Coverage Report

Created: 2025-06-13 06:56

/src/openssl/crypto/ec/ecp_nistp256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/opensslconf.h>
41
42
#include <stdint.h>
43
#include <string.h>
44
#include <openssl/err.h>
45
#include "ec_local.h"
46
47
#include "internal/numbers.h"
48
49
#ifndef INT128_MAX
50
# error "Your compiler doesn't appear to support 128-bit integer types"
51
#endif
52
53
typedef uint8_t u8;
54
typedef uint32_t u32;
55
typedef uint64_t u64;
56
57
/*
58
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59
 * can serialize an element of this field into 32 bytes. We call this an
60
 * felem_bytearray.
61
 */
62
63
typedef u8 felem_bytearray[32];
64
65
/*
66
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67
 * values are big-endian.
68
 */
69
static const felem_bytearray nistp256_curve_params[5] = {
70
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
74
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
78
    {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
79
     0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80
     0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81
     0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
82
    {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83
     0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84
     0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85
     0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
86
    {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87
     0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88
     0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89
     0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
90
};
91
92
/*-
93
 * The representation of field elements.
94
 * ------------------------------------
95
 *
96
 * We represent field elements with either four 128-bit values, eight 128-bit
97
 * values, or four 64-bit values. The field element represented is:
98
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
99
 * or:
100
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[7]*2^448  (mod p)
101
 *
102
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104
 * with the least significant bits of the next.
105
 *
106
 * A field element with four limbs is an 'felem'. One with eight limbs is a
107
 * 'longfelem'
108
 *
109
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110
 * values are used as intermediate values before multiplication.
111
 */
112
113
0
#define NLIMBS 4
114
115
typedef uint128_t limb;
116
typedef limb felem[NLIMBS];
117
typedef limb longfelem[NLIMBS * 2];
118
typedef u64 smallfelem[NLIMBS];
119
120
/* This is the value of the prime as four 64-bit words, little-endian. */
121
static const u64 kPrime[4] = {
122
    0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul
123
};
124
static const u64 bottom63bits = 0x7ffffffffffffffful;
125
126
/*
127
 * bin32_to_felem takes a little-endian byte array and converts it into felem
128
 * form. This assumes that the CPU is little-endian.
129
 */
130
static void bin32_to_felem(felem out, const u8 in[32])
131
0
{
132
0
    out[0] = *((u64 *)&in[0]);
133
0
    out[1] = *((u64 *)&in[8]);
134
0
    out[2] = *((u64 *)&in[16]);
135
0
    out[3] = *((u64 *)&in[24]);
136
0
}
137
138
/*
139
 * smallfelem_to_bin32 takes a smallfelem and serializes into a little
140
 * endian, 32 byte array. This assumes that the CPU is little-endian.
141
 */
142
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
143
0
{
144
0
    *((u64 *)&out[0]) = in[0];
145
0
    *((u64 *)&out[8]) = in[1];
146
0
    *((u64 *)&out[16]) = in[2];
147
0
    *((u64 *)&out[24]) = in[3];
148
0
}
149
150
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
151
static int BN_to_felem(felem out, const BIGNUM *bn)
152
0
{
153
0
    felem_bytearray b_out;
154
0
    int num_bytes;
155
156
0
    if (BN_is_negative(bn)) {
157
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
158
0
        return 0;
159
0
    }
160
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
161
0
    if (num_bytes < 0) {
162
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
163
0
        return 0;
164
0
    }
165
0
    bin32_to_felem(out, b_out);
166
0
    return 1;
167
0
}
168
169
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
170
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
171
0
{
172
0
    felem_bytearray b_out;
173
0
    smallfelem_to_bin32(b_out, in);
174
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
175
0
}
176
177
/*-
178
 * Field operations
179
 * ----------------
180
 */
181
182
static void smallfelem_one(smallfelem out)
183
0
{
184
0
    out[0] = 1;
185
0
    out[1] = 0;
186
0
    out[2] = 0;
187
0
    out[3] = 0;
188
0
}
189
190
static void smallfelem_assign(smallfelem out, const smallfelem in)
191
0
{
192
0
    out[0] = in[0];
193
0
    out[1] = in[1];
194
0
    out[2] = in[2];
195
0
    out[3] = in[3];
196
0
}
197
198
static void felem_assign(felem out, const felem in)
199
0
{
200
0
    out[0] = in[0];
201
0
    out[1] = in[1];
202
0
    out[2] = in[2];
203
0
    out[3] = in[3];
204
0
}
205
206
/* felem_sum sets out = out + in. */
207
static void felem_sum(felem out, const felem in)
208
0
{
209
0
    out[0] += in[0];
210
0
    out[1] += in[1];
211
0
    out[2] += in[2];
212
0
    out[3] += in[3];
213
0
}
214
215
/* felem_small_sum sets out = out + in. */
216
static void felem_small_sum(felem out, const smallfelem in)
217
0
{
218
0
    out[0] += in[0];
219
0
    out[1] += in[1];
220
0
    out[2] += in[2];
221
0
    out[3] += in[3];
222
0
}
223
224
/* felem_scalar sets out = out * scalar */
225
static void felem_scalar(felem out, const u64 scalar)
226
0
{
227
0
    out[0] *= scalar;
228
0
    out[1] *= scalar;
229
0
    out[2] *= scalar;
230
0
    out[3] *= scalar;
231
0
}
232
233
/* longfelem_scalar sets out = out * scalar */
234
static void longfelem_scalar(longfelem out, const u64 scalar)
235
0
{
236
0
    out[0] *= scalar;
237
0
    out[1] *= scalar;
238
0
    out[2] *= scalar;
239
0
    out[3] *= scalar;
240
0
    out[4] *= scalar;
241
0
    out[5] *= scalar;
242
0
    out[6] *= scalar;
243
0
    out[7] *= scalar;
244
0
}
245
246
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
247
#define two105 (((limb)1) << 105)
248
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
249
250
/* zero105 is 0 mod p */
251
static const felem zero105 =
252
    { two105m41m9, two105, two105m41p9, two105m41p9 };
253
254
/*-
255
 * smallfelem_neg sets |out| to |-small|
256
 * On exit:
257
 *   out[i] < out[i] + 2^105
258
 */
259
static void smallfelem_neg(felem out, const smallfelem small)
260
0
{
261
    /* In order to prevent underflow, we subtract from 0 mod p. */
262
0
    out[0] = zero105[0] - small[0];
263
0
    out[1] = zero105[1] - small[1];
264
0
    out[2] = zero105[2] - small[2];
265
0
    out[3] = zero105[3] - small[3];
266
0
}
267
268
/*-
269
 * felem_diff subtracts |in| from |out|
270
 * On entry:
271
 *   in[i] < 2^104
272
 * On exit:
273
 *   out[i] < out[i] + 2^105
274
 */
275
static void felem_diff(felem out, const felem in)
276
0
{
277
    /*
278
     * In order to prevent underflow, we add 0 mod p before subtracting.
279
     */
280
0
    out[0] += zero105[0];
281
0
    out[1] += zero105[1];
282
0
    out[2] += zero105[2];
283
0
    out[3] += zero105[3];
284
285
0
    out[0] -= in[0];
286
0
    out[1] -= in[1];
287
0
    out[2] -= in[2];
288
0
    out[3] -= in[3];
289
0
}
290
291
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
292
#define two107 (((limb)1) << 107)
293
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
294
295
/* zero107 is 0 mod p */
296
static const felem zero107 = {
297
    two107m43m11, two107, two107m43p11, two107m43p11
298
};
299
300
/*-
301
 * An alternative felem_diff for larger inputs |in|
302
 * felem_diff_zero107 subtracts |in| from |out|
303
 * On entry:
304
 *   in[i] < 2^106
305
 * On exit:
306
 *   out[i] < out[i] + 2^107
307
 */
308
static void felem_diff_zero107(felem out, const felem in)
309
0
{
310
    /*
311
     * In order to prevent underflow, we add 0 mod p before subtracting.
312
     */
313
0
    out[0] += zero107[0];
314
0
    out[1] += zero107[1];
315
0
    out[2] += zero107[2];
316
0
    out[3] += zero107[3];
317
318
0
    out[0] -= in[0];
319
0
    out[1] -= in[1];
320
0
    out[2] -= in[2];
321
0
    out[3] -= in[3];
322
0
}
323
324
/*-
325
 * longfelem_diff subtracts |in| from |out|
326
 * On entry:
327
 *   in[i] < 7*2^67
328
 * On exit:
329
 *   out[i] < out[i] + 2^70 + 2^40
330
 */
331
static void longfelem_diff(longfelem out, const longfelem in)
332
0
{
333
0
    static const limb two70m8p6 =
334
0
        (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
335
0
    static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
336
0
    static const limb two70 = (((limb) 1) << 70);
337
0
    static const limb two70m40m38p6 =
338
0
        (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
339
0
        (((limb) 1) << 6);
340
0
    static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
341
342
    /* add 0 mod p to avoid underflow */
343
0
    out[0] += two70m8p6;
344
0
    out[1] += two70p40;
345
0
    out[2] += two70;
346
0
    out[3] += two70m40m38p6;
347
0
    out[4] += two70m6;
348
0
    out[5] += two70m6;
349
0
    out[6] += two70m6;
350
0
    out[7] += two70m6;
351
352
    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
353
0
    out[0] -= in[0];
354
0
    out[1] -= in[1];
355
0
    out[2] -= in[2];
356
0
    out[3] -= in[3];
357
0
    out[4] -= in[4];
358
0
    out[5] -= in[5];
359
0
    out[6] -= in[6];
360
0
    out[7] -= in[7];
361
0
}
362
363
#define two64m0 (((limb)1) << 64) - 1
364
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
365
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
366
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
367
368
/* zero110 is 0 mod p */
369
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
370
371
/*-
372
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
373
 * minimal as the value may be greater than p.
374
 *
375
 * On entry:
376
 *   in[i] < 2^109
377
 * On exit:
378
 *   out[i] < 2^64
379
 */
380
static void felem_shrink(smallfelem out, const felem in)
381
0
{
382
0
    felem tmp;
383
0
    u64 a, b, mask;
384
0
    u64 high, low;
385
0
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
386
387
    /* Carry 2->3 */
388
0
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
389
    /* tmp[3] < 2^110 */
390
391
0
    tmp[2] = zero110[2] + (u64)in[2];
392
0
    tmp[0] = zero110[0] + in[0];
393
0
    tmp[1] = zero110[1] + in[1];
394
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
395
396
    /*
397
     * We perform two partial reductions where we eliminate the high-word of
398
     * tmp[3]. We don't update the other words till the end.
399
     */
400
0
    a = tmp[3] >> 64;           /* a < 2^46 */
401
0
    tmp[3] = (u64)tmp[3];
402
0
    tmp[3] -= a;
403
0
    tmp[3] += ((limb) a) << 32;
404
    /* tmp[3] < 2^79 */
405
406
0
    b = a;
407
0
    a = tmp[3] >> 64;           /* a < 2^15 */
408
0
    b += a;                     /* b < 2^46 + 2^15 < 2^47 */
409
0
    tmp[3] = (u64)tmp[3];
410
0
    tmp[3] -= a;
411
0
    tmp[3] += ((limb) a) << 32;
412
    /* tmp[3] < 2^64 + 2^47 */
413
414
    /*
415
     * This adjusts the other two words to complete the two partial
416
     * reductions.
417
     */
418
0
    tmp[0] += b;
419
0
    tmp[1] -= (((limb) b) << 32);
420
421
    /*
422
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
423
     * conditionally subtract kPrime if tmp[3] is large enough.
424
     */
425
0
    high = (u64)(tmp[3] >> 64);
426
    /* As tmp[3] < 2^65, high is either 1 or 0 */
427
0
    high = 0 - high;
428
    /*-
429
     * high is:
430
     *   all ones   if the high word of tmp[3] is 1
431
     *   all zeros  if the high word of tmp[3] if 0
432
     */
433
0
    low = (u64)tmp[3];
434
0
    mask = 0 - (low >> 63);
435
    /*-
436
     * mask is:
437
     *   all ones   if the MSB of low is 1
438
     *   all zeros  if the MSB of low if 0
439
     */
440
0
    low &= bottom63bits;
441
0
    low -= kPrime3Test;
442
    /* if low was greater than kPrime3Test then the MSB is zero */
443
0
    low = ~low;
444
0
    low = 0 - (low >> 63);
445
    /*-
446
     * low is:
447
     *   all ones   if low was > kPrime3Test
448
     *   all zeros  if low was <= kPrime3Test
449
     */
450
0
    mask = (mask & low) | high;
451
0
    tmp[0] -= mask & kPrime[0];
452
0
    tmp[1] -= mask & kPrime[1];
453
    /* kPrime[2] is zero, so omitted */
454
0
    tmp[3] -= mask & kPrime[3];
455
    /* tmp[3] < 2**64 - 2**32 + 1 */
456
457
0
    tmp[1] += ((u64)(tmp[0] >> 64));
458
0
    tmp[0] = (u64)tmp[0];
459
0
    tmp[2] += ((u64)(tmp[1] >> 64));
460
0
    tmp[1] = (u64)tmp[1];
461
0
    tmp[3] += ((u64)(tmp[2] >> 64));
462
0
    tmp[2] = (u64)tmp[2];
463
    /* tmp[i] < 2^64 */
464
465
0
    out[0] = tmp[0];
466
0
    out[1] = tmp[1];
467
0
    out[2] = tmp[2];
468
0
    out[3] = tmp[3];
469
0
}
470
471
/* smallfelem_expand converts a smallfelem to an felem */
472
static void smallfelem_expand(felem out, const smallfelem in)
473
0
{
474
0
    out[0] = in[0];
475
0
    out[1] = in[1];
476
0
    out[2] = in[2];
477
0
    out[3] = in[3];
478
0
}
479
480
/*-
481
 * smallfelem_square sets |out| = |small|^2
482
 * On entry:
483
 *   small[i] < 2^64
484
 * On exit:
485
 *   out[i] < 7 * 2^64 < 2^67
486
 */
487
static void smallfelem_square(longfelem out, const smallfelem small)
488
0
{
489
0
    limb a;
490
0
    u64 high, low;
491
492
0
    a = ((uint128_t) small[0]) * small[0];
493
0
    low = a;
494
0
    high = a >> 64;
495
0
    out[0] = low;
496
0
    out[1] = high;
497
498
0
    a = ((uint128_t) small[0]) * small[1];
499
0
    low = a;
500
0
    high = a >> 64;
501
0
    out[1] += low;
502
0
    out[1] += low;
503
0
    out[2] = high;
504
505
0
    a = ((uint128_t) small[0]) * small[2];
506
0
    low = a;
507
0
    high = a >> 64;
508
0
    out[2] += low;
509
0
    out[2] *= 2;
510
0
    out[3] = high;
511
512
0
    a = ((uint128_t) small[0]) * small[3];
513
0
    low = a;
514
0
    high = a >> 64;
515
0
    out[3] += low;
516
0
    out[4] = high;
517
518
0
    a = ((uint128_t) small[1]) * small[2];
519
0
    low = a;
520
0
    high = a >> 64;
521
0
    out[3] += low;
522
0
    out[3] *= 2;
523
0
    out[4] += high;
524
525
0
    a = ((uint128_t) small[1]) * small[1];
526
0
    low = a;
527
0
    high = a >> 64;
528
0
    out[2] += low;
529
0
    out[3] += high;
530
531
0
    a = ((uint128_t) small[1]) * small[3];
532
0
    low = a;
533
0
    high = a >> 64;
534
0
    out[4] += low;
535
0
    out[4] *= 2;
536
0
    out[5] = high;
537
538
0
    a = ((uint128_t) small[2]) * small[3];
539
0
    low = a;
540
0
    high = a >> 64;
541
0
    out[5] += low;
542
0
    out[5] *= 2;
543
0
    out[6] = high;
544
0
    out[6] += high;
545
546
0
    a = ((uint128_t) small[2]) * small[2];
547
0
    low = a;
548
0
    high = a >> 64;
549
0
    out[4] += low;
550
0
    out[5] += high;
551
552
0
    a = ((uint128_t) small[3]) * small[3];
553
0
    low = a;
554
0
    high = a >> 64;
555
0
    out[6] += low;
556
0
    out[7] = high;
557
0
}
558
559
/*-
560
 * felem_square sets |out| = |in|^2
561
 * On entry:
562
 *   in[i] < 2^109
563
 * On exit:
564
 *   out[i] < 7 * 2^64 < 2^67
565
 */
566
static void felem_square(longfelem out, const felem in)
567
0
{
568
0
    u64 small[4];
569
0
    felem_shrink(small, in);
570
0
    smallfelem_square(out, small);
571
0
}
572
573
/*-
574
 * smallfelem_mul sets |out| = |small1| * |small2|
575
 * On entry:
576
 *   small1[i] < 2^64
577
 *   small2[i] < 2^64
578
 * On exit:
579
 *   out[i] < 7 * 2^64 < 2^67
580
 */
581
static void smallfelem_mul(longfelem out, const smallfelem small1,
582
                           const smallfelem small2)
583
0
{
584
0
    limb a;
585
0
    u64 high, low;
586
587
0
    a = ((uint128_t) small1[0]) * small2[0];
588
0
    low = a;
589
0
    high = a >> 64;
590
0
    out[0] = low;
591
0
    out[1] = high;
592
593
0
    a = ((uint128_t) small1[0]) * small2[1];
594
0
    low = a;
595
0
    high = a >> 64;
596
0
    out[1] += low;
597
0
    out[2] = high;
598
599
0
    a = ((uint128_t) small1[1]) * small2[0];
600
0
    low = a;
601
0
    high = a >> 64;
602
0
    out[1] += low;
603
0
    out[2] += high;
604
605
0
    a = ((uint128_t) small1[0]) * small2[2];
606
0
    low = a;
607
0
    high = a >> 64;
608
0
    out[2] += low;
609
0
    out[3] = high;
610
611
0
    a = ((uint128_t) small1[1]) * small2[1];
612
0
    low = a;
613
0
    high = a >> 64;
614
0
    out[2] += low;
615
0
    out[3] += high;
616
617
0
    a = ((uint128_t) small1[2]) * small2[0];
618
0
    low = a;
619
0
    high = a >> 64;
620
0
    out[2] += low;
621
0
    out[3] += high;
622
623
0
    a = ((uint128_t) small1[0]) * small2[3];
624
0
    low = a;
625
0
    high = a >> 64;
626
0
    out[3] += low;
627
0
    out[4] = high;
628
629
0
    a = ((uint128_t) small1[1]) * small2[2];
630
0
    low = a;
631
0
    high = a >> 64;
632
0
    out[3] += low;
633
0
    out[4] += high;
634
635
0
    a = ((uint128_t) small1[2]) * small2[1];
636
0
    low = a;
637
0
    high = a >> 64;
638
0
    out[3] += low;
639
0
    out[4] += high;
640
641
0
    a = ((uint128_t) small1[3]) * small2[0];
642
0
    low = a;
643
0
    high = a >> 64;
644
0
    out[3] += low;
645
0
    out[4] += high;
646
647
0
    a = ((uint128_t) small1[1]) * small2[3];
648
0
    low = a;
649
0
    high = a >> 64;
650
0
    out[4] += low;
651
0
    out[5] = high;
652
653
0
    a = ((uint128_t) small1[2]) * small2[2];
654
0
    low = a;
655
0
    high = a >> 64;
656
0
    out[4] += low;
657
0
    out[5] += high;
658
659
0
    a = ((uint128_t) small1[3]) * small2[1];
660
0
    low = a;
661
0
    high = a >> 64;
662
0
    out[4] += low;
663
0
    out[5] += high;
664
665
0
    a = ((uint128_t) small1[2]) * small2[3];
666
0
    low = a;
667
0
    high = a >> 64;
668
0
    out[5] += low;
669
0
    out[6] = high;
670
671
0
    a = ((uint128_t) small1[3]) * small2[2];
672
0
    low = a;
673
0
    high = a >> 64;
674
0
    out[5] += low;
675
0
    out[6] += high;
676
677
0
    a = ((uint128_t) small1[3]) * small2[3];
678
0
    low = a;
679
0
    high = a >> 64;
680
0
    out[6] += low;
681
0
    out[7] = high;
682
0
}
683
684
/*-
685
 * felem_mul sets |out| = |in1| * |in2|
686
 * On entry:
687
 *   in1[i] < 2^109
688
 *   in2[i] < 2^109
689
 * On exit:
690
 *   out[i] < 7 * 2^64 < 2^67
691
 */
692
static void felem_mul(longfelem out, const felem in1, const felem in2)
693
0
{
694
0
    smallfelem small1, small2;
695
0
    felem_shrink(small1, in1);
696
0
    felem_shrink(small2, in2);
697
0
    smallfelem_mul(out, small1, small2);
698
0
}
699
700
/*-
701
 * felem_small_mul sets |out| = |small1| * |in2|
702
 * On entry:
703
 *   small1[i] < 2^64
704
 *   in2[i] < 2^109
705
 * On exit:
706
 *   out[i] < 7 * 2^64 < 2^67
707
 */
708
static void felem_small_mul(longfelem out, const smallfelem small1,
709
                            const felem in2)
710
0
{
711
0
    smallfelem small2;
712
0
    felem_shrink(small2, in2);
713
0
    smallfelem_mul(out, small1, small2);
714
0
}
715
716
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
717
#define two100 (((limb)1) << 100)
718
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
719
/* zero100 is 0 mod p */
720
static const felem zero100 =
721
    { two100m36m4, two100, two100m36p4, two100m36p4 };
722
723
/*-
724
 * Internal function for the different flavours of felem_reduce.
725
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
726
 * On entry:
727
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
728
 *   out[1] >= in[7] + 2^32*in[4]
729
 *   out[2] >= in[5] + 2^32*in[5]
730
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
731
 * On exit:
732
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
733
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
734
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
735
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
736
 */
737
static void felem_reduce_(felem out, const longfelem in)
738
0
{
739
0
    int128_t c;
740
    /* combine common terms from below */
741
0
    c = in[4] + (in[5] << 32);
742
0
    out[0] += c;
743
0
    out[3] -= c;
744
745
0
    c = in[5] - in[7];
746
0
    out[1] += c;
747
0
    out[2] -= c;
748
749
    /* the remaining terms */
750
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
751
0
    out[1] -= (in[4] << 32);
752
0
    out[3] += (in[4] << 32);
753
754
    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
755
0
    out[2] -= (in[5] << 32);
756
757
    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
758
0
    out[0] -= in[6];
759
0
    out[0] -= (in[6] << 32);
760
0
    out[1] += (in[6] << 33);
761
0
    out[2] += (in[6] * 2);
762
0
    out[3] -= (in[6] << 32);
763
764
    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
765
0
    out[0] -= in[7];
766
0
    out[0] -= (in[7] << 32);
767
0
    out[2] += (in[7] << 33);
768
0
    out[3] += (in[7] * 3);
769
0
}
770
771
/*-
772
 * felem_reduce converts a longfelem into an felem.
773
 * To be called directly after felem_square or felem_mul.
774
 * On entry:
775
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
776
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
777
 * On exit:
778
 *   out[i] < 2^101
779
 */
780
static void felem_reduce(felem out, const longfelem in)
781
0
{
782
0
    out[0] = zero100[0] + in[0];
783
0
    out[1] = zero100[1] + in[1];
784
0
    out[2] = zero100[2] + in[2];
785
0
    out[3] = zero100[3] + in[3];
786
787
0
    felem_reduce_(out, in);
788
789
    /*-
790
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
791
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
792
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
793
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
794
     *
795
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
796
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
797
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
798
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
799
     */
800
0
}
801
802
/*-
803
 * felem_reduce_zero105 converts a larger longfelem into an felem.
804
 * On entry:
805
 *   in[0] < 2^71
806
 * On exit:
807
 *   out[i] < 2^106
808
 */
809
static void felem_reduce_zero105(felem out, const longfelem in)
810
0
{
811
0
    out[0] = zero105[0] + in[0];
812
0
    out[1] = zero105[1] + in[1];
813
0
    out[2] = zero105[2] + in[2];
814
0
    out[3] = zero105[3] + in[3];
815
816
0
    felem_reduce_(out, in);
817
818
    /*-
819
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
820
     * out[1] > 2^105 - 2^71 - 2^103 > 0
821
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
822
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
823
     *
824
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
825
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
826
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
827
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
828
     */
829
0
}
830
831
/*
832
 * subtract_u64 sets *result = *result - v and *carry to one if the
833
 * subtraction underflowed.
834
 */
835
static void subtract_u64(u64 *result, u64 *carry, u64 v)
836
0
{
837
0
    uint128_t r = *result;
838
0
    r -= v;
839
0
    *carry = (r >> 64) & 1;
840
0
    *result = (u64)r;
841
0
}
842
843
/*
844
 * felem_contract converts |in| to its unique, minimal representation. On
845
 * entry: in[i] < 2^109
846
 */
847
static void felem_contract(smallfelem out, const felem in)
848
0
{
849
0
    unsigned i;
850
0
    u64 all_equal_so_far = 0, result = 0, carry;
851
852
0
    felem_shrink(out, in);
853
    /* small is minimal except that the value might be > p */
854
855
0
    all_equal_so_far--;
856
    /*
857
     * We are doing a constant time test if out >= kPrime. We need to compare
858
     * each u64, from most-significant to least significant. For each one, if
859
     * all words so far have been equal (m is all ones) then a non-equal
860
     * result is the answer. Otherwise we continue.
861
     */
862
0
    for (i = 3; i < 4; i--) {
863
0
        u64 equal;
864
0
        uint128_t a = ((uint128_t) kPrime[i]) - out[i];
865
        /*
866
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
867
         * will all be set.
868
         */
869
0
        result |= all_equal_so_far & ((u64)(a >> 64));
870
871
        /*
872
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
873
         * decrement will make it all ones.
874
         */
875
0
        equal = kPrime[i] ^ out[i];
876
0
        equal--;
877
0
        equal &= equal << 32;
878
0
        equal &= equal << 16;
879
0
        equal &= equal << 8;
880
0
        equal &= equal << 4;
881
0
        equal &= equal << 2;
882
0
        equal &= equal << 1;
883
0
        equal = 0 - (equal >> 63);
884
885
0
        all_equal_so_far &= equal;
886
0
    }
887
888
    /*
889
     * if all_equal_so_far is still all ones then the two values are equal
890
     * and so out >= kPrime is true.
891
     */
892
0
    result |= all_equal_so_far;
893
894
    /* if out >= kPrime then we subtract kPrime. */
895
0
    subtract_u64(&out[0], &carry, result & kPrime[0]);
896
0
    subtract_u64(&out[1], &carry, carry);
897
0
    subtract_u64(&out[2], &carry, carry);
898
0
    subtract_u64(&out[3], &carry, carry);
899
900
0
    subtract_u64(&out[1], &carry, result & kPrime[1]);
901
0
    subtract_u64(&out[2], &carry, carry);
902
0
    subtract_u64(&out[3], &carry, carry);
903
904
0
    subtract_u64(&out[2], &carry, result & kPrime[2]);
905
0
    subtract_u64(&out[3], &carry, carry);
906
907
0
    subtract_u64(&out[3], &carry, result & kPrime[3]);
908
0
}
909
910
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
911
0
{
912
0
    longfelem longtmp;
913
0
    felem tmp;
914
915
0
    smallfelem_square(longtmp, in);
916
0
    felem_reduce(tmp, longtmp);
917
0
    felem_contract(out, tmp);
918
0
}
919
920
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
921
                                    const smallfelem in2)
922
0
{
923
0
    longfelem longtmp;
924
0
    felem tmp;
925
926
0
    smallfelem_mul(longtmp, in1, in2);
927
0
    felem_reduce(tmp, longtmp);
928
0
    felem_contract(out, tmp);
929
0
}
930
931
/*-
932
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
933
 * otherwise.
934
 * On entry:
935
 *   small[i] < 2^64
936
 */
937
static limb smallfelem_is_zero(const smallfelem small)
938
0
{
939
0
    limb result;
940
0
    u64 is_p;
941
942
0
    u64 is_zero = small[0] | small[1] | small[2] | small[3];
943
0
    is_zero--;
944
0
    is_zero &= is_zero << 32;
945
0
    is_zero &= is_zero << 16;
946
0
    is_zero &= is_zero << 8;
947
0
    is_zero &= is_zero << 4;
948
0
    is_zero &= is_zero << 2;
949
0
    is_zero &= is_zero << 1;
950
0
    is_zero = 0 - (is_zero >> 63);
951
952
0
    is_p = (small[0] ^ kPrime[0]) |
953
0
        (small[1] ^ kPrime[1]) |
954
0
        (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
955
0
    is_p--;
956
0
    is_p &= is_p << 32;
957
0
    is_p &= is_p << 16;
958
0
    is_p &= is_p << 8;
959
0
    is_p &= is_p << 4;
960
0
    is_p &= is_p << 2;
961
0
    is_p &= is_p << 1;
962
0
    is_p = 0 - (is_p >> 63);
963
964
0
    is_zero |= is_p;
965
966
0
    result = is_zero;
967
0
    result |= ((limb) is_zero) << 64;
968
0
    return result;
969
0
}
970
971
static int smallfelem_is_zero_int(const void *small)
972
0
{
973
0
    return (int)(smallfelem_is_zero(small) & ((limb) 1));
974
0
}
975
976
/*-
977
 * felem_inv calculates |out| = |in|^{-1}
978
 *
979
 * Based on Fermat's Little Theorem:
980
 *   a^p = a (mod p)
981
 *   a^{p-1} = 1 (mod p)
982
 *   a^{p-2} = a^{-1} (mod p)
983
 */
984
static void felem_inv(felem out, const felem in)
985
0
{
986
0
    felem ftmp, ftmp2;
987
    /* each e_I will hold |in|^{2^I - 1} */
988
0
    felem e2, e4, e8, e16, e32, e64;
989
0
    longfelem tmp;
990
0
    unsigned i;
991
992
0
    felem_square(tmp, in);
993
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
994
0
    felem_mul(tmp, in, ftmp);
995
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
996
0
    felem_assign(e2, ftmp);
997
0
    felem_square(tmp, ftmp);
998
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
999
0
    felem_square(tmp, ftmp);
1000
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^2 */
1001
0
    felem_mul(tmp, ftmp, e2);
1002
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^0 */
1003
0
    felem_assign(e4, ftmp);
1004
0
    felem_square(tmp, ftmp);
1005
0
    felem_reduce(ftmp, tmp);    /* 2^5 - 2^1 */
1006
0
    felem_square(tmp, ftmp);
1007
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 2^2 */
1008
0
    felem_square(tmp, ftmp);
1009
0
    felem_reduce(ftmp, tmp);    /* 2^7 - 2^3 */
1010
0
    felem_square(tmp, ftmp);
1011
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^4 */
1012
0
    felem_mul(tmp, ftmp, e4);
1013
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^0 */
1014
0
    felem_assign(e8, ftmp);
1015
0
    for (i = 0; i < 8; i++) {
1016
0
        felem_square(tmp, ftmp);
1017
0
        felem_reduce(ftmp, tmp);
1018
0
    }                           /* 2^16 - 2^8 */
1019
0
    felem_mul(tmp, ftmp, e8);
1020
0
    felem_reduce(ftmp, tmp);    /* 2^16 - 2^0 */
1021
0
    felem_assign(e16, ftmp);
1022
0
    for (i = 0; i < 16; i++) {
1023
0
        felem_square(tmp, ftmp);
1024
0
        felem_reduce(ftmp, tmp);
1025
0
    }                           /* 2^32 - 2^16 */
1026
0
    felem_mul(tmp, ftmp, e16);
1027
0
    felem_reduce(ftmp, tmp);    /* 2^32 - 2^0 */
1028
0
    felem_assign(e32, ftmp);
1029
0
    for (i = 0; i < 32; i++) {
1030
0
        felem_square(tmp, ftmp);
1031
0
        felem_reduce(ftmp, tmp);
1032
0
    }                           /* 2^64 - 2^32 */
1033
0
    felem_assign(e64, ftmp);
1034
0
    felem_mul(tmp, ftmp, in);
1035
0
    felem_reduce(ftmp, tmp);    /* 2^64 - 2^32 + 2^0 */
1036
0
    for (i = 0; i < 192; i++) {
1037
0
        felem_square(tmp, ftmp);
1038
0
        felem_reduce(ftmp, tmp);
1039
0
    }                           /* 2^256 - 2^224 + 2^192 */
1040
1041
0
    felem_mul(tmp, e64, e32);
1042
0
    felem_reduce(ftmp2, tmp);   /* 2^64 - 2^0 */
1043
0
    for (i = 0; i < 16; i++) {
1044
0
        felem_square(tmp, ftmp2);
1045
0
        felem_reduce(ftmp2, tmp);
1046
0
    }                           /* 2^80 - 2^16 */
1047
0
    felem_mul(tmp, ftmp2, e16);
1048
0
    felem_reduce(ftmp2, tmp);   /* 2^80 - 2^0 */
1049
0
    for (i = 0; i < 8; i++) {
1050
0
        felem_square(tmp, ftmp2);
1051
0
        felem_reduce(ftmp2, tmp);
1052
0
    }                           /* 2^88 - 2^8 */
1053
0
    felem_mul(tmp, ftmp2, e8);
1054
0
    felem_reduce(ftmp2, tmp);   /* 2^88 - 2^0 */
1055
0
    for (i = 0; i < 4; i++) {
1056
0
        felem_square(tmp, ftmp2);
1057
0
        felem_reduce(ftmp2, tmp);
1058
0
    }                           /* 2^92 - 2^4 */
1059
0
    felem_mul(tmp, ftmp2, e4);
1060
0
    felem_reduce(ftmp2, tmp);   /* 2^92 - 2^0 */
1061
0
    felem_square(tmp, ftmp2);
1062
0
    felem_reduce(ftmp2, tmp);   /* 2^93 - 2^1 */
1063
0
    felem_square(tmp, ftmp2);
1064
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^2 */
1065
0
    felem_mul(tmp, ftmp2, e2);
1066
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^0 */
1067
0
    felem_square(tmp, ftmp2);
1068
0
    felem_reduce(ftmp2, tmp);   /* 2^95 - 2^1 */
1069
0
    felem_square(tmp, ftmp2);
1070
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 2^2 */
1071
0
    felem_mul(tmp, ftmp2, in);
1072
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 3 */
1073
1074
0
    felem_mul(tmp, ftmp2, ftmp);
1075
0
    felem_reduce(out, tmp);     /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1076
0
}
1077
1078
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1079
0
{
1080
0
    felem tmp;
1081
1082
0
    smallfelem_expand(tmp, in);
1083
0
    felem_inv(tmp, tmp);
1084
0
    felem_contract(out, tmp);
1085
0
}
1086
1087
/*-
1088
 * Group operations
1089
 * ----------------
1090
 *
1091
 * Building on top of the field operations we have the operations on the
1092
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1093
 * coordinates
1094
 */
1095
1096
/*-
1097
 * point_double calculates 2*(x_in, y_in, z_in)
1098
 *
1099
 * The method is taken from:
1100
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1101
 *
1102
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1103
 * while x_out == y_in is not (maybe this works, but it's not tested).
1104
 */
1105
static void
1106
point_double(felem x_out, felem y_out, felem z_out,
1107
             const felem x_in, const felem y_in, const felem z_in)
1108
0
{
1109
0
    longfelem tmp, tmp2;
1110
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1111
0
    smallfelem small1, small2;
1112
1113
0
    felem_assign(ftmp, x_in);
1114
    /* ftmp[i] < 2^106 */
1115
0
    felem_assign(ftmp2, x_in);
1116
    /* ftmp2[i] < 2^106 */
1117
1118
    /* delta = z^2 */
1119
0
    felem_square(tmp, z_in);
1120
0
    felem_reduce(delta, tmp);
1121
    /* delta[i] < 2^101 */
1122
1123
    /* gamma = y^2 */
1124
0
    felem_square(tmp, y_in);
1125
0
    felem_reduce(gamma, tmp);
1126
    /* gamma[i] < 2^101 */
1127
0
    felem_shrink(small1, gamma);
1128
1129
    /* beta = x*gamma */
1130
0
    felem_small_mul(tmp, small1, x_in);
1131
0
    felem_reduce(beta, tmp);
1132
    /* beta[i] < 2^101 */
1133
1134
    /* alpha = 3*(x-delta)*(x+delta) */
1135
0
    felem_diff(ftmp, delta);
1136
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1137
0
    felem_sum(ftmp2, delta);
1138
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1139
0
    felem_scalar(ftmp2, 3);
1140
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
1141
0
    felem_mul(tmp, ftmp, ftmp2);
1142
0
    felem_reduce(alpha, tmp);
1143
    /* alpha[i] < 2^101 */
1144
0
    felem_shrink(small2, alpha);
1145
1146
    /* x' = alpha^2 - 8*beta */
1147
0
    smallfelem_square(tmp, small2);
1148
0
    felem_reduce(x_out, tmp);
1149
0
    felem_assign(ftmp, beta);
1150
0
    felem_scalar(ftmp, 8);
1151
    /* ftmp[i] < 8 * 2^101 = 2^104 */
1152
0
    felem_diff(x_out, ftmp);
1153
    /* x_out[i] < 2^105 + 2^101 < 2^106 */
1154
1155
    /* z' = (y + z)^2 - gamma - delta */
1156
0
    felem_sum(delta, gamma);
1157
    /* delta[i] < 2^101 + 2^101 = 2^102 */
1158
0
    felem_assign(ftmp, y_in);
1159
0
    felem_sum(ftmp, z_in);
1160
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1161
0
    felem_square(tmp, ftmp);
1162
0
    felem_reduce(z_out, tmp);
1163
0
    felem_diff(z_out, delta);
1164
    /* z_out[i] < 2^105 + 2^101 < 2^106 */
1165
1166
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1167
0
    felem_scalar(beta, 4);
1168
    /* beta[i] < 4 * 2^101 = 2^103 */
1169
0
    felem_diff_zero107(beta, x_out);
1170
    /* beta[i] < 2^107 + 2^103 < 2^108 */
1171
0
    felem_small_mul(tmp, small2, beta);
1172
    /* tmp[i] < 7 * 2^64 < 2^67 */
1173
0
    smallfelem_square(tmp2, small1);
1174
    /* tmp2[i] < 7 * 2^64 */
1175
0
    longfelem_scalar(tmp2, 8);
1176
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1177
0
    longfelem_diff(tmp, tmp2);
1178
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1179
0
    felem_reduce_zero105(y_out, tmp);
1180
    /* y_out[i] < 2^106 */
1181
0
}
1182
1183
/*
1184
 * point_double_small is the same as point_double, except that it operates on
1185
 * smallfelems
1186
 */
1187
static void
1188
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1189
                   const smallfelem x_in, const smallfelem y_in,
1190
                   const smallfelem z_in)
1191
0
{
1192
0
    felem felem_x_out, felem_y_out, felem_z_out;
1193
0
    felem felem_x_in, felem_y_in, felem_z_in;
1194
1195
0
    smallfelem_expand(felem_x_in, x_in);
1196
0
    smallfelem_expand(felem_y_in, y_in);
1197
0
    smallfelem_expand(felem_z_in, z_in);
1198
0
    point_double(felem_x_out, felem_y_out, felem_z_out,
1199
0
                 felem_x_in, felem_y_in, felem_z_in);
1200
0
    felem_shrink(x_out, felem_x_out);
1201
0
    felem_shrink(y_out, felem_y_out);
1202
0
    felem_shrink(z_out, felem_z_out);
1203
0
}
1204
1205
/* copy_conditional copies in to out iff mask is all ones. */
1206
static void copy_conditional(felem out, const felem in, limb mask)
1207
0
{
1208
0
    unsigned i;
1209
0
    for (i = 0; i < NLIMBS; ++i) {
1210
0
        const limb tmp = mask & (in[i] ^ out[i]);
1211
0
        out[i] ^= tmp;
1212
0
    }
1213
0
}
1214
1215
/* copy_small_conditional copies in to out iff mask is all ones. */
1216
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1217
0
{
1218
0
    unsigned i;
1219
0
    const u64 mask64 = mask;
1220
0
    for (i = 0; i < NLIMBS; ++i) {
1221
0
        out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1222
0
    }
1223
0
}
1224
1225
/*-
1226
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1227
 *
1228
 * The method is taken from:
1229
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1230
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1231
 *
1232
 * This function includes a branch for checking whether the two input points
1233
 * are equal, (while not equal to the point at infinity). This case never
1234
 * happens during single point multiplication, so there is no timing leak for
1235
 * ECDH or ECDSA signing.
1236
 */
1237
static void point_add(felem x3, felem y3, felem z3,
1238
                      const felem x1, const felem y1, const felem z1,
1239
                      const int mixed, const smallfelem x2,
1240
                      const smallfelem y2, const smallfelem z2)
1241
0
{
1242
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1243
0
    longfelem tmp, tmp2;
1244
0
    smallfelem small1, small2, small3, small4, small5;
1245
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1246
0
    limb points_equal;
1247
1248
0
    felem_shrink(small3, z1);
1249
1250
0
    z1_is_zero = smallfelem_is_zero(small3);
1251
0
    z2_is_zero = smallfelem_is_zero(z2);
1252
1253
    /* ftmp = z1z1 = z1**2 */
1254
0
    smallfelem_square(tmp, small3);
1255
0
    felem_reduce(ftmp, tmp);
1256
    /* ftmp[i] < 2^101 */
1257
0
    felem_shrink(small1, ftmp);
1258
1259
0
    if (!mixed) {
1260
        /* ftmp2 = z2z2 = z2**2 */
1261
0
        smallfelem_square(tmp, z2);
1262
0
        felem_reduce(ftmp2, tmp);
1263
        /* ftmp2[i] < 2^101 */
1264
0
        felem_shrink(small2, ftmp2);
1265
1266
0
        felem_shrink(small5, x1);
1267
1268
        /* u1 = ftmp3 = x1*z2z2 */
1269
0
        smallfelem_mul(tmp, small5, small2);
1270
0
        felem_reduce(ftmp3, tmp);
1271
        /* ftmp3[i] < 2^101 */
1272
1273
        /* ftmp5 = z1 + z2 */
1274
0
        felem_assign(ftmp5, z1);
1275
0
        felem_small_sum(ftmp5, z2);
1276
        /* ftmp5[i] < 2^107 */
1277
1278
        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1279
0
        felem_square(tmp, ftmp5);
1280
0
        felem_reduce(ftmp5, tmp);
1281
        /* ftmp2 = z2z2 + z1z1 */
1282
0
        felem_sum(ftmp2, ftmp);
1283
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1284
0
        felem_diff(ftmp5, ftmp2);
1285
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1286
1287
        /* ftmp2 = z2 * z2z2 */
1288
0
        smallfelem_mul(tmp, small2, z2);
1289
0
        felem_reduce(ftmp2, tmp);
1290
1291
        /* s1 = ftmp2 = y1 * z2**3 */
1292
0
        felem_mul(tmp, y1, ftmp2);
1293
0
        felem_reduce(ftmp6, tmp);
1294
        /* ftmp6[i] < 2^101 */
1295
0
    } else {
1296
        /*
1297
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1298
         */
1299
1300
        /* u1 = ftmp3 = x1*z2z2 */
1301
0
        felem_assign(ftmp3, x1);
1302
        /* ftmp3[i] < 2^106 */
1303
1304
        /* ftmp5 = 2z1z2 */
1305
0
        felem_assign(ftmp5, z1);
1306
0
        felem_scalar(ftmp5, 2);
1307
        /* ftmp5[i] < 2*2^106 = 2^107 */
1308
1309
        /* s1 = ftmp2 = y1 * z2**3 */
1310
0
        felem_assign(ftmp6, y1);
1311
        /* ftmp6[i] < 2^106 */
1312
0
    }
1313
1314
    /* u2 = x2*z1z1 */
1315
0
    smallfelem_mul(tmp, x2, small1);
1316
0
    felem_reduce(ftmp4, tmp);
1317
1318
    /* h = ftmp4 = u2 - u1 */
1319
0
    felem_diff_zero107(ftmp4, ftmp3);
1320
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1321
0
    felem_shrink(small4, ftmp4);
1322
1323
0
    x_equal = smallfelem_is_zero(small4);
1324
1325
    /* z_out = ftmp5 * h */
1326
0
    felem_small_mul(tmp, small4, ftmp5);
1327
0
    felem_reduce(z_out, tmp);
1328
    /* z_out[i] < 2^101 */
1329
1330
    /* ftmp = z1 * z1z1 */
1331
0
    smallfelem_mul(tmp, small1, small3);
1332
0
    felem_reduce(ftmp, tmp);
1333
1334
    /* s2 = tmp = y2 * z1**3 */
1335
0
    felem_small_mul(tmp, y2, ftmp);
1336
0
    felem_reduce(ftmp5, tmp);
1337
1338
    /* r = ftmp5 = (s2 - s1)*2 */
1339
0
    felem_diff_zero107(ftmp5, ftmp6);
1340
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1341
0
    felem_scalar(ftmp5, 2);
1342
    /* ftmp5[i] < 2^109 */
1343
0
    felem_shrink(small1, ftmp5);
1344
0
    y_equal = smallfelem_is_zero(small1);
1345
1346
    /*
1347
     * The formulae are incorrect if the points are equal, in affine coordinates
1348
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1349
     * happens.
1350
     *
1351
     * We use bitwise operations to avoid potential side-channels introduced by
1352
     * the short-circuiting behaviour of boolean operators.
1353
     *
1354
     * The special case of either point being the point at infinity (z1 and/or
1355
     * z2 are zero), is handled separately later on in this function, so we
1356
     * avoid jumping to point_double here in those special cases.
1357
     */
1358
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1359
1360
0
    if (points_equal) {
1361
        /*
1362
         * This is obviously not constant-time but, as mentioned before, this
1363
         * case never happens during single point multiplication, so there is no
1364
         * timing leak for ECDH or ECDSA signing.
1365
         */
1366
0
        point_double(x3, y3, z3, x1, y1, z1);
1367
0
        return;
1368
0
    }
1369
1370
    /* I = ftmp = (2h)**2 */
1371
0
    felem_assign(ftmp, ftmp4);
1372
0
    felem_scalar(ftmp, 2);
1373
    /* ftmp[i] < 2*2^108 = 2^109 */
1374
0
    felem_square(tmp, ftmp);
1375
0
    felem_reduce(ftmp, tmp);
1376
1377
    /* J = ftmp2 = h * I */
1378
0
    felem_mul(tmp, ftmp4, ftmp);
1379
0
    felem_reduce(ftmp2, tmp);
1380
1381
    /* V = ftmp4 = U1 * I */
1382
0
    felem_mul(tmp, ftmp3, ftmp);
1383
0
    felem_reduce(ftmp4, tmp);
1384
1385
    /* x_out = r**2 - J - 2V */
1386
0
    smallfelem_square(tmp, small1);
1387
0
    felem_reduce(x_out, tmp);
1388
0
    felem_assign(ftmp3, ftmp4);
1389
0
    felem_scalar(ftmp4, 2);
1390
0
    felem_sum(ftmp4, ftmp2);
1391
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1392
0
    felem_diff(x_out, ftmp4);
1393
    /* x_out[i] < 2^105 + 2^101 */
1394
1395
    /* y_out = r(V-x_out) - 2 * s1 * J */
1396
0
    felem_diff_zero107(ftmp3, x_out);
1397
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1398
0
    felem_small_mul(tmp, small1, ftmp3);
1399
0
    felem_mul(tmp2, ftmp6, ftmp2);
1400
0
    longfelem_scalar(tmp2, 2);
1401
    /* tmp2[i] < 2*2^67 = 2^68 */
1402
0
    longfelem_diff(tmp, tmp2);
1403
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1404
0
    felem_reduce_zero105(y_out, tmp);
1405
    /* y_out[i] < 2^106 */
1406
1407
0
    copy_small_conditional(x_out, x2, z1_is_zero);
1408
0
    copy_conditional(x_out, x1, z2_is_zero);
1409
0
    copy_small_conditional(y_out, y2, z1_is_zero);
1410
0
    copy_conditional(y_out, y1, z2_is_zero);
1411
0
    copy_small_conditional(z_out, z2, z1_is_zero);
1412
0
    copy_conditional(z_out, z1, z2_is_zero);
1413
0
    felem_assign(x3, x_out);
1414
0
    felem_assign(y3, y_out);
1415
0
    felem_assign(z3, z_out);
1416
0
}
1417
1418
/*
1419
 * point_add_small is the same as point_add, except that it operates on
1420
 * smallfelems
1421
 */
1422
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1423
                            smallfelem x1, smallfelem y1, smallfelem z1,
1424
                            smallfelem x2, smallfelem y2, smallfelem z2)
1425
0
{
1426
0
    felem felem_x3, felem_y3, felem_z3;
1427
0
    felem felem_x1, felem_y1, felem_z1;
1428
0
    smallfelem_expand(felem_x1, x1);
1429
0
    smallfelem_expand(felem_y1, y1);
1430
0
    smallfelem_expand(felem_z1, z1);
1431
0
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1432
0
              x2, y2, z2);
1433
0
    felem_shrink(x3, felem_x3);
1434
0
    felem_shrink(y3, felem_y3);
1435
0
    felem_shrink(z3, felem_z3);
1436
0
}
1437
1438
/*-
1439
 * Base point pre computation
1440
 * --------------------------
1441
 *
1442
 * Two different sorts of precomputed tables are used in the following code.
1443
 * Each contain various points on the curve, where each point is three field
1444
 * elements (x, y, z).
1445
 *
1446
 * For the base point table, z is usually 1 (0 for the point at infinity).
1447
 * This table has 2 * 16 elements, starting with the following:
1448
 * index | bits    | point
1449
 * ------+---------+------------------------------
1450
 *     0 | 0 0 0 0 | 0G
1451
 *     1 | 0 0 0 1 | 1G
1452
 *     2 | 0 0 1 0 | 2^64G
1453
 *     3 | 0 0 1 1 | (2^64 + 1)G
1454
 *     4 | 0 1 0 0 | 2^128G
1455
 *     5 | 0 1 0 1 | (2^128 + 1)G
1456
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1457
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1458
 *     8 | 1 0 0 0 | 2^192G
1459
 *     9 | 1 0 0 1 | (2^192 + 1)G
1460
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1461
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1462
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1463
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1464
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1465
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1466
 * followed by a copy of this with each element multiplied by 2^32.
1467
 *
1468
 * The reason for this is so that we can clock bits into four different
1469
 * locations when doing simple scalar multiplies against the base point,
1470
 * and then another four locations using the second 16 elements.
1471
 *
1472
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1473
1474
/* gmul is the table of precomputed base points */
1475
static const smallfelem gmul[2][16][3] = {
1476
    {{{0, 0, 0, 0},
1477
      {0, 0, 0, 0},
1478
      {0, 0, 0, 0}},
1479
     {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1480
       0x6b17d1f2e12c4247},
1481
      {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1482
       0x4fe342e2fe1a7f9b},
1483
      {1, 0, 0, 0}},
1484
     {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1485
       0x0fa822bc2811aaa5},
1486
      {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1487
       0xbff44ae8f5dba80d},
1488
      {1, 0, 0, 0}},
1489
     {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1490
       0x300a4bbc89d6726f},
1491
      {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1492
       0x72aac7e0d09b4644},
1493
      {1, 0, 0, 0}},
1494
     {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1495
       0x447d739beedb5e67},
1496
      {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1497
       0x2d4825ab834131ee},
1498
      {1, 0, 0, 0}},
1499
     {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1500
       0xef9519328a9c72ff},
1501
      {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1502
       0x611e9fc37dbb2c9b},
1503
      {1, 0, 0, 0}},
1504
     {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1505
       0x550663797b51f5d8},
1506
      {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1507
       0x157164848aecb851},
1508
      {1, 0, 0, 0}},
1509
     {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1510
       0xeb5d7745b21141ea},
1511
      {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1512
       0xeafd72ebdbecc17b},
1513
      {1, 0, 0, 0}},
1514
     {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1515
       0xa6d39677a7849276},
1516
      {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1517
       0x674f84749b0b8816},
1518
      {1, 0, 0, 0}},
1519
     {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1520
       0x4e769e7672c9ddad},
1521
      {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1522
       0x42b99082de830663},
1523
      {1, 0, 0, 0}},
1524
     {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1525
       0x78878ef61c6ce04d},
1526
      {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1527
       0xb6cb3f5d7b72c321},
1528
      {1, 0, 0, 0}},
1529
     {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1530
       0x0c88bc4d716b1287},
1531
      {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1532
       0xdd5ddea3f3901dc6},
1533
      {1, 0, 0, 0}},
1534
     {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1535
       0x68f344af6b317466},
1536
      {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1537
       0x31b9c405f8540a20},
1538
      {1, 0, 0, 0}},
1539
     {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1540
       0x4052bf4b6f461db9},
1541
      {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1542
       0xfecf4d5190b0fc61},
1543
      {1, 0, 0, 0}},
1544
     {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1545
       0x1eddbae2c802e41a},
1546
      {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1547
       0x43104d86560ebcfc},
1548
      {1, 0, 0, 0}},
1549
     {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1550
       0xb48e26b484f7a21c},
1551
      {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1552
       0xfac015404d4d3dab},
1553
      {1, 0, 0, 0}}},
1554
    {{{0, 0, 0, 0},
1555
      {0, 0, 0, 0},
1556
      {0, 0, 0, 0}},
1557
     {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1558
       0x7fe36b40af22af89},
1559
      {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1560
       0xe697d45825b63624},
1561
      {1, 0, 0, 0}},
1562
     {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1563
       0x4a5b506612a677a6},
1564
      {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1565
       0xeb13461ceac089f1},
1566
      {1, 0, 0, 0}},
1567
     {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1568
       0x0781b8291c6a220a},
1569
      {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1570
       0x690cde8df0151593},
1571
      {1, 0, 0, 0}},
1572
     {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1573
       0x8a535f566ec73617},
1574
      {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1575
       0x0455c08468b08bd7},
1576
      {1, 0, 0, 0}},
1577
     {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1578
       0x06bada7ab77f8276},
1579
      {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1580
       0x5b476dfd0e6cb18a},
1581
      {1, 0, 0, 0}},
1582
     {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1583
       0x3e29864e8a2ec908},
1584
      {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1585
       0x239b90ea3dc31e7e},
1586
      {1, 0, 0, 0}},
1587
     {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1588
       0x820f4dd949f72ff7},
1589
      {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1590
       0x140406ec783a05ec},
1591
      {1, 0, 0, 0}},
1592
     {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1593
       0x68f6b8542783dfee},
1594
      {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1595
       0xcbe1feba92e40ce6},
1596
      {1, 0, 0, 0}},
1597
     {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1598
       0xd0b2f94d2f420109},
1599
      {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1600
       0x971459828b0719e5},
1601
      {1, 0, 0, 0}},
1602
     {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1603
       0x961610004a866aba},
1604
      {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1605
       0x7acb9fadcee75e44},
1606
      {1, 0, 0, 0}},
1607
     {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1608
       0x24eb9acca333bf5b},
1609
      {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1610
       0x69f891c5acd079cc},
1611
      {1, 0, 0, 0}},
1612
     {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1613
       0xe51f547c5972a107},
1614
      {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1615
       0x1c309a2b25bb1387},
1616
      {1, 0, 0, 0}},
1617
     {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1618
       0x20b87b8aa2c4e503},
1619
      {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1620
       0xf5c6fa49919776be},
1621
      {1, 0, 0, 0}},
1622
     {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1623
       0x1ed7d1b9332010b9},
1624
      {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1625
       0x3a2b03f03217257a},
1626
      {1, 0, 0, 0}},
1627
     {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1628
       0x15fee545c78dd9f6},
1629
      {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1630
       0x4ab5b6b2b8753f81},
1631
      {1, 0, 0, 0}}}
1632
};
1633
1634
/*
1635
 * select_point selects the |idx|th point from a precomputation table and
1636
 * copies it to out.
1637
 */
1638
static void select_point(const u64 idx, unsigned int size,
1639
                         const smallfelem pre_comp[16][3], smallfelem out[3])
1640
0
{
1641
0
    unsigned i, j;
1642
0
    u64 *outlimbs = &out[0][0];
1643
1644
0
    memset(out, 0, sizeof(*out) * 3);
1645
1646
0
    for (i = 0; i < size; i++) {
1647
0
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1648
0
        u64 mask = i ^ idx;
1649
0
        mask |= mask >> 4;
1650
0
        mask |= mask >> 2;
1651
0
        mask |= mask >> 1;
1652
0
        mask &= 1;
1653
0
        mask--;
1654
0
        for (j = 0; j < NLIMBS * 3; j++)
1655
0
            outlimbs[j] |= inlimbs[j] & mask;
1656
0
    }
1657
0
}
1658
1659
/* get_bit returns the |i|th bit in |in| */
1660
static char get_bit(const felem_bytearray in, int i)
1661
0
{
1662
0
    if ((i < 0) || (i >= 256))
1663
0
        return 0;
1664
0
    return (in[i >> 3] >> (i & 7)) & 1;
1665
0
}
1666
1667
/*
1668
 * Interleaved point multiplication using precomputed point multiples: The
1669
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1670
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1671
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1672
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1673
 */
1674
static void batch_mul(felem x_out, felem y_out, felem z_out,
1675
                      const felem_bytearray scalars[],
1676
                      const unsigned num_points, const u8 *g_scalar,
1677
                      const int mixed, const smallfelem pre_comp[][17][3],
1678
                      const smallfelem g_pre_comp[2][16][3])
1679
0
{
1680
0
    int i, skip;
1681
0
    unsigned num, gen_mul = (g_scalar != NULL);
1682
0
    felem nq[3], ftmp;
1683
0
    smallfelem tmp[3];
1684
0
    u64 bits;
1685
0
    u8 sign, digit;
1686
1687
    /* set nq to the point at infinity */
1688
0
    memset(nq, 0, sizeof(nq));
1689
1690
    /*
1691
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1692
     * of the generator (two in each of the last 32 rounds) and additions of
1693
     * other points multiples (every 5th round).
1694
     */
1695
0
    skip = 1;                   /* save two point operations in the first
1696
                                 * round */
1697
0
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
1698
        /* double */
1699
0
        if (!skip)
1700
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1701
1702
        /* add multiples of the generator */
1703
0
        if (gen_mul && (i <= 31)) {
1704
            /* first, look 32 bits upwards */
1705
0
            bits = get_bit(g_scalar, i + 224) << 3;
1706
0
            bits |= get_bit(g_scalar, i + 160) << 2;
1707
0
            bits |= get_bit(g_scalar, i + 96) << 1;
1708
0
            bits |= get_bit(g_scalar, i + 32);
1709
            /* select the point to add, in constant time */
1710
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1711
1712
0
            if (!skip) {
1713
                /* Arg 1 below is for "mixed" */
1714
0
                point_add(nq[0], nq[1], nq[2],
1715
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1716
0
            } else {
1717
0
                smallfelem_expand(nq[0], tmp[0]);
1718
0
                smallfelem_expand(nq[1], tmp[1]);
1719
0
                smallfelem_expand(nq[2], tmp[2]);
1720
0
                skip = 0;
1721
0
            }
1722
1723
            /* second, look at the current position */
1724
0
            bits = get_bit(g_scalar, i + 192) << 3;
1725
0
            bits |= get_bit(g_scalar, i + 128) << 2;
1726
0
            bits |= get_bit(g_scalar, i + 64) << 1;
1727
0
            bits |= get_bit(g_scalar, i);
1728
            /* select the point to add, in constant time */
1729
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1730
            /* Arg 1 below is for "mixed" */
1731
0
            point_add(nq[0], nq[1], nq[2],
1732
0
                      nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1733
0
        }
1734
1735
        /* do other additions every 5 doublings */
1736
0
        if (num_points && (i % 5 == 0)) {
1737
            /* loop over all scalars */
1738
0
            for (num = 0; num < num_points; ++num) {
1739
0
                bits = get_bit(scalars[num], i + 4) << 5;
1740
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1741
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1742
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1743
0
                bits |= get_bit(scalars[num], i) << 1;
1744
0
                bits |= get_bit(scalars[num], i - 1);
1745
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1746
1747
                /*
1748
                 * select the point to add or subtract, in constant time
1749
                 */
1750
0
                select_point(digit, 17, pre_comp[num], tmp);
1751
0
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1752
                                               * point */
1753
0
                copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1754
0
                felem_contract(tmp[1], ftmp);
1755
1756
0
                if (!skip) {
1757
0
                    point_add(nq[0], nq[1], nq[2],
1758
0
                              nq[0], nq[1], nq[2],
1759
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1760
0
                } else {
1761
0
                    smallfelem_expand(nq[0], tmp[0]);
1762
0
                    smallfelem_expand(nq[1], tmp[1]);
1763
0
                    smallfelem_expand(nq[2], tmp[2]);
1764
0
                    skip = 0;
1765
0
                }
1766
0
            }
1767
0
        }
1768
0
    }
1769
0
    felem_assign(x_out, nq[0]);
1770
0
    felem_assign(y_out, nq[1]);
1771
0
    felem_assign(z_out, nq[2]);
1772
0
}
1773
1774
/* Precomputation for the group generator. */
1775
struct nistp256_pre_comp_st {
1776
    smallfelem g_pre_comp[2][16][3];
1777
    CRYPTO_REF_COUNT references;
1778
};
1779
1780
const EC_METHOD *EC_GFp_nistp256_method(void)
1781
0
{
1782
0
    static const EC_METHOD ret = {
1783
0
        EC_FLAGS_DEFAULT_OCT,
1784
0
        NID_X9_62_prime_field,
1785
0
        ossl_ec_GFp_nistp256_group_init,
1786
0
        ossl_ec_GFp_simple_group_finish,
1787
0
        ossl_ec_GFp_simple_group_clear_finish,
1788
0
        ossl_ec_GFp_nist_group_copy,
1789
0
        ossl_ec_GFp_nistp256_group_set_curve,
1790
0
        ossl_ec_GFp_simple_group_get_curve,
1791
0
        ossl_ec_GFp_simple_group_get_degree,
1792
0
        ossl_ec_group_simple_order_bits,
1793
0
        ossl_ec_GFp_simple_group_check_discriminant,
1794
0
        ossl_ec_GFp_simple_point_init,
1795
0
        ossl_ec_GFp_simple_point_finish,
1796
0
        ossl_ec_GFp_simple_point_clear_finish,
1797
0
        ossl_ec_GFp_simple_point_copy,
1798
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1799
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1800
0
        ossl_ec_GFp_nistp256_point_get_affine_coordinates,
1801
0
        0 /* point_set_compressed_coordinates */ ,
1802
0
        0 /* point2oct */ ,
1803
0
        0 /* oct2point */ ,
1804
0
        ossl_ec_GFp_simple_add,
1805
0
        ossl_ec_GFp_simple_dbl,
1806
0
        ossl_ec_GFp_simple_invert,
1807
0
        ossl_ec_GFp_simple_is_at_infinity,
1808
0
        ossl_ec_GFp_simple_is_on_curve,
1809
0
        ossl_ec_GFp_simple_cmp,
1810
0
        ossl_ec_GFp_simple_make_affine,
1811
0
        ossl_ec_GFp_simple_points_make_affine,
1812
0
        ossl_ec_GFp_nistp256_points_mul,
1813
0
        ossl_ec_GFp_nistp256_precompute_mult,
1814
0
        ossl_ec_GFp_nistp256_have_precompute_mult,
1815
0
        ossl_ec_GFp_nist_field_mul,
1816
0
        ossl_ec_GFp_nist_field_sqr,
1817
0
        0 /* field_div */ ,
1818
0
        ossl_ec_GFp_simple_field_inv,
1819
0
        0 /* field_encode */ ,
1820
0
        0 /* field_decode */ ,
1821
0
        0,                      /* field_set_to_one */
1822
0
        ossl_ec_key_simple_priv2oct,
1823
0
        ossl_ec_key_simple_oct2priv,
1824
0
        0, /* set private */
1825
0
        ossl_ec_key_simple_generate_key,
1826
0
        ossl_ec_key_simple_check_key,
1827
0
        ossl_ec_key_simple_generate_public_key,
1828
0
        0, /* keycopy */
1829
0
        0, /* keyfinish */
1830
0
        ossl_ecdh_simple_compute_key,
1831
0
        ossl_ecdsa_simple_sign_setup,
1832
0
        ossl_ecdsa_simple_sign_sig,
1833
0
        ossl_ecdsa_simple_verify_sig,
1834
0
        0, /* field_inverse_mod_ord */
1835
0
        0, /* blind_coordinates */
1836
0
        0, /* ladder_pre */
1837
0
        0, /* ladder_step */
1838
0
        0  /* ladder_post */
1839
0
    };
1840
1841
0
    return &ret;
1842
0
}
1843
1844
/******************************************************************************/
1845
/*
1846
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1847
 */
1848
1849
static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1850
0
{
1851
0
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1852
1853
0
    if (ret == NULL)
1854
0
        return ret;
1855
1856
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1857
0
        OPENSSL_free(ret);
1858
0
        return NULL;
1859
0
    }
1860
0
    return ret;
1861
0
}
1862
1863
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1864
0
{
1865
0
    int i;
1866
0
    if (p != NULL)
1867
0
        CRYPTO_UP_REF(&p->references, &i);
1868
0
    return p;
1869
0
}
1870
1871
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1872
0
{
1873
0
    int i;
1874
1875
0
    if (pre == NULL)
1876
0
        return;
1877
1878
0
    CRYPTO_DOWN_REF(&pre->references, &i);
1879
0
    REF_PRINT_COUNT("EC_nistp256", i, pre);
1880
0
    if (i > 0)
1881
0
        return;
1882
0
    REF_ASSERT_ISNT(i < 0);
1883
1884
0
    CRYPTO_FREE_REF(&pre->references);
1885
0
    OPENSSL_free(pre);
1886
0
}
1887
1888
/******************************************************************************/
1889
/*
1890
 * OPENSSL EC_METHOD FUNCTIONS
1891
 */
1892
1893
int ossl_ec_GFp_nistp256_group_init(EC_GROUP *group)
1894
0
{
1895
0
    int ret;
1896
0
    ret = ossl_ec_GFp_simple_group_init(group);
1897
0
    group->a_is_minus3 = 1;
1898
0
    return ret;
1899
0
}
1900
1901
int ossl_ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1902
                                         const BIGNUM *a, const BIGNUM *b,
1903
                                         BN_CTX *ctx)
1904
0
{
1905
0
    int ret = 0;
1906
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1907
0
#ifndef FIPS_MODULE
1908
0
    BN_CTX *new_ctx = NULL;
1909
1910
0
    if (ctx == NULL)
1911
0
        ctx = new_ctx = BN_CTX_new();
1912
0
#endif
1913
0
    if (ctx == NULL)
1914
0
        return 0;
1915
1916
0
    BN_CTX_start(ctx);
1917
0
    curve_p = BN_CTX_get(ctx);
1918
0
    curve_a = BN_CTX_get(ctx);
1919
0
    curve_b = BN_CTX_get(ctx);
1920
0
    if (curve_b == NULL)
1921
0
        goto err;
1922
0
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1923
0
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1924
0
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1925
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1926
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1927
0
        goto err;
1928
0
    }
1929
0
    group->field_mod_func = BN_nist_mod_256;
1930
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1931
0
 err:
1932
0
    BN_CTX_end(ctx);
1933
0
#ifndef FIPS_MODULE
1934
0
    BN_CTX_free(new_ctx);
1935
0
#endif
1936
0
    return ret;
1937
0
}
1938
1939
/*
1940
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1941
 * (X/Z^2, Y/Z^3)
1942
 */
1943
int ossl_ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1944
                                                      const EC_POINT *point,
1945
                                                      BIGNUM *x, BIGNUM *y,
1946
                                                      BN_CTX *ctx)
1947
0
{
1948
0
    felem z1, z2, x_in, y_in;
1949
0
    smallfelem x_out, y_out;
1950
0
    longfelem tmp;
1951
1952
0
    if (EC_POINT_is_at_infinity(group, point)) {
1953
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1954
0
        return 0;
1955
0
    }
1956
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1957
0
        (!BN_to_felem(z1, point->Z)))
1958
0
        return 0;
1959
0
    felem_inv(z2, z1);
1960
0
    felem_square(tmp, z2);
1961
0
    felem_reduce(z1, tmp);
1962
0
    felem_mul(tmp, x_in, z1);
1963
0
    felem_reduce(x_in, tmp);
1964
0
    felem_contract(x_out, x_in);
1965
0
    if (x != NULL) {
1966
0
        if (!smallfelem_to_BN(x, x_out)) {
1967
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1968
0
            return 0;
1969
0
        }
1970
0
    }
1971
0
    felem_mul(tmp, z1, z2);
1972
0
    felem_reduce(z1, tmp);
1973
0
    felem_mul(tmp, y_in, z1);
1974
0
    felem_reduce(y_in, tmp);
1975
0
    felem_contract(y_out, y_in);
1976
0
    if (y != NULL) {
1977
0
        if (!smallfelem_to_BN(y, y_out)) {
1978
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1979
0
            return 0;
1980
0
        }
1981
0
    }
1982
0
    return 1;
1983
0
}
1984
1985
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1986
static void make_points_affine(size_t num, smallfelem points[][3],
1987
                               smallfelem tmp_smallfelems[])
1988
0
{
1989
    /*
1990
     * Runs in constant time, unless an input is the point at infinity (which
1991
     * normally shouldn't happen).
1992
     */
1993
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1994
0
                                                  points,
1995
0
                                                  sizeof(smallfelem),
1996
0
                                                  tmp_smallfelems,
1997
0
                                                  (void (*)(void *))smallfelem_one,
1998
0
                                                  smallfelem_is_zero_int,
1999
0
                                                  (void (*)(void *, const void *))
2000
0
                                                  smallfelem_assign,
2001
0
                                                  (void (*)(void *, const void *))
2002
0
                                                  smallfelem_square_contract,
2003
0
                                                  (void (*)
2004
0
                                                   (void *, const void *,
2005
0
                                                    const void *))
2006
0
                                                  smallfelem_mul_contract,
2007
0
                                                  (void (*)(void *, const void *))
2008
0
                                                  smallfelem_inv_contract,
2009
                                                  /* nothing to contract */
2010
0
                                                  (void (*)(void *, const void *))
2011
0
                                                  smallfelem_assign);
2012
0
}
2013
2014
/*
2015
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2016
 * values Result is stored in r (r can equal one of the inputs).
2017
 */
2018
int ossl_ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2019
                                    const BIGNUM *scalar, size_t num,
2020
                                    const EC_POINT *points[],
2021
                                    const BIGNUM *scalars[], BN_CTX *ctx)
2022
0
{
2023
0
    int ret = 0;
2024
0
    int j;
2025
0
    int mixed = 0;
2026
0
    BIGNUM *x, *y, *z, *tmp_scalar;
2027
0
    felem_bytearray g_secret;
2028
0
    felem_bytearray *secrets = NULL;
2029
0
    smallfelem (*pre_comp)[17][3] = NULL;
2030
0
    smallfelem *tmp_smallfelems = NULL;
2031
0
    unsigned i;
2032
0
    int num_bytes;
2033
0
    int have_pre_comp = 0;
2034
0
    size_t num_points = num;
2035
0
    smallfelem x_in, y_in, z_in;
2036
0
    felem x_out, y_out, z_out;
2037
0
    NISTP256_PRE_COMP *pre = NULL;
2038
0
    const smallfelem(*g_pre_comp)[16][3] = NULL;
2039
0
    EC_POINT *generator = NULL;
2040
0
    const EC_POINT *p = NULL;
2041
0
    const BIGNUM *p_scalar = NULL;
2042
2043
0
    BN_CTX_start(ctx);
2044
0
    x = BN_CTX_get(ctx);
2045
0
    y = BN_CTX_get(ctx);
2046
0
    z = BN_CTX_get(ctx);
2047
0
    tmp_scalar = BN_CTX_get(ctx);
2048
0
    if (tmp_scalar == NULL)
2049
0
        goto err;
2050
2051
0
    if (scalar != NULL) {
2052
0
        pre = group->pre_comp.nistp256;
2053
0
        if (pre)
2054
            /* we have precomputation, try to use it */
2055
0
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2056
0
        else
2057
            /* try to use the standard precomputation */
2058
0
            g_pre_comp = &gmul[0];
2059
0
        generator = EC_POINT_new(group);
2060
0
        if (generator == NULL)
2061
0
            goto err;
2062
        /* get the generator from precomputation */
2063
0
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
2064
0
            !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
2065
0
            !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2066
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2067
0
            goto err;
2068
0
        }
2069
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
2070
0
                                                                generator,
2071
0
                                                                x, y, z, ctx))
2072
0
            goto err;
2073
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2074
            /* precomputation matches generator */
2075
0
            have_pre_comp = 1;
2076
0
        else
2077
            /*
2078
             * we don't have valid precomputation: treat the generator as a
2079
             * random point
2080
             */
2081
0
            num_points++;
2082
0
    }
2083
0
    if (num_points > 0) {
2084
0
        if (num_points >= 3) {
2085
            /*
2086
             * unless we precompute multiples for just one or two points,
2087
             * converting those into affine form is time well spent
2088
             */
2089
0
            mixed = 1;
2090
0
        }
2091
0
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2092
0
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2093
0
        if (mixed)
2094
0
            tmp_smallfelems =
2095
0
              OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2096
0
        if ((secrets == NULL) || (pre_comp == NULL)
2097
0
            || (mixed && (tmp_smallfelems == NULL)))
2098
0
            goto err;
2099
2100
        /*
2101
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2102
         * i.e., they contribute nothing to the linear combination
2103
         */
2104
0
        memset(secrets, 0, sizeof(*secrets) * num_points);
2105
0
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2106
0
        for (i = 0; i < num_points; ++i) {
2107
0
            if (i == num) {
2108
                /*
2109
                 * we didn't have a valid precomputation, so we pick the
2110
                 * generator
2111
                 */
2112
0
                p = EC_GROUP_get0_generator(group);
2113
0
                p_scalar = scalar;
2114
0
            } else {
2115
                /* the i^th point */
2116
0
                p = points[i];
2117
0
                p_scalar = scalars[i];
2118
0
            }
2119
0
            if ((p_scalar != NULL) && (p != NULL)) {
2120
                /* reduce scalar to 0 <= scalar < 2^256 */
2121
0
                if ((BN_num_bits(p_scalar) > 256)
2122
0
                    || (BN_is_negative(p_scalar))) {
2123
                    /*
2124
                     * this is an unusual input, and we don't guarantee
2125
                     * constant-timeness
2126
                     */
2127
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2128
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2129
0
                        goto err;
2130
0
                    }
2131
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2132
0
                                               secrets[i], sizeof(secrets[i]));
2133
0
                } else {
2134
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2135
0
                                               secrets[i], sizeof(secrets[i]));
2136
0
                }
2137
0
                if (num_bytes < 0) {
2138
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2139
0
                    goto err;
2140
0
                }
2141
                /* precompute multiples */
2142
0
                if ((!BN_to_felem(x_out, p->X)) ||
2143
0
                    (!BN_to_felem(y_out, p->Y)) ||
2144
0
                    (!BN_to_felem(z_out, p->Z)))
2145
0
                    goto err;
2146
0
                felem_shrink(pre_comp[i][1][0], x_out);
2147
0
                felem_shrink(pre_comp[i][1][1], y_out);
2148
0
                felem_shrink(pre_comp[i][1][2], z_out);
2149
0
                for (j = 2; j <= 16; ++j) {
2150
0
                    if (j & 1) {
2151
0
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2152
0
                                        pre_comp[i][j][2], pre_comp[i][1][0],
2153
0
                                        pre_comp[i][1][1], pre_comp[i][1][2],
2154
0
                                        pre_comp[i][j - 1][0],
2155
0
                                        pre_comp[i][j - 1][1],
2156
0
                                        pre_comp[i][j - 1][2]);
2157
0
                    } else {
2158
0
                        point_double_small(pre_comp[i][j][0],
2159
0
                                           pre_comp[i][j][1],
2160
0
                                           pre_comp[i][j][2],
2161
0
                                           pre_comp[i][j / 2][0],
2162
0
                                           pre_comp[i][j / 2][1],
2163
0
                                           pre_comp[i][j / 2][2]);
2164
0
                    }
2165
0
                }
2166
0
            }
2167
0
        }
2168
0
        if (mixed)
2169
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2170
0
    }
2171
2172
    /* the scalar for the generator */
2173
0
    if ((scalar != NULL) && (have_pre_comp)) {
2174
0
        memset(g_secret, 0, sizeof(g_secret));
2175
        /* reduce scalar to 0 <= scalar < 2^256 */
2176
0
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2177
            /*
2178
             * this is an unusual input, and we don't guarantee
2179
             * constant-timeness
2180
             */
2181
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2182
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2183
0
                goto err;
2184
0
            }
2185
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2186
0
        } else {
2187
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2188
0
        }
2189
        /* do the multiplication with generator precomputation */
2190
0
        batch_mul(x_out, y_out, z_out,
2191
0
                  (const felem_bytearray(*))secrets, num_points,
2192
0
                  g_secret,
2193
0
                  mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2194
0
    } else {
2195
        /* do the multiplication without generator precomputation */
2196
0
        batch_mul(x_out, y_out, z_out,
2197
0
                  (const felem_bytearray(*))secrets, num_points,
2198
0
                  NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2199
0
    }
2200
    /* reduce the output to its unique minimal representation */
2201
0
    felem_contract(x_in, x_out);
2202
0
    felem_contract(y_in, y_out);
2203
0
    felem_contract(z_in, z_out);
2204
0
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2205
0
        (!smallfelem_to_BN(z, z_in))) {
2206
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2207
0
        goto err;
2208
0
    }
2209
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2210
0
                                                             ctx);
2211
2212
0
 err:
2213
0
    BN_CTX_end(ctx);
2214
0
    EC_POINT_free(generator);
2215
0
    OPENSSL_free(secrets);
2216
0
    OPENSSL_free(pre_comp);
2217
0
    OPENSSL_free(tmp_smallfelems);
2218
0
    return ret;
2219
0
}
2220
2221
int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2222
0
{
2223
0
    int ret = 0;
2224
0
    NISTP256_PRE_COMP *pre = NULL;
2225
0
    int i, j;
2226
0
    BIGNUM *x, *y;
2227
0
    EC_POINT *generator = NULL;
2228
0
    smallfelem tmp_smallfelems[32];
2229
0
    felem x_tmp, y_tmp, z_tmp;
2230
0
#ifndef FIPS_MODULE
2231
0
    BN_CTX *new_ctx = NULL;
2232
0
#endif
2233
2234
    /* throw away old precomputation */
2235
0
    EC_pre_comp_free(group);
2236
2237
0
#ifndef FIPS_MODULE
2238
0
    if (ctx == NULL)
2239
0
        ctx = new_ctx = BN_CTX_new();
2240
0
#endif
2241
0
    if (ctx == NULL)
2242
0
        return 0;
2243
2244
0
    BN_CTX_start(ctx);
2245
0
    x = BN_CTX_get(ctx);
2246
0
    y = BN_CTX_get(ctx);
2247
0
    if (y == NULL)
2248
0
        goto err;
2249
    /* get the generator */
2250
0
    if (group->generator == NULL)
2251
0
        goto err;
2252
0
    generator = EC_POINT_new(group);
2253
0
    if (generator == NULL)
2254
0
        goto err;
2255
0
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2256
0
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2257
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2258
0
        goto err;
2259
0
    if ((pre = nistp256_pre_comp_new()) == NULL)
2260
0
        goto err;
2261
    /*
2262
     * if the generator is the standard one, use built-in precomputation
2263
     */
2264
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2265
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2266
0
        goto done;
2267
0
    }
2268
0
    if ((!BN_to_felem(x_tmp, group->generator->X)) ||
2269
0
        (!BN_to_felem(y_tmp, group->generator->Y)) ||
2270
0
        (!BN_to_felem(z_tmp, group->generator->Z)))
2271
0
        goto err;
2272
0
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2273
0
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2274
0
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2275
    /*
2276
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2277
     * 2^160*G, 2^224*G for the second one
2278
     */
2279
0
    for (i = 1; i <= 8; i <<= 1) {
2280
0
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2281
0
                           pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2282
0
                           pre->g_pre_comp[0][i][1],
2283
0
                           pre->g_pre_comp[0][i][2]);
2284
0
        for (j = 0; j < 31; ++j) {
2285
0
            point_double_small(pre->g_pre_comp[1][i][0],
2286
0
                               pre->g_pre_comp[1][i][1],
2287
0
                               pre->g_pre_comp[1][i][2],
2288
0
                               pre->g_pre_comp[1][i][0],
2289
0
                               pre->g_pre_comp[1][i][1],
2290
0
                               pre->g_pre_comp[1][i][2]);
2291
0
        }
2292
0
        if (i == 8)
2293
0
            break;
2294
0
        point_double_small(pre->g_pre_comp[0][2 * i][0],
2295
0
                           pre->g_pre_comp[0][2 * i][1],
2296
0
                           pre->g_pre_comp[0][2 * i][2],
2297
0
                           pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2298
0
                           pre->g_pre_comp[1][i][2]);
2299
0
        for (j = 0; j < 31; ++j) {
2300
0
            point_double_small(pre->g_pre_comp[0][2 * i][0],
2301
0
                               pre->g_pre_comp[0][2 * i][1],
2302
0
                               pre->g_pre_comp[0][2 * i][2],
2303
0
                               pre->g_pre_comp[0][2 * i][0],
2304
0
                               pre->g_pre_comp[0][2 * i][1],
2305
0
                               pre->g_pre_comp[0][2 * i][2]);
2306
0
        }
2307
0
    }
2308
0
    for (i = 0; i < 2; i++) {
2309
        /* g_pre_comp[i][0] is the point at infinity */
2310
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2311
        /* the remaining multiples */
2312
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2313
0
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2314
0
                        pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2315
0
                        pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2316
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2317
0
                        pre->g_pre_comp[i][2][2]);
2318
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2319
0
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2320
0
                        pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2321
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2322
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2323
0
                        pre->g_pre_comp[i][2][2]);
2324
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2325
0
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2326
0
                        pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2327
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2328
0
                        pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2329
0
                        pre->g_pre_comp[i][4][2]);
2330
        /*
2331
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2332
         */
2333
0
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2334
0
                        pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2335
0
                        pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2336
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2337
0
                        pre->g_pre_comp[i][2][2]);
2338
0
        for (j = 1; j < 8; ++j) {
2339
            /* odd multiples: add G resp. 2^32*G */
2340
0
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2341
0
                            pre->g_pre_comp[i][2 * j + 1][1],
2342
0
                            pre->g_pre_comp[i][2 * j + 1][2],
2343
0
                            pre->g_pre_comp[i][2 * j][0],
2344
0
                            pre->g_pre_comp[i][2 * j][1],
2345
0
                            pre->g_pre_comp[i][2 * j][2],
2346
0
                            pre->g_pre_comp[i][1][0],
2347
0
                            pre->g_pre_comp[i][1][1],
2348
0
                            pre->g_pre_comp[i][1][2]);
2349
0
        }
2350
0
    }
2351
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2352
2353
0
 done:
2354
0
    SETPRECOMP(group, nistp256, pre);
2355
0
    pre = NULL;
2356
0
    ret = 1;
2357
2358
0
 err:
2359
0
    BN_CTX_end(ctx);
2360
0
    EC_POINT_free(generator);
2361
0
#ifndef FIPS_MODULE
2362
0
    BN_CTX_free(new_ctx);
2363
0
#endif
2364
0
    EC_nistp256_pre_comp_free(pre);
2365
0
    return ret;
2366
0
}
2367
2368
int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2369
0
{
2370
0
    return HAVEPRECOMP(group, nistp256);
2371
0
}