Coverage Report

Created: 2025-06-13 06:55

/src/openssl/crypto/bn/bn_prime.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <time.h>
12
#include "internal/cryptlib.h"
13
#include "bn_local.h"
14
15
/*
16
 * The quick sieve algorithm approach to weeding out primes is Philip
17
 * Zimmermann's, as implemented in PGP.  I have had a read of his comments
18
 * and implemented my own version.
19
 */
20
#include "bn_prime.h"
21
22
static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
23
                          BN_CTX *ctx);
24
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
25
                             const BIGNUM *add, const BIGNUM *rem,
26
                             BN_CTX *ctx);
27
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
28
                           int do_trial_division, BN_GENCB *cb);
29
30
0
#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31
32
#if BN_BITS2 == 64
33
# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
34
#else
35
# define BN_DEF(lo, hi) lo, hi
36
#endif
37
38
/*
39
 * See SP800 89 5.3.3 (Step f)
40
 * The product of the set of primes ranging from 3 to 751
41
 * Generated using process in test/bn_internal_test.c test_bn_small_factors().
42
 * This includes 751 (which is not currently included in SP 800-89).
43
 */
44
static const BN_ULONG small_prime_factors[] = {
45
    BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
46
    BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
47
    BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
48
    BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
49
    BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
50
    BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
51
    BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
52
    BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
53
    (BN_ULONG)0x000017b1
54
};
55
56
#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
57
static const BIGNUM _bignum_small_prime_factors = {
58
    (BN_ULONG *)small_prime_factors,
59
    BN_SMALL_PRIME_FACTORS_TOP,
60
    BN_SMALL_PRIME_FACTORS_TOP,
61
    0,
62
    BN_FLG_STATIC_DATA
63
};
64
65
const BIGNUM *ossl_bn_get0_small_factors(void)
66
0
{
67
0
    return &_bignum_small_prime_factors;
68
0
}
69
70
/*
71
 * Calculate the number of trial divisions that gives the best speed in
72
 * combination with Miller-Rabin prime test, based on the sized of the prime.
73
 */
74
static int calc_trial_divisions(int bits)
75
0
{
76
0
    if (bits <= 512)
77
0
        return 64;
78
0
    else if (bits <= 1024)
79
0
        return 128;
80
0
    else if (bits <= 2048)
81
0
        return 384;
82
0
    else if (bits <= 4096)
83
0
        return 1024;
84
0
    return NUMPRIMES;
85
0
}
86
87
/*
88
 * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
89
 * positive rate of 2^-128. If the size of the prime is larger than 2048
90
 * the user probably wants a higher security level than 128, so switch
91
 * to 128 rounds giving a false positive rate of 2^-256.
92
 * Returns the number of rounds.
93
 */
94
static int bn_mr_min_checks(int bits)
95
0
{
96
0
    if (bits > 2048)
97
0
        return 128;
98
0
    return 64;
99
0
}
100
101
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
102
0
{
103
    /* No callback means continue */
104
0
    if (!cb)
105
0
        return 1;
106
0
    switch (cb->ver) {
107
0
    case 1:
108
        /* Deprecated-style callbacks */
109
0
        if (!cb->cb.cb_1)
110
0
            return 1;
111
0
        cb->cb.cb_1(a, b, cb->arg);
112
0
        return 1;
113
0
    case 2:
114
        /* New-style callbacks */
115
0
        return cb->cb.cb_2(a, b, cb);
116
0
    default:
117
0
        break;
118
0
    }
119
    /* Unrecognised callback type */
120
0
    return 0;
121
0
}
122
123
int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
124
                          const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
125
                          BN_CTX *ctx)
126
0
{
127
0
    BIGNUM *t;
128
0
    int found = 0;
129
0
    int i, j, c1 = 0;
130
0
    prime_t *mods = NULL;
131
0
    int checks = bn_mr_min_checks(bits);
132
133
0
    if (bits < 2) {
134
        /* There are no prime numbers this small. */
135
0
        ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
136
0
        return 0;
137
0
    } else if (add == NULL && safe && bits < 6 && bits != 3) {
138
        /*
139
         * The smallest safe prime (7) is three bits.
140
         * But the following two safe primes with less than 6 bits (11, 23)
141
         * are unreachable for BN_rand with BN_RAND_TOP_TWO.
142
         */
143
0
        ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
144
0
        return 0;
145
0
    }
146
147
0
    mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
148
0
    if (mods == NULL)
149
0
        return 0;
150
151
0
    BN_CTX_start(ctx);
152
0
    t = BN_CTX_get(ctx);
153
0
    if (t == NULL)
154
0
        goto err;
155
0
 loop:
156
    /* make a random number and set the top and bottom bits */
157
0
    if (add == NULL) {
158
0
        if (!probable_prime(ret, bits, safe, mods, ctx))
159
0
            goto err;
160
0
    } else {
161
0
        if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
162
0
            goto err;
163
0
    }
164
165
0
    if (!BN_GENCB_call(cb, 0, c1++))
166
        /* aborted */
167
0
        goto err;
168
169
0
    if (!safe) {
170
0
        i = bn_is_prime_int(ret, checks, ctx, 0, cb);
171
0
        if (i == -1)
172
0
            goto err;
173
0
        if (i == 0)
174
0
            goto loop;
175
0
    } else {
176
        /*
177
         * for "safe prime" generation, check that (p-1)/2 is prime. Since a
178
         * prime is odd, We just need to divide by 2
179
         */
180
0
        if (!BN_rshift1(t, ret))
181
0
            goto err;
182
183
0
        for (i = 0; i < checks; i++) {
184
0
            j = bn_is_prime_int(ret, 1, ctx, 0, cb);
185
0
            if (j == -1)
186
0
                goto err;
187
0
            if (j == 0)
188
0
                goto loop;
189
190
0
            j = bn_is_prime_int(t, 1, ctx, 0, cb);
191
0
            if (j == -1)
192
0
                goto err;
193
0
            if (j == 0)
194
0
                goto loop;
195
196
0
            if (!BN_GENCB_call(cb, 2, c1 - 1))
197
0
                goto err;
198
            /* We have a safe prime test pass */
199
0
        }
200
0
    }
201
    /* we have a prime :-) */
202
0
    found = 1;
203
0
 err:
204
0
    OPENSSL_free(mods);
205
0
    BN_CTX_end(ctx);
206
0
    bn_check_top(ret);
207
0
    return found;
208
0
}
209
210
#ifndef FIPS_MODULE
211
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
212
                         const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
213
0
{
214
0
    BN_CTX *ctx = BN_CTX_new();
215
0
    int retval;
216
217
0
    if (ctx == NULL)
218
0
        return 0;
219
220
0
    retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);
221
222
0
    BN_CTX_free(ctx);
223
0
    return retval;
224
0
}
225
#endif
226
227
#ifndef OPENSSL_NO_DEPRECATED_3_0
228
int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
229
                   BN_GENCB *cb)
230
0
{
231
0
    return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb);
232
0
}
233
234
int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
235
                            int do_trial_division, BN_GENCB *cb)
236
0
{
237
0
    return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb);
238
0
}
239
#endif
240
241
/* Wrapper around bn_is_prime_int that sets the minimum number of checks */
242
int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
243
                        int do_trial_division, BN_GENCB *cb)
244
0
{
245
0
    int min_checks = bn_mr_min_checks(BN_num_bits(w));
246
247
0
    if (checks < min_checks)
248
0
        checks = min_checks;
249
250
0
    return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
251
0
}
252
253
/*
254
 * Use this only for key generation.
255
 * It always uses trial division. The number of checks
256
 * (MR rounds) passed in is used without being clamped to a minimum value.
257
 */
258
int ossl_bn_check_generated_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
259
                                  BN_GENCB *cb)
260
0
{
261
0
    return bn_is_prime_int(w, checks, ctx, 1, cb);
262
0
}
263
264
int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
265
0
{
266
0
    return ossl_bn_check_prime(p, 0, ctx, 1, cb);
267
0
}
268
269
/*
270
 * Tests that |w| is probably prime
271
 * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
272
 *
273
 * Returns 0 when composite, 1 when probable prime, -1 on error.
274
 */
275
static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
276
                           int do_trial_division, BN_GENCB *cb)
277
0
{
278
0
    int i, status, ret = -1;
279
0
#ifndef FIPS_MODULE
280
0
    BN_CTX *ctxlocal = NULL;
281
#else
282
283
    if (ctx == NULL)
284
        return -1;
285
#endif
286
287
    /* w must be bigger than 1 */
288
0
    if (BN_cmp(w, BN_value_one()) <= 0)
289
0
        return 0;
290
291
    /* w must be odd */
292
0
    if (BN_is_odd(w)) {
293
        /* Take care of the really small prime 3 */
294
0
        if (BN_is_word(w, 3))
295
0
            return 1;
296
0
    } else {
297
        /* 2 is the only even prime */
298
0
        return BN_is_word(w, 2);
299
0
    }
300
301
    /* first look for small factors */
302
0
    if (do_trial_division) {
303
0
        int trial_divisions = calc_trial_divisions(BN_num_bits(w));
304
305
0
        for (i = 1; i < trial_divisions; i++) {
306
0
            BN_ULONG mod = BN_mod_word(w, primes[i]);
307
0
            if (mod == (BN_ULONG)-1)
308
0
                return -1;
309
0
            if (mod == 0)
310
0
                return BN_is_word(w, primes[i]);
311
0
        }
312
0
        if (!BN_GENCB_call(cb, 1, -1))
313
0
            return -1;
314
0
    }
315
0
#ifndef FIPS_MODULE
316
0
    if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
317
0
        goto err;
318
0
#endif
319
320
0
    if (!ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status)) {
321
0
        ret = -1;
322
0
        goto err;
323
0
    }
324
0
    ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
325
0
err:
326
0
#ifndef FIPS_MODULE
327
0
    BN_CTX_free(ctxlocal);
328
0
#endif
329
0
    return ret;
330
0
}
331
332
/*
333
 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
334
 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
335
 * The Step numbers listed in the code refer to the enhanced case.
336
 *
337
 * if enhanced is set, then status returns one of the following:
338
 *     BN_PRIMETEST_PROBABLY_PRIME
339
 *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
340
 *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
341
 * if enhanced is zero, then status returns either
342
 *     BN_PRIMETEST_PROBABLY_PRIME or
343
 *     BN_PRIMETEST_COMPOSITE
344
 *
345
 * returns 0 if there was an error, otherwise it returns 1.
346
 */
347
int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
348
                                  BN_GENCB *cb, int enhanced, int *status)
349
0
{
350
0
    int i, j, a, ret = 0;
351
0
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
352
0
    BN_MONT_CTX *mont = NULL;
353
354
    /* w must be odd */
355
0
    if (!BN_is_odd(w))
356
0
        return 0;
357
358
0
    BN_CTX_start(ctx);
359
0
    g = BN_CTX_get(ctx);
360
0
    w1 = BN_CTX_get(ctx);
361
0
    w3 = BN_CTX_get(ctx);
362
0
    x = BN_CTX_get(ctx);
363
0
    m = BN_CTX_get(ctx);
364
0
    z = BN_CTX_get(ctx);
365
0
    b = BN_CTX_get(ctx);
366
367
0
    if (!(b != NULL
368
            /* w1 := w - 1 */
369
0
            && BN_copy(w1, w)
370
0
            && BN_sub_word(w1, 1)
371
            /* w3 := w - 3 */
372
0
            && BN_copy(w3, w)
373
0
            && BN_sub_word(w3, 3)))
374
0
        goto err;
375
376
    /* check w is larger than 3, otherwise the random b will be too small */
377
0
    if (BN_is_zero(w3) || BN_is_negative(w3))
378
0
        goto err;
379
380
    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
381
0
    a = 1;
382
0
    while (!BN_is_bit_set(w1, a))
383
0
        a++;
384
    /* (Step 2) m = (w-1) / 2^a */
385
0
    if (!BN_rshift(m, w1, a))
386
0
        goto err;
387
388
    /* Montgomery setup for computations mod a */
389
0
    mont = BN_MONT_CTX_new();
390
0
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
391
0
        goto err;
392
393
0
    if (iterations == 0)
394
0
        iterations = bn_mr_min_checks(BN_num_bits(w));
395
396
    /* (Step 4) */
397
0
    for (i = 0; i < iterations; ++i) {
398
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
399
0
        if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
400
0
                || !BN_add_word(b, 2)) /* 1 < b < w-1 */
401
0
            goto err;
402
403
0
        if (enhanced) {
404
            /* (Step 4.3) */
405
0
            if (!BN_gcd(g, b, w, ctx))
406
0
                goto err;
407
            /* (Step 4.4) */
408
0
            if (!BN_is_one(g)) {
409
0
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
410
0
                ret = 1;
411
0
                goto err;
412
0
            }
413
0
        }
414
        /* (Step 4.5) z = b^m mod w */
415
0
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
416
0
            goto err;
417
        /* (Step 4.6) if (z = 1 or z = w-1) */
418
0
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
419
0
            goto outer_loop;
420
        /* (Step 4.7) for j = 1 to a-1 */
421
0
        for (j = 1; j < a ; ++j) {
422
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
423
0
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
424
0
                goto err;
425
            /* (Step 4.7.3) */
426
0
            if (BN_cmp(z, w1) == 0)
427
0
                goto outer_loop;
428
            /* (Step 4.7.4) */
429
0
            if (BN_is_one(z))
430
0
                goto composite;
431
0
        }
432
        /* At this point z = b^((w-1)/2) mod w */
433
        /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
434
0
        if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
435
0
            goto err;
436
        /* (Step 4.10) */
437
0
        if (BN_is_one(z))
438
0
            goto composite;
439
        /* (Step 4.11) x = b^(w-1) mod w */
440
0
        if (!BN_copy(x, z))
441
0
            goto err;
442
0
composite:
443
0
        if (enhanced) {
444
            /* (Step 4.1.2) g = GCD(x-1, w) */
445
0
            if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
446
0
                goto err;
447
            /* (Steps 4.1.3 - 4.1.4) */
448
0
            if (BN_is_one(g))
449
0
                *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
450
0
            else
451
0
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
452
0
        } else {
453
0
            *status = BN_PRIMETEST_COMPOSITE;
454
0
        }
455
0
        ret = 1;
456
0
        goto err;
457
0
outer_loop: ;
458
        /* (Step 4.1.5) */
459
0
        if (!BN_GENCB_call(cb, 1, i))
460
0
            goto err;
461
0
    }
462
    /* (Step 5) */
463
0
    *status = BN_PRIMETEST_PROBABLY_PRIME;
464
0
    ret = 1;
465
0
err:
466
0
    BN_clear(g);
467
0
    BN_clear(w1);
468
0
    BN_clear(w3);
469
0
    BN_clear(x);
470
0
    BN_clear(m);
471
0
    BN_clear(z);
472
0
    BN_clear(b);
473
0
    BN_CTX_end(ctx);
474
0
    BN_MONT_CTX_free(mont);
475
0
    return ret;
476
0
}
477
478
/*
479
 * Generate a random number of |bits| bits that is probably prime by sieving.
480
 * If |safe| != 0, it generates a safe prime.
481
 * |mods| is a preallocated array that gets reused when called again.
482
 *
483
 * The probably prime is saved in |rnd|.
484
 *
485
 * Returns 1 on success and 0 on error.
486
 */
487
static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
488
                          BN_CTX *ctx)
489
0
{
490
0
    int i;
491
0
    BN_ULONG delta;
492
0
    int trial_divisions = calc_trial_divisions(bits);
493
0
    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
494
495
0
 again:
496
0
    if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0,
497
0
                         ctx))
498
0
        return 0;
499
0
    if (safe && !BN_set_bit(rnd, 1))
500
0
        return 0;
501
    /* we now have a random number 'rnd' to test. */
502
0
    for (i = 1; i < trial_divisions; i++) {
503
0
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
504
0
        if (mod == (BN_ULONG)-1)
505
0
            return 0;
506
0
        mods[i] = (prime_t) mod;
507
0
    }
508
0
    delta = 0;
509
0
 loop:
510
0
    for (i = 1; i < trial_divisions; i++) {
511
        /*
512
         * check that rnd is a prime and also that
513
         * gcd(rnd-1,primes) == 1 (except for 2)
514
         * do the second check only if we are interested in safe primes
515
         * in the case that the candidate prime is a single word then
516
         * we check only the primes up to sqrt(rnd)
517
         */
518
0
        if (bits <= 31 && delta <= 0x7fffffff
519
0
                && square(primes[i]) > BN_get_word(rnd) + delta)
520
0
            break;
521
0
        if (safe ? (mods[i] + delta) % primes[i] <= 1
522
0
                 : (mods[i] + delta) % primes[i] == 0) {
523
0
            delta += safe ? 4 : 2;
524
0
            if (delta > maxdelta)
525
0
                goto again;
526
0
            goto loop;
527
0
        }
528
0
    }
529
0
    if (!BN_add_word(rnd, delta))
530
0
        return 0;
531
0
    if (BN_num_bits(rnd) != bits)
532
0
        goto again;
533
0
    bn_check_top(rnd);
534
0
    return 1;
535
0
}
536
537
/*
538
 * Generate a random number |rnd| of |bits| bits that is probably prime
539
 * and satisfies |rnd| % |add| == |rem| by sieving.
540
 * If |safe| != 0, it generates a safe prime.
541
 * |mods| is a preallocated array that gets reused when called again.
542
 *
543
 * Returns 1 on success and 0 on error.
544
 */
545
static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
546
                             const BIGNUM *add, const BIGNUM *rem,
547
                             BN_CTX *ctx)
548
0
{
549
0
    int i, ret = 0;
550
0
    BIGNUM *t1;
551
0
    BN_ULONG delta;
552
0
    int trial_divisions = calc_trial_divisions(bits);
553
0
    BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
554
555
0
    BN_CTX_start(ctx);
556
0
    if ((t1 = BN_CTX_get(ctx)) == NULL)
557
0
        goto err;
558
559
0
    if (maxdelta > BN_MASK2 - BN_get_word(add))
560
0
        maxdelta = BN_MASK2 - BN_get_word(add);
561
562
0
 again:
563
0
    if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx))
564
0
        goto err;
565
566
    /* we need ((rnd-rem) % add) == 0 */
567
568
0
    if (!BN_mod(t1, rnd, add, ctx))
569
0
        goto err;
570
0
    if (!BN_sub(rnd, rnd, t1))
571
0
        goto err;
572
0
    if (rem == NULL) {
573
0
        if (!BN_add_word(rnd, safe ? 3u : 1u))
574
0
            goto err;
575
0
    } else {
576
0
        if (!BN_add(rnd, rnd, rem))
577
0
            goto err;
578
0
    }
579
580
0
    if (BN_num_bits(rnd) < bits
581
0
            || BN_get_word(rnd) < (safe ? 5u : 3u)) {
582
0
        if (!BN_add(rnd, rnd, add))
583
0
            goto err;
584
0
    }
585
586
    /* we now have a random number 'rnd' to test. */
587
0
    for (i = 1; i < trial_divisions; i++) {
588
0
        BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
589
0
        if (mod == (BN_ULONG)-1)
590
0
            goto err;
591
0
        mods[i] = (prime_t) mod;
592
0
    }
593
0
    delta = 0;
594
0
 loop:
595
0
    for (i = 1; i < trial_divisions; i++) {
596
        /* check that rnd is a prime */
597
0
        if (bits <= 31 && delta <= 0x7fffffff
598
0
                && square(primes[i]) > BN_get_word(rnd) + delta)
599
0
            break;
600
        /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
601
0
        if (safe ? (mods[i] + delta) % primes[i] <= 1
602
0
                 : (mods[i] + delta) % primes[i] == 0) {
603
0
            delta += BN_get_word(add);
604
0
            if (delta > maxdelta)
605
0
                goto again;
606
0
            goto loop;
607
0
        }
608
0
    }
609
0
    if (!BN_add_word(rnd, delta))
610
0
        goto err;
611
0
    ret = 1;
612
613
0
 err:
614
0
    BN_CTX_end(ctx);
615
0
    bn_check_top(rnd);
616
0
    return ret;
617
0
}