/src/openssl/crypto/bn/bn_prime.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <time.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include "bn_local.h" |
14 | | |
15 | | /* |
16 | | * The quick sieve algorithm approach to weeding out primes is Philip |
17 | | * Zimmermann's, as implemented in PGP. I have had a read of his comments |
18 | | * and implemented my own version. |
19 | | */ |
20 | | #include "bn_prime.h" |
21 | | |
22 | | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
23 | | BN_CTX *ctx); |
24 | | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
25 | | const BIGNUM *add, const BIGNUM *rem, |
26 | | BN_CTX *ctx); |
27 | | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
28 | | int do_trial_division, BN_GENCB *cb); |
29 | | |
30 | 0 | #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) |
31 | | |
32 | | #if BN_BITS2 == 64 |
33 | | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo |
34 | | #else |
35 | | # define BN_DEF(lo, hi) lo, hi |
36 | | #endif |
37 | | |
38 | | /* |
39 | | * See SP800 89 5.3.3 (Step f) |
40 | | * The product of the set of primes ranging from 3 to 751 |
41 | | * Generated using process in test/bn_internal_test.c test_bn_small_factors(). |
42 | | * This includes 751 (which is not currently included in SP 800-89). |
43 | | */ |
44 | | static const BN_ULONG small_prime_factors[] = { |
45 | | BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6), |
46 | | BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3), |
47 | | BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817), |
48 | | BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2), |
49 | | BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3), |
50 | | BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28), |
51 | | BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112), |
52 | | BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460), |
53 | | (BN_ULONG)0x000017b1 |
54 | | }; |
55 | | |
56 | | #define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors) |
57 | | static const BIGNUM _bignum_small_prime_factors = { |
58 | | (BN_ULONG *)small_prime_factors, |
59 | | BN_SMALL_PRIME_FACTORS_TOP, |
60 | | BN_SMALL_PRIME_FACTORS_TOP, |
61 | | 0, |
62 | | BN_FLG_STATIC_DATA |
63 | | }; |
64 | | |
65 | | const BIGNUM *ossl_bn_get0_small_factors(void) |
66 | 0 | { |
67 | 0 | return &_bignum_small_prime_factors; |
68 | 0 | } |
69 | | |
70 | | /* |
71 | | * Calculate the number of trial divisions that gives the best speed in |
72 | | * combination with Miller-Rabin prime test, based on the sized of the prime. |
73 | | */ |
74 | | static int calc_trial_divisions(int bits) |
75 | 0 | { |
76 | 0 | if (bits <= 512) |
77 | 0 | return 64; |
78 | 0 | else if (bits <= 1024) |
79 | 0 | return 128; |
80 | 0 | else if (bits <= 2048) |
81 | 0 | return 384; |
82 | 0 | else if (bits <= 4096) |
83 | 0 | return 1024; |
84 | 0 | return NUMPRIMES; |
85 | 0 | } |
86 | | |
87 | | /* |
88 | | * Use a minimum of 64 rounds of Miller-Rabin, which should give a false |
89 | | * positive rate of 2^-128. If the size of the prime is larger than 2048 |
90 | | * the user probably wants a higher security level than 128, so switch |
91 | | * to 128 rounds giving a false positive rate of 2^-256. |
92 | | * Returns the number of rounds. |
93 | | */ |
94 | | static int bn_mr_min_checks(int bits) |
95 | 0 | { |
96 | 0 | if (bits > 2048) |
97 | 0 | return 128; |
98 | 0 | return 64; |
99 | 0 | } |
100 | | |
101 | | int BN_GENCB_call(BN_GENCB *cb, int a, int b) |
102 | 0 | { |
103 | | /* No callback means continue */ |
104 | 0 | if (!cb) |
105 | 0 | return 1; |
106 | 0 | switch (cb->ver) { |
107 | 0 | case 1: |
108 | | /* Deprecated-style callbacks */ |
109 | 0 | if (!cb->cb.cb_1) |
110 | 0 | return 1; |
111 | 0 | cb->cb.cb_1(a, b, cb->arg); |
112 | 0 | return 1; |
113 | 0 | case 2: |
114 | | /* New-style callbacks */ |
115 | 0 | return cb->cb.cb_2(a, b, cb); |
116 | 0 | default: |
117 | 0 | break; |
118 | 0 | } |
119 | | /* Unrecognised callback type */ |
120 | 0 | return 0; |
121 | 0 | } |
122 | | |
123 | | int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe, |
124 | | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb, |
125 | | BN_CTX *ctx) |
126 | 0 | { |
127 | 0 | BIGNUM *t; |
128 | 0 | int found = 0; |
129 | 0 | int i, j, c1 = 0; |
130 | 0 | prime_t *mods = NULL; |
131 | 0 | int checks = bn_mr_min_checks(bits); |
132 | |
|
133 | 0 | if (bits < 2) { |
134 | | /* There are no prime numbers this small. */ |
135 | 0 | ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL); |
136 | 0 | return 0; |
137 | 0 | } else if (add == NULL && safe && bits < 6 && bits != 3) { |
138 | | /* |
139 | | * The smallest safe prime (7) is three bits. |
140 | | * But the following two safe primes with less than 6 bits (11, 23) |
141 | | * are unreachable for BN_rand with BN_RAND_TOP_TWO. |
142 | | */ |
143 | 0 | ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL); |
144 | 0 | return 0; |
145 | 0 | } |
146 | | |
147 | 0 | mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); |
148 | 0 | if (mods == NULL) |
149 | 0 | return 0; |
150 | | |
151 | 0 | BN_CTX_start(ctx); |
152 | 0 | t = BN_CTX_get(ctx); |
153 | 0 | if (t == NULL) |
154 | 0 | goto err; |
155 | 0 | loop: |
156 | | /* make a random number and set the top and bottom bits */ |
157 | 0 | if (add == NULL) { |
158 | 0 | if (!probable_prime(ret, bits, safe, mods, ctx)) |
159 | 0 | goto err; |
160 | 0 | } else { |
161 | 0 | if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx)) |
162 | 0 | goto err; |
163 | 0 | } |
164 | | |
165 | 0 | if (!BN_GENCB_call(cb, 0, c1++)) |
166 | | /* aborted */ |
167 | 0 | goto err; |
168 | | |
169 | 0 | if (!safe) { |
170 | 0 | i = bn_is_prime_int(ret, checks, ctx, 0, cb); |
171 | 0 | if (i == -1) |
172 | 0 | goto err; |
173 | 0 | if (i == 0) |
174 | 0 | goto loop; |
175 | 0 | } else { |
176 | | /* |
177 | | * for "safe prime" generation, check that (p-1)/2 is prime. Since a |
178 | | * prime is odd, We just need to divide by 2 |
179 | | */ |
180 | 0 | if (!BN_rshift1(t, ret)) |
181 | 0 | goto err; |
182 | | |
183 | 0 | for (i = 0; i < checks; i++) { |
184 | 0 | j = bn_is_prime_int(ret, 1, ctx, 0, cb); |
185 | 0 | if (j == -1) |
186 | 0 | goto err; |
187 | 0 | if (j == 0) |
188 | 0 | goto loop; |
189 | | |
190 | 0 | j = bn_is_prime_int(t, 1, ctx, 0, cb); |
191 | 0 | if (j == -1) |
192 | 0 | goto err; |
193 | 0 | if (j == 0) |
194 | 0 | goto loop; |
195 | | |
196 | 0 | if (!BN_GENCB_call(cb, 2, c1 - 1)) |
197 | 0 | goto err; |
198 | | /* We have a safe prime test pass */ |
199 | 0 | } |
200 | 0 | } |
201 | | /* we have a prime :-) */ |
202 | 0 | found = 1; |
203 | 0 | err: |
204 | 0 | OPENSSL_free(mods); |
205 | 0 | BN_CTX_end(ctx); |
206 | 0 | bn_check_top(ret); |
207 | 0 | return found; |
208 | 0 | } |
209 | | |
210 | | #ifndef FIPS_MODULE |
211 | | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, |
212 | | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) |
213 | 0 | { |
214 | 0 | BN_CTX *ctx = BN_CTX_new(); |
215 | 0 | int retval; |
216 | |
|
217 | 0 | if (ctx == NULL) |
218 | 0 | return 0; |
219 | | |
220 | 0 | retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx); |
221 | |
|
222 | 0 | BN_CTX_free(ctx); |
223 | 0 | return retval; |
224 | 0 | } |
225 | | #endif |
226 | | |
227 | | #ifndef OPENSSL_NO_DEPRECATED_3_0 |
228 | | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, |
229 | | BN_GENCB *cb) |
230 | 0 | { |
231 | 0 | return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb); |
232 | 0 | } |
233 | | |
234 | | int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx, |
235 | | int do_trial_division, BN_GENCB *cb) |
236 | 0 | { |
237 | 0 | return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb); |
238 | 0 | } |
239 | | #endif |
240 | | |
241 | | /* Wrapper around bn_is_prime_int that sets the minimum number of checks */ |
242 | | int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx, |
243 | | int do_trial_division, BN_GENCB *cb) |
244 | 0 | { |
245 | 0 | int min_checks = bn_mr_min_checks(BN_num_bits(w)); |
246 | |
|
247 | 0 | if (checks < min_checks) |
248 | 0 | checks = min_checks; |
249 | |
|
250 | 0 | return bn_is_prime_int(w, checks, ctx, do_trial_division, cb); |
251 | 0 | } |
252 | | |
253 | | /* |
254 | | * Use this only for key generation. |
255 | | * It always uses trial division. The number of checks |
256 | | * (MR rounds) passed in is used without being clamped to a minimum value. |
257 | | */ |
258 | | int ossl_bn_check_generated_prime(const BIGNUM *w, int checks, BN_CTX *ctx, |
259 | | BN_GENCB *cb) |
260 | 0 | { |
261 | 0 | return bn_is_prime_int(w, checks, ctx, 1, cb); |
262 | 0 | } |
263 | | |
264 | | int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb) |
265 | 0 | { |
266 | 0 | return ossl_bn_check_prime(p, 0, ctx, 1, cb); |
267 | 0 | } |
268 | | |
269 | | /* |
270 | | * Tests that |w| is probably prime |
271 | | * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. |
272 | | * |
273 | | * Returns 0 when composite, 1 when probable prime, -1 on error. |
274 | | */ |
275 | | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
276 | | int do_trial_division, BN_GENCB *cb) |
277 | 0 | { |
278 | 0 | int i, status, ret = -1; |
279 | 0 | #ifndef FIPS_MODULE |
280 | 0 | BN_CTX *ctxlocal = NULL; |
281 | | #else |
282 | | |
283 | | if (ctx == NULL) |
284 | | return -1; |
285 | | #endif |
286 | | |
287 | | /* w must be bigger than 1 */ |
288 | 0 | if (BN_cmp(w, BN_value_one()) <= 0) |
289 | 0 | return 0; |
290 | | |
291 | | /* w must be odd */ |
292 | 0 | if (BN_is_odd(w)) { |
293 | | /* Take care of the really small prime 3 */ |
294 | 0 | if (BN_is_word(w, 3)) |
295 | 0 | return 1; |
296 | 0 | } else { |
297 | | /* 2 is the only even prime */ |
298 | 0 | return BN_is_word(w, 2); |
299 | 0 | } |
300 | | |
301 | | /* first look for small factors */ |
302 | 0 | if (do_trial_division) { |
303 | 0 | int trial_divisions = calc_trial_divisions(BN_num_bits(w)); |
304 | |
|
305 | 0 | for (i = 1; i < trial_divisions; i++) { |
306 | 0 | BN_ULONG mod = BN_mod_word(w, primes[i]); |
307 | 0 | if (mod == (BN_ULONG)-1) |
308 | 0 | return -1; |
309 | 0 | if (mod == 0) |
310 | 0 | return BN_is_word(w, primes[i]); |
311 | 0 | } |
312 | 0 | if (!BN_GENCB_call(cb, 1, -1)) |
313 | 0 | return -1; |
314 | 0 | } |
315 | 0 | #ifndef FIPS_MODULE |
316 | 0 | if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL) |
317 | 0 | goto err; |
318 | 0 | #endif |
319 | | |
320 | 0 | if (!ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status)) { |
321 | 0 | ret = -1; |
322 | 0 | goto err; |
323 | 0 | } |
324 | 0 | ret = (status == BN_PRIMETEST_PROBABLY_PRIME); |
325 | 0 | err: |
326 | 0 | #ifndef FIPS_MODULE |
327 | 0 | BN_CTX_free(ctxlocal); |
328 | 0 | #endif |
329 | 0 | return ret; |
330 | 0 | } |
331 | | |
332 | | /* |
333 | | * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test. |
334 | | * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero). |
335 | | * The Step numbers listed in the code refer to the enhanced case. |
336 | | * |
337 | | * if enhanced is set, then status returns one of the following: |
338 | | * BN_PRIMETEST_PROBABLY_PRIME |
339 | | * BN_PRIMETEST_COMPOSITE_WITH_FACTOR |
340 | | * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME |
341 | | * if enhanced is zero, then status returns either |
342 | | * BN_PRIMETEST_PROBABLY_PRIME or |
343 | | * BN_PRIMETEST_COMPOSITE |
344 | | * |
345 | | * returns 0 if there was an error, otherwise it returns 1. |
346 | | */ |
347 | | int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, |
348 | | BN_GENCB *cb, int enhanced, int *status) |
349 | 0 | { |
350 | 0 | int i, j, a, ret = 0; |
351 | 0 | BIGNUM *g, *w1, *w3, *x, *m, *z, *b; |
352 | 0 | BN_MONT_CTX *mont = NULL; |
353 | | |
354 | | /* w must be odd */ |
355 | 0 | if (!BN_is_odd(w)) |
356 | 0 | return 0; |
357 | | |
358 | 0 | BN_CTX_start(ctx); |
359 | 0 | g = BN_CTX_get(ctx); |
360 | 0 | w1 = BN_CTX_get(ctx); |
361 | 0 | w3 = BN_CTX_get(ctx); |
362 | 0 | x = BN_CTX_get(ctx); |
363 | 0 | m = BN_CTX_get(ctx); |
364 | 0 | z = BN_CTX_get(ctx); |
365 | 0 | b = BN_CTX_get(ctx); |
366 | |
|
367 | 0 | if (!(b != NULL |
368 | | /* w1 := w - 1 */ |
369 | 0 | && BN_copy(w1, w) |
370 | 0 | && BN_sub_word(w1, 1) |
371 | | /* w3 := w - 3 */ |
372 | 0 | && BN_copy(w3, w) |
373 | 0 | && BN_sub_word(w3, 3))) |
374 | 0 | goto err; |
375 | | |
376 | | /* check w is larger than 3, otherwise the random b will be too small */ |
377 | 0 | if (BN_is_zero(w3) || BN_is_negative(w3)) |
378 | 0 | goto err; |
379 | | |
380 | | /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */ |
381 | 0 | a = 1; |
382 | 0 | while (!BN_is_bit_set(w1, a)) |
383 | 0 | a++; |
384 | | /* (Step 2) m = (w-1) / 2^a */ |
385 | 0 | if (!BN_rshift(m, w1, a)) |
386 | 0 | goto err; |
387 | | |
388 | | /* Montgomery setup for computations mod a */ |
389 | 0 | mont = BN_MONT_CTX_new(); |
390 | 0 | if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx)) |
391 | 0 | goto err; |
392 | | |
393 | 0 | if (iterations == 0) |
394 | 0 | iterations = bn_mr_min_checks(BN_num_bits(w)); |
395 | | |
396 | | /* (Step 4) */ |
397 | 0 | for (i = 0; i < iterations; ++i) { |
398 | | /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */ |
399 | 0 | if (!BN_priv_rand_range_ex(b, w3, 0, ctx) |
400 | 0 | || !BN_add_word(b, 2)) /* 1 < b < w-1 */ |
401 | 0 | goto err; |
402 | | |
403 | 0 | if (enhanced) { |
404 | | /* (Step 4.3) */ |
405 | 0 | if (!BN_gcd(g, b, w, ctx)) |
406 | 0 | goto err; |
407 | | /* (Step 4.4) */ |
408 | 0 | if (!BN_is_one(g)) { |
409 | 0 | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; |
410 | 0 | ret = 1; |
411 | 0 | goto err; |
412 | 0 | } |
413 | 0 | } |
414 | | /* (Step 4.5) z = b^m mod w */ |
415 | 0 | if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) |
416 | 0 | goto err; |
417 | | /* (Step 4.6) if (z = 1 or z = w-1) */ |
418 | 0 | if (BN_is_one(z) || BN_cmp(z, w1) == 0) |
419 | 0 | goto outer_loop; |
420 | | /* (Step 4.7) for j = 1 to a-1 */ |
421 | 0 | for (j = 1; j < a ; ++j) { |
422 | | /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */ |
423 | 0 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) |
424 | 0 | goto err; |
425 | | /* (Step 4.7.3) */ |
426 | 0 | if (BN_cmp(z, w1) == 0) |
427 | 0 | goto outer_loop; |
428 | | /* (Step 4.7.4) */ |
429 | 0 | if (BN_is_one(z)) |
430 | 0 | goto composite; |
431 | 0 | } |
432 | | /* At this point z = b^((w-1)/2) mod w */ |
433 | | /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */ |
434 | 0 | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) |
435 | 0 | goto err; |
436 | | /* (Step 4.10) */ |
437 | 0 | if (BN_is_one(z)) |
438 | 0 | goto composite; |
439 | | /* (Step 4.11) x = b^(w-1) mod w */ |
440 | 0 | if (!BN_copy(x, z)) |
441 | 0 | goto err; |
442 | 0 | composite: |
443 | 0 | if (enhanced) { |
444 | | /* (Step 4.1.2) g = GCD(x-1, w) */ |
445 | 0 | if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx)) |
446 | 0 | goto err; |
447 | | /* (Steps 4.1.3 - 4.1.4) */ |
448 | 0 | if (BN_is_one(g)) |
449 | 0 | *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME; |
450 | 0 | else |
451 | 0 | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; |
452 | 0 | } else { |
453 | 0 | *status = BN_PRIMETEST_COMPOSITE; |
454 | 0 | } |
455 | 0 | ret = 1; |
456 | 0 | goto err; |
457 | 0 | outer_loop: ; |
458 | | /* (Step 4.1.5) */ |
459 | 0 | if (!BN_GENCB_call(cb, 1, i)) |
460 | 0 | goto err; |
461 | 0 | } |
462 | | /* (Step 5) */ |
463 | 0 | *status = BN_PRIMETEST_PROBABLY_PRIME; |
464 | 0 | ret = 1; |
465 | 0 | err: |
466 | 0 | BN_clear(g); |
467 | 0 | BN_clear(w1); |
468 | 0 | BN_clear(w3); |
469 | 0 | BN_clear(x); |
470 | 0 | BN_clear(m); |
471 | 0 | BN_clear(z); |
472 | 0 | BN_clear(b); |
473 | 0 | BN_CTX_end(ctx); |
474 | 0 | BN_MONT_CTX_free(mont); |
475 | 0 | return ret; |
476 | 0 | } |
477 | | |
478 | | /* |
479 | | * Generate a random number of |bits| bits that is probably prime by sieving. |
480 | | * If |safe| != 0, it generates a safe prime. |
481 | | * |mods| is a preallocated array that gets reused when called again. |
482 | | * |
483 | | * The probably prime is saved in |rnd|. |
484 | | * |
485 | | * Returns 1 on success and 0 on error. |
486 | | */ |
487 | | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
488 | | BN_CTX *ctx) |
489 | 0 | { |
490 | 0 | int i; |
491 | 0 | BN_ULONG delta; |
492 | 0 | int trial_divisions = calc_trial_divisions(bits); |
493 | 0 | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; |
494 | |
|
495 | 0 | again: |
496 | 0 | if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0, |
497 | 0 | ctx)) |
498 | 0 | return 0; |
499 | 0 | if (safe && !BN_set_bit(rnd, 1)) |
500 | 0 | return 0; |
501 | | /* we now have a random number 'rnd' to test. */ |
502 | 0 | for (i = 1; i < trial_divisions; i++) { |
503 | 0 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
504 | 0 | if (mod == (BN_ULONG)-1) |
505 | 0 | return 0; |
506 | 0 | mods[i] = (prime_t) mod; |
507 | 0 | } |
508 | 0 | delta = 0; |
509 | 0 | loop: |
510 | 0 | for (i = 1; i < trial_divisions; i++) { |
511 | | /* |
512 | | * check that rnd is a prime and also that |
513 | | * gcd(rnd-1,primes) == 1 (except for 2) |
514 | | * do the second check only if we are interested in safe primes |
515 | | * in the case that the candidate prime is a single word then |
516 | | * we check only the primes up to sqrt(rnd) |
517 | | */ |
518 | 0 | if (bits <= 31 && delta <= 0x7fffffff |
519 | 0 | && square(primes[i]) > BN_get_word(rnd) + delta) |
520 | 0 | break; |
521 | 0 | if (safe ? (mods[i] + delta) % primes[i] <= 1 |
522 | 0 | : (mods[i] + delta) % primes[i] == 0) { |
523 | 0 | delta += safe ? 4 : 2; |
524 | 0 | if (delta > maxdelta) |
525 | 0 | goto again; |
526 | 0 | goto loop; |
527 | 0 | } |
528 | 0 | } |
529 | 0 | if (!BN_add_word(rnd, delta)) |
530 | 0 | return 0; |
531 | 0 | if (BN_num_bits(rnd) != bits) |
532 | 0 | goto again; |
533 | 0 | bn_check_top(rnd); |
534 | 0 | return 1; |
535 | 0 | } |
536 | | |
537 | | /* |
538 | | * Generate a random number |rnd| of |bits| bits that is probably prime |
539 | | * and satisfies |rnd| % |add| == |rem| by sieving. |
540 | | * If |safe| != 0, it generates a safe prime. |
541 | | * |mods| is a preallocated array that gets reused when called again. |
542 | | * |
543 | | * Returns 1 on success and 0 on error. |
544 | | */ |
545 | | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, |
546 | | const BIGNUM *add, const BIGNUM *rem, |
547 | | BN_CTX *ctx) |
548 | 0 | { |
549 | 0 | int i, ret = 0; |
550 | 0 | BIGNUM *t1; |
551 | 0 | BN_ULONG delta; |
552 | 0 | int trial_divisions = calc_trial_divisions(bits); |
553 | 0 | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; |
554 | |
|
555 | 0 | BN_CTX_start(ctx); |
556 | 0 | if ((t1 = BN_CTX_get(ctx)) == NULL) |
557 | 0 | goto err; |
558 | | |
559 | 0 | if (maxdelta > BN_MASK2 - BN_get_word(add)) |
560 | 0 | maxdelta = BN_MASK2 - BN_get_word(add); |
561 | |
|
562 | 0 | again: |
563 | 0 | if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx)) |
564 | 0 | goto err; |
565 | | |
566 | | /* we need ((rnd-rem) % add) == 0 */ |
567 | | |
568 | 0 | if (!BN_mod(t1, rnd, add, ctx)) |
569 | 0 | goto err; |
570 | 0 | if (!BN_sub(rnd, rnd, t1)) |
571 | 0 | goto err; |
572 | 0 | if (rem == NULL) { |
573 | 0 | if (!BN_add_word(rnd, safe ? 3u : 1u)) |
574 | 0 | goto err; |
575 | 0 | } else { |
576 | 0 | if (!BN_add(rnd, rnd, rem)) |
577 | 0 | goto err; |
578 | 0 | } |
579 | | |
580 | 0 | if (BN_num_bits(rnd) < bits |
581 | 0 | || BN_get_word(rnd) < (safe ? 5u : 3u)) { |
582 | 0 | if (!BN_add(rnd, rnd, add)) |
583 | 0 | goto err; |
584 | 0 | } |
585 | | |
586 | | /* we now have a random number 'rnd' to test. */ |
587 | 0 | for (i = 1; i < trial_divisions; i++) { |
588 | 0 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
589 | 0 | if (mod == (BN_ULONG)-1) |
590 | 0 | goto err; |
591 | 0 | mods[i] = (prime_t) mod; |
592 | 0 | } |
593 | 0 | delta = 0; |
594 | 0 | loop: |
595 | 0 | for (i = 1; i < trial_divisions; i++) { |
596 | | /* check that rnd is a prime */ |
597 | 0 | if (bits <= 31 && delta <= 0x7fffffff |
598 | 0 | && square(primes[i]) > BN_get_word(rnd) + delta) |
599 | 0 | break; |
600 | | /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */ |
601 | 0 | if (safe ? (mods[i] + delta) % primes[i] <= 1 |
602 | 0 | : (mods[i] + delta) % primes[i] == 0) { |
603 | 0 | delta += BN_get_word(add); |
604 | 0 | if (delta > maxdelta) |
605 | 0 | goto again; |
606 | 0 | goto loop; |
607 | 0 | } |
608 | 0 | } |
609 | 0 | if (!BN_add_word(rnd, delta)) |
610 | 0 | goto err; |
611 | 0 | ret = 1; |
612 | |
|
613 | 0 | err: |
614 | 0 | BN_CTX_end(ctx); |
615 | 0 | bn_check_top(rnd); |
616 | 0 | return ret; |
617 | 0 | } |