/src/openssl/providers/implementations/kem/rsa_kem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | #include "internal/nelem.h" |
16 | | #include <openssl/crypto.h> |
17 | | #include <openssl/evp.h> |
18 | | #include <openssl/core_dispatch.h> |
19 | | #include <openssl/core_names.h> |
20 | | #include <openssl/rsa.h> |
21 | | #include <openssl/params.h> |
22 | | #include <openssl/err.h> |
23 | | #include <openssl/proverr.h> |
24 | | #include "crypto/rsa.h" |
25 | | #include "prov/provider_ctx.h" |
26 | | #include "prov/providercommon.h" |
27 | | #include "prov/implementations.h" |
28 | | #include "prov/securitycheck.h" |
29 | | |
30 | | static OSSL_FUNC_kem_newctx_fn rsakem_newctx; |
31 | | static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init; |
32 | | static OSSL_FUNC_kem_encapsulate_fn rsakem_generate; |
33 | | static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init; |
34 | | static OSSL_FUNC_kem_decapsulate_fn rsakem_recover; |
35 | | static OSSL_FUNC_kem_freectx_fn rsakem_freectx; |
36 | | static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx; |
37 | | static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params; |
38 | | static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params; |
39 | | static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params; |
40 | | static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params; |
41 | | |
42 | | /* |
43 | | * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented |
44 | | * currently. |
45 | | */ |
46 | | #define KEM_OP_UNDEFINED -1 |
47 | 0 | #define KEM_OP_RSASVE 0 |
48 | | |
49 | | /* |
50 | | * What's passed as an actual key is defined by the KEYMGMT interface. |
51 | | * We happen to know that our KEYMGMT simply passes RSA structures, so |
52 | | * we use that here too. |
53 | | */ |
54 | | typedef struct { |
55 | | OSSL_LIB_CTX *libctx; |
56 | | RSA *rsa; |
57 | | int op; |
58 | | OSSL_FIPS_IND_DECLARE |
59 | | } PROV_RSA_CTX; |
60 | | |
61 | | static const OSSL_ITEM rsakem_opname_id_map[] = { |
62 | | { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE }, |
63 | | }; |
64 | | |
65 | | static int name2id(const char *name, const OSSL_ITEM *map, size_t sz) |
66 | 0 | { |
67 | 0 | size_t i; |
68 | |
|
69 | 0 | if (name == NULL) |
70 | 0 | return -1; |
71 | | |
72 | 0 | for (i = 0; i < sz; ++i) { |
73 | 0 | if (OPENSSL_strcasecmp(map[i].ptr, name) == 0) |
74 | 0 | return map[i].id; |
75 | 0 | } |
76 | 0 | return -1; |
77 | 0 | } |
78 | | |
79 | | static int rsakem_opname2id(const char *name) |
80 | 0 | { |
81 | 0 | return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map)); |
82 | 0 | } |
83 | | |
84 | | static void *rsakem_newctx(void *provctx) |
85 | 0 | { |
86 | 0 | PROV_RSA_CTX *prsactx; |
87 | |
|
88 | 0 | if (!ossl_prov_is_running()) |
89 | 0 | return NULL; |
90 | | |
91 | 0 | prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX)); |
92 | 0 | if (prsactx == NULL) |
93 | 0 | return NULL; |
94 | 0 | prsactx->libctx = PROV_LIBCTX_OF(provctx); |
95 | 0 | prsactx->op = KEM_OP_RSASVE; |
96 | 0 | OSSL_FIPS_IND_INIT(prsactx) |
97 | |
|
98 | 0 | return prsactx; |
99 | 0 | } |
100 | | |
101 | | static void rsakem_freectx(void *vprsactx) |
102 | 0 | { |
103 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
104 | |
|
105 | 0 | RSA_free(prsactx->rsa); |
106 | 0 | OPENSSL_free(prsactx); |
107 | 0 | } |
108 | | |
109 | | static void *rsakem_dupctx(void *vprsactx) |
110 | 0 | { |
111 | 0 | PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx; |
112 | 0 | PROV_RSA_CTX *dstctx; |
113 | |
|
114 | 0 | if (!ossl_prov_is_running()) |
115 | 0 | return NULL; |
116 | | |
117 | 0 | dstctx = OPENSSL_zalloc(sizeof(*srcctx)); |
118 | 0 | if (dstctx == NULL) |
119 | 0 | return NULL; |
120 | | |
121 | 0 | *dstctx = *srcctx; |
122 | 0 | if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) { |
123 | 0 | OPENSSL_free(dstctx); |
124 | 0 | return NULL; |
125 | 0 | } |
126 | 0 | return dstctx; |
127 | 0 | } |
128 | | |
129 | | static int rsakem_init(void *vprsactx, void *vrsa, |
130 | | const OSSL_PARAM params[], int operation, |
131 | | const char *desc) |
132 | 0 | { |
133 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
134 | 0 | int protect = 0; |
135 | |
|
136 | 0 | if (!ossl_prov_is_running()) |
137 | 0 | return 0; |
138 | | |
139 | 0 | if (prsactx == NULL || vrsa == NULL) |
140 | 0 | return 0; |
141 | | |
142 | 0 | if (!ossl_rsa_key_op_get_protect(vrsa, operation, &protect)) |
143 | 0 | return 0; |
144 | 0 | if (!RSA_up_ref(vrsa)) |
145 | 0 | return 0; |
146 | 0 | RSA_free(prsactx->rsa); |
147 | 0 | prsactx->rsa = vrsa; |
148 | |
|
149 | 0 | OSSL_FIPS_IND_SET_APPROVED(prsactx) |
150 | 0 | if (!rsakem_set_ctx_params(prsactx, params)) |
151 | 0 | return 0; |
152 | | #ifdef FIPS_MODULE |
153 | | if (!ossl_fips_ind_rsa_key_check(OSSL_FIPS_IND_GET(prsactx), |
154 | | OSSL_FIPS_IND_SETTABLE0, prsactx->libctx, |
155 | | prsactx->rsa, desc, protect)) |
156 | | return 0; |
157 | | #endif |
158 | 0 | return 1; |
159 | 0 | } |
160 | | |
161 | | static int rsakem_encapsulate_init(void *vprsactx, void *vrsa, |
162 | | const OSSL_PARAM params[]) |
163 | 0 | { |
164 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE, |
165 | 0 | "RSA Encapsulate Init"); |
166 | 0 | } |
167 | | |
168 | | static int rsakem_decapsulate_init(void *vprsactx, void *vrsa, |
169 | | const OSSL_PARAM params[]) |
170 | 0 | { |
171 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE, |
172 | 0 | "RSA Decapsulate Init"); |
173 | 0 | } |
174 | | |
175 | | static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params) |
176 | 0 | { |
177 | 0 | PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx; |
178 | |
|
179 | 0 | if (ctx == NULL) |
180 | 0 | return 0; |
181 | | |
182 | 0 | if (!OSSL_FIPS_IND_GET_CTX_PARAM(ctx, params)) |
183 | 0 | return 0; |
184 | 0 | return 1; |
185 | 0 | } |
186 | | |
187 | | static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = { |
188 | | OSSL_FIPS_IND_GETTABLE_CTX_PARAM() |
189 | | OSSL_PARAM_END |
190 | | }; |
191 | | |
192 | | static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx, |
193 | | ossl_unused void *provctx) |
194 | 0 | { |
195 | 0 | return known_gettable_rsakem_ctx_params; |
196 | 0 | } |
197 | | |
198 | | static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[]) |
199 | 0 | { |
200 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
201 | 0 | const OSSL_PARAM *p; |
202 | 0 | int op; |
203 | |
|
204 | 0 | if (prsactx == NULL) |
205 | 0 | return 0; |
206 | 0 | if (ossl_param_is_empty(params)) |
207 | 0 | return 1; |
208 | | |
209 | 0 | if (!OSSL_FIPS_IND_SET_CTX_PARAM(prsactx, OSSL_FIPS_IND_SETTABLE0, params, |
210 | 0 | OSSL_KEM_PARAM_FIPS_KEY_CHECK)) |
211 | 0 | return 0; |
212 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION); |
213 | 0 | if (p != NULL) { |
214 | 0 | if (p->data_type != OSSL_PARAM_UTF8_STRING) |
215 | 0 | return 0; |
216 | 0 | op = rsakem_opname2id(p->data); |
217 | 0 | if (op < 0) |
218 | 0 | return 0; |
219 | 0 | prsactx->op = op; |
220 | 0 | } |
221 | 0 | return 1; |
222 | 0 | } |
223 | | |
224 | | static const OSSL_PARAM known_settable_rsakem_ctx_params[] = { |
225 | | OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0), |
226 | | OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KEM_PARAM_FIPS_KEY_CHECK) |
227 | | OSSL_PARAM_END |
228 | | }; |
229 | | |
230 | | static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx, |
231 | | ossl_unused void *provctx) |
232 | 0 | { |
233 | 0 | return known_settable_rsakem_ctx_params; |
234 | 0 | } |
235 | | |
236 | | /* |
237 | | * NIST.SP.800-56Br2 |
238 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
239 | | * |
240 | | * Generate a random in the range 1 < z < (n – 1) |
241 | | */ |
242 | | static int rsasve_gen_rand_bytes(RSA *rsa_pub, |
243 | | unsigned char *out, int outlen) |
244 | 0 | { |
245 | 0 | int ret = 0; |
246 | 0 | BN_CTX *bnctx; |
247 | 0 | BIGNUM *z, *nminus3; |
248 | |
|
249 | 0 | bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub)); |
250 | 0 | if (bnctx == NULL) |
251 | 0 | return 0; |
252 | | |
253 | | /* |
254 | | * Generate a random in the range 1 < z < (n – 1). |
255 | | * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max |
256 | | * We can achieve this by adding 2.. but then we need to subtract 3 from |
257 | | * the upper bound i.e: 2 + (0 <= r < (n - 3)) |
258 | | */ |
259 | 0 | BN_CTX_start(bnctx); |
260 | 0 | nminus3 = BN_CTX_get(bnctx); |
261 | 0 | z = BN_CTX_get(bnctx); |
262 | 0 | ret = (z != NULL |
263 | 0 | && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL) |
264 | 0 | && BN_sub_word(nminus3, 3) |
265 | 0 | && BN_priv_rand_range_ex(z, nminus3, 0, bnctx) |
266 | 0 | && BN_add_word(z, 2) |
267 | 0 | && (BN_bn2binpad(z, out, outlen) == outlen)); |
268 | 0 | BN_CTX_end(bnctx); |
269 | 0 | BN_CTX_free(bnctx); |
270 | 0 | return ret; |
271 | 0 | } |
272 | | |
273 | | /* |
274 | | * NIST.SP.800-56Br2 |
275 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
276 | | */ |
277 | | static int rsasve_generate(PROV_RSA_CTX *prsactx, |
278 | | unsigned char *out, size_t *outlen, |
279 | | unsigned char *secret, size_t *secretlen) |
280 | 0 | { |
281 | 0 | int ret; |
282 | 0 | size_t nlen; |
283 | | |
284 | | /* Step (1): nlen = Ceil(len(n)/8) */ |
285 | 0 | nlen = RSA_size(prsactx->rsa); |
286 | |
|
287 | 0 | if (out == NULL) { |
288 | 0 | if (nlen == 0) { |
289 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
290 | 0 | return 0; |
291 | 0 | } |
292 | 0 | if (outlen == NULL && secretlen == NULL) |
293 | 0 | return 0; |
294 | 0 | if (outlen != NULL) |
295 | 0 | *outlen = nlen; |
296 | 0 | if (secretlen != NULL) |
297 | 0 | *secretlen = nlen; |
298 | 0 | return 1; |
299 | 0 | } |
300 | | |
301 | | /* |
302 | | * If outlen is specified, then it must report the length |
303 | | * of the out buffer on input so that we can confirm |
304 | | * its size is sufficent for encapsulation |
305 | | */ |
306 | 0 | if (outlen != NULL && *outlen < nlen) { |
307 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
308 | 0 | return 0; |
309 | 0 | } |
310 | | |
311 | | /* |
312 | | * Step (2): Generate a random byte string z of nlen bytes where |
313 | | * 1 < z < n - 1 |
314 | | */ |
315 | 0 | if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen)) |
316 | 0 | return 0; |
317 | | |
318 | | /* Step(3): out = RSAEP((n,e), z) */ |
319 | 0 | ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING); |
320 | 0 | if (ret) { |
321 | 0 | ret = 1; |
322 | 0 | if (outlen != NULL) |
323 | 0 | *outlen = nlen; |
324 | 0 | if (secretlen != NULL) |
325 | 0 | *secretlen = nlen; |
326 | 0 | } else { |
327 | 0 | OPENSSL_cleanse(secret, nlen); |
328 | 0 | } |
329 | 0 | return ret; |
330 | 0 | } |
331 | | |
332 | | /** |
333 | | * rsasve_recover - Recovers a secret value from ciphertext using an RSA |
334 | | * private key. Once, recovered, the secret value is considered to be a |
335 | | * shared secret. Algorithm is preformed as per |
336 | | * NIST SP 800-56B Rev 2 |
337 | | * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER). |
338 | | * |
339 | | * This function performs RSA decryption using the private key from the |
340 | | * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts |
341 | | * it, and writes the decrypted message to the output buffer. |
342 | | * |
343 | | * @prsactx: The RSA context containing the private key. |
344 | | * @out: The output buffer to store the decrypted message. |
345 | | * @outlen: On input, the size of the output buffer. On successful |
346 | | * completion, the actual length of the decrypted message. |
347 | | * @in: The input buffer containing the ciphertext to be decrypted. |
348 | | * @inlen: The length of the input ciphertext in bytes. |
349 | | * |
350 | | * Returns 1 on success, or 0 on error. In case of error, appropriate |
351 | | * error messages are raised using the ERR_raise function. |
352 | | */ |
353 | | static int rsasve_recover(PROV_RSA_CTX *prsactx, |
354 | | unsigned char *out, size_t *outlen, |
355 | | const unsigned char *in, size_t inlen) |
356 | 0 | { |
357 | 0 | size_t nlen; |
358 | 0 | int ret; |
359 | | |
360 | | /* Step (1): get the byte length of n */ |
361 | 0 | nlen = RSA_size(prsactx->rsa); |
362 | |
|
363 | 0 | if (out == NULL) { |
364 | 0 | if (nlen == 0) { |
365 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
366 | 0 | return 0; |
367 | 0 | } |
368 | 0 | *outlen = nlen; |
369 | 0 | return 1; |
370 | 0 | } |
371 | | |
372 | | /* |
373 | | * Step (2): check the input ciphertext 'inlen' matches the nlen |
374 | | * and that outlen is at least nlen bytes |
375 | | */ |
376 | 0 | if (inlen != nlen) { |
377 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH); |
378 | 0 | return 0; |
379 | 0 | } |
380 | | |
381 | | /* |
382 | | * If outlen is specified, then it must report the length |
383 | | * of the out buffer, so that we can confirm that it is of |
384 | | * sufficient size to hold the output of decapsulation |
385 | | */ |
386 | 0 | if (outlen != NULL && *outlen < nlen) { |
387 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
388 | 0 | return 0; |
389 | 0 | } |
390 | | |
391 | | /* Step (3): out = RSADP((n,d), in) */ |
392 | 0 | ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING); |
393 | 0 | if (ret > 0 && outlen != NULL) |
394 | 0 | *outlen = ret; |
395 | 0 | return ret > 0; |
396 | 0 | } |
397 | | |
398 | | static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen, |
399 | | unsigned char *secret, size_t *secretlen) |
400 | 0 | { |
401 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
402 | |
|
403 | 0 | if (!ossl_prov_is_running()) |
404 | 0 | return 0; |
405 | | |
406 | 0 | switch (prsactx->op) { |
407 | 0 | case KEM_OP_RSASVE: |
408 | 0 | return rsasve_generate(prsactx, out, outlen, secret, secretlen); |
409 | 0 | default: |
410 | 0 | return -2; |
411 | 0 | } |
412 | 0 | } |
413 | | |
414 | | static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen, |
415 | | const unsigned char *in, size_t inlen) |
416 | 0 | { |
417 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
418 | |
|
419 | 0 | if (!ossl_prov_is_running()) |
420 | 0 | return 0; |
421 | | |
422 | 0 | switch (prsactx->op) { |
423 | 0 | case KEM_OP_RSASVE: |
424 | 0 | return rsasve_recover(prsactx, out, outlen, in, inlen); |
425 | 0 | default: |
426 | 0 | return -2; |
427 | 0 | } |
428 | 0 | } |
429 | | |
430 | | const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = { |
431 | | { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx }, |
432 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, |
433 | | (void (*)(void))rsakem_encapsulate_init }, |
434 | | { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate }, |
435 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, |
436 | | (void (*)(void))rsakem_decapsulate_init }, |
437 | | { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover }, |
438 | | { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx }, |
439 | | { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx }, |
440 | | { OSSL_FUNC_KEM_GET_CTX_PARAMS, |
441 | | (void (*)(void))rsakem_get_ctx_params }, |
442 | | { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS, |
443 | | (void (*)(void))rsakem_gettable_ctx_params }, |
444 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, |
445 | | (void (*)(void))rsakem_set_ctx_params }, |
446 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, |
447 | | (void (*)(void))rsakem_settable_ctx_params }, |
448 | | OSSL_DISPATCH_END |
449 | | }; |