/src/openssl/providers/implementations/kem/rsa_kem.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
12  |  |  * internal use.  | 
13  |  |  */  | 
14  |  | #include "internal/deprecated.h"  | 
15  |  | #include "internal/nelem.h"  | 
16  |  | #include <openssl/crypto.h>  | 
17  |  | #include <openssl/evp.h>  | 
18  |  | #include <openssl/core_dispatch.h>  | 
19  |  | #include <openssl/core_names.h>  | 
20  |  | #include <openssl/rsa.h>  | 
21  |  | #include <openssl/params.h>  | 
22  |  | #include <openssl/err.h>  | 
23  |  | #include <openssl/proverr.h>  | 
24  |  | #include "crypto/rsa.h"  | 
25  |  | #include "prov/provider_ctx.h"  | 
26  |  | #include "prov/providercommon.h"  | 
27  |  | #include "prov/implementations.h"  | 
28  |  | #include "prov/securitycheck.h"  | 
29  |  |  | 
30  |  | static OSSL_FUNC_kem_newctx_fn rsakem_newctx;  | 
31  |  | static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;  | 
32  |  | static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;  | 
33  |  | static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;  | 
34  |  | static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;  | 
35  |  | static OSSL_FUNC_kem_freectx_fn rsakem_freectx;  | 
36  |  | static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;  | 
37  |  | static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;  | 
38  |  | static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;  | 
39  |  | static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;  | 
40  |  | static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;  | 
41  |  |  | 
42  |  | /*  | 
43  |  |  * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented  | 
44  |  |  * currently.  | 
45  |  |  */  | 
46  |  | #define KEM_OP_UNDEFINED   -1  | 
47  | 0  | #define KEM_OP_RSASVE       0  | 
48  |  |  | 
49  |  | /*  | 
50  |  |  * What's passed as an actual key is defined by the KEYMGMT interface.  | 
51  |  |  * We happen to know that our KEYMGMT simply passes RSA structures, so  | 
52  |  |  * we use that here too.  | 
53  |  |  */  | 
54  |  | typedef struct { | 
55  |  |     OSSL_LIB_CTX *libctx;  | 
56  |  |     RSA *rsa;  | 
57  |  |     int op;  | 
58  |  |     OSSL_FIPS_IND_DECLARE  | 
59  |  | } PROV_RSA_CTX;  | 
60  |  |  | 
61  |  | static const OSSL_ITEM rsakem_opname_id_map[] = { | 
62  |  |     { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE }, | 
63  |  | };  | 
64  |  |  | 
65  |  | static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)  | 
66  | 0  | { | 
67  | 0  |     size_t i;  | 
68  |  | 
  | 
69  | 0  |     if (name == NULL)  | 
70  | 0  |         return -1;  | 
71  |  |  | 
72  | 0  |     for (i = 0; i < sz; ++i) { | 
73  | 0  |         if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)  | 
74  | 0  |             return map[i].id;  | 
75  | 0  |     }  | 
76  | 0  |     return -1;  | 
77  | 0  | }  | 
78  |  |  | 
79  |  | static int rsakem_opname2id(const char *name)  | 
80  | 0  | { | 
81  | 0  |     return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));  | 
82  | 0  | }  | 
83  |  |  | 
84  |  | static void *rsakem_newctx(void *provctx)  | 
85  | 0  | { | 
86  | 0  |     PROV_RSA_CTX *prsactx;  | 
87  |  | 
  | 
88  | 0  |     if (!ossl_prov_is_running())  | 
89  | 0  |         return NULL;  | 
90  |  |  | 
91  | 0  |     prsactx =  OPENSSL_zalloc(sizeof(PROV_RSA_CTX));  | 
92  | 0  |     if (prsactx == NULL)  | 
93  | 0  |         return NULL;  | 
94  | 0  |     prsactx->libctx = PROV_LIBCTX_OF(provctx);  | 
95  | 0  |     prsactx->op = KEM_OP_RSASVE;  | 
96  | 0  |     OSSL_FIPS_IND_INIT(prsactx)  | 
97  |  | 
  | 
98  | 0  |     return prsactx;  | 
99  | 0  | }  | 
100  |  |  | 
101  |  | static void rsakem_freectx(void *vprsactx)  | 
102  | 0  | { | 
103  | 0  |     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;  | 
104  |  | 
  | 
105  | 0  |     RSA_free(prsactx->rsa);  | 
106  | 0  |     OPENSSL_free(prsactx);  | 
107  | 0  | }  | 
108  |  |  | 
109  |  | static void *rsakem_dupctx(void *vprsactx)  | 
110  | 0  | { | 
111  | 0  |     PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;  | 
112  | 0  |     PROV_RSA_CTX *dstctx;  | 
113  |  | 
  | 
114  | 0  |     if (!ossl_prov_is_running())  | 
115  | 0  |         return NULL;  | 
116  |  |  | 
117  | 0  |     dstctx = OPENSSL_zalloc(sizeof(*srcctx));  | 
118  | 0  |     if (dstctx == NULL)  | 
119  | 0  |         return NULL;  | 
120  |  |  | 
121  | 0  |     *dstctx = *srcctx;  | 
122  | 0  |     if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) { | 
123  | 0  |         OPENSSL_free(dstctx);  | 
124  | 0  |         return NULL;  | 
125  | 0  |     }  | 
126  | 0  |     return dstctx;  | 
127  | 0  | }  | 
128  |  |  | 
129  |  | static int rsakem_init(void *vprsactx, void *vrsa,  | 
130  |  |                        const OSSL_PARAM params[], int operation,  | 
131  |  |                        const char *desc)  | 
132  | 0  | { | 
133  | 0  |     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;  | 
134  | 0  |     int protect = 0;  | 
135  |  | 
  | 
136  | 0  |     if (!ossl_prov_is_running())  | 
137  | 0  |         return 0;  | 
138  |  |  | 
139  | 0  |     if (prsactx == NULL || vrsa == NULL)  | 
140  | 0  |         return 0;  | 
141  |  |  | 
142  | 0  |     if (!ossl_rsa_key_op_get_protect(vrsa, operation, &protect))  | 
143  | 0  |         return 0;  | 
144  | 0  |     if (!RSA_up_ref(vrsa))  | 
145  | 0  |         return 0;  | 
146  | 0  |     RSA_free(prsactx->rsa);  | 
147  | 0  |     prsactx->rsa = vrsa;  | 
148  |  | 
  | 
149  | 0  |     OSSL_FIPS_IND_SET_APPROVED(prsactx)  | 
150  | 0  |     if (!rsakem_set_ctx_params(prsactx, params))  | 
151  | 0  |         return 0;  | 
152  |  | #ifdef FIPS_MODULE  | 
153  |  |     if (!ossl_fips_ind_rsa_key_check(OSSL_FIPS_IND_GET(prsactx),  | 
154  |  |                                      OSSL_FIPS_IND_SETTABLE0, prsactx->libctx,  | 
155  |  |                                      prsactx->rsa, desc, protect))  | 
156  |  |         return 0;  | 
157  |  | #endif  | 
158  | 0  |     return 1;  | 
159  | 0  | }  | 
160  |  |  | 
161  |  | static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,  | 
162  |  |                                    const OSSL_PARAM params[])  | 
163  | 0  | { | 
164  | 0  |     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE,  | 
165  | 0  |                        "RSA Encapsulate Init");  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,  | 
169  |  |                                    const OSSL_PARAM params[])  | 
170  | 0  | { | 
171  | 0  |     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE,  | 
172  | 0  |                        "RSA Decapsulate Init");  | 
173  | 0  | }  | 
174  |  |  | 
175  |  | static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)  | 
176  | 0  | { | 
177  | 0  |     PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;  | 
178  |  | 
  | 
179  | 0  |     if (ctx == NULL)  | 
180  | 0  |         return 0;  | 
181  |  |  | 
182  | 0  |     if (!OSSL_FIPS_IND_GET_CTX_PARAM(ctx, params))  | 
183  | 0  |         return 0;  | 
184  | 0  |     return 1;  | 
185  | 0  | }  | 
186  |  |  | 
187  |  | static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = { | 
188  |  |     OSSL_FIPS_IND_GETTABLE_CTX_PARAM()  | 
189  |  |     OSSL_PARAM_END  | 
190  |  | };  | 
191  |  |  | 
192  |  | static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,  | 
193  |  |                                                     ossl_unused void *provctx)  | 
194  | 0  | { | 
195  | 0  |     return known_gettable_rsakem_ctx_params;  | 
196  | 0  | }  | 
197  |  |  | 
198  |  | static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])  | 
199  | 0  | { | 
200  | 0  |     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;  | 
201  | 0  |     const OSSL_PARAM *p;  | 
202  | 0  |     int op;  | 
203  |  | 
  | 
204  | 0  |     if (prsactx == NULL)  | 
205  | 0  |         return 0;  | 
206  | 0  |     if (ossl_param_is_empty(params))  | 
207  | 0  |         return 1;  | 
208  |  |  | 
209  | 0  |     if (!OSSL_FIPS_IND_SET_CTX_PARAM(prsactx, OSSL_FIPS_IND_SETTABLE0, params,  | 
210  | 0  |                                      OSSL_KEM_PARAM_FIPS_KEY_CHECK))  | 
211  | 0  |         return  0;  | 
212  | 0  |     p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);  | 
213  | 0  |     if (p != NULL) { | 
214  | 0  |         if (p->data_type != OSSL_PARAM_UTF8_STRING)  | 
215  | 0  |             return 0;  | 
216  | 0  |         op = rsakem_opname2id(p->data);  | 
217  | 0  |         if (op < 0)  | 
218  | 0  |             return 0;  | 
219  | 0  |         prsactx->op = op;  | 
220  | 0  |     }  | 
221  | 0  |     return 1;  | 
222  | 0  | }  | 
223  |  |  | 
224  |  | static const OSSL_PARAM known_settable_rsakem_ctx_params[] = { | 
225  |  |     OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),  | 
226  |  |     OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KEM_PARAM_FIPS_KEY_CHECK)  | 
227  |  |     OSSL_PARAM_END  | 
228  |  | };  | 
229  |  |  | 
230  |  | static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,  | 
231  |  |                                                     ossl_unused void *provctx)  | 
232  | 0  | { | 
233  | 0  |     return known_settable_rsakem_ctx_params;  | 
234  | 0  | }  | 
235  |  |  | 
236  |  | /*  | 
237  |  |  * NIST.SP.800-56Br2  | 
238  |  |  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).  | 
239  |  |  *  | 
240  |  |  * Generate a random in the range 1 < z < (n – 1)  | 
241  |  |  */  | 
242  |  | static int rsasve_gen_rand_bytes(RSA *rsa_pub,  | 
243  |  |                                  unsigned char *out, int outlen)  | 
244  | 0  | { | 
245  | 0  |     int ret = 0;  | 
246  | 0  |     BN_CTX *bnctx;  | 
247  | 0  |     BIGNUM *z, *nminus3;  | 
248  |  | 
  | 
249  | 0  |     bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));  | 
250  | 0  |     if (bnctx == NULL)  | 
251  | 0  |         return 0;  | 
252  |  |  | 
253  |  |     /*  | 
254  |  |      * Generate a random in the range 1 < z < (n – 1).  | 
255  |  |      * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max  | 
256  |  |      * We can achieve this by adding 2.. but then we need to subtract 3 from  | 
257  |  |      * the upper bound i.e: 2 + (0 <= r < (n - 3))  | 
258  |  |      */  | 
259  | 0  |     BN_CTX_start(bnctx);  | 
260  | 0  |     nminus3 = BN_CTX_get(bnctx);  | 
261  | 0  |     z = BN_CTX_get(bnctx);  | 
262  | 0  |     ret = (z != NULL  | 
263  | 0  |            && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)  | 
264  | 0  |            && BN_sub_word(nminus3, 3)  | 
265  | 0  |            && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)  | 
266  | 0  |            && BN_add_word(z, 2)  | 
267  | 0  |            && (BN_bn2binpad(z, out, outlen) == outlen));  | 
268  | 0  |     BN_CTX_end(bnctx);  | 
269  | 0  |     BN_CTX_free(bnctx);  | 
270  | 0  |     return ret;  | 
271  | 0  | }  | 
272  |  |  | 
273  |  | /*  | 
274  |  |  * NIST.SP.800-56Br2  | 
275  |  |  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).  | 
276  |  |  */  | 
277  |  | static int rsasve_generate(PROV_RSA_CTX *prsactx,  | 
278  |  |                            unsigned char *out, size_t *outlen,  | 
279  |  |                            unsigned char *secret, size_t *secretlen)  | 
280  | 0  | { | 
281  | 0  |     int ret;  | 
282  | 0  |     size_t nlen;  | 
283  |  |  | 
284  |  |     /* Step (1): nlen = Ceil(len(n)/8) */  | 
285  | 0  |     nlen = RSA_size(prsactx->rsa);  | 
286  |  | 
  | 
287  | 0  |     if (out == NULL) { | 
288  | 0  |         if (nlen == 0) { | 
289  | 0  |             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);  | 
290  | 0  |             return 0;  | 
291  | 0  |         }  | 
292  | 0  |         if (outlen == NULL && secretlen == NULL)  | 
293  | 0  |             return 0;  | 
294  | 0  |         if (outlen != NULL)  | 
295  | 0  |             *outlen = nlen;  | 
296  | 0  |         if (secretlen != NULL)  | 
297  | 0  |             *secretlen = nlen;  | 
298  | 0  |         return 1;  | 
299  | 0  |     }  | 
300  |  |  | 
301  |  |     /*  | 
302  |  |      * If outlen is specified, then it must report the length  | 
303  |  |      * of the out buffer on input so that we can confirm  | 
304  |  |      * its size is sufficent for encapsulation  | 
305  |  |      */  | 
306  | 0  |     if (outlen != NULL && *outlen < nlen) { | 
307  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);  | 
308  | 0  |         return 0;  | 
309  | 0  |     }  | 
310  |  |  | 
311  |  |     /*  | 
312  |  |      * Step (2): Generate a random byte string z of nlen bytes where  | 
313  |  |      *            1 < z < n - 1  | 
314  |  |      */  | 
315  | 0  |     if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))  | 
316  | 0  |         return 0;  | 
317  |  |  | 
318  |  |     /* Step(3): out = RSAEP((n,e), z) */  | 
319  | 0  |     ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);  | 
320  | 0  |     if (ret) { | 
321  | 0  |         ret = 1;  | 
322  | 0  |         if (outlen != NULL)  | 
323  | 0  |             *outlen = nlen;  | 
324  | 0  |         if (secretlen != NULL)  | 
325  | 0  |             *secretlen = nlen;  | 
326  | 0  |     } else { | 
327  | 0  |         OPENSSL_cleanse(secret, nlen);  | 
328  | 0  |     }  | 
329  | 0  |     return ret;  | 
330  | 0  | }  | 
331  |  |  | 
332  |  | /**  | 
333  |  |  * rsasve_recover - Recovers a secret value from ciphertext using an RSA  | 
334  |  |  * private key.  Once, recovered, the secret value is considered to be a  | 
335  |  |  * shared secret.  Algorithm is preformed as per  | 
336  |  |  * NIST SP 800-56B Rev 2  | 
337  |  |  * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).  | 
338  |  |  *  | 
339  |  |  * This function performs RSA decryption using the private key from the  | 
340  |  |  * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts  | 
341  |  |  * it, and writes the decrypted message to the output buffer.  | 
342  |  |  *  | 
343  |  |  * @prsactx:      The RSA context containing the private key.  | 
344  |  |  * @out:          The output buffer to store the decrypted message.  | 
345  |  |  * @outlen:       On input, the size of the output buffer. On successful  | 
346  |  |  *                completion, the actual length of the decrypted message.  | 
347  |  |  * @in:           The input buffer containing the ciphertext to be decrypted.  | 
348  |  |  * @inlen:        The length of the input ciphertext in bytes.  | 
349  |  |  *  | 
350  |  |  * Returns 1 on success, or 0 on error. In case of error, appropriate  | 
351  |  |  * error messages are raised using the ERR_raise function.  | 
352  |  |  */  | 
353  |  | static int rsasve_recover(PROV_RSA_CTX *prsactx,  | 
354  |  |                           unsigned char *out, size_t *outlen,  | 
355  |  |                           const unsigned char *in, size_t inlen)  | 
356  | 0  | { | 
357  | 0  |     size_t nlen;  | 
358  | 0  |     int ret;  | 
359  |  |  | 
360  |  |     /* Step (1): get the byte length of n */  | 
361  | 0  |     nlen = RSA_size(prsactx->rsa);  | 
362  |  | 
  | 
363  | 0  |     if (out == NULL) { | 
364  | 0  |         if (nlen == 0) { | 
365  | 0  |             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);  | 
366  | 0  |             return 0;  | 
367  | 0  |         }  | 
368  | 0  |         *outlen = nlen;  | 
369  | 0  |         return 1;  | 
370  | 0  |     }  | 
371  |  |  | 
372  |  |     /*  | 
373  |  |      * Step (2): check the input ciphertext 'inlen' matches the nlen  | 
374  |  |      * and that outlen is at least nlen bytes  | 
375  |  |      */  | 
376  | 0  |     if (inlen != nlen) { | 
377  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);  | 
378  | 0  |         return 0;  | 
379  | 0  |     }  | 
380  |  |  | 
381  |  |     /*  | 
382  |  |      * If outlen is specified, then it must report the length  | 
383  |  |      * of the out buffer, so that we can confirm that it is of  | 
384  |  |      * sufficient size to hold the output of decapsulation  | 
385  |  |      */  | 
386  | 0  |     if (outlen != NULL && *outlen < nlen) { | 
387  | 0  |         ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);  | 
388  | 0  |         return 0;  | 
389  | 0  |     }  | 
390  |  |  | 
391  |  |     /* Step (3): out = RSADP((n,d), in) */  | 
392  | 0  |     ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);  | 
393  | 0  |     if (ret > 0 && outlen != NULL)  | 
394  | 0  |         *outlen = ret;  | 
395  | 0  |     return ret > 0;  | 
396  | 0  | }  | 
397  |  |  | 
398  |  | static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,  | 
399  |  |                            unsigned char *secret, size_t *secretlen)  | 
400  | 0  | { | 
401  | 0  |     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;  | 
402  |  | 
  | 
403  | 0  |     if (!ossl_prov_is_running())  | 
404  | 0  |         return 0;  | 
405  |  |  | 
406  | 0  |     switch (prsactx->op) { | 
407  | 0  |         case KEM_OP_RSASVE:  | 
408  | 0  |             return rsasve_generate(prsactx, out, outlen, secret, secretlen);  | 
409  | 0  |         default:  | 
410  | 0  |             return -2;  | 
411  | 0  |     }  | 
412  | 0  | }  | 
413  |  |  | 
414  |  | static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,  | 
415  |  |                           const unsigned char *in, size_t inlen)  | 
416  | 0  | { | 
417  | 0  |     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;  | 
418  |  | 
  | 
419  | 0  |     if (!ossl_prov_is_running())  | 
420  | 0  |         return 0;  | 
421  |  |  | 
422  | 0  |     switch (prsactx->op) { | 
423  | 0  |         case KEM_OP_RSASVE:  | 
424  | 0  |             return rsasve_recover(prsactx, out, outlen, in, inlen);  | 
425  | 0  |         default:  | 
426  | 0  |             return -2;  | 
427  | 0  |     }  | 
428  | 0  | }  | 
429  |  |  | 
430  |  | const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = { | 
431  |  |     { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx }, | 
432  |  |     { OSSL_FUNC_KEM_ENCAPSULATE_INIT, | 
433  |  |       (void (*)(void))rsakem_encapsulate_init },  | 
434  |  |     { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate }, | 
435  |  |     { OSSL_FUNC_KEM_DECAPSULATE_INIT, | 
436  |  |       (void (*)(void))rsakem_decapsulate_init },  | 
437  |  |     { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover }, | 
438  |  |     { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx }, | 
439  |  |     { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx }, | 
440  |  |     { OSSL_FUNC_KEM_GET_CTX_PARAMS, | 
441  |  |       (void (*)(void))rsakem_get_ctx_params },  | 
442  |  |     { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS, | 
443  |  |       (void (*)(void))rsakem_gettable_ctx_params },  | 
444  |  |     { OSSL_FUNC_KEM_SET_CTX_PARAMS, | 
445  |  |       (void (*)(void))rsakem_set_ctx_params },  | 
446  |  |     { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, | 
447  |  |       (void (*)(void))rsakem_settable_ctx_params },  | 
448  |  |     OSSL_DISPATCH_END  | 
449  |  | };  |