 = BN_CTX_get(ctx);  | 
1574  | 0  |     t3 = BN_CTX_get(ctx);  | 
1575  | 0  |     t4 = BN_CTX_get(ctx);  | 
1576  | 0  |     t5 = BN_CTX_get(ctx);  | 
1577  | 0  |     t6 = BN_CTX_get(ctx);  | 
1578  |  | 
  | 
1579  | 0  |     if (t6 == NULL  | 
1580  | 0  |         || !group->meth->field_mul(group, t6, r->X, s->X, ctx)  | 
1581  | 0  |         || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)  | 
1582  | 0  |         || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)  | 
1583  | 0  |         || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)  | 
1584  | 0  |         || !group->meth->field_mul(group, t5, group->a, t0, ctx)  | 
1585  | 0  |         || !BN_mod_add_quick(t5, t6, t5, group->field)  | 
1586  | 0  |         || !BN_mod_add_quick(t6, t3, t4, group->field)  | 
1587  | 0  |         || !group->meth->field_mul(group, t5, t6, t5, ctx)  | 
1588  | 0  |         || !group->meth->field_sqr(group, t0, t0, ctx)  | 
1589  | 0  |         || !BN_mod_lshift_quick(t2, group->b, 2, group->field)  | 
1590  | 0  |         || !group->meth->field_mul(group, t0, t2, t0, ctx)  | 
1591  | 0  |         || !BN_mod_lshift1_quick(t5, t5, group->field)  | 
1592  | 0  |         || !BN_mod_sub_quick(t3, t4, t3, group->field)  | 
1593  |  |         /* s->Z coord output */  | 
1594  | 0  |         || !group->meth->field_sqr(group, s->Z, t3, ctx)  | 
1595  | 0  |         || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)  | 
1596  | 0  |         || !BN_mod_add_quick(t0, t0, t5, group->field)  | 
1597  |  |         /* s->X coord output */  | 
1598  | 0  |         || !BN_mod_sub_quick(s->X, t0, t4, group->field)  | 
1599  | 0  |         || !group->meth->field_sqr(group, t4, r->X, ctx)  | 
1600  | 0  |         || !group->meth->field_sqr(group, t5, r->Z, ctx)  | 
1601  | 0  |         || !group->meth->field_mul(group, t6, t5, group->a, ctx)  | 
1602  | 0  |         || !BN_mod_add_quick(t1, r->X, r->Z, group->field)  | 
1603  | 0  |         || !group->meth->field_sqr(group, t1, t1, ctx)  | 
1604  | 0  |         || !BN_mod_sub_quick(t1, t1, t4, group->field)  | 
1605  | 0  |         || !BN_mod_sub_quick(t1, t1, t5, group->field)  | 
1606  | 0  |         || !BN_mod_sub_quick(t3, t4, t6, group->field)  | 
1607  | 0  |         || !group->meth->field_sqr(group, t3, t3, ctx)  | 
1608  | 0  |         || !group->meth->field_mul(group, t0, t5, t1, ctx)  | 
1609  | 0  |         || !group->meth->field_mul(group, t0, t2, t0, ctx)  | 
1610  |  |         /* r->X coord output */  | 
1611  | 0  |         || !BN_mod_sub_quick(r->X, t3, t0, group->field)  | 
1612  | 0  |         || !BN_mod_add_quick(t3, t4, t6, group->field)  | 
1613  | 0  |         || !group->meth->field_sqr(group, t4, t5, ctx)  | 
1614  | 0  |         || !group->meth->field_mul(group, t4, t4, t2, ctx)  | 
1615  | 0  |         || !group->meth->field_mul(group, t1, t1, t3, ctx)  | 
1616  | 0  |         || !BN_mod_lshift1_quick(t1, t1, group->field)  | 
1617  |  |         /* r->Z coord output */  | 
1618  | 0  |         || !BN_mod_add_quick(r->Z, t4, t1, group->field))  | 
1619  | 0  |         goto err;  | 
1620  |  |  | 
1621  | 0  |     ret = 1;  | 
1622  |  | 
  | 
1623  | 0  |  err:  | 
1624  | 0  |     BN_CTX_end(ctx);  | 
1625  | 0  |     return ret;  | 
1626  | 0  | }  | 
1627  |  |  | 
1628  |  | /*-  | 
1629  |  |  * Input:  | 
1630  |  |  * - s, r: projective (homogeneous) coordinates  | 
1631  |  |  * - p: affine coordinates  | 
1632  |  |  *  | 
1633  |  |  * Output:  | 
1634  |  |  * - r := (x,y): affine coordinates  | 
1635  |  |  *  | 
1636  |  |  * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass  | 
1637  |  |  * Elliptic Curves and Side-Channel Attacks", modified to work in mixed  | 
1638  |  |  * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)  | 
1639  |  |  * coords, and return r in affine coordinates.  | 
1640  |  |  *  | 
1641  |  |  * X4 = two*Y1*X2*Z3*Z2;  | 
1642  |  |  * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);  | 
1643  |  |  * Z4 = two*Y1*Z3*SQR(Z2);  | 
1644  |  |  *  | 
1645  |  |  * Z4 != 0 because:  | 
1646  |  |  *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);  | 
1647  |  |  *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);  | 
1648  |  |  *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by  | 
1649  |  |  *    one of the BN_is_zero(...) branches.  | 
1650  |  |  */  | 
1651  |  | int ossl_ec_GFp_simple_ladder_post(const EC_GROUP *group,  | 
1652  |  |                                    EC_POINT *r, EC_POINT *s,  | 
1653  |  |                                    EC_POINT *p, BN_CTX *ctx)  | 
1654  | 0  | { | 
1655  | 0  |     int ret = 0;  | 
1656  | 0  |     BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;  | 
1657  |  | 
  | 
1658  | 0  |     if (BN_is_zero(r->Z))  | 
1659  | 0  |         return EC_POINT_set_to_infinity(group, r);  | 
1660  |  |  | 
1661  | 0  |     if (BN_is_zero(s->Z)) { | 
1662  | 0  |         if (!EC_POINT_copy(r, p)  | 
1663  | 0  |             || !EC_POINT_invert(group, r, ctx))  | 
1664  | 0  |             return 0;  | 
1665  | 0  |         return 1;  | 
1666  | 0  |     }  | 
1667  |  |  | 
1668  | 0  |     BN_CTX_start(ctx);  | 
1669  | 0  |     t0 = BN_CTX_get(ctx);  | 
1670  | 0  |     t1 = BN_CTX_get(ctx);  | 
1671  | 0  |     t2 = BN_CTX_get(ctx);  | 
1672  | 0  |     t3 = BN_CTX_get(ctx);  | 
1673  | 0  |     t4 = BN_CTX_get(ctx);  | 
1674  | 0  |     t5 = BN_CTX_get(ctx);  | 
1675  | 0  |     t6 = BN_CTX_get(ctx);  | 
1676  |  | 
  | 
1677  | 0  |     if (t6 == NULL  | 
1678  | 0  |         || !BN_mod_lshift1_quick(t4, p->Y, group->field)  | 
1679  | 0  |         || !group->meth->field_mul(group, t6, r->X, t4, ctx)  | 
1680  | 0  |         || !group->meth->field_mul(group, t6, s->Z, t6, ctx)  | 
1681  | 0  |         || !group->meth->field_mul(group, t5, r->Z, t6, ctx)  | 
1682  | 0  |         || !BN_mod_lshift1_quick(t1, group->b, group->field)  | 
1683  | 0  |         || !group->meth->field_mul(group, t1, s->Z, t1, ctx)  | 
1684  | 0  |         || !group->meth->field_sqr(group, t3, r->Z, ctx)  | 
1685  | 0  |         || !group->meth->field_mul(group, t2, t3, t1, ctx)  | 
1686  | 0  |         || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)  | 
1687  | 0  |         || !group->meth->field_mul(group, t1, p->X, r->X, ctx)  | 
1688  | 0  |         || !BN_mod_add_quick(t1, t1, t6, group->field)  | 
1689  | 0  |         || !group->meth->field_mul(group, t1, s->Z, t1, ctx)  | 
1690  | 0  |         || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)  | 
1691  | 0  |         || !BN_mod_add_quick(t6, r->X, t0, group->field)  | 
1692  | 0  |         || !group->meth->field_mul(group, t6, t6, t1, ctx)  | 
1693  | 0  |         || !BN_mod_add_quick(t6, t6, t2, group->field)  | 
1694  | 0  |         || !BN_mod_sub_quick(t0, t0, r->X, group->field)  | 
1695  | 0  |         || !group->meth->field_sqr(group, t0, t0, ctx)  | 
1696  | 0  |         || !group->meth->field_mul(group, t0, t0, s->X, ctx)  | 
1697  | 0  |         || !BN_mod_sub_quick(t0, t6, t0, group->field)  | 
1698  | 0  |         || !group->meth->field_mul(group, t1, s->Z, t4, ctx)  | 
1699  | 0  |         || !group->meth->field_mul(group, t1, t3, t1, ctx)  | 
1700  | 0  |         || (group->meth->field_decode != NULL  | 
1701  | 0  |             && !group->meth->field_decode(group, t1, t1, ctx))  | 
1702  | 0  |         || !group->meth->field_inv(group, t1, t1, ctx)  | 
1703  | 0  |         || (group->meth->field_encode != NULL  | 
1704  | 0  |             && !group->meth->field_encode(group, t1, t1, ctx))  | 
1705  | 0  |         || !group->meth->field_mul(group, r->X, t5, t1, ctx)  | 
1706  | 0  |         || !group->meth->field_mul(group, r->Y, t0, t1, ctx))  | 
1707  | 0  |         goto err;  | 
1708  |  |  | 
1709  | 0  |     if (group->meth->field_set_to_one != NULL) { | 
1710  | 0  |         if (!group->meth->field_set_to_one(group, r->Z, ctx))  | 
1711  | 0  |             goto err;  | 
1712  | 0  |     } else { | 
1713  | 0  |         if (!BN_one(r->Z))  | 
1714  | 0  |             goto err;  | 
1715  | 0  |     }  | 
1716  |  |  | 
1717  | 0  |     r->Z_is_one = 1;  | 
1718  | 0  |     ret = 1;  | 
1719  |  | 
  | 
1720  | 0  |  err:  | 
1721  | 0  |     BN_CTX_end(ctx);  | 
1722  | 0  |     return ret;  | 
1723  | 0  | }  |